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Summary 

Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. 

Importantly, rabies is one of the few pathogens for which there is no treatment following the 

onset of clinical disease with the outcome of infection being death in almost 100% of cases. 

Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for 

post-exposure administration are available, no tools have been identified that can reduce or 

prevent rabies virus replication once clinical disease has initiated. The search for effective 

antiviral molecules to treat those that have already developed clinical disease associated with 

rabies virus infection is considered one of the most important goals in rabies research. The 

current study assesses a single chain antibody molecule (ScFv) based on a monoclonal 

antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The 

recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was 

chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic 

acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to 

bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the 

ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where 

the molecule was inoculated inoculated either four hours before, two days after or four days 

after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and 

a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there 

was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that 

the approach taken with the ScFv/RVG conjugate may have utility in the design and 

implementation of novel tools targetting rabies virus infection in the brain.  

 

Keywords: Rabies virus, Single-chain antibody (ScFv), blood brain barrier (BBB), clinical 

disease, immunoglobulin, N-acetylcholine receptor, Nicotiana benthamiana. 
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Introduction  

Rabies is a neglected disease caused by Rabies virus (RABV) that affects people in many 

countries, mostly in Asia and Africa. RABV is a non-segmented negative strand RNA virus 

in the order Mononegavirales, family Rhabdoviridae, genus lyssavirus [1]. Rhabdoviruses are 

enveloped with a typical bullet- or rod-shaped morphology and characterized by an extremely 

broad host spectrum ranging from plants to insects to mammals. The genome encodes five 

proteins including nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and RNA 

polymerase.  

RABV is almost always transmitted following a bite injury from an infected animal 

that is excreting virus in its saliva. The mechanism of virus infection once it has crossed the 

dermal barrier is poorly defined. Lyssaviruses are strongly neurotrophic, however, replication 

in the musculature, prior to entry into the peripheral nervous system occurs, and is likely to 

contribute to the variation in incubation times seen following infection [2]. Whilst the 

prodrome generally lasts for 3-10 weeks, significantly longer incubation periods have been 

reported [3]. Regardless, it is during the phase between virus replication in the non-neuronal 

periphery and movement into the peripheral nervous system that post exposure 

immunoprophylaxisis is hypothesised to be most effective [4].  

Current options for rabies post exposure treatment include immunoprohylaxis with 

human or equine rabies immunoglobulin (H/ERIG) at the site of the infection and vaccination 

at a site distant from the exposure to ensure that the application of RIG does not interfere 

with the humoral immune response [5]. Rabies post-exposure prophylaxis (PEP) is highly 

effective if administered in a timely manner following exposure [6-9]. However, in endemic 

regions, knowledge of the most effective actions to take following an exposure event is often 

limited, as is the availability of PEP. Furthermore, in remote areas, travel to medical centres 

for treatment can delay treatment.  If clinical disease develops, PEP is entirely ineffective 
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[10-12]. Rabies virus antibodies, such as RIG are unlikely to offer therapeutic benefits once 

rabies virus (RABV) has entered the CNS, as they cannot cross the blood brain barrier 

(BBB), a dense cellular network that extends along all capillaries and consists of tight 

junctions of endothelial cells that prevent the entry of large bacterial pathogens and 

molecules into the cerebrospinal fluid. The size exclusion limit is approximately 10kD [13].  

Rabies glycoprotein (G), present as a trimeric peplomer on the viral envelope, 

contains a short conserved motif which serves to bind cellular receptors [14], including 

nicotinic acetylcholine receptors (nAchRs), to mediate entry into cells [15]. Prior to the 

establishment of a productive infection of the CNS, RABV utilises nAchRs [16] to enter both 

muscle and nerve cells in the periphery [17-20]. The identification of a key 29 amino acid 

peptide in G responsible for binding and entry into neuronal cells led to the demonstration 

that other molecules (siRNA) [21], nanoparticles [22, 23], and enzymes [24, 25]] could be 

delivered to the CNS if linked to this peptide.  

Previous studies have described the application of monoclonal antibody preparations 

as an alternative to RIG [26], generation of monoclonal antibodies in planta and  expression 

of a single chain antibody fragment (ScFv) of a previously defined rabies neutralising 

monoclonal antibody in E. coli [27] and N. benthamiana [82] . In the latter study, a fusion 

protein comprising ScFv linked to the RVG peptide at its C-terminus was expressed and 

shown to neutralise RABV, bind to nAchR and transport across a model BBB. However, 

ScFv-RVG fusion was poorly expressed, so although promising this strategy was not deemed 

feasible for further development. In the current study, the ScFv was expressed also in N. 

benthamiana but chemically conjugated to synthetic 29 amino acid peptide (ScFv/RVG) for 

evaluation.  The ScFv/RVG conjugate retained the ability to neutralise RABV. In comparison 

to ScFv alone, ScFv/RVG demonstrated enhanced ability to cross an in vivo 3D cell culture 

BBB model via a mechanism that involves the N-acetylcholine receptor. Finally, the ability 
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of ScFv/RVG to act as a potential post-exposure tool was assessed in vivo. Direct in vivo 

comparisons with the action of HRIG demonstrated that ScFv/RVG may have future utility as 

a post-exposure alternative to HRIG for rabies virus post exposure treatment.    

 

Materials and methods  

ScFv and ScFv/RVG production 

The pEAQ-62-71-3 IgG [27] and the pEAQ-ScFv vectors used for expression of recombinant 

antibodies have been described previously [29]. Agrobacterium tumefaciens LBA4404 was 

separately transformed with the pEAQ-62-71-3 IgG [27] and the pEAQ-ScFV [28] vectors by 

electroporation. The resulting recombinant bacterial strains were verified by restriction digest 

of plasmids, grown overnight at 28°C and used to infiltrate leaves of 6 to 8 week-old 

greenhouse-grown N. benthamiana plants, by vacuum infiltration as described [30]. The 

recombinant plant expressed antibodies were extracted in 3 volumes of PBS (pH7.4) and 

purified by Ni-affinity chromatography [28]. 10 mg of ScFv (MW = 56 kDa) and the linker 

(succinimidyl-4-formylbenzamide) were dissolved in PBS. The linker solution was added to 

the ScFv solution under stirring, and the solution is agitated for 30 minutes in room 

temperature. The RVG peptide was synthesized by Pepscan (Lelystad, The Netherlands). 10 

mg of the peptide (MW = 3 kDa) was dissolved in water and adjusted pH to be 7 with PBS. 

After the linker/ScFv solution was dialyzed in PBS for 15 minutes 4 times, it was added to 

the peptide solution under stirring at room temperature. After 2 hours, the protein was 

dialyzed in PBS overnight. The reaction feed was 50% peptide and 50% ScFv, and the molar 

ratio was 18 : 1. 

 

SDS-PAGE and western blot 
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Crude protein extracts from plant leaves were prepared 5 days after agro-infiltration and 

denatured by boiling in NuPAGE® LDS Sample Buffer. Proteins were separated on 4-12% 

gradient polyacrylamide gels (Life Technologies, UK). Proteins were visualised by Coomasie 

staining, or electrophoretically transferred to a nitrocellulose membrane for immunoblotting. 

Nitro-cellulose membranes were blocked (5% non-fat dried milk, 0.1% Tween20 in PBS) 

before being probed with horseradish peroxidase (HRP) conjugated mouse anti-E-tag 

antiserum (Abcam, UK) diluted at 1:5,000 in 1% non-fat dried milk in PBST. Bands were 

visualised following addition of ECL plus detection reagent (GE Healthcare, UK). 

 

Cells and viruses 

H       b y   c k    y 293 c      x         h     α7-nicotinic acetylcholine receptor 

(HEKnAchR7) were reported previously [31]. The immortalized human brain capillary 

endothelial cell line (hCMEC/D3) [32] was purchased from Tebu Bio (France) and the cells 

w       w   cc           h      f c     ’        c    . Silver Haired Bat rabies variant 

(SHBV) [33] was used for the rabies virus pathogenicity experiments. 

nAchR binding and competition assay 

HEK 293 cells or Neuroscreen-1 (Thermo-Fisher, UK) cells were seeded on 6-well plates. 

After 24 hours, cells were placed on ice and incubated with ScFv or ScFv/RVG for 5 minutes 

(binding assay) or 30 minutes (entry assay). The cells were washed with PBS, then harvested 

into FACS tubes and incubated in cell fixation solution (BD Biosciences, USA) for 15 

minutes. For the binding assay, samples were washed 3 times with 1% inactivated foetal calf 

serum (0.1% NaN3) in PBS, pH 7.4. For the entry assay, samples were washed 3 times with 

permeabilization buffer (1% inactivated fetal calf serum, 0.1% NaN3, and 0.1% Saponin in 

PBS, pH 7.4) before the cells were incubated with 1:1000 mouse anti-E tag antiserum at 4°C, 
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overnight. The cells were then washed as before, before incubation with a goat anti-mouse 

IgG antiserum conjugated with cy5 (Jackson laboratory, USA) at 37°C for 1 hr. After further 

washing, the cells were resuspended in staining buffer and analysed by flow cytometry, using 

FACS CellQuest software (BD Biosciences, USA). For the competition assay, cells were 

pretreated on ice with either 2x10
7
 PFU of UV inactivated  Rabies virus (CVS) [34]    16μM 

alpha bungarotoxin (Tocris Bioscience, UK) for 30 minutes, before the ScFv or ScFv/RVG 

conjugate was added. The binding and competition assays were analyzed in three 

independent experiments. 

 

In vitro BBB transwell assay 

An immortalized human brain capillary endothelial cell line (hCMEC/D3) was kindly 

provided by Prof. Pierre-Olivier Couraud (Institut Cochin, Université René Descartes, Paris, 

France) and Prof. Pierre-Emmanuel Ceccaldi (Institut Pasteur, Paris) [35]. Cells were seeded 

on the apical side of a Cultrex® Rat Collagen I (150 μ /ml; R&D Systems, USA) coated  0.9 

cm
2
 polyethylene terephthalate filter insert with 3.0μ         y (BD Falcon, UK). The 

restrictive paracellular permeability of hCMEC/D3 cells was assessed by their low 

permeability to the non-permeant fluorescent marker Lucifer Yellow (LY) [29]. 10µg of 

antibody preparation was added to the top chamber and the cells were incubated (37°C; 5% 

CO2) and samples were taken after 2 hrs and 18 hrs to assess the media in the bottom 

chamber for the presence of antibody by virus neutralisation. 

In vivo assessment of ScFV/RVG 

All in vivo work was undertaken in BSL3/SAPO4 containment at the Animal and Plant 

Health Agency (APHA), following independent ethical review under strict Home Office 

guidelines (PPL70/7394). Molecules were administered to groups of mice by intraperitoneal 



9 
 

inoculation. Intra-peritoneal administration (IP) of ScFv/RVG was compared to treatment 

with human rabies immunoglobulin (HRIG) as both a pre- and post-exposure treatment. 

Treatments with Favipiravir (T-705, a broad-spectrum RNA polymerase inhibitor), and T-705 

with ScFv/RVG were also included in the study.  

Mice (n = 12/group) received ScFv/RVG (40IU/kg), HRIG (40IU/kg), T-705 (300mg/kg) or 

ScFv/RVG (40IU/kg) + T-705 (300mg/kg) or were controls receiving PBS following the 

same treatment schedule. Mice were tagged and numbered before using a random number 

generator to distribute mice into groups. Each group of 12 mice was randomly split across 

two boxes of 6 mice each, to take account of interactions among mice sharing boxes and any 

other differences between boxes. Groups of mice were treated for 10 consecutive days. The  

treatments were initiated either four hours before virus inoculation (-4hr), two days (+2d) 

after virus infection or 4 days (+4d) after virus inoculation. Virus used for inoculation was a 

bat rabies strain originally isolated from a human fatality following infection from an 

insectivorous bat [36]. Mice were challenged with 50µl RABV at ~105.8 TCID50/ml by 

intramuscular injection into the left hind leg.  Mice were weighed daily during the 10 day 

treatment period to determine both weight loss due to infection and assign any possible 

adverse effect of treatment with ScFv, T705 or HRIG. Animals were monitored for 54 days 

and any deaths were recorded.    

The data were analysed for treatment effects as a factorial design (5 treatments x 3 timings) 

by applying a multilevel mixed effects logistic regression to take account of potential 

correlation among mice in each box (melogit in Stata® 14, treating differences between 

boxes as random effects). Treatment effects were calculated as logits of mortality, where a 

logit is the logarithm of the odds ratio                
 

   
  . Treatments were compared 

using their logits: the treatment with higher logit results in higher mortality. A difference of 
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zero indicates that two treatments have the same effect, a difference of 1.0 is equivalent to 

increasing mortality from 0.5 to 0.731, while a difference of -1.0 would be equivalent to 

reducing mortality from 0.731 to 0.5. The generalised linear statistical model assumed that 

the effect of combined treatments can be predicted by adding their effects on the logit scale. 

Deviation from this prediction indicates that the treatments interact. The model estimated 

standard errors for the differences between treatments, which allowed calculation of 95% 

confidence intervals and testing against a null hypothesis that the treatment effects were 

equal. 

 

Results 

Characterisation of the 62-71-3 ScFv and the ScFv/RVG conjugate 

The purified ScFv and the ScFv/RVG conjugate were assessed by SDS-PAGE gel followed 

by Coomassie staining (Figure 1A) or by immunoblotting with horseradish peroxidase 

conjugated mouse anti-E tag antiserum (Figure 1B). A full size ScFv is detected 

predominantly at approximately 56 kDa, which was the major band detected. ScFv/RVG 

migrated slightly slower than ScFv as expected and the slight smearing of this band is 

consistent with variable levels of RVG peptide conjugation. Again, this band is the major 

component of the preparation. Higher molecular weight bands (approximately 150kDa) are 

likely to represent ScFv aggregates, whilst lower molecular weight bands (30-35 kDa) are 

likely to represent ScFv degradation products. The identity of the bands was supported by 

western blot (Figure 1B). 

 

Neutralization of Rabies virus 
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The parent monoclonal antibody (62-71-3) and two versions of ScFv were tested to determine 

their capability to neutralize rabies virus (ERA strain) using a plaque-inhibition assay. The 

starting concentrations for all three antibodies was 0.5 mg/ml and the results suggest that the 

neutralizing activity of ScFv and ScFv/RVG conjugate was not significantly different to that 

of 62-71-3 mAb (Figure 2).  

 

Binding to nAchR and cell entry 

The binding and penetration of ScFv and ScFv/RVG conjugate in HEK 293 cells 

overexpressing nAchR were tested by flow cytometry. A greater proportion of ScFv/RVG 

bound to the 293 cells as evidenced by the shift to the right of the dotted line compared to 

ScFv (solid line) (Figure 3A). After a longer incubation (30 minutes) a greater amount of 

ScFv/RVG was associated with the 293 cells compared to ScFv (Figure 3B), and this 

represents ScFv that has entered the target cells.  

The specificity of binding between ScFv/RVG and HEK 293 cells via nAchR was tested by a 

competitive assay using i            b    v         α-bungarotoxin. The HEK 293 cell line 

was pre-incubated with each inhibitor, before incubation with ScFv or ScFv/RVG. No effect 

of either            v        α-bungarotoxin was observed in the case of ScFv (Figure 4A and 

4C, respectively). However, for ScFv/RVG there was a shift, with less ScFv/RVG detected 

within the cells in the presence of both inhibitors (Figure 4B and 4D, respectively). The 

assays were repeated using Neuroscreen-1 cells, a model neuronal cell line, with identical 

results (Figure 4E to 4H). 

 

Passage of ScFv/RVG conjugate across an in vitro model of the blood brain barrier  
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An in vitro BBB transport experiment was conducted on an hCMEC/D3 cell monolayer as 

described previously [35]. After addition of antibodies to the upper chamber, the media in the 

lower chamber was tested for rabies virus neutralizing activity after incubation periods of 2 

and 18 hours (Figure 5). No evidence for the ability of full length 62-71-3 mAb to cross the 

cell monolayer was found. This is consistent with previous reports [28, 37] and demonstrates 

the integrity of the monolayer. Similarly, a 62-71-3 IgG/RVG conjugate was also unable to 

cross the monolayer. There was some detectable ScFv in the bottom chamber at both time 

points, but as the levels were similar at both time points, we interpret this to represent slight 

leakage of the monolayer to small proteins. In contrast, a greater amount of ScFv/RVG 

passed through the hCMEC/D3 cells, and the concentration of ScFv/RVG as measured by 

virus neutralising activity of the media in the bottom well increased approximately 100-fold 

after 18hr incubation (Figure 5).  

 

In vivo assessment of ScFv/RVG 

The effectiveness of the ScFv/RVG conjugate against rabies viral challenge was assessed in 

vivo. There was a clear trend showing greatest mortality in PBS treated groups, compared 

with those treated with HRIG (lowest) and ScFv/RVG (Figures 6, 7). Unexpectedly, even 4 

days after viral challenge, HRIG was almost totally protective, and there was no evidence of 

any effect from the timing of treatments. Among the four treatments ScFv/RVG, T-705, 

ScFv/RVG with T-705 and HRIG, the estimated effect on logit mortality from treating at 2d 

relative to -4h = 0 (95% confidence interval -1.08 – 1.08); 4d relative to -4h = -0.16 (-1.26 – 

0.94).  T705 reduced mortality to a similar degree compared with ScFv/RVG (Figure 6B, 7), 

and the group treated with the combination of ScFv/RVG conjugate with T-705 reduced 

mortality to a level similar to HRIG (Figure 6B, 7). However, although the best model of the 
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experimental observations was that the effects of T705 and ScFv/RVG were additive, the 

difference between T705 alone and the combination of T705 with ScFv/RVG conjugate did 

not reach the threshold for statistical significance at P < 0.05 (Figure 7). 
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Discussion 

The blood-brain barrier remains a major bottleneck for drug development, for rabies 

and many other brain diseases. Several strategies have been developed, including the use of  

nanotechnology employing liposomes [38], polymeric nanoparticles [39], micelles [40], gold 

particles [41], etc. Another strategy is the use of antibodies to target receptors on the surface 

of endothelial cells allowing transport of drugs into the brain. Examples include antibodies 

against the transferrin receptor [42-44], insulin receptor [45, 46] or the low density 

lipoprotein receptor [47]. Peptides have also gained attention for their potential to mediate 

delivery across the BBB [48-50]. The rabies virus glycoprotein (RVG) peptide used in this 

study binds specifically to the acetylcholine receptor (nAchR) expressed on neuronal cells. 

Several studies have demonstrated that RVG peptide can deliver siRNA [21] and proteins 

[22, 51] through the BBB.  

Our previous work demonstrated expression of a ScFv version of the rabies 

neutralising monoclonal antibody 62-71-3 in planta [27]. The lyssavirus neutralisation 

activity of the ScFv was equivalent to that of the IgG parent antibody.  In a preliminary study, 

an ScFv-RVG fusion protein was engineered, and we were able to demonstrate some of the 

functional characteristics of this molecule [28].  However, the expression level of this 

molecule in plants was extremely low, approximately 2mg/kg fresh leaf weight, which is 

significantly below the level required for commercial viability. By comparison, IgG 

antibodies are currently being developed that express in Nicotiana in the range of 100mg/Kg 

fresh leaf weight [52]. 

In this study, our strategy was to express the 62-71-3 ScFv molecule separately in 

Nicotiana benthamiana and following purification, use chemical conjugation to synthetic 

RVG peptide. The ScFv was expressed at 35-50mg/Kg fresh leaf weight which has important 
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advantages in terms of downstream processing and purification, and consequently on 

commercial viability. Chemical conjugation of RVG peptide to ScFv is also potentially 

advantageous because multiple peptides could be attached to a single ScFv molecule, thereby 

increasing affinity for the nAchR. Indeed, as shown in the SDS-PAGE and western blot of 

the ScFv/RVG conjugate, the product band indicates molecules with a range of sizes.  

Importantly, RVG conjugation did not rabies neutralisation activity, and there was no 

discernible difference between unconjugated ScFv and ScFv/RVG.   The ScFv/RVG 

conjugate did mediate binding and entry into cells overexpressing nAchR and a neuron-like 

cell line (neuroscreen cells) and the role of nAchR in this interaction was demonstrated by the 

ability of both rabies virus and alpha-bungarotoxin to competitively inhibit ScFv. Alpha-

bungarotoxin is a neurotoxin that binds nAchR at the same site as rabies glycoprotein [53]. 

An in vitro model was utilised to investigate the potential transport of different 

antibody based molecules across the blood brain barrier. This model was impermeable to the 

full length 62-71-3IgG mAb as expected. Conjugating RVG to 62-71-3IgG made no 

difference, indicating that that the size of IgG is a limiting factor. Although there was some 

apparent passage of ScFv across the BBB model, this was significantly enhanced in the case 

of ScFv/RVG. The increasing concentration of neutralising activity in the lower chamber of 

this assay with time, in comparison with the result using unconjugated ScFv alone, suggests 

that transport was mediated by an active mechanism.  

An in vivo assessment of ScFv/RVG was subsequently attempted using a murine 

model of rabies virus infection and different treatment schedules with either HRIG or the 

ScFv molecule. For this experiment, treatment schedules were designed on the hypothesis 

that at 4 hours before inoculation and 2 days post inoculation, the infecting virus would still 

be in the periphery and that an established neuronal infection had not yet been initiated. The 4 
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day post inoculation treatment schedule was chosen because it was expected that an infection 

of the central nervous system would have established, so it should be possible to demonstrate 

protective efficacy from ScFv/RVG due to greater accessibility to the brain [54].  

However, the results suggest that the virus took longer to reach the CNS than 

expected. HRIG was protective when delivered at all time points, even though it is well 

established that HRIG does not provide protection once rabies virus infection enters the CNS.  

So unfortunately, no conclusions can be drawn regarding potential ScFv mediated protection 

within the CNS.  With no significant effect from the timing of treatments, ScFv/RVG halved 

mortality relative to the control treatment, but did not match the 90% protection observed for 

HRIG. Although the dosages administered were equivalent in terms of International 

Units/Kg, ScFv/RVG performed less effectively than HRIG. This is likely to be due to 

different pharmacokinetics, as without Fc, ScFv/RVG would be expected to have a shorter 

serum half life [55]. Favipiravir (T705) performed similarly to ScFv/RVG. However, the 

combination of ScFv/RVG with T-705 appeared to match the protection from HRIG, most 

likely because the effects of ScFv/FVG and T-705 were additive, but the evidence is not 

decisive. The relative performance of ScFv/RVG and HRIG when treatment is sufficiently 

delayed for mortality to be high with HRIG treatment remains unknown. This study did 

however, confirm the protective property of ScFv/RVG in vivo, and demonstrates that the 

chemical conjugation process does not affect the viral neutralisation properties of the ScFv in 

vivo. A definitive pre-clinical study demonstrating protective efficacy in a robust model for 

central nervous system infection by rabies virus is now required. 

In conclusion, the adaptation of ScFv through conjugation to a 29 amino acid RVG 

peptide has enabled greater bioavailability of the molecule. In particular, the approach 

adopted in this study overcomes the problem of low yield, and the scalable production of 
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rabies ScFv molecule in plants is promising.  RVG peptide synthesis and the conjugation 

process are readily available commercially and available under Good Manufacturing Practice 

when necessary. This leads to the possibility for rapid large scale production of the 

conjugated molecule and relatively quick translation to clinical trial. The development and 

clinical evaluation of new tools for post exposure control for rabies virus infection in endemic 

areas is a matter of some urgency. 
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Figure legends 

Figure 1. Characterisation of ScFv and ScFv/RVG conjugate. The plant-produced ScFv was 

purified by Ni affinity chromatography. The ScFv was chemically conjugated to chemically 

synthesized RVG peptide to produce ScFv/RVG. ScFv and ScFv/RVG conjugate were 

analysed by SDS-PAGE under reducing conditions, followed by (a) staining with Coomassie 

blue or (b) blotting onto nitrocellulose and probing with a mouse anti-E tag antiserum.  

 

Figure 2. Rabies virus (ERA stain) neutralization by ScFv and ScFv/RVG conjugate 

compared with 62-71-3 mAb IgG antibody as assessed by RFFIT on BSR cells. Antibody 

starting concentrations were 0.5 mg/ml. Assays were performed in triplicate. Error bars 

indicate the SD. 

 

Figure 3.  Binding and entry of 62-71-3 ScFv to 293 cells overexpressing nAchR by flow 

cytometry. Binding (a) and entry (B) were detected with mouse anti-E antiserum and cy5 

conjugated goat anti-mouse IgG antiserum, Solid line: ScFv, Dotted line: ScFv/RVG 

conjugate. A representative result from triplicate experiments is shown. 

 

Figure 4. Inhibition of entry of ScFv/RVG conjugate into nAchR-overexpressing 293 cells 

and neuroscreen cells by              b    v         α-bungarotoxin. Flow cytometry on 

nAchR-overexpressing 293 cells pre-treated with irradiated rabies virus (A-B)     α-

bungarotoxin (C-D) before incubation with ScFv (A and C), and ScFv/RVG conjugate (B and 

D). Flow cytometry on neuronal 2a cells pre-treated with irradiated rabies virus (E-F)     α-

bungarotoxin (G-H) before incubation with ScFv (E and G) and ScFv/RVG conjugate (F and 

H). Solid line: no inhibitor, Dotted line: pre-        w  h              b    v        α-

bungarotoxin; A representative result from triplicate experiments is shown. 

E 



19 
 

 

Figure 5. ScFv/RVG conjugate transports across in vitro BBB model. 10μ      b      w    

added to the upper chamber of hCMEC/D3 cells in the transwell. Media in the bottom well 

was tested for rabies virus neutralization assay after 2 and 18 hours. A representative result 

from triplicate experiments is shown. 

 

Figure 6. (A) Mouse survival curves for the three treatments ScFv/RVG, HRIG and PBS 

only controls at three different time points following inoculation with rabies virus. (B) Mouse 

survival curves for the five treatments ScFv/RVG, T-705, ScFv/RVG with T-705, HRIG and 

PBS only controls, combining observations across three different timings, which did not 

significantly affect treatment effects.   
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