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Abstract

Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia
cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms
of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT
underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in
large cohorts are currently limited. The purpose of this study was therefore to comprehensively
examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screen-
ing of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or cap-
illary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising
56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken
together with previous reports, these findings bring the total number of reported disease vari-
ants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor,
underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT
(3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of
genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important
genotype-phenotype correlations. This cohort offers potential for further gene identification to

address missing heritability.
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1 | INTRODUCTION

Adams-Oliver syndrome (AOS) is a rare developmental disorder char-
acterized by both aplasia cutis congenita (ACC) of the scalp and trans-
verse terminal limb defects (TTLD), including hypoplastic nails, brachy-
dactyly, oligodactyly, and amputation defects (Adams & Oliver, 1945;
Snape et al., 2009). Additional abnormalities affect the cardiovascular
and neurological systems. Approximately 20% of AOS patients have
congenital heart defects, including atrial septal defect (ASD), ventric-
ular septal defect (VSD), tetralogy of Fallot (TOF), as well as valvu-
lar and ventricular abnormalities. A similar proportion is affected by
vascular anomalies, for example, cutis marmorata telangiectatica con-
genita (CMTC). Neurological abnormalities occur less frequently and
include intracranial abnormalities (e.g., calcification, cortical dysplasia,
and gliosis), developmental delay, intellectual disability, epilepsy, and
microcephaly (Digilio, Marino, Baban, & Dallapiccola, 2015; Lehman,
Wauyts, & Patel, 2016; Snape et al., 2009).

Multiple causative genes have been discovered for AOS over
the past few years. Heterozygous mutations in ARHGAP31 (MIM#
100300), RBPJ (MIM# 614814), NOTCH1 (MIM# 616028), or DLL4
(MIM# 616589) have been described in autosomal dominant and
sporadic cases, while autosomal recessive forms of AOS may be due
to biallelic mutations in DOCKé6 (MIM# 614219) or EOGT (MIM#

615297) (Cohen et al., 2014; Hassed et al., 2012; Lehman et al., 2014;
Meester et al.,, 2015; Shaheen et al., 2011, 2013; Southgate et al.,
2011, 2015; Stittrich et al., 2014; Sukalo et al., 2015). The NOTCH
pathway plays a major role in AOS pathogenesis, with four causal
genes (RBPJ, NOTCH1, DLL4, and EOGT) involved in Notch signaling.
Specifically, DLL4 is a ligand of the Notch receptors (NOTCH1-4),
while RBPJ is the major transcriptional regulator for Notch signaling,
modulated by its transcriptional complex with the Notch intracellular
domain, which is cleaved upon activation of the pathway (Bray, 2006).
EOGT is an epidermal growth factor (EGF) domain-specific O-linked
N-acetylglucosamine transferase and, although its function remains
relatively poorly characterized in humans, it has been shown to act
on EGF domain-containing proteins, including the Notch receptors
in mammals (Sakaidani et al., 2012). By contrast, ARHGAP31 and
DOCK®6 are not directly linked to Notch signaling, but instead encode
regulatory proteins that specifically control the activity of the Rho
GTPases RAC1 and CDC42, which are important for the maintenance
of the actin cytoskeleton (Southgate et al., 2011).

AOS has an estimated frequency of one affected individual per
225,000 live births (Martinez-Frias et al.,, 1996). Due to the rarity
of this disorder and relatively recent identification of causal genes,
the percentage of AOS cases attributable to each of the established
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AQOS genes in large cohorts remains unclear. Importantly, gaining a
better understanding of potential genotype-phenotype correlationsin
this condition may identify “at-risk” individuals who have an increased
likelihood of developing additional medical complications. Here, we
report on the molecular characterization of an extensive cohort of
AOS/ACC/TTLD probands and their family members, providing fur-
ther clarity with regard to the interpretation of identified variants and
potential for improved molecular diagnosis and clinical management of
these patients.

2 | MATERIALS AND METHODS

2.1 | Patient cohort

All patients and families were recruited through the European AOS
Consortium, and all participants provided informed written consent
to participate in the study. The study was approved by the appropriate
institutional ethics review boards. Patients were diagnosed according
to the diagnostic criteria proposed by Snape et al. (2009). Specifically,
the presence of two major criteria (TTLD, ACC, or a documented
family history) or one major and one minor feature (CMTC, congen-
ital cardiac defect, or vascular anomaly) was considered strongly
indicative of AOS. Patients with ACC or TTLD in the absence of any
associated family history of AOS or other syndromic features were
classified as isolated ACC or isolated TTLD, respectively. Based on the
diagnostic criteria proposed by Lehman et al. (2016), the presence of
a (likely) pathogenic variant in an autosomal dominant AOS-related
gene or a biallelic (likely) pathogenic variant in an autosomal recessive
AOS-related gene was also considered a major criterion. A total of
194 families/probands were included in this study; only the proband
for each family was used for the calculation of frequencies, yields,
and counts. All affected individuals of the family were taken into

consideration for description of the clinical features.

2.2 | Sequencing

All AOS/ACC/TTLD patients were screened for mutations in the six
established genes (ARHGAP31: NM_020754.3; DLL4: NM_019074.3;
DOCK6: NM_020812.3; EOGT: NM_001278689.1; NOTCH1:
NM_017617.4; RBPJ: NM_005349.3). The majority of the samples
were sequenced by targeted next-generation resequencing (n = 140)
using either the HaloPlex Target Enrichment System (Agilent Tech-
nologies, Santa Clara, CA) as described previously (Meester et al.,
2015), or a TruSeq Custom Amplicon Panel (lllumina, San Diego,
CA) followed by sequencing on a MiSeq system (lllumina, San Diego,
CA) with 150 bp paired-end reads. Sequence data obtained from
the TruSeq Custom Amplicon Panel were analyzed using lllumina's
VariantStudio Data Analysis Software v3.0. GRCh37 was used as the
reference human genome build. The remaining patients were screened
by either whole-exome sequencing (WES, n = 28) or Sanger sequencing
(n = 26) as previously described (Southgate et al., 2015; Sukalo et al.,
2015). ANNOVAR (Wang, Li, & Hakonarson, 2010) dbNSFPv3.0.a (Liu,
Jian, & Boerwinkle, 2011) annotation was used for in silico prediction
scores, including MutationTaster (Schwarz, Cooper, Schuelke, &
Seelow, 2014), SIFT (Kumar, Henikoff, & Ng, 2009), PolyPhen2 hvar

(Adzhubei et al., 2010), and CADD (Supporting Information Table S1)
(Kircher et al., 2014). Alamut (v2.8.1) was used for in silico splicing
predictions, including SpliceSiteFinder-like, MaxEntScan, NNSPLICE,
GeneSplicer, and Human Splicing Finder (Supporting Information
Table S2). After identification of a likely pathogenic variant by Sanger
sequencing of single genes, no further screening of the remaining
AOS genes was performed. All observed mutations were confirmed by
conventional Sanger sequencing on an independent sample.

2.3 | Variant classification

Variants are classified according to the American College of Medical
Genetics (ACMG,) guidelines (Richards et al., 2015). However, we have
used a few additional gene-specific criteria, in consideration of the
pathogenic mechanisms involved in AOS. First, all protein-truncating
mutations in the last exon of ARGHAP31 were classified as pathogenic
due to gain-of-function, in accordance with the previously reported
mechanism in this gene (Southgate et al., 2011). Second, cysteine sub-
stitutions within EGF domains of DLL4 or NOTCH1 were considered to
have strong evidence of pathogenicity, similar to null variants (Dietz,
Saraiva, Pyeritz, Cutting, & Francomano, 1992; Schrijver, Liu, Brenn,
Furthmayr, & Francke, 1999). Third, recurrent missense mutations
affecting the same amino acid in independent cases were classified
as pathogenic due to multiple occurrences. Lastly, in families where
>3 individuals were available for screening, any variant with a pene-
trance less than 60% was classified as a variant of uncertain signifi-
cance (VUS).

3 | RESULTS

The analyzed cohort comprised 194 distinct AOS/ACC/TTLD familial
or sporadic cases. Of these, 36 families were consistent with an auto-
somal recessive mode of inheritance, based on pedigree data or known
consanguinity, while autosomal dominant inheritance was the most
likely inheritance pattern in 55 families (Figure 1A). The remaining
103 probands were categorized as sporadic in the absence of any
family history or known consanguinity. We provide a causal molecular
explanation for the phenotype in 58/194 (30%) of AOS/ACC/TTLD
probands (Table 1). Among the 63 pathogenic (or likely pathogenic)
mutations in this study, 56 were distinct, or nonrecurrent, mutations
and 22 mutations have not been reported to date (Supporting Infor-
mation Figure S1). In addition, we identified several VUS (n = 14,
Supporting Information Table S3 and Supporting Information Figure
S1). The data on novel variants have now been made available in the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar).

We observed a causal mutation in 13 of the 36 families (36%)
with likely autosomal recessive inheritance. These include homozy-
gous mutations in EOGT (n = 3) and DOCK6 (n = 7), and compound
heterozygous mutations (EOGT, n = 1; DOCK®6, n = 2). One additional
case harbored a heterozygous VUS in DOCK6, but we did not detect
a variant on the second allele (Supporting Information Table S3). The
remaining 22 recessive families remain unresolved after analyzing all

currently known AOS genes.
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FIGURE 1 Genetic architecture of AOS. (a) Distribution of inheritance pattern across our AOS cohort. AD, autosomal dominant; AR, autosomal
recessive. (b) Contribution of mutations in each of the six known genes to the development of AOS in the complete cohort and in familial cases
only. For each cohort, charts depict the gene distribution excluding VUS and when all VUS are considered as pathogenic, respectively. (c) Distribu-
tion of mutation categories across established AOS genes. (d) Representation of previously reported and novel pathogenic mutations in NOTCH1.
Mutations identified in this study that were previously reported in AOS patients are represented on the upper part of the figure. Novel muta-
tions are arrayed below the schematic. EGF 11-13 highlights the ligand-binding domain. Pathogenic mutations are depicted in black and VUS in
red. ECD, Extracellular domain; ICD, Intracellular domain; EGF-like, epidermal growth factor-like domain; cbEGF-like, calcium-binding epidermal
growth factor-like domain; LNR, Lin-12/Notch repeat; TM, transmembrane domain; RAM, RBP-Jkappa-associated module; ANK, ankyrin; TAD,
transcriptional activation domain and PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)-rich peptide sequence.

In the autosomal dominant cohort, 36% (20/55) of AOS cases were
directly attributable to the established AOS genes with pathogenic
mutations observed in ARHGAP31 (n = 4), DLL4 (n = 5), NOTCH1
(n=7),and RBPJ (n = 4) (Table 1). Furthermore, we observed four VUS
in NOTCH1 (Supporting Information Table S3). In one proband (Family
16), two NOTCH1 missense variants were detected (pTrp2034Arg
and p.Ala2043Val). Both variants were confirmed to exist on the same
allele, due to co-occurrence in the same next-generation sequencing
read. These variants were not present in the healthy mother and
sister. Due to the unavailability of paternal DNA, we were unable to
determine whether either of these variants had occurred de novo.

In our cohort of 103 sporadic cases, the frequency of identified
likely pathogenic mutations was 24%. We detected heterozygous
mutations in ARHGAP31 (n = 2), DLL4 (n = 7), and NOTCH1 (n = 12),
in addition to compound heterozygous DOCK6 mutations (n = 2)

and homozygous EOGT mutations (n = 2) (Table 1). Additionally, we
observed several VUS in NOTCH1 (n = 6), DLL4 (n = 3), and DOCKé
(n = 1) (Supporting Information Table S3).

Taken together, mutations in the six established AOS genes underlie
less than one third of the AOS/ACC/TTLD probands in our total cohort
(Figure 1B). NOTCH1 is the major contributor to the AOS phenotype,
both in familial and sporadic disease, harboring 10% of the mutational
load in our study. Mutations in DLL4 and DOCK6 each represent 6%
of the cases while ARHGAP31, EOGT, and RBPJ mutations account
for only small proportions, underlying 3%, 3%, and 2% of cases,
respectively. Among familial cases we observed an elevated mutation
detection rate of 36% overall (Figure 1B). NOTCH1, DLL4, EOGT, and
DOCK®6 harbored deleterious variation across the major mutational
categories, including insertion-deletion, nonsense, splicing, and
missense variants (Figure 1C). By contrast, mutations observed in
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ARHGAP31 comprised protein-truncating mutations confined to the
last exon, while all RBPJ mutations result in amino acid substitutions
within a conserved DNA-binding domain (Figure 1C).

An analysis of clinical features in our cohort determined that 96%
of the mutation-positive cases had scalp defects (with or without
underlying skull defect), while TTLD was observed in 78% of mutation-
positive cases (Table 2). Assessment of potential genotype-phenotype
correlations revealed wide variability in TTLD characteristics both
within and between families. Brachydactyly and hypoplastic digits or
nails were observed most frequently. ACC also demonstrated wide
phenotypic variability, ranging from small patches of skin lacking hair
to complete absence of skin with underlying skull defect. However,
there did not appear to be any gene-specific correlation with observed
limb or scalp defects.

We observed a wide variety of associated cardiac features, includ-
ing ASD, VSD, patent ductus arteriosus, aortic stenosis, truncus
arteriosus, TOF, and valve abnormalities. Of note, cardiac features
were more frequently observed in patients with a mutation in DLL4,
NOTCH1, or RBPJ (>49% vs. >13%, Table 2). However, in the absence
of detailed cardiac examinations for all variant carriers, it was not pos-
sible to determine firm genotype-phenotype correlations based on
these data. CMTC was reported in 29% of mutation-positive patients,
while other observed vascular features included defects of pulmonary
or portal vasculature, abnormal branching of the carotid artery, and
sinus sagittalis thrombosis (Table 2). In DOCKé-positive cases, we
observed a positive correlation with the presence of brain abnormal-
ities and/or intellectual disability, as previously described (>91% vs.
>19%, Table 2) (Sukalo et al., 2015).

4 | DISCUSSION

Here, we have examined the genetic contribution to AOS and isolated
ACC/TTLD in our extensive cohort of families ascertained through the
European AOS Consortium. With the discovery of 63 mutations in the
six previously established genes, including 56 distinct and 22 novel
mutations, our study provides independent confirmation of a substan-
tial role for ARHGAP31, DLL4,DOCK6, EOGT, NOTCH1, and RBPJin AOS
pathogenesis. This combined mutation screening strategy represents
the largest cohort of AOS patients reported to date and, while some
of the cases detailed here have been previously published in cohorts
used for novel gene identification (Table 1), this comprehensive review
and mutation update provides unique insight into the distribution and
frequency of mutations across the wider spectrum of AOS-related
disorders. The majority of identified mutations (n = 41; 71%) affect
genes within the Notch pathway and are therefore predicted to lead to
dysregulated Notch signaling, likely through haploinsufficiency or loss-
of-function (LOF) of NOTCH1, DLL4, RBPJ, or EOGT. A smaller propor-
tion (n = 17; 29%) affects the Rho GTPase regulators ARHGAP31 and
DOCKS®, which specifically influence the activity of RAC1 and CDC42.

4.1 | Autosomal dominant AOS

Consistent with previous reports, our data confirm that NOTCH1 is

the major contributor to the genetic basis of autosomal dominant

WILEY | s

AQOS/ACC/TTLD (Stittrich et al., 2014). In addition to 9 previously
reported variants (Supporting Information Table S4) (Southgate et al.,
2015), we identified 10 novel mutations and nine VUS in the NOTCH1
gene (Figure 1D; Supporting Information Table S3). Protein-truncating
variants are distributed across the length of the receptor and are
predicted to lead to nonsense-mediated decay (NMD) of the mutant
mRNA transcript. In contrast, and as discussed previously (South-
gate et al,, 2015), we observed a clustering of missense NOTCH1
mutations around EGF-like domains 11-13, critical for ligand binding
to the receptor (Hambleton et al., 2004; Luca et al., 2015). Here,
we describe one novel missense mutation (p.Ala465Thr) within
EGF12, which has been reported in ClinVar as likely pathogenic for an
unspecified condition. We also identified a novel splice-site mutation
(c.1669+5G > A), confirmed by cDNA sequencing to lead to in-frame
skipping of exon 10, encoding residues within EGF13-14 (Supporting
Information Figure S2 and Supporting Information Table S2). This
variant has a minor allele frequency (MAF) of 4 x 10~ in the gnomAD
control database (https://gnomad.broadinstitute.org/; V.r2.0.2). The
identification of these mutations in our AOS cohort provides further
confirmation of the importance of this ligand-binding region for
normal human development. We also describe five cysteine-replacing
or -creating mutations within other EGF-like repeat domains, of which
two (p.Arg902Cys and p.Cys1094Tyr) are novel. Cysteine residues
within this region form essential disulfide bonds (Dietz et al., 1992;
Schrijver et al., 1999), suggesting that these mutations will most likely
disrupt the tertiary structure of these domains. A number of additional
missense variants were classified as VUS due to the lack of familial
segregation data. Of note, the proband in Family 16 harbored two
missense variants within the highly conserved ANK4 protein domain,
essential for RBPJ binding (Aster et al., 2000). Taken with reports of
RBPJ LOF in AOS, these findings provide a strong indication that one
of these two variants is likely pathogenic.

We observed four novel mutations in DLL4, the majority of which
are missense, including two cysteine substitutions (p.Cys437Ser and
p.Cys466Tyr) and a substitution in EGF-like domain 3 (p.Thr317Pro).
We additionally identified a novel nonsense mutation (p.GIn609*) and
a ¢.572G > A (p.Arg191His) missense mutation, recently reported
in a Japanese family (Nagasaka et al., 2017). The Argl191 residue
is a highly conserved residue in the DSL domain of DLL4, which
stabilizes receptor-ligand binding with the NOTCH1 EGF12 domain
(Luca et al.,, 2015). The VUS identified in DLL4 include one mis-
sense variant (p.Pro267Thr), which has been reclassified here accord-
ing to ACMG guidelines (Richards et al., 2015), an in-frame deletion
(p.Phe89delCTT), and a potential splice-site variant (c.1240+5G > C)
(Supporting Information Table S2). The observed spectrum of DLL4
variation, including those identified previously (Supporting Informa-
tion Table S4), suggests that LOF is the likely molecular mechanism
in DLL4-positive AOS; however, this remains to be experimentally
verified.

In accordance with the previous report of RBPJ substitutions within
critical DNA-binding domains (Supporting Information Table S4)
(Hassed et al., 2012), we identified four DNA-binding domain missense
mutations in RBPJ, one of which (p.Lys169Glu) is recurrent, provid-

ing further evidence for LOF of this transcription factor in AOS
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pathogenesis. RBPJ is intolerant to variation, with
no LOF and ExAC
(https://exac.broadinstitute.org; V.0.3.1). We detected two novel

substitutions within critical DNA-binding domains. The p.Argé65Gly

highly

few missense variants observed in

mutation in Family 44 affects an amino acid residue that has previ-
ously been demonstrated to bind directly to DNA (Hassed et al., 2012),
while the p.Phe66Val substitution (Family 175) is considered likely
pathogenic due to its position, evolutionary conservation and familial
segregation. In this family, a NOTCH1 variant (p.Arg1758Gly) was
observed to cosegregate with disease, but was classified as a VUS due
to poor conservation and its presence in control databases (MAF in
gnomAD = 0.00014). We additionally identified a novel p.Ser332Arg
missense substitution in Family 178 (Supporting Information Table S1).
Due to ambiguity around the exact location of RBPJ domain predic-
tions, it is unclear whether this substitution is located within the beta-
trefoil DNA-binding domain; however, all RBPJ variants are consistent
with a LOF disease mechanism due to likely abrogation of DNA binding.

Pathogenic mutations in ARHGAP31 reported to date (Supporting
Information Table S4) are all located within the terminal exon 12,
leading to premature termination of the translated protein (Isrie,
Wauyts, Van Esch, & Devriendt, 2014; Southgate et al., 2011). Mutation
screening of ARHGAP31 in our cohort identified four heterozygous
protein-truncating mutations within exon 12. In addition to one novel
nonsense mutation (p.GIn728%), we detected a recurrent p.GIn683*
mutation in three unrelated cases, highlighting terminal exon ter-
mination mutations as a consistent feature of this gene in AOS.
Microsatellite genotyping to assess potential shared haplotypes at
this locus was inconclusive (data not shown). Previous analysis of
the p.GIn683* mutation has demonstrated the mutant transcript
escapes NMD, consistent with truncating mutations downstream of
the final splice junction (Bonafede & Beighton, 1979), leading to the
production of a constitutively active protein and disruption of the actin
cytoskeleton due to active CDC42 depletion (Southgate et al., 2011).
We therefore hypothesize that other C-terminal protein-truncating
mutations of ARHGAP31 will lead to a gain of protein function through
a similar mechanism of NMD escape.

4.2 | Autosomal recessive AOS

In our autosomal recessive cohort, mutation analysis of the EOGT gene
revealed five distinct mutations across six families. All variants have a
very low frequency in gnomAD (maximum MAF = 0.00002) and, with
the exception of one family, were present in the homozygous state. In
two Dutch families (Family 38 and 39), we observed an identical novel
homozygous frameshift mutation (p.His27Alafs*46). Although present
in the heterozygous state in gnomAD (MAF = 0.00005), no homozy-
gous genotypes were observed in European control populations. In a
third family from the United Kingdom (Family 59), this mutation was
present in compound heterozygosity with a second causative variant.
While we were unable to formally evaluate relatedness between these
families, it is notable that a recurrent EOGT mutation exists within dis-
tinct European populations.

We identified a total of 13 distinct DOCKé mutations and two
VUS in DOCKS, all of which have been previously reported by

our consortium (Supporting Information Table S4) (Sukalo et al.,
2015). As expected, all homozygous mutations were present in fam-
ilies with close parental relatedness. In our cohort of compound
heterozygous mutations, four variants (c.484G > T, c.788T > A,
¢.1902_1905delGTTC, and c.4106+5G > T) are unique to this consor-
tium, while three variants have a low MAF in gnomAD (c.5939+2T > C;
0.00021, c.1362_1365del; 0.00004, and c.4491+1G > A; 0.00003). In
two families, we only observed a single heterozygous low frequency
variant. ldentification of a second mutation, for example, within the
noncoding region at a cryptic intronic splice site, enhancer/repressor
region, or promoter region, could provide a molecular diagnosis in a
limited set of patients.

Of interest, a few consanguineous families remain genetically unre-
solved after analyzing the coding region of the six established AOS
genes. Due to the methodology used, we were unable to detect larger
structural variation in these genes, which may explain a proportion of
the missing heritability in AOS. Of note, linkage analysis in one consan-
guineous family demonstrated autozygosity across the EOGT locus but
no coding mutation was identified in this gene. In several other families,
genome-wide autozygosity mapping analysis has indicated the likely
existence of other disease loci that require further investigation. These
data strongly suggest that there are still more genes to be discovered
in AOS/ACC/TTLD.

4.3 | Genetic architecture

A comparison of the proportion of AOS cases attributable to each
particular gene observed in our current study (Figure 1B) against those
previously published (Lehman et al., 2016) reveals a number of key dif-
ferences. Specifically, we observed a lower frequency of mutations for
all genes in our cohort. Our results indicate an overall diagnostic yield
of 30%, compared to the previous report that 50%-60% of AOS cases
are explained by mutations in the six established genes. This may be
due to previous estimates being largely based on single reports of novel
gene identification, which typically utilize highly stratified discovery
cohorts that are both clinically homogeneous and mutation negative
for previously characterized genes. The latter would therefore lead to
an overestimation of the number of identified mutations. Of note, our
cohort contains a significant number of cases and families with isolated
ACC or TTLD. Given recent observations of a wide phenotypic spec-
trum in AOS mutation carriers, the updated diagnostic criteria pro-
posed in 2016 (Lehman et al., 2016), which account for the presence of
a pathogenic mutation in an established gene, may be more valid, lead-
ing to reclassification of nine ACC cases and one TTLD case as AOS in
our cohort (data not shown). While the removal of isolated ACC/TTLD
cases from our cohort does not significantly alter the diagnostic yield,
it is notable that the mutation-negative sporadic cohort contains pre-
dominantly isolated ACC cases (n = 27). Additionally, although we have
used robust diagnostic methodologies, it is possible that our cohort
may contain some cases with other genetic or nongenetic conditions.
An alternative explanation for the difference in mutation frequency
between the two reports is the use of more stringent criteria for clas-
sification of identified variants in our study. We classify several vari-

ants as VUS, due to strict adherence to the ACMG guidelines. However,
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functional evaluation or familial segregation analyses may alter these
classifications. For example, the NOTCH1 p.Asp1989Asn variant has
previously been classified as pathogenic (Stittrich et al., 2014), but has
since been reclassified as benign in ClinVar. Similarly, we have reclassi-
fied the NOTCH1 p.Pro407Arg and DLL4 p.Pro267Thr variants as VUS
in this study (Meester et al., 2015; Southgate et al., 2015). Of note, a
reclassification of all the VUS in our study as causal, would increase
the diagnostic yield to 36% (Figure 1B), which is still lower than pre-
vious estimates (Lehman et al., 2016). By contrast, the use of additional
gene-specific criteria for classification, as described above, may have
led to an overrepresentation of pathogenic variants.

Finally, our study includes a substantial proportion of sporadic
cases, which have been relatively poorly studied in previous reports
favoring the use of familial cohorts for novel gene detection. A molecu-
lar diagnosis was achieved for 36% of the familial cases in our cohort, or
40% if classifying all VUS as causal (Figure 1B). Conversely, in our spo-
radic cases the mutation detection rate was only 24%, highlighting an
increased likelihood of genetic risk factors in familial disease. Our spo-
radic cohort also contains nine, predominantly missense VUS. These
variants would require additional supporting evidence to be reclas-
sified as pathogenic. However, this is complicated by the absence of
familial segregation data and documented reduced penetrance in this
condition.

An assessment of potential genotype-phenotype correlations
in our cohort revealed a few important observations. Cardiac fea-
tures were more frequently observed in patients with a mutation in
NOTCH1, DLL4, or RPBJ. While cardiac examination is recommended
for all AOS patients, these findings indicate a specific requirement
for patients with NOTCH1, DLL4, and RBPJ mutations. We also noted
a positive correlation between patients with recessive mutations in
DOCK®6 and the presence of neurological abnormalities, intrauterine
growth restriction, or ocular anomalies. Finally, we observed wide
phenotypic variability and incomplete penetrance. The latter was most
common in NOTCH1-related AOS and to a lesser extent in ARHGAP31-
and DLL4-related disease. It is likely that the level of penetrance is
currently overestimated, due to segregation analysis typically being
restricted to parents. Furthermore, incomplete penetrance potentially
accounts for an excess of sporadic cases, a known phenomenon in AOS.

4.4 | Future perspectives

Despite the identification of six genes underlying AOS to date, the
majority of cases (64%-70%) in our cohort remain unresolved. Sev-
eral reasons that may explain this missing heritability should now be
examined further. First, targeted next-generation sequencing is depen-
dent on efficient hybridization, which did not provide full coverage of
all target genes. Specifically, NOTCH1 exon 1 was poorly covered using
HaloPlex Target enrichment and TruSeq Custom Amplicon enrichment.
While these gaps were not sequenced manually, no AOS mutations
have been reported in this region of the gene to date. In addition, sev-
eral target regions of DOCK6 (exons 1, 2, 15, 16, 23) and RBPJ (exon
2) demonstrated reduced coverage in a subset of patients enriched
with the TruSeq Custom Amplicon Panel. Second, further genetic het-

erogeneity of AOS is highly likely. Additional genes encoding pro-
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teins involved in NOTCH signaling or CDC42/RAC1 regulation and
cytoskeleton dynamics are plausible candidates. Third, it is possible
that the spectrum of AOS/ACC/TTLD disease is not uniformly mono-
genic. Considering the high proportion of sporadic cases for a condition
that does not significantly reduce reproductive fitness, as well as the
likelihood that this spectrum of disorders is a consequence of fetal vas-
cular disruption, it is tempting to speculate that nongenetic causes or
complex inheritance may be involved in the etiology of this phenotype.
Fourth, the majority of samples in our cohort have not undergone copy-
number variant analysis or screening of noncoding regions. Partial or
complete deletion or duplication of one of the six established genes
may account for approximately 20% of cases (Machado et al., 2015),
but were not detected in this study due to the methodologies used. In
conclusion, these data support the likely existence of additional, as yet
unidentified, susceptibility genes for AOS and related disorders. Our
extensive patient cohort provides opportunities for the identification
of additional causal genes and functional interpretation of identified
defects, with the potential to explore future therapeutic avenuesin this

condition.
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