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Abstract  
Background:  Sudden infant death syndrome (SIDS) is a leading cause of post-neonatal 
mortality. Genetic heart diseases (GHDs) underlie some of SIDS.  
Objectives: We aimed to determine the spectrum and prevalence of GHD-associated mutations 
as a potential monogenic basis for SIDS.   
Methods: A cohort of 419 unrelated SIDS cases (257 males; average age = 2.7 ± 1.9 months) 
underwent whole exome sequencing and a targeted analysis of 90 GHD-susceptibility genes.  
The yield of “potentially informative”, ultra-rare variants (MAF<0.00005) in GHD-associated 
genes was assessed.  
Results: Overall, 53/419 (12.6%) SIDS cases had > 1 “potentially informative”, GHD-associated 
variant. The yield was 14.9% (21/141) for mixed-European ancestry cases and 11.5% (32/278) 
for European ancestry SIDS cases.  Infants older than 4 months were more likely to host a 
“potentially informative” GHD-associated variant.  There was a significant over-representation 
of ultra-rare non-synonymous variants in European SIDS cases (18/278, 6.5%) versus European 
controls (30/973, 3.1%, p=0.013) when combining all 4 major cardiac channelopathy genes 
(KCNQ1, KCNH2, SCN5A, and RYR2). According to the American College of Medical Genetics 
guidelines, only 17/419 (4.1%) SIDS cases hosted a “pathogenic” or “likely pathogenic” variant.  
Conclusion: Less than 15% of over 400 SIDS cases had a “potentially informative” variant in a 
GHD-susceptibility gene, predominantly in the 4-12 month age group. Only 4.1% of cases 
possessed immediately clinically actionable variants.   Consistent with previous studies, ultra-
rare, non-synonymous variants within the major cardiac channelopathy-associated genes were 
over-represented in SIDS cases of European ethnicity.  These findings have major implications 
for the investigation of SIDS cases and families.   
 
Condensed Abstract: Sudden infant death syndrome (SIDS) is a leading cause of post-neonatal 
mortality. Genetic heart diseases (GHDs) underlie some of SIDS. Here, using a cohort of 419 
unrelated SIDS cases, we aimed to determine the spectrum and prevalence of GHD-associated 
mutations as a possible monogenic basis for SIDS using whole exome sequencing and a targeted 
analysis of 90 GHD-susceptibility genes.  The yield of “potentially informative”, ultra-rare 
variants (MAF<0.00005) in GHD-associated genes was assessed. Less than 15% of cases had a 
“potentially informative” variant, predominantly in the 4-12 month age group. Only 4.1% of 
cases possessed immediately clinically actionable variants.    
 
Keywords: Genetic heart diseases; molecular autopsy; sudden infant death syndrome; whole 
exome sequencing  
 
Abbreviations   
ACMG – American College of Medical Genetics 
BrS – Brugada Syndrome 
CPVT – Catecholaminergic Polymorphic Ventricular Tachycardia 
ExAC – Exome Aggregation Consortium 
GHD – Genetic Heart Diseases 
HCM – Hypertrophic Cardiomyopathy 
LQTS – Long QT Syndrome 
NSV – Nonsynonymous Variant 
SIDS – Sudden Infant Death Syndrome 
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WES – Whole Exome Sequencing 
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Introduction 

Sudden infant death syndrome (SIDS) is the sudden unexpected death of an infant less 

than 1 year of age, which remains unexplained despite comprehensive clinical and pathological 

investigations (1). SIDS represents 70-80% of all sudden unexpected infant deaths with an 

incidence of 0.4/1000 live births in the UK and 0.5/1000 live births in the USA.(2,3) The peak 

incidence occurs between 2 – 4 months of age and is more common in males. Such infant deaths 

are associated commonly with environmental risk factors such as co-sleeping or prone sleeping 

position.(4) Despite successful targeted risk reduction campaigns, the number of SIDS cases 

have plateaued, and SIDS remains the leading cause of post-neonatal mortality(4).  

A triple-risk model for SIDS suggest the convergence of the vulnerable infant in the 

setting of exogenous stressors during a critical development period (5).  Although many 

pathophysiologic theories have been proposed, decisive pathogenic substrates/mechanisms 

triggering an infant’s sudden demise remain unclear (6-9). Several studies have implicated both 

common and rare genetic variants involved in autonomic function, neurotransmission, energy 

metabolism, response to infection, and cardiac repolarization (10-14). Also, potentially lethal 

genetic heart diseases (GHDs) including long QT syndrome (LQTS), Brugada syndrome (BrS), 

catecholaminergic polymorphic ventricular tachycardia (CPVT), and hypertrophic 

cardiomyopathy (HCM) have been implicated as monogenic causes for a small proportion of 

SIDS cases (10,13,15-27). 

However, less than 100 investigations of genetic variation in population-based SIDS 

cohorts have been published to date, largely based on hypothesis-driven, candidate 

gene/pathway-based approaches that recognize established pathobiological risk factors for SIDS, 

with an average cohort size of just 125 SIDS cases (13). Here, using whole exome sequencing 
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(WES), we conducted a GHD-associated gene-specific analysis on a cohort of over 400 unrelated 

SIDS cases. 

Methods 

Study Population 

The SIDS cohort (N=427) consisted of 95 coroners’ cases from the United Kingdom (UK; 

London, Sheffield, Edinburgh and Bristol) and 332 coroner/medical examiner/forensic 

pathologist-referred cases collected from six ethnically and geographically diverse United States 

(US) populations.  Because of the lack of uniformity in procedures and reporting between 

medical examiner offices in the US, minor differences in protocols may exist.  Nonetheless, both 

gross and histological examinations of all major organs were performed and all cases satisfied 

our enrolment criteria that included 1) sudden unexplained death of an infant < 1 year of age, 2) 

European descent, and 3) a comprehensive negative medico-legal autopsy including a negative 

toxicology screen and death scene investigation. Infants with asphyxia or specific disease 

causing death were excluded.  Ethnicity was self-reported by the referring coroner/medical 

examiner.  This anonymous necropsy study only had limited medical information such as the sex, 

ethnicity age at the time of death, and sleep position available. This study complies with the 

Declaration of Helsinki; locally appointed ethics committees including Mayo Clinic’s 

Institutional Review Board have approved the research protocol. Some of the 332 samples from 

the US have been included in previous publications that involved hypothesis-driven, specific 

candidate gene mutational analysis (10,18,19,23-28). Of the 332 cases, 58 had been analyzed 

previously for variants in SCN5A (10), KCNQ1 (18), KCNH2 (18), RYR2 (19), SNTA1 (23), 

KCNJ8 (24), Cx43 (25), GPD1L (26), CAV3 (27), SCN1B (28), SCN2B (28), SCN3B (28), and 

SCN4B (28).  An additional 25 of the 332 were also analyzed for RYR2 (19) and an additional 
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145 of the 332 cases were also analyzed for SNTA1 (23), KCNJ8 (24), Cx43 (25), GPD1L (26), 

CAV3 (27), SCN1B (28), SCN2B (28), SCN3B (28), and SCN4B (28).  None of the 95 cases from 

the UK have been published previously.  

Control Population 

973 control exomes (509 females, 464 males) from the ICR1000 UK exome series and 

the 1958 Birth Cohort study were included for case-control analysis.(29) As previously reported, 

exome sequencing was performed using the Illumina TruSeq and Illumina instruments.(29). 

Whole Exome Sequencing (WES) 

Genomic DNA isolated from each SIDS case underwent WES at the KCL-GSTT 

Biomedical Research Centre Genomics Platform, London, UK or Mayo Clinic’s Medical 

Genome Facility, Rochester, Minnesota.  

Paired-end libraries were prepared following the manufacturer’s protocol (Agilent) using 

the Bravo liquid handler from Agilent.  Briefly, 1-3 ug of genomic DNA was fragmented to 150-

200 bp using the Covaris E210 sonicator.  The ends were repaired and an “A” base was added to 

the 3’ ends. Paired end Index DNA adaptors (Agilent) with a single “T” base overhang at the 3’ 

end were ligated and the resulting constructs were purified using AMPure SPRI beads 

(Agencourt). The adapter-modified DNA fragments were enriched by 4 cycles of PCR using 

SureSelect forward and SureSelect ILM Pre-Capture Indexing reverse (Agilent) primers. The 

concentration and size distribution of the libraries was determined on an Agilent Bioanalyzer 

DNA 1000 chip. 

Whole exon capture was performed using the protocol for Agilent’s Sure SelectXT 

Human All Exon V5+UTR kit. Briefly, 750 ng of the prepped library was incubated with whole 

exon biotinylated RNA capture baits supplied in the kit for 24 hours at 65 °C. The captured 
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DNA:RNA hybrids were recovered using Dynabeads MyOne Streptavidin T1 (Dynal). The DNA 

was eluted from the beads and purified using Ampure XP beads (Agencourt).  The purified 

capture products were then amplified using the SureSelect Post-Capture Indexing forward and 

Index PCR reverse primers (Agilent) for 12 cycles. 

Libraries were pooled at equimolar concentrations and loaded onto paired end flow cells 

at concentrations of 7-8 pM to generate cluster densities of 600,000-800,000/mm2 following 

Illumina’s standard protocol using the Illumina cBot and HiSeq Paired end cluster kit version 3. 

Each lane of a HiSeq flow cell produced 21-39 Gbases of sequence. The level of sample pooling 

was controlled by the size of the capture region and the desired depth of coverage. 

The flow cells were sequenced as 101 X 2 paired end reads on an Illumina HiSeq 2000 

using TruSeq SBS sequencing kit version 3 and HiSeq data collection version 2.0.12.0 software. 

Base-calling was performed using Illumina’s RTA version 1.17.21.3. 

The FASTQ files underwent quality control checks using FASTQC.  The Illumina paired 

end reads were aligned to the GRCh37 (hg19) human reference genome using Novoalign 

(http://novocraft.com). Single-sample variant calling with the Genome Analysis Toolkit (GATK, 

Version 3.2-2)(30) and  the resulting gVCFs subsequently underwent multi-sample genotyping 

and variant quality score recalibration. Genotypes were excluded if the QC was < 15 or there 

were fewer than 4 reads supporting the call. Further filtering of variant sites was performed to 

exclude sites with missingness > 0.1 in cases or controls.  Variants were annotated with respect to 

the genes in which they reside with Annovar, allele frequencies were obtained from the Exome 

Aggregation Consortium (ExAC) database and combined annotation dependent depletion 

(CADD) scores from the CADD server (http://cadd.gs.washington.edu). 

Quality Control Coverage Analysis and Principal Component Analysis (PCA) for Relatedness 

http://novocraft.com/
http://cadd.gs.washington.edu/
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and Ethnicity 

Coverage across the exome was assessed using the Bedtools package cases were 

excluded from further analysis if < 75% of the Gencode defined protein coding exome was 

covered by < 20 reads. A set of 3847 common variants located outside of regions of the genome 

where there is extensive linkage disequilibrium were used to estimate relatedness within the 

study cohort and ethnic ancestry alongside the control group.(31) Estimation was undertaken 

using the first two dimensions of a Multidimensional Scaling (MDS) using Euclidean distance 

undertaken with the King software package. 

Ancestry Confirmation 

To avoid potential confounding due to population stratification resulting from genetic 

admixture, a principal component analysis (PCA) was performed (Online Supplement).  The 

PCA served only for the rare variant analysis between European SIDS cases and European 

controls. The PCA data was not used for attributing causality to identified variants where ethnic 

matched controls would not be necessary for variant adjudication. SIDS cases and controls 

forming a homogeneous cluster on the first two components were included in the case-control 

rare variant analysis.  

Genetic Heart Disease (GHD)-Gene Specific Variant Analysis 

Known cardiac channelopathy- (LQTS, CPVT, BrS) and cardiomyopathy- (HCM, DCM, 

ACM) susceptibility genes (N=90, Online Table 1) were evaluated for the presence of “ultra-

rare” nonsynonymous variants (NSVs) with a minor allele frequency (MAF) < 0.00005 

(1:20,000 alleles) derived from the Exome Aggregation Consortium (ExAC)(32). A comparison 

of yield of was undertaken for ultra-rare NSVs in SIDS cases of PCA-determined European 

ancestry versus European controls across all 90 GHD-susceptibility genes and the 4 “major” 
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channelopathy genes (KCNQ1, KCNH2, SCN5A, and RYR2).  

All putative loss of function variants (i.e. a “radical” variant: frame-shift, nonsense, and 

essential splice-site variants) or missense variants with a previously established abnormal in vitro 

function characterization that resided within any of the 90 GHD-associated genes and all ultra-

rare, missense variants residing in any of the 4 “major” channelopathy genes were considered to 

be “potentially informative” variants that would be appropriate for investigation of their 

significance in a family. Such variants were confirmed using standard Sanger sequencing 

techniques.   The American College of Medical Genetics and Genomics (ACMG) standards and 

guidelines for the interpretation of sequence variants was used to further assist in the 

classification of our genetic findings among all ultra-rare (MAF < 0.00005) NSV identified 

across the 90 GHD-associated genes (33).  

Statistics 

Categorical variables were expressed as absolute numbers and percentage, and compared 

with Fisher’s exact or Chi-square tests.  Probability values were based on two-sided tests 

considered significant at P<0.05. Analysis was conducted with SPSS version 18.0 software 

(SPSS Chicago III).  

Results 

Demographics 

WES was performed in 427 SIDS cases. However, quality control metrics excluded 7 

cases due to insufficient exome coverage and one individual from a half-sibling pair (Online 

Figure 1). The cohort therefore consisted of 419 cases (257 males, 162 females; average age = 

2.7 ± 1.9 months) with a skewed bell-shaped distribution of age (Online Figure 2). The 

epidemiologically higher risk age group of 2–4 months (58.9%) and male gender (61%) 
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accounted for the majority of the cases. The PCA demonstrated a wide distribution of ancestral 

origins with 278 cases (173 males, 105 females) considered European ancestry and 141 cases (84 

males, 57 females) considered mixed-European (Online Figure 3, Table 1). Sleep characteristics 

were known in 54% of the cohort (Table 1).  There were no significant differences in 

demographics and sleep characteristics between the European and mixed-European ancestry 

cases. 

Genetic Heart Disease (GHD) Gene-Specific Analysis 

Overall, a total of 285 unique, ultra-rare NSVs (256 missense, 23 putative loss of function [12 

frame-shift, 8 splice-errors, 3 nonsense], and 6 in-frame-indels) were identified in 194/419 

(46.3%) SIDS cases overall (Figure 1). Further, 45/278 (16.2%) European ancestry cases and 

25/141 (17.7%) mixed-European ancestry cases hosted > 1, ultra-rare NSVs.  

These ultra-rare NSVs resided in 68 of the 90 GHD-associated genes (21/31 

channelopathy-associated; 47/59 cardiomyopathy-associated genes).  The gene-specific yields 

for the overall cohort and the European and mixed European subsets are shown in Online Table 

2.  

Of the 285 unique, ultra-rare NSVs identified, 57 (20%) were considered “potentially 

informative”.  Twenty-five/57 [43.9%] were missense variants in the 4 major channelopathy 

genes, 23/57 [40.3%] were putative loss of function variants, and 10/57 [17.5%] were variants 

previously reported in the literature as having an abnormal in vitro functional phenotype (Table 

2).  Overall, 53/419 (12.6%) SIDS cases hosted at least one “potentially informative” variant 

(Figure 1).  Four out of 419 cases (0.95%) had two “potentially informative” variants. The yield 

was 14.9% (21/141) for mixed-European ancestry cases and 11.5% (32/278) for European 

ancestry SIDS cases (Figure 1).   
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There were no significant differences in the yield of either ultra-rare NSVs among all 90 

GHD genes or “potentially informative” variants when comparing gender, sleep position (supine 

vs prone), or co-sleeping (yes vs no) in either the overall or stratified populations (Table 3). 

However, there was a significantly higher yield of “potentially informative” GHD-associated 

genetic variants in those infants that died at greater than 4 months of age (15/65, 23.1%) 

compared to those younger than 4 months of age (37/354, 10.4%, p=0.0075, Figure 2).    

Following further vetting using the strict ACMG guidelines, only 17 of the 285 ultra-rare 

NSVs achieved a “pathogenic” or “likely pathogenic” designation and were identified in 17 

(4.1%) of the 419 SIDS cases (Table 2, Figure 1).  There was no difference in yield of 

“pathogenic” or “likely pathogenic” variants between the European (11/278 [4.0%]) and the 

mixed-European cohorts (6/141[4.3%]).  

Case-Control Analysis 

Consistent with previous studies, there was a significant over-representation of ultra-rare 

NSVs in European SIDS cases (18/278, 6.5%) versus European controls (30/973, 3.1%, 

p=0.013) when combining all 4 major cardiac channelopathy genes (KCNQ1, KCNH2, SCN5A, 

and RYR2, Figure 3).  However, there was no significant difference in yield between cases and 

controls for any specific gene.    

Discussion 

This manuscript reports results derived from a whole exome molecular autopsy with 

GHD gene-specific analysis of the largest cohort of unrelated SIDS cases. Previous post-mortem 

genetic studies have implicated pathogenic mutations in cardiac channelopathy-associated genes 

as a monogenic cause for up to 15% of SIDS (13,16-19,23). Furthermore, rare HCM-associated 

sarcomere gene variants were implicated recently in 3.5% of SIDS (21).  However, based on their 
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prevalence in gnomAD, only 1.4% of these SIDS cases hosted variants rare enough to be 

considered pathogenic.  

Because of the rarity of SIDS and any likely causative disorders, we used a strict minor 

allele frequency cut-off equivalent to a heterozygous frequency of less than 1 in 10,000 

individuals in gnomAD.  Despite using this very conservative rarity filter, 46% of our SIDS 

cohort harbored novel or ultra-rare, protein-altering genetic variants within 68 of the 90 GHD-

susceptibility genes.  Unfortunately, despite their rarity, the vast majority of these ultra-rare 

variants still remain variants of uncertain significance (VUS) stuck in genetic purgatory.(34,35)  

In fact, about 25% of these 90 GHD-associated genes have a negative Z-score suggesting they 

tolerate variation (32,36). 

Due to ambiguity surrounding the pathogenic nature of many GHD genes that play a 

“minor” role in their respective diseases, we examined the yield of ultra-rare NSVs with the 

highest likelihood of being true pathogenic mutations. Overall, about 13% of our SIDS cases 

hosted “potentially informative” variants regarded as having the greatest probability of being 

causative for the infant’s sudden death and having potential clinical utility for assessing a family 

for genetic risk. Unfortunately, the anonymous nature of the cohort prevents us from verifying 

their presence among family members for the purpose of potential genotype-phenotype co-

segregation analysis or to determine the frequency of de novo status of the variants of interest. 

Importantly, not all of these variants have been characterized functionally and great caution must 

still be exercised, even when interpreting ultra-rare variants residing within the major 

channelopathy genes.    

Recently, Hertz reported a 34% yield of “variants with likely functional effects” 

following a genetic analysis of GHD-associated genes in only 47 sudden unexpected deaths in 
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infancy cases.(22)  However, given the rarity of GHDs in the general population, we believe that 

their definition of rarity (MAF < 1%) was unacceptably and erroneously high; thus causing an 

overestimated burden of potentially pathogenic variants in their SIDS cohort.  In fact, of their 16 

“pathogenic” variants, only 1 novel RYR2 variant would have been deemed ‘potentially 

informative’ by our robust criteria.  

In 2017, Neubauer reported a yield of “potentially causative” variants in 20% of their 155 

European SIDS cases following WES and genetic interrogation of their 192 gene focused panel 

that comprise both cardiovascular- and metabolic disorder-associated genes.(37)  The majority of 

their seemingly genotype positive infants had a variant with “likely functional effects” in genes 

associated with a cardiac channelopathy (9%) or cardiomyopathy (7%).  However, the vast 

majority of these variants represent missense variants within “minor” genes.(37)  In fact, only 

2.6% of their cases hosted what we would consider a “potentially informative” variant by our 

strict definition.   

While our study supports the utility of WES to identify potential sudden death-causing 

variants within established or potential sudden death-susceptibility genes, the challenge of the 

WES-based molecular autopsy does not lie in the identification of variants, but rather, in the 

adjudication of their potential pathogenicity. Accurate variant classification is crucial to enable 

proper counseling of surviving family members. Erroneously or prematurely adjudicating 

ambiguous variants as pathogenic has the potential to harm patients and their families. 

Tragically, this became a reality for one family described by Ackerman and colleagues recently, 

as they dealt with the disastrous consequences of unnecessary treatment based on an erroneously 

interpreted variant in KCNQ1 (35). Thus, over attribution of SIDS deaths to GHDs has 

significant implications for the immediate family and we urge extreme caution in variant 
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interpretation.   When such cautionary advice is heeded, less than 5% of over 400 SIDS cases 

had either a “pathogenic” or “likely pathogenic” variant in one of 90 GHD-susceptibility genes 

which is substantially lower than previous extrapolations of the prevalence of either 

channelopathic- or cardiomyopathic-SID. This parallels our experience of the ‘molecular 

autopsy’ in unexplained sudden death where stringent variant evaluation results in a significant 

reduction of numbers of ‘likely pathogenic’ and ‘pathogenic’ variants of clinical utility (38). 

Using a similarly stringent variant analysis, we observed previously a 13% (40/302) yield 

of ultra-rare “pathogenic” or “likely pathogenic” variants within sudden death-susceptibility 

genes among 302 autopsy-negative sudden arrhythmic death syndrome (SADS) cases that died at 

an age greater than 1 year (median age 24 years), compared with a significantly (p=0.00002) 

lower yield of 4.3% (18/419) in our SIDS cohort (38). This data suggests that the majority of 

SIDS stems from pathobiological bases that are largely different genetically and mechanistically 

from sudden death occurring after the age of 1 year.  

Several risk factors for SIDS have been established.  One might hypothesize that 

vulnerable infants dying of SIDS without the presence of additional risk factors are more likely 

to host a highly penetrant monogenic cause for their death compared to infants exposed to 

additional environmental risk factors.   Yet, no significant differences in the yield of “potentially 

informative” GHD gene variants associated with sex, sleep position, or bed sharing were 

observed.   However, a significant age-effect on the yield, where 23% of those infants older than 

4 months of age hosted a “potentially informative” GHD-associated variant compared to only 

10% of the infants younger than 4 months of age was observed.  This data supports potential 

stratification of those SIDS cases that may benefit most from post-mortem genetic testing of the 

major channelopathy/cardiomyopathy-associated genes.   
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The significant over-representation of ultra-rare NSVs within the 4 major channelopathy 

genes associated with either inheritable LQTS (KCNQ1, KCNH2, SCN5A) or CPVT (RYR2) 

observed in our European Caucasian SIDS compared to ethnic matched controls (6.5% vs 3.1%, 

p=0.013) supports that cardiac channelopathies may represent the underlying pathogenic basis 

for some of SIDS and that post-mortem genetic testing of the 4 major channelopathy associated 

genes may be warranted in cases of SIDS.  

In our study, we used a strict MAF cut-off 0.005% (i.e. 1 in 20,000 alleles or 1 in 10,000 

individuals).  While using a stringent threshold could reduce the possibility of identifying 

variants that would be deemed too common in the population to cause a rare disease such as 

LQTS, it could also prevent the identification of potentially important functionally significant 

variants that could play a role in SIDS pathogenesis.  For example, the p.R176W-KCNH2 variant 

was identified in a single European SIDS case in our cohort.  This variant has been associated 

with LQTS previously, it has been demonstrated to have a functional effect by in vitro assays, 

and has been considered a founder LQT2 mutation in the Finnish population(39,40).  While this 

variant meets the current ACMG guideline classification of ‘pathogenic’ variant, its heterozygous 

frequency in gnomAD (44/53,551 overall, 31/22,031 European, and 10/4,022 Finnish European 

individuals) exceeds our stringent cut-off and was therefore not included in our analysis.  

Conclusions 

A whole exome molecular autopsy followed by a cardiac gene specific focus reveals that 

less than 15% of over 400 SIDS cases had a “potentially informative” variant in one of 90 GHD-

susceptibility genes.  Furthermore, less than 5% of these infant deaths possessed variants that are 

immediately useful in a family for further cascade testing. This represents a substantial reduction 

of the perceived importance of monogenic cardiac genetic disease in SIDS compared to previous 
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studies. Interpretation of GHD-associated rare variants must therefore be stringent and careful 

given the implications of misattribution in families. This has important clinical implications for 

the community managing SIDS cases and their relatives. 
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Perspectives 

Competency in Medical Knowledge: Post-mortem genetic testing using whole exome 

sequencing (aka, the whole exome molecular autopsy or WEMA) may identify ultra-rare non-

synonymous variants within genetic heart disease-susceptibility genes that may underlie the 

pathogenic basis for a significant number of sudden infant death syndrome (SIDS) cases, 

predominantly in the 4-12 month age group.  However, the yield of ultra-rare non-synonymous 

variants in all but the ‘major’ channelopathy genes is very similar in a healthy population, 

suggesting that single gene cardiac disorders are not the major cause of SIDS. In fact, less than 

15% of SIDS cases possessed a ‘potentially informative’ variant regarded as having the greatest 

probability of being causative for the infant’s sudden death and having potential clinical utility 

for assessing the potential risk in family members left behind. Furthermore, clinically relevant 

variants that are immediately useful in a family for cascade/predictive testing were identified in 

only 4% of infant deaths.   

Translational Outlook 1: While some of the ultra-rare ‘potentially informative’ variants may be 

disease-causing and contributing to SIDS pathogenesis, future research involving functional 

studies are necessary to determine which variants are truly pathogenic and whether cardiac 

genetic disease is a more significant contributor than our data currently suggest.   

Translational Outlook 2:  SIDS is likely multigenic and complex, with no single predominant 

genetic pathway for risk. Thus, future research studies are necessary to elucidate intrinsic genetic 

vulnerability for SIDS across multiple biological pathways in an unbiased manner.  
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Figure Legends 

Central Illustration. Whole Exome Sequencing and a Targeted Analysis of 90 GHD-

Susceptibility Genes – Illustrated is the definition of sudden infant death syndrome (SIDS), the 

triple risk hypothesis for SIDS highlighting genetic heart disease as a potential explanation for 

infant vulnerability, and our whole exome sequencing strategy to detect ACMG guideline 

predicated “pathogenic” or “likely pathogenic” variants in SIDS cases.   

Figure 1. Yield of Ultra-Rare and “Potentially Informative” Genetic Heart Disease (GHD)-

Associated Gene Variants – Shown is a bar graph depicting the percent yield of ultra-rare 

(minor allele frequency < 0.00005), non-synonymous variants, the “potentially informative” 

variants, and ACMG guideline-specified “pathogenic” or “likely pathogenic” variants that were 

identified among the 90 genetic heart disease (GHD)-associated genes for the overall, European 

Caucasian, and Mixed-European Ancestry cohorts.  

Figure 2.  The Effect of Age at the Time of Death on the Yield of “Potentially Informative” 

Genetic Heart Disease (GHD)-Associated Gene Variants – Depicted is a bar graph comparing 

the percent yield of “potentially informative” variants between those infants that died at an age 

younger than or older than 4 months.  

Figure 3. Yield of Ultra-Rare Major Cardiac Channelopathy Gene Variants in European 

SIDS Cases Versus European Controls  - Shown is a bar graph depicting the percent yield of 

ultra-rare (minor allele frequency < 0.00005) variants in major cardiac channelopathy genes 

(KCNQ1, KCNH2, SCN5A, and RYR2).  
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Table 1. Summary of the Sudden Infant Death Syndrome Cohort Demographics  

Demographics 
Overall   European 

Ancestry 

Mixed 
European 
Ancestry 

(n=419) (n=278) (n=141) 
Sex Male 257 (61.3%)  173 (62.2%) 84 (59.6%) 

  Female 162 (38.7%) 105 (37.8%) 57 (40.4%) 

Age  
Average (months) 2.7 ± 1.9 2.7 ± 1.98 2.8 ± 2.3 

Range (months) 0.1 - 12 0.1 -12 0.25 – 9.7 

Age 
Group  

< 2 months 117 (27.9%) 81 (29.1%) 36 (25.5%) 
2 – 4 months 237 (56.6%) 154 (55.4%) 83 (58.9%) 

> 4 months 65 (15.5%) 43 (15.5%) 22 (15.6%) 

Gender  
Male 257 (61.3%) 173 (62.2%) 84 (59.6%) 

Female 162 (38.7%) 105 (37.8%) 57 (40.4%) 

Sleep 
Position  

Supine 113 (27%) 85 (30.6%) 28 (19.8%) 
Prone 73 (17.4%) 52 (18.7%) 21 (14.9%) 

Side 35 (8.4%) 29 (10.4%) 6 (4.2%) 
Seated 5 (1.2%) 2 (0.72%) 3 (2.1%) 

Unknown 193 (46%) 110 (39.6%) 83 (58.9%) 

Co-
sleeping  

Yes 95 (22.7%) 66 (23.7%) 29 (20.6%) 
No 141 (33.6%) 106 (38.1%) 35 (24.8%) 

Unknown 183 (43.7%) 106 (38.1%) 77 (54.6%) 
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Table 2. Summary of “Potentially Informative”, Ultra-Rare NSVs (MAF<0.00005) Identified in SIDS.   

 

Case Ethnicity Sex Age 
(Mont

hs) 

Sleep 
Positio

n 

Co-
Sleepin

g 

Gene Nucleotide Amino Acid 
Change 

Novel / 
Reference 

ACMG Variant 
Interpretation 

1 European F 4.2  -  - CALR3 c.179_180delAA p.K60Rfs*4 Novel Likely Pathogenic 
2 European F 0.1  -  - CASQ2 c.546delT p.F182Lfs*28 Reference 

(41) 
Pathogenic 

3 European M 4 SIDE NO CRYAB c.325-2A>G Splice error  VUS 
4 European F 5.8 SUPINE  - CSRP3 c.415-1G>T Splice error Novel Likely Pathogenic 
5 Mixed-

European 
F 4.1 PRONE NO CTNNA3 c.843+1G>T Splice error Novel VUS 

6 European M 3  -  - DSG2 c.523+2T>C Splice error Reference 
(42) 

Likely Pathogenic 

7 Mixed-
European 

M 2 SUPINE YES DSP c.6540delG p.V2181Sfs*6 Novel Likely Pathogenic 

8 Mixed-
European 

M 1  -  - GPD1L c.817C>T p.R273C Reference 
(26) 

VUS 

9 European M 3 SUPINE YES KCNE2 c.369_370delCT p.P123fs*14 Reference 
(43) 

Likely Pathogenic 

10 Mixed-
European 

F 1 SUPINE NO KCNH2 c.865G>A p.E289K Novel VUS 

11 Mixed-
European 

F 0.75 SUPINE YES KCNH2 c.2903C>T p.P968L Reference 
(44) 

VUS 

12 European F 5 PRONE NO KCNH2 c.3013C>T p.R1005W Novel VUS 
13 European M 1.1 SUPINE NO KCNH2 c.3347C>T p.A1116V Reference 

(45) 
VUS 

14 European M 5  -  - KCNJ8 c.995_997delAAG p.E332del Reference 
(24) 

Likely Pathogenic 

15 European F 3  -  - KCNQ1 c.230C>T p.S77F Novel VUS 
16 European M 6 SIDE NO KCNQ1 c.1553G>A p.R518Q Reference 

(43) 
VUS 

17 European M 6.1 SIDE NO LAMA4 c.2174- Splice error Novel Likely Pathogenic 
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8_2182delGTGTAA
AGGGGATGCCC 

18 Mixed-
European 

M 1.73  -  - MIB1 c.2245delA p.K749Rfs*18 Novel Likely Pathogenic 

19 European M 3.5 PRONE NO MTO1 c.1966delA p.K656Nfs*19 Novel Likely Pathogenic 
20 Mixed-

European 
F 0.5 SUPINE YES NEBL c.1560+1G>A Splice error Novel Likely Pathogenic 

21 Mixed-
European 

M 1  - NO NEBL c.2148+1G>A Splice error Novel VUS 

22 Mixed-
European 

F 3.2 PRONE NO PDLIM3 c.650-2A>G Splice error Novel Likely Pathogenic 

23 European M 5.5 SUPINE NO PLN c.36_38delAAG p.R14del Reference 
(46) 

Likely Pathogenic 

24 European M 4.9 PRONE  - RYR2 c.950T>C p.M317T Novel VUS 
25 European F 3.1 PRONE NO RYR2 c.2626C>A p.P876T Novel VUS 
26 Mixed-

European 
M 6 SIDE NO RYR2 c.3245G>A p.G1082E Novel VUS 

27 Mixed-
European 

F 5 PRONE YES RYR2 c.6203G>A p.R2068Q Novel VUS 

28 European F 7.6 PRONE YES RYR2 c.6252G>A p.M2084I Novel VUS 
29 European M 11 PRONE NO RYR2 c.6490G>A p.A2164T Novel VUS 
30 European M 3.1 SUPINE YES RYR2 c.7528A>G p.T2510A Reference 

(47) 
VUS 

31 European M 2 SUPINE YES RYR2 c.7946T>C p.F2649S Novel VUS 
32 Mixed-

European 
M 1  -  - RYR2 c.9626C>T p.P3209L Novel VUS 

33 European F 2 SUPINE NO RYR2 c.12692C>T p.P4231L Novel VUS 
34 European M 2 SUPINE YES RYR2 c.12713T>G p.I4238S Novel VUS 
35 European M 3  -  - RYR2 c.13624G>A p.A4542T Novel VUS 
36 Mixed-

European 
F 1.5  -  - SCN3B c.106G>A p.V36M Reference 

(28) 
VUS 

37 Mixed-
European 

M 6 SUPINE NO SCN3B c.161T>G p.V54G Reference 
(28) 

Likely Pathogenic 

38 European M 3.1 PRONE YES SCN5A c.997G>C p.G333A Novel VUS 
39 Mixed- M 4  -  - SCN5A c.2251G>A p.V751I Novel VUS 
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European 
40 European F 3  -  - SCN5A c.4870G>A p.V1624I Novel VUS 
41 Mixed-

European 
M 3  -  - SCN5A c.5359A>G p.S1787G Novel VUS 

42 European M 4.1  -  - SDHA c.98_107delTTCACT
TCAC 

p.F33Lfs*22 Novel Likely Pathogenic 

43 Mixed-
European 

F 0.75  -  - SNTA1 c.861C>G p.S287R Reference 
(23) 

Pathogenic 

44 Mixed-
European 

M 2  -  - SNTA1 c.1115C>T p.T372M Reference 
(23) 

VUS 

45 European F 1.2  -  - SNTA1 c.1378G>A p.G460S Reference 
(23) 

VUS 

46 Mixed-
European 

M 3  -  - TMPO c.1244_1245insT p.K416fs*0 Novel VUS 

47 European M 0.6 PRONE NO TTN c.13774G>T p.E4592* Novel VUS 
48 European M 0.5 SUPINE NO TTN c.26011C>T p.R8671* Novel VUS 
49 Mixed-

European 
M 2  -  - TTN c.47653delA p.R15885Efs*9 Novel VUS 

50 Mixed 
European 

M 7  -  - TTN c.37432_37433insGT
GGTTACTACAGCC
TC 

p.N12478Sfs*1
9 

Novel VUS 

TTN c.37437_37438insG p.S12480Vfs*2
4 

Novel VUS 

51 European M 2.1  -  - GJA1 c.124G>A p.E42K Reference 
(25) 

Likely Pathogenic 

KCNH2 c.2654G>A p.R885H Novel VUS 
52 European F 2 SUPINE NO CSRP3 c.286_287delCC p.P96Kfs*35 Novel Likely Pathogenic 

SCN5A c.3079C>T p.R1027W Novel VUS 
53 European M 1.5  -  - NEBL c.1639C>T p.R547* Novel VUS 

SCN5A c.2989G>T p.A997S Reference 
(10) 

VUS 

EUR = European Ancestry, MIX-EUR = Mixed-European Ancestry, M=Male, F=Female, VUS = Variant of Uncertain Significance 
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Table 3. The Effect of Various Demographics on the Yield of Genetic Heart Disease-Associated Gene Variants 

Demographics 

All Ultra-Rare, Non-Synonymous Variants  "Potentially Informative" Variants 

Overall 
P value 

European  
P value 

Mixed 
European P value 

Overall 
P value 

European  
P value 

Mixed 
European P value 

N= 419 N=278 N=141 N= 419 N=278 N=141 

Age 
2 - 4m 108/237 

(45.6%) 
0.76 

71/154 
(46.1%) 

0.63 

37/83 
(44.6%) 

0.17 

22/237 
(9.3%) 

0.03 

15/154 
(9.7%) 

0.35 

7/83 
(8.4%) 

0.015 
Other 86/182 

(47.3%) 
53/124 
(42.7%) 

33/58 
(56.9%) 

31/182 
(17.0%) 

17/124 
(13.7%) 

14/58 
(24.1%) 

Gender 
Male 118/257 

(45.9%) 
0.84 

78/173 
(45.1%) 

0.90 

40/84 
(47.6%) 

0.61 

34/257 
(13.2%) 

0.76 

21/173 
(12.1%) 

0.85 

13/84 
(15.5%) 

1 
Female 76/162 

(46.9%) 
46/105 
(43.8%) 

30/57 
(52.6%) 

19/162 
(11.7%) 

11/105 
(10.5%) 

8/57 
(14.0%) 

Sleep 
Position 

Prone 31/73 
(42.5%) 

0.25 

24/52 
(46.2%) 

0.65 

7/21 
(33.3%) 

0.30 

10/73 
(13.7%) 

0.98 

8/52 
(45.4%) 

0.67 

2/21     
(9.5%) 

0.91 

Supine 48/113 
(42.5%) 

36/85 
(42.3%) 

12/28 
(42.9%) 

15/113 
(13.3%) 

10/85 
(11.8%) 

5/28     
(17.9%) 

Side 14/35 
(40.0%) 

10/29 
(34.5%) 

4/6    
(66.7%) 

4/35 
(11.4%) 

3/29 
(10.3%) 

1/6     
(16.7% 

Seated 1/5 (20%) 0/2 (0%) 1/3 
(33.3%) 

1/5 
(20%) 0/2 (0%) 0/3 (0%) 

Unknown 100/193 
(51.8%) 

54/110 
(49.1%) 

46/83 
(55.4%) 

24/193 
(12.4%) 

11/110 
(10%) 

13/83 
(15.7%) 

Co-
sleeping 

Yes 38/95 
(40%) 

0.16 

25/66 
(37.9%) 

0.21 

13/29 
(44.8%) 

0.8 

9/95 
(9.5%) 

0.57 

6/66 
(9.1%) 

0.78 

3/29 
(10.3%) 

0.73 No 62/141 
(44%) 

45/106 
(42.5%) 

17/35 
(48.6%) 

19/141 
(13.5%) 

13/106 
(12.3%) 

6/35 
(17.1%) 

Unknown 94/183 
(51.4%) 

54/106 
(50.9%) 

40/77 
(51.9%) 

25/183 
(13.7%) 

13/106 
(12.3%) 

12/77 
(15.6%) 

Bold indicates a significant p value (<0.05) 
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eTable 1.  Gene List 

GENE CHROMSOME 
POSITION 

PROTEIN NAME 

GENETIC HEART DISEASE (GHD)-ASSOCIATED GENES (n=90) 
AARS2 6:44267391-44281063 alanyl-TRNA synthetase 2, mitochondrial  
ABCC9 12:21958108-22089608 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 
ACTC1 15:35080297-35088340 actin, alpha, cardiac muscle 1 
ACTN2 1:236849808-236927931 actinin, alpha 2 
AKAP9 7:91570181-91739987 A kinase (PRKA) anchor protein (yotiao) 9 
ANK2 4:113970832-114304896 ankyrin 2 
ANKRD1 10:92671853-92681033 ankyrin repeat domain 1 (cardiac muscle) 
BAG3 10:121410882-121437331 Bcl2-associated athanogene 3 
CACNA1C 12:2162464-2802108 calcium channel, voltage-dependent, L type, alpha 1C subunit 
CACNA2D1 7:81575760-82073114 calcium channel, voltage-dependent, alpha 2/delta subunit 1 



CACNB2 10:18629666-18830038 calcium channel, voltage-dependent, beta 2 subunit 
CALM1 14:90863327-90874605 calmodulin 1 
CALM2 2:47387221-47403740 calmodulin 2 
CALM3 19:47104493-47114050 calmodulin 3 
CALR3 19:16589868-16607003 calreticulin 3 
CASQ2 1:116242628-116311402 calsequestrin 2 (cardiac muscle) 
CAV3 3:8775486-8788451 caveolin 3 
CRYAB 11:111779289-111782738 crystallin, alpha B 
CSRP3 11:19203587-19232120 cysteine and glycine-rich protein 3 (cardiac LIM protein) 
CTNNA3 10:67672276-69455927 catenin alpha 3 
DES 2:220283099-220291461 desmin 
DPP6 7:153749765-154685161 dipeptidyl peptidase like 6 
DSC2 18:28646007-28682378 desmocollin 2 
DSG2 18:29078006-29128971 desmoglein 2 
DSP 6:7541808-7586950 desmoplakin 
DTNA 18:32335940-32471808 dystrobrevin alpha 
EYA4 6:133562489-133853258 eyes absent homolog 4 (Drosophila) 
FHL2 2:105977283-106015508 four and a half LIM domains 2 
FKTN 9:108320411-108403399 fukutin 
GATAD1 7:92076767-92088150 GATA zinc finger domain containing 1 
GJA1 6:121756838-121770873 gap junction protein, alpha 1, 43kDa (connexin 43) 
GPD1L 3:32148003-32210205 glycerol-3-phosphate dehydrogenase 1-like 
HCN4 15:73612200-73661605 hyperpolarization activated cyclic nucleotide-gated potassium 

channel 4 
JPH2 20:42740335-42816218 junctophilin 2 
JUP 17:39910856-39942950 junction plakoglobin 
KCND3 1:112318431-112531777 potassium voltage gated channel, Shal-related family, member 3 
KCNE1 21:35818989-35883613 potassium voltage-gated channel, Isk-related family, member 1 
KCNE2 21:35736323-35743688 potassium voltage-gated channel, Isk-related family, member 2 
KCNE3 11:74165886-74178673 potassium voltage-gated channel, Isk-related family, member 3 
KCNH2 7:150642049-150675403 potassium voltage-gated channel, subfamily H (eag-related), 

member 2 
KCNJ2 17:68165676-68176189 potassium inwardly-rectifying channel, subfamily J, member 2 
KCNJ5 11:128761251-128790930 potassium inwardly-rectifying channel, subfamily J, member 5 
KCNJ8 12:21917889-21927755 potassium inwardly-rectifying channel, subfamily J, member 8 
KCNQ1 11:2466221-2870339 potassium voltage-gated channel, KQT-like subfamily, member 1 
LAMA4 6:112429963-112575917 laminin, alpha 4  
LDB3 10:88428428-88495825 LIM binding domain 3 (ZASP) 
LMNA 1:156084498-156109880 lamin A/C 
MIB1 18:19321281-19450918 mindbomb E3 ubiquitin protein ligase 1 
MTO1 6:74171488-74211175 mitochondrial TRNA translation optimization 1  
MYBPC3 11:47352957-47374253 myosin binding protein C, cardiac 
MYH6 14:23851199-23877486 myosin, heavy chain 6, cardiac muscle, alpha 
MYH7 14:23881947-23904927 myosin, heavy chain 7, cardiac muscle, beta 



MYL2 12:111348623-111358381 myosin, light chain 2, regulatory, cardiac, slow 
MYL3 3:46899362-46904973 myosin, light chain 3, alkali; ventricular, skeletal, slow 
MYLK2 20:30407176-30422492 myosin light chain kinase 2  
MYOM1 18:3066805-3220106 myomesin 1, 185kDa 
MYOZ2 4:120056939-120108944 myozenin 2 
MYPN 10:69868994-69971774 myopalladin 
NEBL 10:21068902-21186531 nebulette 
NEXN 1:78354313-78408909 nexilin (F actin binding protein) 
PDLIM3 4:186422905-186456766 PDZ and LIM domain 3 
PKP2 12:32943788-33049690 plakophilin 2 
PLN 6:118869461-118881893 phospholamban 
PRDM16 1:2985775-3355185 PR Domain 16 
PRKAG2 7:151253197-151574210 protein kinase, AMP-activated, gamma 2 non-catalytic subunit 
PSEN1 14:73603155-73690399 presenilin 1 
PSEN2 1:227058264-227083799 presenilin 2 
RANGRF 17:8191815-8193410 RAN guanine nucleotide release factor (MOG1) 
RBM20 10:112404155-112599227 RNA binding motif protein 20 
RYR2 1:237205505-237997288 ryanodine receptor 2 (cardiac) 
SCN1B 19:35521588-35531352 sodium channel, voltage-gated, type I, beta 
SCN3B 11:123499897-123525312 sodium channel, voltage-gated, type III, beta 
SCN4B 11:118004092-118023535 sodium channel, voltage-gated, type IV, beta 
SCN5A 3:38589557-38691119 sodium channel, voltage-gated, type V, alpha 
SDHA 5:218356-256815 Succinate Dehydrogenase Complex Flavoprotein Subunit A 
SGCD 5:155753756-156194799 sarcoglycan, delta (dystrophin-associated glycoprotein) 
SNTA1 20:31995761-32031698 syntrophin, alpha 1  
TAZ X:153639892-153650065 tafazzin 
TCAP 17:37820440-37822808 titin-cap (telethonin) 
TGFB3 14:76424545-76447534 transforming growth factor, beta 3 
TMEM43 3:14166440-14185179 transmembrane protein 43 
TMPO 12:98909408-98929412 thymopoietin 
TNNC1 3:52485118-52488086 troponin C type 1 
TNNI3 19:55663138-55669100 troponin I type 3 (cardiac) 
TNNT2 1:201328142-201342382 troponin T type 2 (cardiac) 
TPM1 15:63334831-63358292 tropomyosin 1 (alpha) 
TRDN 6:123785398-123958054 triadin 
TTN 2:179390716-179672150 titin 
TXNRD2 22:19863045-19929333 thioredoxin reductase 2 
VCL 10:75757872-75879910 vinculin 

Genes are listed in alphabetical order. 
 

 

 



SUPPLEMENTAL RESULTS 

eFigure 1. Proportion of the Genocode-defined exome covered by more than 1x, 5x, 10x 

and 20x. 

 

eFigure 2. Age Distribution of the SIDS Cases  

 

eFigure 3. Components 1 and 2 from a Multidimensional Scaling Analysis of 3847 Common 

Variants Located Outside of Regions of the Genome Where There is Extensive Linkage 

Disequilibrium across the Entire Case and Control Cohorts 

 



 



eTable 2. GHD-Associated Gene-Specific Yields of Ultra-Rare Nonsynonymous Variants”.    
 

Gene 
NCBI mRNA 

Ref_Seq 
Missense Z-

Score pLI 

Overall 
Yield 

(n=419) 

European 
Ancestry Yield 

(n=278) 

Mixed-European 
Ancestry Yield 

(n=141) 
Major Channelopathy Genes 
KCNQ1 NM_000218 2.73 0 2 (0.5%) 2 (0.7%) 0 
KCNH2 NM_000238 4.81 1 5 (1.2%) 3 (1.1%) 2 (1.4%) 
SCN5A NM_198056 2.53 1 6 (1.4%) 4 (1.4%) 2 (1.4%) 
RYR2 NM_001035.2 5.21 1 12 (2.9%) 9 (3.2%) 3 (2.1%) 

Minor Channelopathy Genes 

AKAP9 NM_005751 -2.75 0 21 (5.0%) 11 (4.0%) 10 (7%) 
ANK2 NM_001148 1.06 1 13 (3.1%) 8 (2.9%) 5 (3.5%) 
CACNA1C NM_000719 6.41 1 5 (1.2%) 3 (1.1%) 2 (1.4%) 
CACNA2D1 NM_000722 3.1 1 6 (1.4%) 5 (2.8%) 1 (0.7%) 
CACNB2 NM_201590 0.36 0 0 0 0 
CALM1 NM_006888 3.21 0.89 0 0 0 
CALM2 NM_001743 2.79 0.86 0 0 0 
CALM3 NM_005184 2.92 0.58 0 0 0 
CASQ2 NM_001232.3 -1.08 0 1 (0.2%) 1 (0.36%) 0 
CAV3 NM_001234 1.19 0.34 0 0 0 
DPP6 NM_130797 1.81 0.97 7 (1.7%) 2 (0.7%) 5 (3.5%) 
GJA1 NM_000165 1.57 0.22 2 (0.5%) 2 (0.7%) 0 
GPD1L NM_015141 1.2 0.01 2 (0.5%) 1 (0.36%) 1 (0.7%) 
HCN4 NM_005477 4.83 0.23 5 (1.2%) 5 (1.8%) 0 
KCND3 NM_004980 5.35 0.8 2 (0.5%) 1 (0.36%) 1 (0.7%) 
KCNE1 NM_001270402 -0.46 0 0 0 0 
KCNE2 NM_172201 -0.23 0 1 (0.2%) 1 (0.36%) 0 
KCNE3 NM_005472 -0.18 0.44 0 0 0 



KCNJ2 NM_000891 3.02 0.82 1 (0.2%) 1(0.36%) 0 
KCNJ5 NM_000890 1.46 0.31 0 0 0 
KCNJ8 NM_004982 3.66 0.26 1 (0.2%) 1 (0.36%) 0 
RANGRF NM_016492 0.25 0.02 0 0 0 
SCN1B NM_001037 2.12 0.21 5 (1.2%) 2 (0.7%) 3 (2.1%) 
SCN3B NM_018400 1.12 0.35 2 (0.5%) 0 2 (1.4%) 
SCN4B NM_001142349 -0.13 0 0 0 0 
SNTA1 NM_003098 0.77 0.43 3 (0.7%) 1 (0.36%) 2 (1.4%) 
TRDN NM_001256021 -1.76 0 1 (0.2%) 1 (0.36%) 0 
Cardiomyopathy Genes 
AARS2 NM_020745 0.72 0 7 (1.7%) 2 (0.7%) 5 (3.5%) 
ABCC9 NM_005691 4.89 0 3 (0.7%) 3 (1.1%) 0 
ACTC1 NM_005159 5.25 0.95 0 0 0 
ACTN2 NM_001103 1.76 1 2 (0.5%) 1 (0.36%) 1 (0.7%) 
ANKRD1 NM_014391 -0.1 0 3 (0.7%) 0 3 (2.1%) 
BAG3 NM_004281 -1.01 0.53 4 (1.0%) 1 (0.36%) 3 (2.1%) 
CALR3 NM_145046 -0.1 0 3 (0.7%) 3 (1.1%) 0 
CRYAB NM_001885 0.38 0.01 3 (0.7%) 2 (0.7%) 1 (0.7%) 
CSRP3 NM_003476 0.66 0 2 (0.5%) 2 (0.7%) 0 
CTNNA3 NM_013266 -2.57 0 7 (1.7%) 5 (1.8%) 2 (1.4%) 
DES NM_001927 2.34 0 1 (0.2%) 0 1 (0.7%) 
DSC2 NM_024422 -1.02 0 6 (1.4%) 5 (1.8%) 1 (0.7%) 
DSG2 NM_001943 -1.2 0 3 (0.7%) 3 (1.1%) 0 
DSP NM_004415 0.91 1 20 (4.8%) 11 (4.0%) 9 (6.4%) 
DTNA NM_001390 1.17 0.92 1 (0.2%) 1 (0.36%) 0 
EYA4 NM_004100 0.64 0.13 1 (0.2%) 0 1 (0.7%) 
FHL2 NM_001450 0.35 0 0 0 0 
FKTN NM_006731 -0.64 0 2 (0.5%) 1 (0.36%) 1 (0.7%) 
GATAD1 NM_021167 0.51 0.51 1 (0.2%) 0 1 (0.7%) 
JPH2 NM_020433 3.93 0.01 2 (0.5%) 2 (0.7%) 0 
JUP NM_002230 0.93 0.04 3 (0.7%) 2 (0.7%) 1 (0.7%) 
LAMA4 NM_001105206 -0.67 0 11 (2.6%) 8 (2.9%) 3 (2.1%) 
LDB3 NM_007078 0.32 0 8 (1.9%) 5 (1.8%) 3 (2.1%) 



LMNA NM_170707 3.37 0.99 1 (0.2%) 1 (0.36%) 0 
MIB1 NM_020774 3.51 0 2 (0.5%) 1 (0.36%) 1 (0.7%) 
MTO1 NM_133645 0.68 0 3 (0.7%) 3 (1.1%) 0 
MYBPC3 NM_000256 0.69 0 7 (1.7%) 5 (1.8%) 2 (1.4%) 
MYH6 NM_002471 2.87 0 10 (2.4%) 6 (2.2%) 4 (2.8%) 
MYH7 NM_000257 6.54 0 4 (1.0%) 3 (1.1%) 1 (0.7%) 
MYL2 NM_000432 0.86 0.02 0 0 0 
MYL3 NM_000258 0.75 0.89 0 0 0 
MYLK2 NM_033118 -0.73 0.22 1 (0.2%) 0 1 (0.7%) 
MYOM1 NM_003803 -0.35 0 8 (1.9%) 6 (2.2%) 2 (1.4%) 
MYOZ2 NM_016599 0.03 0.02 2 (0.5%) 2 (0.7%) 0 
MYPN NM_032578 -0.35 0.07 5 (1.2%) 3 (1.1%) 2 (1.4%) 
NEBL NM_006393 -2.45 0 7 (1.7%) 4 (1.4%) 3 (2.1%) 
NEXN NM_144573 -1.32 0 3 (0.7%) 3 (1.1%) 0 
PDLIM3 NM_001114107 -0.4 0 5 (1.2%) 2 (0.7%) 3 (2.1%) 
PKP2 NM_004572 -0.8 0 3 (0.7%) 3 (1.1%) 0 
PLN NM_002667 0.57 0.11 1 (0.2%) 1 (0.36%) 0 
PRDM16 NM_022114 2.06 1 4 (1.0%) 2 (0.7%) 2 (1.4%) 
PRKAG2 NM_016203 1.85 0.98 0 0 0 
PSEN1 NM_000021 1.81 1 0 0 0 
PSEN2 NM_000447 0.53 0.03 1 (0.2%) 1 (0.36%) 0 
RBM20 NM_001134363 NA (poor 

coverage) 
NA 5 (1.2%) 3 (1.1%) 2 (1.4%) 

SDHA NM_004168 2.32 0 3 (0.7%) 3 (1.1%) 0 
SGCD NM_001128209 -0.23 0 2 (0.5%) 1 (0.36%) 1 (0.7%) 
TAZ NM_000116 2.42 0.97 1 (0.2%) 1 (0.36%) 0 
TCAP NM_003673 0.45 0.08 0 0 0 
TGFB3 NM_003239 2.2 0.92 0 0 0 
TMEM43 NM_024334 -0.88 0 5 (1.2%) 4 (1.4%) 1 (0.7%) 
TMPO NM_003276 -0.99 0 3 (0.7%) 2 (0.7%) 1 (0.7%) 
TNNC1 NM_003280 2.22 0.51 0 0 0 
TNNI3 NM_000363 1.88 0.17 0 0 0 
TNNT2 NM_000364 1.54 0.01 1 (0.2%) 0 1 (0.7%) 



TPM1 NM_000366 3.42 0.8 0 0 0 
TTN* NM_003319 -5.48 0 5 (1.2%) 2 (0.7%) 3 (2.1%) 
TXNRD2 NM_006440 0.32 0 0 0 0 
VCL NM_014000 3.11 0.99 3 (0.7%) 3 (1.1%) 0 
*only radical (i.e. nonsense, frameshift, splice-error) variants were considered.  Z-score and pLI represent variant constraint scores based on 

the ExAC data for missense and radical variants respectively.1  Positive Z-scores represent intolerability.  pLI scores range from 0 to 1, with 

1 representing the highest intolerability. NA = not available.  
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