Type of article: Review and meta-analyses

Long-term concentrations of nitrogen dioxide and mortality: a meta-analysis of cohort studies

RW Atkinson¹, BK Butland¹, HR Anderson^{1,2}, RL Maynard³ 1 - Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK 2 - MRC-PHE Centre for Environment and Health, King's College London, London, UK 3 – Birmingham University, Birmingham, UK Address for correspondence:

Dr R W Atkinson Population Health Research Institute and MRC-PHE Centre for Environment and Health St George's, University of London Cranmer Terrace London SW17 ORE

Tel: +44 (0)20 8725 5174 Fax: +44 (0) 20 8725 3584 Email: atkinson@sgul.ac.uk

Keywords: Nitrogen dioxide, long-term exposure, mortality, cohort, meta-analysis

Running head: Nitrogen dioxide and mortality: meta-analysis of cohort studies

COI: RWA, HRA and RLM wish to confirm that they have no known conflicts of interest associated with this publication. BKB owns shares in Royal Dutch Shell and Scottish and Southern Energy and her spouse has a deferred Shell pension.

Data availability: The data in this study are available from the peer reviewed literature. The computing code is available in the software package STATA.

Acknowledgements: We wish to acknowledge the members of the UK Committee on the Medical Effects of Air Pollutants (COMEAP) for their ideas and comments on an earlier, more limited review of the evidence from cohort studies on NO₂ and all-cause mortality funded by the UK Department of Food and Rural Affairs.

ABSTRACT

Background

Concentrations of outdoor nitrogen dioxide (NO₂) have been associated with increased mortality. Hazard ratios (HRs) from cohort studies are used to assess population health impact and burden. We undertook meta-analyses to derive concentration-response functions suitable for such evaluations and assessed sensitivity of the summary estimates to study selection based upon a range of cohort characteristics.

Methods

We searched Medline, Embase, Web of Science and existing reviews for cohort studies published to October 2016 reporting HRs for NO₂ and mortality. Meta-analytic summary estimates were calculated using fixed/random-effects models. Potential effect modification by a number of study and cohort characteristics was assessed using sub-group meta-analysis.

Results

Forty-eight articles analysing 28 cohorts were identified. Meta-analysis of HRs found positive associations between NO₂ and all-cause[1.02 (95% CI: 1.01, 1.03); prediction interval (PI): (0.99, 1.06) per $10\mu g/m^3$ increment in NO₂], cardiovascular (1.03 (95% CI: 1.02,1.05); PI: (0.98, 1.08)), respiratory (1.04 (95% CI: 1.01,1.05); PI: (0.97, 1.11))and lung cancer mortality (1.05 (95% CI: 1.02,1.08); PI: (0.94, 1.17)) with evidence of substantial heterogeneity between studies. In subgroup analysis, summary HRs varied by age at cohort entry, spatial resolution of pollution estimates and adjustment for smoking and BMI at the individual level; for some sub-groups the HR was close to unity, with lower confidence limits below 1.

Conclusions

Given the many uncertainties inherent in the assessment of this evidence base and the sensitivity of health impact calculations to small changes in the magnitude of the HRs, calculation of the impact on health of policies to reduce long-term exposure to NO₂ should utilize prediction intervals and report ranges of impact rather than focusing upon point estimates.

INTRODUCTION

Epidemiological studies have reported associations between long-term concentrations (typically averaged over a year or more) of outdoor air pollution and a range of health endpoints. Outdoor air pollution comprises a mixture of particles and gases, emitted directly from the combustion of fossil fuels or formed from secondary chemical reactions in the air. The evidence for ambient particulate matter monitored as PM_{2.5} (mass per m³ of particles of aerodynamic diameter generally less than 2.5µm) has been extensively reviewed and judged sufficient to infer a causal, adverse effect on a range of health outcomes.^{1,2}

Nitrogen dioxide (NO_2) is a respiratory toxicant gas which in outdoor air is derived primarily from the oxidation of nitric oxide (NO). In urban areas, the predominant source of NO and NO₂, as well as carbon particles, carbon monoxide and other pollutants, is motor vehicle exhaust. A growing number of cohort studies have exploited spatial variability in long-term NO₂ concentrations estimated using pollution models based upon the interpolation of monitoring data, land use regression (LUR) or dispersion models³ to investigate associations with mortality or disease incidence. Recent systematic reviews and meta-analyses have assessed the evidence from cohort studies published to 2013/2014 and reported associations between NO₂ concentrations and mortality from all-cause, cardiovascular and respiratory diseases^{4,5} and lung cancer⁶. An assessment of the evidence for oxides of nitrogen conducted by the US Environmental Protection Agency (EPA) Integrated Science Assessment⁷ including toxicological and epidemiological evidence across a wide range of health endpoints concluded that "the evidence is suggestive of, but not sufficient to infer, a causal relationship between long-term exposure to NO₂ and mortality among adults." This extensive review included cohort studies published up to 2014 but did not undertake meta-analyses nor attempt to establish concentration response functions for use in health impact calculations. A similar conclusion was reached by Health Canada following their review.⁸

Summary risk estimates (hazard ratios (HRs)) from meta-analyses of cohort studies are used in policy evaluations to assess the health impact and burden of current, and future, pollutant concentrations.⁹ These calculations usually apply to the general population of a defined geographical area and the results are often widely reported/discussed in the mainstream media outlets. In air pollution epidemiology, HRs are generally small (close to 1) indicating low individual risk. However, because of the ubiquitous nature of ambient air pollution and the very large populations exposed, small HRs can translate into important, and substantial, consequences for health at the population level. The

process used to derive the summary HRs, including decisions on included studies, appropriate analytical model, assessment of heterogeneity and effect modification are therefore important.

In this study we undertook a systematic search of the literature to identify cohort studies examining the association between long-term concentrations of NO₂ and mortality. We used stratified metaanalyses to assess the sensitivity of summary HRs to the selection of studies with different cohort and study characteristics and considered the implications for the selection of concentrationresponse functions (CRFs) for use in health impact assessment (HIA) in a general population. We also calculated prediction intervals and considered their relevance for HIA exercises. Our study updates previous reviews by including studies published to October 2016 and incorporating a wider range of causes of death.

METHODS

To identify publications reporting results from cohort studies of NO₂ and mortality we conducted a broad search of the online medical databases supplemented with citation searches of recently published literature reviews.

Search strategy

The search string "cohort & ('no2' or 'nitrogen dioxide' or 'air pollution') & mortality" was applied to: a) Ovid Medline (R) without Revisions for the period 1996 to October Week 2 2016 and Embase for the period 1996 to 2016 Week 42; b) Web of Science (1970 to October 2016); and c) Pubmed (1966 to October 2016). We also searched citations in 5 review articles.^{4-6,10,11} Studies identified in each search were combined and duplicates removed leaving 959 studies to be assessed.

Inclusion/exclusion criteria

Studies were screened by study title and abstract. Inclusion criteria were: 1) cohort studies including individual-level covariate information; and 2) a 'long-term' exposure metric for NO₂, i.e. annual or multi-year averages. Exclusion criteria were: 1) conference abstracts, conference papers, notes, editorials and letters; 2) cross-sectional, case-control and nested case-control study designs; 3) mean daily or monthly NO₂ exposure metrics (short-term exposure (time series) studies); and 4) study population selected because of close proximity to a specific pollution sources (e.g. waste incinerators). After applying these inclusion/exclusion criteria, 73 studies remained and were subject to full text review.

Suitability of these studies for inclusion in the quantitative assessment was assessed as follows: studies were excluded if: 1) they reported results for NO_x rather than NO₂ (n=5); 2) replicated results from previous publications (n=7); or 3) did not provide quantitative HRs together with a measure of precision (standard errors or 95% confidence intervals) and adequate information to enable standardisation of the HR per $10\mu g/m^3$ increase in NO₂ (n=13). 48 studies remained from which data characterising the outcome, HR and other relevant information were extracted. Figure 1 summarizes the literature search and study assessment.

Data extraction and coding

Cohort and estimate level information were extracted from each paper and entered into an EXCEL database. These data included cohort name, country, cohort description, date of enrolment of cohort members, age at enrolment, number of subjects, follow-up period, exposure period and exposure assessment method (measured/modelled). The level of covariate adjustment was also recorded including individual-level age, sex, smoking and BMI and level of adjustment for a marker of socioeconomic status (e.g. education level, income etc.) at either the individual or ecological level. All HRs were standardised to $10\mu g/m^3$ increase in NO₂. Where the units used in the original study were ppb, a conversion factor of $1.88\mu g/m^3$ per 1ppb was used (assuming 25°C and 1013mb atmospheric pressure).

Meta-analysis

Where studies reported results for various follow-up periods for the same cohort, we selected studies using the most recent follow-up period. If results for the same outcomes were available for the full cohort and a subset, we used results from the full cohort unless these results were considered to be out of date (e.g. statistical analysis, exposure assessment, date of last follow-up). Two studies from the same cohort were only included if they provided results for different outcomes.

Analyses were conducted in STATA Version 12 (StataCorp. 2011). All studies reported HRs together with 95% confidence intervals. Therefore estimates of the standard error were derived using each limit value and the two estimates averaged. Forest plots were used to display study information and HRs graphically. Articles used different terms to describe causes of death and were grouped together for meta-analysis according to terms and ICD codes where available (eTable 1,). Metaanalytic summary estimates were calculated using fixed and random effects models using the

4

program 'metan' in STATA. Heterogeneity was assessed using the I² statistic. Prediction intervals were calculated when heterogeneity was identified.¹² Small study bias was assessed using Begg¹³ and Egger¹⁴ tests and the Trim and Fill procedure¹⁵.

A series of stratified analyses assessed potential effect modification by both cohort and study characteristics. Cohort characteristics included: 1) study population - general population cohorts *vs*. cohorts using subjects with pre-existing disease; and 2) age at recruitment, cohorts based upon adults across a wide age range at recruitment *vs*. cohorts in selected ages at cohort entry. As the focus of our investigation was the identification of CRFs for use in HIA, we selected cohorts conducted in the general population and without narrow age restriction at cohort entry for further stratified analyses by study characteristics. These included: 1) adjustment for individual measures of BMI and smoking *vs*. no adjustment or use of area-level estimates of BMI and / or smoking; and 2) use of LUR models to estimate residential NO₂ concentrations *vs*. area-based concentration estimates. Our assessment of differences between strata was based upon the sizes of the respective summary HRs and the statistical significance of differences between HRs in the subgroup analyses derived using the method of Altman and Bland.¹⁶

RESULTS

The 48 articles identified in the review analysed 28 cohorts (including the ESCAPE study comprising 22 separate cohorts)¹⁷⁻⁶⁴. eTable 2 provides a description of each article/cohort including cohort size and geographical location, subject characteristics, exposure assessment and control for key individual confounders. Cohorts were studied in Europe (13 plus the ESCAPE consortium of cohorts), North America (10), Taiwan (1), China (2) and Japan (2).

HRs for NO₂ and all-cause mortality were reported in 32 studies (22 cohorts including ESCAPE) and cause-specific mortality in 41 studies (24 cohorts including ESCAPE).

All-cause mortality

Of the 32 studies reporting results for all-cause mortality (eFigure 1), 11 studies, selected according to our *a priori* algorithm, were excluded from the meta-analyses: 3 studies ^{38,40,53} because their results were included in the ESCAPE meta-analysis²⁰ and 8 studies as the same cohorts were analysed in other publications included in our review^{26,31,41,43,46,47,62,64}. In one article⁴², results for two cohorts were reported – the HR for the ACS CPS II cohort reported in this study was not used, the

more recent re-analyses of the ACS CPS II cohort⁶⁰ selected instead. Following these exclusions, results from 20 separate cohorts (including the ESCAPE consortium of 22 individual cohorts) reported results for NO₂ and all-cause mortality. In the fixed-effects meta-analysis (eFigure 2a), three large administrative cohorts^{25,30,35} and the ACS study⁶⁰ accounted for 80% and 11% of the weight respectively. Meta-analysis indicated a high level of heterogeneity between study HRs (I²=84%). The random-effects summary HR was 1.02 (95% CI: 1.01, 1.03; prediction interval (PI): 0.99 to 1.06) per 10µg/m³ increment in NO₂ (Table 1 and eFigure 2b). Begg and Egger tests for small study bias returned P-values of 0.3 and 0.9 respectively. Application of the trim and fill technique indicated the need to impute 2 additional study estimates to adjust for small study bias assuming a fixed-random effects model although the adjusted HR (and 95% CI) remained unchanged.

Five studies investigated associations with mortality in cohorts selected on the basis of pre-existing disease: survivors of stroke⁵⁰, CHD⁵⁵, Acute Coronary Syndrome⁵⁸; attendees at respiratory clinic⁴⁴ and hypertensive US veterans⁴⁸ (eFigure 3). Meta-analysis of these studies gave a summary HR of 1.04 per 10μ g/m³ increment in NO₂ compared to 1.02 for the 15 cohorts recruiting subjects from the general population (Table 1).

Eleven of the 15 cohorts recruited adults within a broad age range and 4 cohorts limited recruitment to narrower age ranges: $35-50^{22}$, 55-69 years²³, 25-59 years³⁴ and 65-84 years of age⁶¹ (eFigure 4). A stratified meta-analysis indicated a substantial, statistically significant (P=0.04) difference in the summary HRs between cohorts recruiting adults over a broad age range compared to cohorts restricting age at entry, 1.02 vs. 1.08 per 10μ g/m³ increment in NO₂ respectively (Table 1).

For the 11 cohorts that recruited adults within a broad age range , Figure 2 shows the cohort specific HRs and meta-analytic summary estimates stratified by A) level of covariate adjustment i.e. those controlling for required confounding factors including individual BMI and smoking status and those that did not; B) the spatial resolution of the estimated NO₂ concentrations i.e. LUR models predicting concentrations at subjects' residential addresses *vs.* estimates for larger geographical areas derived from models or interpolation of data from monitoring stations; and C) ordered by study mean/median NO₂ concentration. HRs from studies that controlled for individual measures of BMI and smoking were more variable and less precise than HRs from studies lacking this level of covariate adjustment. Summary HRs for the two sub-groups are presented in Table 1 and indicate a larger summary HR for studies without control for individual measures of BMI and smoking compared to studies that did (1.03 *vs.* 1.00 per $10\mu g/m^3$ increment in NO₂, a difference that was

statistically significant (P=0.03)). Studies that used estimated area-level concentrations of NO₂ were more variable and less precise than studies that used LUR-based residential concentration estimates and when meta-analysed gave a smaller summary HR (1.00) compared to studies using residential LUR estimates (1.03). Three administrative cohorts constructed from national registries rather than recruitment of individuals accounted for 3/4 studies that did not adjust for individual-level BMI and smoking and 3/6 studies that used residential concentration estimates from LUR models. When ordered by study mean/median NO₂ concentration (Figure 2C) there was a suggestion of a downward trend in the size of the HR as study mean NO₂ concentrations increased. Meta-regression confirmed this impression though the trend was not statistically significant (data not shown).

Cause specific mortality

Cardiovascular

Twenty-two studies reported results for cardiovascular mortality (eFigure 5). Two studies^{53,56} were excluded from the meta-analyses as their results were included in the ESCAPE meta-analysis²¹ and 4 studies were excluded as the same cohorts were analysed in other publications included in our review^{19,31,43,62}. One study from China⁶³ reported a (precisely estimated) HR in excess of 2.4 per 10μ g/m³ increment in NO₂. The authors were cautious about the validity of this extreme finding in the Shenyang cohort and therefore the study was excluded from further analyses.

The random-effects summary HR for the remaining 15 studies was 1.03 (95% CI: 1.02, 1.05; PI: 0.98, 1.08) per $10\mu g/m^3$ increment in NO₂ (Table 2). Heterogeneity between study estimates was high (83%). No evidence of small study bias was detected (data not shown). After exclusion of the age-restricted cohorts, larger summary HRs were observed in studies with limited age ranges at cohort enrolment (vs broader age ranges); in cohorts without individual adjustment for BMI and smoking (vs studies with individual adjustment) and in studies using residential LUR estimates (compared to area-level concentrations of NO₂), though none of the comparisons achieved statistical significance (Table 2).

Respiratory

Of the 17 studies report HRs for respiratory mortality (eFigure 21), 4 were excluded from the metaanalysis (included in the ESCAPE study⁴⁰; analysed in other publications included in the review^{31,62}; and the Chinese Shenyang cohort study³³ which reported a HR of 2.97 per $10\mu g/m^3$ increment in NO₂). The random effects summary HR (13 studies) was 1.04 (95% CI: 1.01, 1.05; PI: 0.97, 1.11) per $10\mu g/m^3$ increment in NO₂. Heterogeneity between study estimates was high (I²=75%). Following exclusion of the two age-restricted cohorts, larger summary HRs were observed in cohorts without individual adjustment for BMI and smoking (vs studies with individual adjustment) and in studies using area-level concentrations of NO₂ (compared to residential LUR estimates), though neither of the comparisons achieved statistical significance (Table 2).

Lung cancer

Twenty studies reported results for lung cancer mortality (eFigure 33). Four studies, selected according to our *a priori* algorithm, were excluded as the same cohorts were analysed in other publications included in the review.^{42,43,46,62}. In the fixed-effects meta-analysis, two large administrative cohorts^{30,35} and the ACS study⁶⁰ accounted for over 80% of the weight. Heterogeneity between study HRs was high (I²=88%). The random-effects summary HR for the 16 studies was 1.05 (95% CI: 1.02, 1.08; PI: 0.94, 1.17) per 10µg/m³ increment in NO₂ (Table 2). There was no evidence of publication bias. After exclusion of the age-restricted cohorts, larger summary HRs were observed in studies with limited age ranges at cohort enrollment (vs broader age ranges) and in cohorts without individual adjustment for BMI and smoking (vs studies with individual adjustment) though neither of these comparisons achieved statistical significance (Table 2). Stratification by spatial resolution of the estimated NO₂ concentrations suggested little difference in the respective summary HRs (Table 2 & eFigure 37).

Other causes

Sufficient studies were available for meta-analysis for CHD (12), cerebrovascular (7) and COPD (8) after exclusions. Details of exclusions are given in the supplementary material and results are presented in Table 3. Summary HRs for CHD and COPD were 1.04 and 1.03 respectively but close to 1 for cerebrovascular mortality. Heterogeneity was also present except for COPD. For CHD, a larger summary HR was observed for cohorts with individual measures of BMI or smoking compared to those without. A larger summary HR was also observed in studies using estimates of residential vs. small area NO₂ concentrations for CHD but reversed for COPD.

Four studies (3 from Japan and 1 from England) analysing three cohorts reported HRs for pneumonia mortality and NO₂ (eFigure 32). The meta-analytic summary HR was 1.08 (95% CI: 1.06, 1.10) with no evidence of heterogeneity ($I^2=0\%$). For brain cancer and diabetes there were insufficient studies for meta-analysis. Two studies^{30,54} in two cohorts (Can CHEC and DCH) reported HRs for diabetes-associated mortality of 1.03 (95% CI: 1.00, 1.06) and 1.31 (95% CI: 0.98, 1.76) per 10µg/m³ increment

in NO₂ respectively, and a single study based on data from the ACS⁵¹ reported a hazard ratio for brain cancer mortality of 0.93 (95% CI: 0.89, 0.98) per $10\mu g/m^3$ increment in NO₂.

DISCUSSION

Our study identified 48 articles reporting results for all-cause and cause specific mortality from 28 cohorts. The majority of the cohorts were in North America and Europe with only a few cohorts in Asia. Concentrations of NO₂ were positively associated with all-cause mortality as well as mortality from cardiovascular and respiratory diseases and lung cancer. Summary hazard ratios were generally in the range 1.02-1.5 per $10\mu g/m^3$ with lower confidence limits above 1. There was substantial heterogeneity between HRs for all categories of death except COPD and pneumonia mortality. There was evidence of effect modification by subject age range at cohort recruitment and control for individual measures of smoking and BMI. Studies using cohorts comprising subjects with pre-existing respiratory and cardiovascular disease tended to report higher HRs the studies in the general population.

Our study adds to previous quantitative reviews by incorporating studies published to October 2016 and a wider range of cause-specific mortality. A review in 2014⁴ included studies of NO₂ and NO_x published between 2004 and January 2013 but was restricted to studies (n=23) which also included HRs for particles. Hoek et al.⁵ also reviewed studies published to January 2013 reporting results for NO₂ and fine and coarse particles and carbon. Our study identified 20 cohort studies of NO₂ and mortality published during the period 2013 – October 2016, an indication of the growing evidence base, though a number of these more recent studies included re-analyses of existing cohorts. Only 7 of the 48 studies (5 separate cohorts) identified were outside of North America and Europe and illustrates the limited geographical spread of the current evidence base. None-the-less, the addition of new studies can facilitate meta-analysis of less common causes of death as well as incorporate results from updated cohorts incorporating longer follow-up periods, enhanced exposure estimation or inclusion of new variables in the analyses. Therefore, on-going review of studies remains appropriate.

Our summary HR for all-cause mortality (cohorts n=20) 1.02 (95% CI: 1.01, 1.03) per $10\mu g/m^3$ increment in NO₂ was smaller than reported in Faustini et al⁴ (n=12; 1.04 (95% CI: 1.02, 1.06)) and Hoek et al⁵ (n=11; 1.06 (1.04, 1.08)). Because of the ubiquitous nature of ambient air pollution and the very large populations exposed, small HRs can translate into substantial consequences for health at the population level. Hence, small variations in summary HRs can translate into important differences in population impact. The process used to derive the summary HRs needs therefore careful consideration.

The selection of study results for meta-analysis depends upon which studies are identified (which in turn depends upon the search strategy, review period, inclusion/exclusion criteria etc.) and the protocol for estimate selection and highlights the importance of preparing, a priori, an analytical protocol for study and estimate selection without reference to the direction and magnitude of the HRs. The choice of model, fixed or random, also needs consideration.⁶⁵ In a fixed effects model a single underlying HR is assumed whereas in a random effects model a distribution of HRs is assumed. For NO₂, a fixed effects model would seem to be an appropriate *a priori* choice: NO₂ does not vary in its composition from one location to another nor would one expect its toxicity to vary, unlike particulate matter. However, studies vary in many other respects including modelling of pollution concentrations, population characteristics and statistical model/confounders, suggesting a random effects is most appropriate. The two modelling approaches also differ in the assignment of study weights; a fixed effects model assigns weights based upon the precision of study estimates whereas a random effects model also incorporates between study variability. As a consequence, in a random effects model smaller studies are given larger weight in the meta-analysis. This may or may not be appropriate depending upon the characteristics of the studies. For example, smaller studies may have a greater range of individual confounders and possibly higher data quality than very large studies based upon large administrative databases with limited data on individual risk factors. In such a scenario the reweighting that can arise in a RE model may be appropriate.

In common with previous reviews^{4,5} our study found high levels of heterogeneity between study HRs for almost all causes of death assessed. Heterogeneity is an indicator of the extent to which study estimates are sufficiently consistent to be summarized using a weighted average in a fixed-effects model. The presence of heterogeneity indicates that the variability between study estimates is too great to be explained by chance alone but it does not necessarily rule out a causal interpretation.⁶⁶ Large variations in study size (as here where sample sizes ranged from 2000+ to 7.5 million) can lead to an artificially high l² statistic, a measure of heterogeneity.⁶⁷ An investigation of the sources of this heterogeneity is needed to inform the interpretation of the evidence.⁶⁸ Such an investigation also prevents these issues becoming lost in the statistical summary⁶⁹ provided by a random-effects analysis⁷⁰. The presence of high levels of heterogeneity between cohort estimates in our study is

therefore an important finding in its own right and should be incorporated into any assessment of the evidence.

We assessed a range of potential effect modifiers. We first compared HRs from studies in subjects with pre-existing disease vs. other cohorts. For all-cause mortality we observed a larger, less precise summary HR in subjects with pre-existing disease (1.04) vs. the rest (1.02). This comparison was limited however in two ways: 1) the small number of studies; and 2) such cohorts tend to be smaller and therefore carry little weight in any meta-analyses. Inclusion or otherwise in a meta-analysis should not be guided by a statistical assessment of differences between HRs, rather it should be determined by the purpose of the analysis – hazard identification or calculation of a concentration response function for input to a health impact calculation in the general population. To assess other potential effect modifiers we chose to exclude studies in subjects with pre-existing disease. Sensitivity analyses including these cohorts did not alter materially our findings (data not shown).

A small number of studies^{22,23,34,61,62} used restricted age ranges for subjects at cohort entry limiting our ability to compare their results with cohorts including subjects with broad adult age ranges on entry. There was a tendency for cohorts restricting subjects' ages at cohort entry to report higher NO₂ HRs for all-cause, cardiovascular and respiratory mortality compared to cohorts with much broader age ranges upon entry. This observation, based upon a small number of studies, may be a chance finding. Alternatively, age at cohort entry may be correlated with smoking status, disease status, as well as NO₂ concentrations and proximity to traffic and further work is required to in order to better understand this potentially important effect modifier.

In recent years a number of studies have used administrative databases to construct retrospective cohorts.^{24,25,30,35} 'Administrative' cohorts tend to use very large numbers of subjects with broad population coverage. They may lack individual measures of potential confounders, e.g. smoking status and BMI utilizing instead small area measures derived from other sources. Residual confounding is generally acknowledged as a potential weakness in these studies and investigators have attempted to evaluate this using statistical methods or survey data.^{25,35} Our stratified meta-analyses, separating studies with individual measures of smoking status and BMI from those that did not, found smaller HRs in the former for all causes of death and with lower confidence limits below 1 for all causes of death except from CHD. A number of explanations for this finding are possible: 1) chance, the differences observed reflecting the results of studies that happen to be available at the time of the review; 2) other confounders, the two groups of studies give different results because of

differences between studies other than the BMI and smoking characterization; 3) measurement error related to different scales of measurement of confounders and exposure estimates; and 4) adjustment for these potential confounders at the small area level does not provide adequate control compared to that provided by individual measures. A sensitivity analyses using the English CPRD cohort (Carey, 2016, personal communication) found that adjustment for individual level smoking status and BMI after adjustment for a small area-level marker of socio economic status attenuated the HRs by a further 15%. The possibility remains, therefore, that studies unable to control for key individual confounders may be overstating the size of the association between longterm NO₂ and all-cause mortality

Meta-analysis stratified by the spatial resolution of the modelled NO₂ concentrations showed for allcause and cardiovascular related deaths, a trend towards larger HRs for cohorts that used LUR models capable of estimating NO_2 concentrations at the subjects' residential address compared to other pollution models that estimated concentrations at a lower spatial resolution. This pattern was reversed for respiratory deaths. Such differences, though small, would have important implications for health impact assessments. LUR models are capable of revealing gradients in NO₂ concentrations that are missed by models that estimate concentrations for larger geographical areas. The improved precision of the estimate of a subject's long-term exposure to a pollutant is achieved by reducing both systematic and random measurement error in the exposure estimate. Random measurement error has long been acknowledged as a problem in epidemiological studies. If the estimated exposure can be expressed as a linear combination of the true exposure plus random error, that error is described as additive and "classical" but if the true exposure can be expressed as a linear combination of the estimated exposure plus random error, the error is described as additive and Berkson. Additive classical error leads on average to the underestimation of hazard ratios (bias towards the null), whereas Berkson error leads to wider confidence intervals due to reduced statistical power. Measurement error introduced by spatial smoothing behaves like Berkson error whereas error introduced by parameter estimation behaves like classical error.^{71,72} Thus, even if greater spatial resolution in modelled NO₂ concentrations results in more precise exposure estimates (i.e. less measurement error) the effect on hazard ratio estimation will depend on whether it is the overall Berkson or the classical component of measurement error that is reduced.⁷¹ Hence, it does not follow necessarily that LUR models will suffer less from bias towards the null than models with coarser spatial resolution. Of the 6 studies that used LUR models to estimate NO_2 concentrations (Figure 2B), 3 administrative cohorts dominated the meta-analysis (combined weight >69%). These 3 studies were also limited in their ability to control for individual measures of BMI and

smoking and accounted for over 94% of the weight in the meta-analysis of studies with limited control for confounders (Figure 2A) and therefore one should be cautious in the interpretation of these findings.

The calculation and use of prediction intervals in meta-analyses has been advocated.^{12,67} In a random effects model, study HRs are assumed to follow a distribution. The 95% CI for the summary HR represents therefore the range within which the mean of this distribution lies. It does not convey the uncertainty in the HR from any one study. A prediction interval allows for the fact that the health effects of NO₂ may differ from one setting to another (for example due to the susceptibility of the underlying population; the assessment of NO₂ concentrations; the pollutant mixture; underlying disease prevalence; competing risk factors; model specification etc.). It provides an appropriate indication of the precision of the estimated HR in a future setting.⁶⁷ Given the sensitivity of health impact calculations to small changes in the magnitude of the HR and the imprecision inherent in any meta-analyses of HRs, subsequent impact calculations should utilize prediction intervals and report ranges of impact rather than focusing upon point estimates.

Evidence gathered from experimental studies in animals and human volunteers and from epidemiological studies employing biomarkers of effects of exposure to air pollutants, offers limited support for the assertion that long-term exposure to NO₂ is causally associated with an increase in risk of death.^{7,8} Such evidence as there is for toxicological effects of NO₂ on mortality comes largely from studies of the association with short term exposure. These studies have, so far, provided no means of distinguishing the effects of NO₂ from those of PM: both might well act via the same mechanisms including the induction of increased levels of oxidative free radicals and inflammation. Evidence for effects on the cardiovascular system, for example effects on levels of clotting factors and on the rate of progression of arterial disease, is better developed for PM than for NO₂.

Only a small number of the studies identified in our review reported HRs for NO₂ adjusted for PM. In some studies the correlation between pollutants was high (>0.8) limiting their ability to disentangle associations between the pollutants and mortality. The difficulties in interpreting coefficients in multi-pollutant models has received attention.^{73,74} These difficulties include: 1) correlation between pollutants (arising due to common sources and meteorological conditions) which can lead to unstable parameter estimation; 2) differential measurement error between pollutants which can lead to the 'transfer' of an association from the less well measured (but true) pollutant to the better measured (but incorrect) pollutant; and 3) statistical models which do not generally assess

interactions between pollutants in order to interpret correctly model main effects. Statistical methods for dealing with correlated predictors have been proposed as well as the use of combined pollutant estimates to be used in formulating a multi-pollutant approach to regulatory policy.^{73,74} Given the current limited evidence base and the statistical issues described it remains infeasible to distinguish associations between NO₂ and mortality from those for PM, especially fine particles arising from vehicle exhaust.

Previous reviews of both the toxicological and epidemiological literature have concluded that the evidence was not sufficient to infer a causal relationship between long-term exposure to NO₂ and mortality.^{7,8} In part this caution was due to a lack of consistency in study findings and concerns relating to potential confounding by co-pollutants especially particles in traffic exhaust. Our study confirms the need for continued caution in respect of causality particularly since the revised meta-analyses suggest HRs close to one, with the possibility of further attenuation if meta-analyses are restricted to studies with individual measures of BMI and smoking. The substantial heterogeneity between study results also weaken the argument for causality. Unlike particles where unit mass concentrations might vary between locations in size, composition and nature (primary/secondary), a unit mass concentration of NO₂ gas is the same everywhere. We therefore consider that as the evidence stands at present, the causal basis for estimating the burden of NO₂ on mortality and loss of life expectancy remains weak.

Our study found positive associations between long-term concentrations of NO₂ and risk of mortality from a range of diseases. However, there was substantial heterogeneity between estimates and evidence of differences in the magnitude and precision of HRs depending upon the degree of control for individual confounding factors and the spatial resolution of the NO₂ concentration estimates. This has important implications for the selection of HRs for use in health impact assessment calculations. Given the many uncertainties inherent in the assessment of this evidence base and the sensitivity of health impact calculations to small changes in the magnitude of the HR subsequent impact calculations should take account of these issues by utilizing prediction intervals and reporting ranges of impact rather than focusing upon a point estimate.

Figure Legend

Figure 1 Summary of literature search and study assessment.

14

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

Figure 2 A HRs for all-cause mortality stratified by level of adjustment for smoking and BMI; B HRs for all-cause mortality stratified by spatial resolution of NO_2 concentration estimates; C HRs for all-cause mortality ordered by study mean/median NO_2 concentrations

REFERENCE

- 1. EPA U. Integrated Science Assessment for Particulate Matter. U.S. Environmental Protection Agency, Washington, DC, 2009.
- 2. WHO. Review of evidence on health aspects of air pollution REVIHAAP Project. 2013.
- 3. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C. A review and evaluation of intraurban air pollution exposure models. *J Expo Anal Environ Epidemiol* 2004;**15**(2):185-204.
- 4. Faustini A, Rapp R, Forastiere F. Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. *Eur Respir J* 2014;**44**(3):744-53.
- 5. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD. Long-term air pollution exposure and cardio- respiratory mortality: a review. *Environ Health* 2013;**12**(1):43.
- 6. Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. *Environ Health Perspect* 2015;**123**(11):1107-12.
- 7. EPA. US. Integrated Science Assessment for Oxides of Nitrogen Health Criteria (2016 Final Report). 2016.
- 8. Canada H. Human Health Risk Assessment for Ambient Nitrogen Dioxide. Health Canada, 2016.
- 9. COMEAP. The Mortality Effects of Long-Term Exposure to Particulate Air Pollution in the United Kingdom. 2010.
- 10. Brunekreef B. Health effects of air pollution observed in cohort studies in Europe. *J Expo Sci Environ Epidemiol* 2007;**17 Suppl 2**:S61-5.
- 11. Latza U, Gerdes S, Baur X. Effects of nitrogen dioxide on human health: systematic review of experimental and epidemiological studies conducted between 2002 and 2006. *Int J Hyg Environ Health* 2009;**212**(3):271-87.
- 12. Chiolero A, Santschi V, Burnand B, Platt RW, Paradis G. Meta-analyses: with confidence or prediction intervals? *Eur J Epidemiol* 2012;**27**(10):823-5.
- 13. Begg CB, Berlin JA. Publication bias and dissemination of clinical research. *J Natl Cancer Inst* 1989;**81**(2):107-15.
- 14. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;**315**(7109):629-34.
- 15. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 2000;**56**(2):455-63.
- 16. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. *BMJ* 2003;**326**(7382):219.
- 17. Abbey DE, Nishino N, McDonnell WF, Burchette RJ, Knutsen SF, Lawrence Beeson W, Yang JX. Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. *Am J Respir Crit Care Med* 1999;**159**(2):373-82.
- 18. Andersen ZJ, Kristiansen LC, Andersen KK, Olsen TS, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, Tjonneland A, Overvad K, Raaschou-Nielsen O. Stroke and Long-Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide A Cohort Study. *Stroke* 2012;**43**(2):320-325.
- 19. Beelen R, Hoek G, Houthuijs D, Van Den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Armstrong B, Brunekreef B. The joint association of air pollution and noise from road traffic with cardiovascular mortality in a cohort study. *Occupational and Environmental Medicine* 2009;**66**(4):243-250.
- 20. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer P, Nieuwenhuijsen M, Vineis P, Xun WW, Katsouyanni K, Dimakopoulou K, Oudin A, Forsberg B, Modig L, Havulinna AS, Lanki T, Turunen A, Oftedal B, Nystad W, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Overvad K, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-De-Mesquita B, Sugiri D, Kramer U, Heinrich J, De Hoogh K, Key T, Peters A, Hampel R,

Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Kunzli N, Schindler C, Schikowski T, Adam M, Phuleria H, Vilier A, Clavel-Chapelon F, Declercq C, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Brunekreef B, Hoek G. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. *The Lancet* 2014;**383**(9919):785-795.

- 21. Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K, Dimakopoulou K, Brunekreef B, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Houthuijs D, Nieuwenhuijsen M, Oudin A, Forsberg B, Olsson D, Salomaa V, Lanki T, Yli-Tuomi T, Oftedal B, Aamodt G, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pyko A, Eriksen KT, Tjonneland A, Becker T, Eeftens M, Bots M, Meliefste K, Wang M, Bueno-De-Mesquita B, Sugiri D, Kramer U, Heinrich J, de Hoogh K, Key T, Peters A, Cyrys J, Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Dratva J, Ducret-Stich R, Vilier A, Clavel-Chapelon F, Stempfelet M, Grioni S, Krogh V, Tsai MY, Marcon A, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Vineis P, Hoek G. Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts. *Epidemiology* 2014;**25**(3):368-378.
- Bentayeb M, Wagner V, Stempfelet M, Zins M, Goldberg M, Pascal M, Larrieu S, Beaudeau P, Cassadou S, Eilstein D, Filleul L, Le Tertre A, Medina S, Pascal L, Prouvost H, Quenel P, Zeghnoun A, Lefranc A. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study. *Environment International* 2015;**85**:5-14.
- 23. Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, Armstrong B, Hughes E, Jerrett M, van den Brandt P. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. *Research report (Health Effects Institute)* 2009(139):5-71; discussion 73-7189.
- 24. Carey IM, Atkinson RW, Kent AJ, Van Staa T, Cook DG, Anderson HR. Mortality associations with long-term exposure to outdoor air pollution in a national English cohort. *American Journal of Respiratory and Critical Care Medicine* 2013;**187**(11):1226-1233.
- 25. Cesaroni G, Badaloni C, Gariazzo C, Stafoggia M, Sozzi R, Davoli M, Forastiere F. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. *Environmental Health Perspectives* 2013;**121**(3):324-331.
- 26. Cesaroni G, Porta D, Badaloni C, Stafoggia M, Eeftens M, Meliefste K, Forastiere F. Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. *Environmental Health: A Global Access Science Source* 2012;**11**:48.
- 27. Chen H, Goldberg MS, Burnett RT, Jerrett M, Wheeler AJ, Villeneuve PJ. Long-term exposure to traffic-related air pollution and cardiovascular mortality. *Epidemiology* 2013;**24**(1):35-43.
- 28. Chen LH, Knutsen SF, Shavlik D, Beeson WL, Petersen F, Ghamsary M, Abbey D. The association between fatal coronary heart disease and ambient particulate air pollution: Are females at greater risk? *Environmental Health Perspectives* 2005;**113**(12):1723-1729.
- 29. Chen X, Zhang LW, Huang JJ, Song FJ, Zhang LP, Qian ZM, Trevathan E, Mao HJ, Han B, Vaughn M, Chen KX, Liu YM, Chen J, Zhao BX, Jiang GH, Gu Q, Bai ZP, Dong GH, Tang NJ. Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China. *Science of the Total Environment* 2016;**571**:855-861.
- 30. Crouse DL, Peters PA, Hystad P, Brook JR, van Donkelaar A, Martin RV, Villeneuve PJ, Jerrett M, Goldberg MS, Pope CA, 3rd, Brauer M, Brook RD, Robichaud A, Menard R, Burnett RT. Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). *Environmental Health Perspectives* 2015;**123**(11):1180-6.

- 31. Crouse DL, Peters PA, Villeneuve PJ, Proux MO, Shin HH, Goldberg MS, Johnson M, Wheeler AJ, Allen RW, Atari DO, Jerrett M, Brauer M, Brook JR, Cakmak S, Burnett RT. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian Census Health and Environment Cohort (CanCHEC). *Journal of Exposure Science & Environmental Epidemiology* 2015;**25**(5):482-9.
- 32. Dimakopoulou K, Samoli E, Beelen R, Stafoggia M, Andersen ZJ, Hoffmann B, Fischer P, Nieuwenhuijsen M, Vineis P, Xun W, Hoek G, Raaschou-Nielsen O, Oudin A, Forsberg B, Modig L, Jousilahti P, Lanki T, Turunen A, Oftedal B, Nafstad P, Schwarze PE, Penell J, Fratiglioni L, Andersson N, Pedersen N, Korek M, De Faire U, Eriksen KT, Tjonneland A, Becker T, Wang M, Bueno-De-Mesquita B, Tsai MY, Eeftens M, Peeters PH, Meliefste K, Marcon A, Kramer U, Kuhlbusch TAJ, Vossoughi M, Key T, De Hoogh K, Hampel R, Peters A, Heinrich J, Weinmayr G, Concin H, Nagel G, Ineichen A, Jacquemin B, Stempfelet M, Vilier A, Ricceri F, Sacerdote C, Pedeli X, Katsoulis M, Trichopoulou A, Brunekreef B, Katsouyanni K. Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project. *American Journal of Respiratory and Critical Care Medicine* 2014;**189**(6):684-696.
- 33. Dong GH, Zhang P, Sun B, Zhang L, Chen X, Ma N, Yu F, Guo H, Huang H, Lee YL, Tang N, Chen J. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: A 12-year population-based retrospective cohort study. *Respiration* 2012;84(5):360-368.
- Filleul L, Rondeau V, Vandentorren S, Le Moual N, Cantagrel A, Annesi-Maesano I, Charpin D, Declercq C, Neukirch F, Paris C, Vervloet D, Brochard P, Tessier JF, Kauffmann F, Baldi I. Twenty five year mortality and air pollution: results from the French PAARC survey. Occupational and Environmental Medicine 2005;62(7):453-460.
- 35. Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D. Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS). *Environ Health Perspect* 2015;**123**(7):697-704.
- 36. Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. *American Journal of Respiratory and Critical Care Medicine* 2013;**187**(7):721-727.
- 37. Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. *Environmental Health Perspectives* 2011;**119**(4):501-507.
- 38. Gehring U, Heinrich J, Kramer U, Grote V, Hochadel M, Sugiri D, Kraft M, Rauchfuss K, Eberwein HG, Wichmann HE. Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. *Epidemiology* 2006;**17**(5):545-551.
- 39. Hart JE, Garshick E, Dockery DW, Smith TJ, Ryan L, Laden F. Long-Term Ambient Multipollutant Exposures and Mortality. *American Journal of Respiratory and Critical Care Medicine* 2011;**183**(1):73-78.
- 40. Heinrich J, Thiering E, Rzehak P, Kramer U, Hochadel M, Rauchfuss KM, Gehring U, Wichmann HE. Long-term exposure to NO2 and PM10 and all-cause and cause-specific mortality in a prospective cohort of women. *Occupational & Environmental Medicine* 2013;**70**(3):179-86.
- 41. Hoek G, Brunekreef B, Goldbohm S, Fischer P, Van Den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. *Lancet* 2002;**360**(9341):1203-1209.
- 42. Institute HE. Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality: A Special Report of the Institute's Particle Epidemiology Reanalysis Projec. 2000.
- 43. Jerrett M, Burnett RT, Beckerman BS, Turner MC, Krewski D, Thurston G, Martin RV, van Donkelaar A, Hughes E, Shi Y, Gapstur SM, Thun MJ, Pope CA, 3rd. Spatial analysis of air pollution and mortality in California. *Am J Respir Crit Care Med* 2013;**188**(5):593-9.

- 44. Jerrett M, Finkelstein MM, Brook JR, Arain MA, Kanaroglou P, Stieb DM, Gilbert NL, Verma D, Finkelstein N, Chapman KR, Sears MR. A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada. *Environmental Health Perspectives* 2009;**117**(5):772-777.
- 45. Katanoda K, Sobue T, Satoh H, Tajima K, Suzuki T, Nakatsuka H, Takezaki T, Nakayama T, Nitta H, Tanabe K, Tominaga S. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. *Journal of Epidemiology* 2011;**21**(2):132-143.
- 46. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, Pope 3rd CA, Thurston G, Calle EE, Thun MJ, Beckerman B, DeLuca P, Finkelstein N, Ito K, Moore DK, Newbold KB, Ramsay T, Ross Z, Shin H, Tempalski B. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. *Research report (Health Effects Institute)* 2009(140):5-114; discussion 115-136.
- 47. Lipfert FW, Baty JD, Miller JP, Wyzga RE. PM2.5 constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. *Inhalation Toxicology* 2006;**18**(9):645-57.
- 48. Lipfert FW, Wyzga RE, Baty JD, Miller JP. Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of US veterans. *Atmospheric Environment* 2006;**40**(1):154-169.
- 49. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, Smith DF, Garcia C, Chang ET, Bernstein L. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. *American Journal of Respiratory and Critical Care Medicine* 2011;**184**(7):828-835.
- 50. Maheswaran R, Pearson T, Smeeton NC, Beevers SD, Campbell MJ, Wolfe CD. Impact of outdoor air pollution on survival after stroke: Population-based cohort study. *Stroke* 2010;**41**(5):869-877.
- 51. McKean-Cowdin R, Calle EE, Peters JM, Henley J, Hannan L, Thurston GD, Thun MJ, Preston-Martin S. Ambient air pollution and brain cancer mortality. *Cancer Causes and Control* 2009;**20**(9):1645-1651.
- 52. Naess O, Nafstad P, Aamodt G, Claussen B, Rosland P. Relation between concentration of air pollution and cause-specific mortality: Four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. *American Journal of Epidemiology* 2007;**165**(4):435-443.
- 53. Raaschou-Nielsen O, Andersen ZJ, Jensen SS, Ketzel M, Sorensen M, Hansen J, Loft S, Tjonneland A, Overvad K. Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study. *Environmental Health: A Global Access Science Source* 2012;**11**:60.
- 54. Raaschou-Nielsen O, Sorensen M, Ketzel M, Hertel O, Loft S, Tjonneland A, Overvad K, Andersen ZJ. Long-term exposure to traffic-related air pollution and diabetes-associated mortality: a cohort study. *Diabetologia* 2013;**56**(1):36-46.
- 55. Rosenlund M, Picciotto S, Forastiere F, Stafoggia M, Perucci CA. Traffic-related air pollution in relation to incidence and prognosis of coronary heart disease. *Epidemiology* 2008;**19**(1):121-128.
- 56. Schikowski T, Sugiri D, Ranft U, Gehring U, Heinrich J, Wichmann HE, Kramer U. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality? *Respiratory research* 2007;**8**:20.
- 57. Sorensen M, Luhdorf P, Ketzel M, Andersen ZJ, Tjonneland A, Overvad K, Raaschou-Nielsen O. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? *Environmental Research* 2014;**133**:49-55.
- 58. Tonne C, Wilkinson P. Long-term exposure to air pollution is associated with survival following acute coronary syndrome. *European Heart Journal* 2013;**34**(17):1306-1311.

- 59. Tseng E, Ho WC, Lin MH, Cheng TJ, Chen PC, Lin HH. Chronic exposure to particulate matter and risk of cardiovascular mortality: cohort study from Taiwan. *BMC Public Health* 2015;**15**:936.
- 60. Turner MC, Jerrett M, Pope CA, Krewski D, Gapstur SM, Diver WR, Beckerman BS, Marshall JD, Su J, Crouse DL, Burnett RT. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. *American Journal of Respiratory and Critical Care Medicine* 2016;**193**(10):1134-1142.
- 61. Yorifuji T, Kashima S, Tsuda T, Ishikawa-Takata K, Ohta T, Tsuruta K, Doi H. Long-term exposure to traffic-related air pollution and the risk of death from hemorrhagic stroke and lung cancer in Shizuoka, Japan. *Science of the Total Environment* 2013;**443**:397-402.
- 62. Yorifuji T, Kashima S, Tsuda T, Takao S, Suzuki E, Doi H, Sugiyama M, Ishikawa-Takata K, Ohta T. Long-term exposure to traffic-related air pollution and mortality in Shizuoka, Japan. *Occupational and Environmental Medicine* 2010;**67**(2):111-117.
- 63. Zhang PF, Dong GH, Sun BJ, Zhang LW, Chen X, Ma NN, Yu F, Guo HM, Huang H, Lee YL, Tang NJ, Chen J. Long-Term Exposure to Ambient Air Pollution and Mortality Due to Cardiovascular Disease and Cerebrovascular Disease in Shenyang, China. *Plos One* 2011;**6**(6).
- 64. Tonne C, Halonen JI, Beevers SD, Dajnak D, Gulliver J, Kelly FJ, Wilkinson P, Anderson HR. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. *International Journal of Hygiene & Environmental Health* 2016;**219**(1):72-8.
- 65. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010;**1**(2):97-111.
- 66. Weed DL. Interpreting epidemiological evidence: how meta-analysis and causal inference methods are related. *Int J Epidemiol* 2000;**29**(3):387-90.
- 67. IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. *BMJ Open* 2016;**6**(7):e010247.
- 68. Egger M, Schneider M, Davey Smith G. Spurious precision? Meta-analysis of observational studies. *BMJ* 1998;**316**(7125):140-4.
- 69. Feinstein AR. Meta-analysis: statistical alchemy for the 21st century. *J Clin Epidemiol* 1995;**48**(1):71-9.
- 70. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986;**7**(3):177-88.
- 71. Szpiro AA, Paciorek CJ, Sheppard L. Does more accurate exposure prediction necessarily improve health effect estimates? *Epidemiology* 2011;**22**(5):680-5.
- 72. Szpiro AA, Sheppard L, Lumley T. Efficient measurement error correction with spatially misaligned data. *Biostatistics* 2011;**12**(4):610-23.
- 73. Dominici F, Peng RD, Barr CD, Bell ML. Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach. *Epidemiology* 2010;**21**(2):187-94.
- 74. Greenbaum D, Shaikh R. First steps toward multipollutant science for air quality decisions. *Epidemiology* 2010;**21**(2):195-7.

Cohort stratificati	on	No. of cohorts	HR (95% Cl) per 10 μg/m ³	² (%)	P- value ⁴	Figure ⁵
All cohorts			N = 32 (removed = 1	2)		e1
	Coho	orts excluding	duplicates			
Selected	Fixed		1.03 (1.02, 1.03)			e2a
cohorts ¹	Random	20	1.02 (1.01, 1.03) (0.99, 1.06) ⁶	84	NA	e2b
	Stratificat	ion by cohor	t characteristics			
Pre existing	YES	5	1.04 (0.98, 1.10)	76	0.92	23
disease	NO	15	1.02 (1.01, 1.03)	86	0.82	es
Stratifica	tion by cohort	characteristi	cs excluding pre-existi	ng disea	ase cohorts	
	YES	4	1.08 (1.02, 1.15)	79		
Age-restricted ^{1,2}	NO	11	1.02 (1.01, 1.03)	88	0.04	e4
Stratif	ication by stud	y characteris age-restr	tics excluding pre-exist icted cohorts	ing dis	ease and	
Individual BMI	YES	7	1.00 (0.98, 1.03)	89	0.03	25
adjustment ^{1,2,3} NO		4	1.03 (1.02, 1.04)	67	0.05	20
Residential NO2 exposure	Yes	6	1.03 (1.02, 1.03)	68	0.19	2b
Estimates ^{1,2,3}	No	5	1.00 (0.96, 1.04)	90		

Table 1 Summary hazard ratios (95% CI) for all-cause mortality without and with stratification by selected study characteristics.

Notes: 1 Excluding studies identified as previous/smaller analyses of the same cohort and cohorts included in ESCAPE; 2 Excluding preexisting disease cohorts; 3 Excluding age-restricted cohorts; 4 P-value for differences between HRs in subgroup analyses; 5 Corresponding figure giving study information, HRs (95% CI); 6 Prediction Interval

Cohort stratificatio	'n		Cardiovascular I	Mortalit	У			Respiratory N	/lortality	/		Lung Cancer Mortality				
		No. of cohorts	HR (95% CI) per 10 μg/m³	² (%)	P- value ⁴	Fig⁵	No. of cohorts	HR (95% CI) per 10 μg/m ³	² (%)	P- value ⁴	Fig⁵	No. of cohorts	HR (95% CI) per 10 μg/m³	² (%)	P- value ⁴	Fig⁵
All cohorts			n = 22 (removed =	= 7)		e5		n = 17 (removed =	= 4)		e21		n = 20 (removed =	= 4)		e33
						Со	horts after	excluding duplicates								
	Fixed		1.03 (1.02, 1.03)			e6a		1.03 (1.02,1.04)			e22a		1.07 (1.06,1.08)			e34a
All cohorts ¹	Random	15	1.03 (1.02, 1.05) (0.98, 1.08) ⁵	83	NA	e6b	13	1.04 (1.01,1.05) (0.97, 1.11) ⁶	75	NA	e22b	16	1.05 (1.02,1.08) (0.94, 1.17)⁵	88	NA	e34b
						Strat	tification by	cohort characteristic	CS							
Pre existing	YES	1	NA	NA	NA	07	1	NA	NA	NIA		0	NA	NA	NA	NIA
disease ¹	NO	14	1.03 (1.02, 1.04)	83	NA	e7	12	1.04 (1.01, 1.06)	77	NA	e23	16	1.05(1.02,1.08)	88	NA	NA
				Stratif	ication by	cohort	characteris	tics excluding pre-exi	sting dis	sease coho	orts					
	YES	3	1.10 (0.93, 1.29)	90			2	NA	NA			3	1.15 (0.92, 1.42)	81	0.00	
Age-restricted ^{1,2}	NO	11	1.02 (1.01, 1.04)	81	0.41	e8	10	1.03 (1.01, 1.05)	78	NA	e24	13	1.05 (1.02, 1.08)	90	0.68	e35
			Stratific	ation b	y study ch	aracteri	stics exclud	ling pre-existing disea	ase and	age-restrie	cted coho	orts				
Key confounder	YES	5	1.01 (0.99, 1.04)	68			5	1.00 (0.95,1.06)	70			6	1.02 (0.96, 1.08)	72		
adjustment ^{1,2,3}	NO	6	1.03 (1.01, 1.04)	82	0.50	e9	5	1.04 (1.01, 1.06)	85	0.30	e25	7	1.06 (1.03, 1.10)	86	0.20	e36
Residential	Yes	7	1.03 (1.01, 1.04)	87			6	1.02 (1.01, 1.03)	0			5	1.04 (1.00, 1.09)	96		
NO ₂ exposure Estimates ^{1,2,3}	No	4	1.01 (1.00, 1.03)	0	0.15	e10	4	1.04 (0.98, 1.10)	83	0.57	e26	8	1.05 (1.00, 1.11)	65	0.77	e37

Table 2 Summary hazard ratios (95% CI) for cardiovascular, respiratory and lung cancer mortality, without and with stratification by selected cohort and study characteristics Notes: 1 Excluding studies identified as previous/smaller analyses of the same cohort and cohorts included in ESCAPE meta-analysis; 2 Excluding pre-existing disease cohorts; 3 Excluding agerestricted cohorts; 4 P-value for differences between HRs in subgroup analyses; 5 Corresponding figure giving study information, HRs (95% CI); 6 Prediction Interval

Cohort - stratificat	ion	on CHD Mortality Cerebrovascular Mortality					COPD Mor	tality								
		No. of cohorts	HR (95% CI) per 10 μg/m ³	² (%)	P- Value ⁴	Fig ⁵	No. of cohorts	HR (95% CI) per 10 μg/m ³	l ² (%)	P- Value ⁴	Fig⁵	No. of cohorts	HR (95% CI) per 10 μg/m ³	l² (%)	P- Value ⁴	Fig⁵
All cohorts			n = 16 (removed n	= 4)		e11		n = 11 (removed = 4)		e16		n = 9 (removed =	1)		e27
						C	Cohorts after	excluding duplicates								
	Fixed		1.03 (1.03, 1.04)			e12a		1.01 (1.00, 1.02)			e17a		1.03 (1.01, 1.04)			e28a
All cohorts ¹	Random	12	1.04 (1.02, 1.05) (0.99, 1.09)⁵	71	NA	e12b	7	1.01 (0.98, 1.05) (0.93, 1.10) ⁶	64	NA	e17b	8	1.03 (1.01, 1.04) (1.01, 1.05) ⁵	0	NA	e28b
						- stratifi	cation by co	hort characteristics								
Pre existing	YES	0	NA	NA	NIA	NIA	0	NA	NA	NIA		0	NA	NA	NIA	NIA
disease ¹	NO	12	1.04 (1.02, 1.05)	71	NA	NA	7	1.01 (0.98, 1.05)	64	NA	NA	8	1.03 (1.01, 1.04)	0	NA	NA
				- sti	ratification	by coho	rt characteri	stics excluding pre-existir	ng disea	se cohorts						
	YES	2	NA	NA			2	NA	NA			1	NA	NA		•••
Age-restricted ^{1,2}	NO	10	1.03 (1.02, 1.05)	66	NA	e13	5	1.00 (0.99, 1.02)	0	NA	e18	7	1.03 (1.01, 1.04)	5	NA	e29
			- stratific	ation by	study cha	racteristi	ics excluding	pre-existing disease and	age-res	tricted coh	orts					
Key confounder	YES	5	1.02 (1.01, 1.03)	3			2	NA	NA			2	NA	NA		
adjustment ^{1,2,3}	NO	5	1.04 (1.03, 1.06)	13	0.01	e14	3	1.01 (0.99, 1.02)	0	NA	e19	5	1.03 (1.02, 1.05	0	NA	e30
Residential NO₂ exposure	Yes	6	1.04 (1.03, 1.05)	9	0.05	e15	4	1.01 (0.99, 1.03)	0	NA	e20	4	1.02 (1.00, 1.04)	10	0.19	e31
Estimates ^{1,2,3}	No	4	1.02 (1.00, 1.04)	24			1	NA	NA			3	1.04 (1.01, 1.07)	0		

Table 3 Summary Hazard ratios (95% CI) for cardiovascular, CHD, cerebrovascular and COPD mortality without and with stratification by selected cohort and study characteristics. Notes: 1 Excluding studies identified as previous/smaller analyses of the same cohort and cohorts included in ESCAPE meta-analysis; 2 Excluding pre-existing disease cohorts; 3 Excluding age-restricted cohorts; 4 P-value for differences between HRs in subgroup analyses; 5 Corresponding figure giving study information, HRs (95% CI); 6 Prediction Interval

Study	Year	Cohort	Setting	N	Sex	Age				ES (95% CI)	% Weight
Individual											
Lipsett et al	2011	CTS	USA	12,336	F	>=30	-	<u> </u>		0.98 (0.95, 1.02)	12.95
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	-	↓ ●		1.00 (0.98, 1.02)	15.36
HEI	2000	Six Cities	USA	8,111	FM	25-74				1.08 (1.02, 1.14)	9.64
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		+		1.02 (1.01, 1.03)	17.31
Carey et al	2013	CPRD	England	830,429	FM	40-89		•		1.02 (1.00, 1.05)	14.91
Beelen et al	2014b	ESCAPE	Europe	367,251	FM	All	-	•		1.01 (0.99, 1.03)	15.73
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89				0.93 (0.90, 0.95)	14.11
Subtotal (I-squa	ared = 88	.6%, p = 0.000)					<	\triangleright		1.00 (0.98, 1.03)	100.00
None/Indirect											
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		+		1.03 (1.03, 1.04)	28.96
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9				1.05 (1.03, 1.08)	5.69
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		+		1.03 (1.02, 1.03)	27.89
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		•		1.03 (1.02, 1.03)	37.47
Subtotal (I-squa	ared = 66	.8%, p = 0.029)						♦		1.03 (1.02, 1.04)	100.00
NOTE: Weights	are from	random effects analysis									
							l .9	i 1. 1 1.	.1 1.	2	

А

Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	
UR Address										
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		•	1.03 (1.03, 1.04)	
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9			1.05 (1.03, 1.08)	
Furner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		+	1.02 (1.01, 1.03)	
3eelen et al	2014b	ESCAPE	Europe	367,251	FM	All		-	1.01 (0.99, 1.03)	
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		+	1.03 (1.02, 1.03)	
ischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		٠	1.03 (1.02, 1.03)	
Subtotal (I-squ	ared = 68	.1%, p = 0.008)							1.03 (1.02, 1.03)	
Area										
ipsett et al	2011	CTS	USA	12,336	F	>=30			0.98 (0.95, 1.02)	
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95		-	1.00 (0.98, 1.02)	
HEI	2000	Six Cities	USA	8,111	FM	25-74			1.08 (1.02, 1.14)	
Carey et al	2013	CPRD	England	830,429	FM	40-89		•	1.02 (1.00, 1.05)	
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	•	-	0.93 (0.90, 0.95)	
Subtotal (I-squ	ared = 89	.9%, p = 0.000)						\Leftrightarrow	1.00 (0.96, 1.04)	
	are from	random offects analysis								
NOIE. Weight	s are from	random enects analysis								
										_

							Mean			
Study	Year	Cohort	Setting	N	Sex	Age	NO2			ES (95% CI)
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	21.8		•	1.03 (1.03, 1.04)
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	21.8		+	1.02 (1.01, 1.03)
Beelen et al	2014b	ESCAPE	Europe	367,251	FM	All	5.2-59.8		•	1.01 (0.99, 1.03)
Carey et al	2013	CPRD	England	830,429	FM	40-89	22.5			1.02 (1.00, 1.05)
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9	26.7			1.05 (1.03, 1.08)
HEI	2000	Six Cities	USA	8,111	FM	25-74	11.5-41.2			1.08 (1.02, 1.14)
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	31		•	1.03 (1.02, 1.03)
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	40.66			0.93 (0.90, 0.95)
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	43.6		•	1.03 (1.02, 1.03)
Lipsett et al	2011	стя	USA	12,336	F	>=30	63.1	-	-	0.98 (0.95, 1.02)
Abbey et al	1999	AHSMOG	USA	5,652	FM	27-95	69.1		<u>.</u>	1.00 (0.98, 1.02)
NOTE: Weights ar	e from rando	m effects analysis								
								I .9	I I.1	1.2

С

Supplementary Material

Contents

Details of studies excluded from meta-analysis for other causes or mortality

Tables

eTable 1 Coding of categorise of cause of death eTable 2 Study and cohort characteristics

Figures

eFigure 1 All-cause mortality eFigure 2a All-cause mortality - fixed effects model eFigure 2b All-cause mortality - random effects model eFigure 3 All-cause mortality stratification by pre-existing disease on recruitment eFigure 4 All-cause mortality stratification by age range at cohort recruitment eFigure 5 Cardiovascular mortality eFigure 6a Cardiovascular mortality - fixed effects model eFigure 6b Cardiovascular mortality - random effects model eFigure 7 Cardiovascular mortality - stratification pre-existing disease on recruitment eFigure 8 Cardiovascular mortality - stratification by age range at cohort recruitment eFigure 9 Cardiovascular mortality - stratification by level of confounder control eFigure 10 Cardiovascular mortality - stratification by spatial resolution of NO₂ concentration estimates eFigure 11 CHD mortality eFigure 12a CHD mortality - fixed effects model eFigure 12b CHD mortality - random effects model eFigure 13 CHD mortality - stratification by age range at cohort recruitment eFigure 14 CHD mortality - stratification by level of confounder control eFigure 15 CHD mortality - stratification by spatial resolution of NO₂ concentration estimates eFigure 16 Cerebrovascular mortality eFigure 17a Cerebrovascular mortality - fixed effects model eFigure 17b Cerebrovascular mortality - random effects model eFigure 18 Cerebrovascular mortality - stratification by age range at cohort recruitment eFigure 19 Cerebrovascular mortality - stratification by level of confounder control eFigure 20 Cerebrovascular mortality - stratification by spatial resolution of NO₂ concentration eFigure 21 Respiratory mortality

eFigure 22a Respiratory mortality - fixed effects model eFigure 22b Respiratory mortality - random effects model eFigure 23 Respiratory mortality - stratification by pre-existing disease at cohort recruitment eFigure 24 Respiratory mortality - stratification by age range at cohort recruitment eFigure 25 Respiratory mortality - stratification by level of confounder control eFigure 26 Respiratory mortality - stratification by spatial resolution of NO₂ concentration eFigure 27 COPD mortality eFigure 28a COPD mortality - fixed effects model eFigure 28b COPD mortality - random effects model eFigure 29 COPD mortality - stratification by age range at cohort recruitment eFigure 30 COPD mortality - stratification by level of confounder control eFigure 31 COPD mortality - stratification by spatial resolution of NO₂ concentration eFigure 32 Pneumonia mortality eFigure 33 Lung cancer mortality eFigure 34a Lung cancer mortality - fixed effects model eFigure 34b Lung cancer mortality - random effects model eFigure 35 Lung cancer mortality - stratification by age range at cohort recruitment eFigure 36 Lung cancer mortality - stratification by level of confounder control eFigure 37 Lung cancer mortality - stratification by spatial resolution of NO₂ concentration

Details of studies excluded from meta-analysis for other causes or mortality (references refer to main manuscript)

CHD: Twelve studies were meta-analysed after exclusions of one study [53] included in ESCAPE [21] and 3 analysed in other publications [31, 43, 62].

Cerebrovascular: Seven studies were meta-analysed after exclusions of one study [53] included in ESCAPE [21]; one study reporting an abnormally high HR (>2.4) from the Shenyang Cohort [63] and 2 studies where the same cohorts were analysed in other publications [31, 62].

COPD: Only a single study [62] analysed in a subsequent publication was excluded.

eTable 1 Coding of categorise of cause of death

Mortality	Coded
All-causes	"All Causes" , "All Cause (after ACS)" , "All Causes (after stroke)" , "All
	causes" , "Natural Causes" , "Non Accidental"
Cardiovascular	"Cardiovascular", "Circulatory"
Cerebrovascular	"Cerebrovascular"
CHD	"CHD" <i>,</i> "IHD"
Respiratory	"Respiratory" , "Pulmonary" , "Non-malignant Respiratory"
COPD	"COPD", "COPD & allied conditions"
Pneumonia	"Pneumonia" , "Pneumonia & Influenza"
Lung cancer	"Lung Cancer", "Trachea, bronchus and lung cancers"

eTable 2: Cohort and study characteristics (ordered by cohort/date of publication); citation numbers correspond with main paper

Cohort Name and brief description	Country	Enrolme (baselin	ent e)	Publication and Date	Number of Subjects	Follow-up Dates / Length	Exposure Period	Exposure assessment	Covariate adjustment includes#:	Mortality Cause
		Date	Age	_						
				E	uropean Cohort	IS S	1	1		
ESCAPE 22 population based cohorts from 13 European Countries	Europe	mainly 1990s	all ages	[20] Beelen R et al 2014b	367,251	Average 13.9 years	1 year Oct 2008-May 2011 with back- extrapolation to baseline	LUR + back- extrapolation: Address-level	Age, sex, smoking, BMI, occupational and educational factors	All-cause
				[21] Beelen R et al 2014a	367,383	Average 13.9 years	1 year Oct 2008-May 2011 with back- extrapolation to baseline	LUR + back- extrapolation: Address-level	Age, sex, smoking, BMI, occupational and educational factors	CV, CHD, MI, Cerebrovascular
				[32] Dimakopoulou K et al 2014	307,553 (16 cohorts)	16.3 to 18.6 years	Annual average (baseline)	LUR: Address-level	Age, sex, smoking, BMI, occupational and educational factors	Respiratory
Diet Cancer and Health cohort (DCH) Population based sample with no cancer bistory living in areas	Denmark	1993- 1997	50-64	[53] Raaschou- Nielsen 0 et al 2012	52,061	to end 2009	1971 onwards: Annual mean exposure, time varying	DM: Address-level allowing for change of residence	Age, sex, smoking, BMI, employment status, length of school attendance	All-cause CV, CHD, Cerebrovascular
of Copenhagen and Aarhus.				[54] Raaschou- Nielsen 0 et al 2013	52,061	to end 2009	1971 onwards: Annual mean exposure, time varying	DM: Address-level allowing for change of residence	Age, sex, smoking, BMI, length of school attendance	Diabetes
				[18] Andersen ZI et al 2012	52,215	to June 27 th 2006	1971 onwards: Annual mean exposure, time varving	DM: Address- level allowing for change of residence	Age, sex, smoking, BMI, educational level.	Fatal stroke (and sub-types)

				[57] Sorensen M et	51,569	1 st July 1997 to 30 th Nov 2009	1987-2009: 10- years exposure, time varving	DM: Address- level allowing for change of	Age, sex, smoking, BMI, length of school attendance	Fatal stroke
				u12011		2009	time varying	residence	School attenuance	
Clinical Practice Research Datalink (CPRD) Patients in GP practices participating in CPRD	England	2003	40-89	[24] Carey IM et al 2013	830,429	2003-2007	2002	DM: 1 km grid square-level	Age, sex, smoking, BMI, area-level income	All-cause, CV, CHD, MI, HF, Cerebrovascular, Stroke, Respiratory, COPD, Pneumonia, Lung Cancer
South London Stroke Register (SLSR) Patients in the South London Stroke Register who experienced their first ever stroke between 1995 and 2005.	England	1995- 2005	Mean (SD) 70.4 (14.6)	[50] Maheswaren R et al 2010	3,320	to mid-2006	2002	Modelled: 20x20m grid level	Age, sex, smoking, social class but not BMI	All-cause
MINAP (Acute Coronary Syndrome survivors) Patients admitted to	England & Wales	2004- 2007	Mean (SD) 68 (13) >25	[58] Tonne C et al 2013	154,204	3.7 years	2004-2010: Annual average, time varying	DM: 1km x 1km level	Age, sex, smoking, area-level income but not BMI	All-cause
hospital in England and Wales with acute coronary syndrome and recorded in MINAP (Myocardial Ischaemia National Audit Project) who are still alive 28 days post admission.	Greater London	2003- 2007	>25	[64] Tonne C et al 2016	18,138	4.0 years	2003-2010	DM: 20m x 20m level	Age, area-level income deprivation, but not BMI. Smoking, and ethnicity in a sensitivity analysis after imputation of large number of missing values	All-cause

Pollution Atmosphérique et Affections Respiratoires Chroniques (PAARC) Adults from French family households resident in 24/18 areas of 7 Cities.	France	1974- 1976	25-59	[34] Filleul L et al 2005	14,284	1974-2000	1974-1976 (August excluded)	Monitoring data: Area-level (areas 0.5 to 2.3 km in diameter)	Age, sex, smoking, BMI, educational level	All-cause, Cardio- pulmonary, Lung Cancer
GAZEL Cohort EDF-GDF workers	France	1989- 2013	Mean (SD) 43.7 (3.5) 35-50	[22] Bentayeb et al, 2015	20,327	1989-2013	1989-2008	Chemistry Transport Model (resolution 2km) linked to ZIP code, allowing for change in residence	Age, sex, smoking, BMI, highest level of education, occupational level	All-cause, CV, Respiratory, Lung Cancer
German cohort Women sampled at random from cross- sectional studies	Germany	1985- 1994	50-59 (92% aged 53- 55)	[38] Gehring U et al 2006	4,752	to May 2003	5-year average prior to baseline	Monitoring data: Area-level	Smoking, educational level but not BMI (all female cohort of similar age)	All-cause, Cardio- pulmonary
conducted in North Rhine-Westphalia in the 1980s and 1990s.				[56] Schikowski T et al 2007	4,750	to May 2003	5-year average prior to baseline	Monitoring data: Area-level	Smoking, educational level but not BMI (all female cohort of similar age)	CV
				[40] Heinrich J et al 2013	4,752	to Oct 2008	1-year average (baseline)	Monitoring data: Nearest monitor to residence	Smoking, educational level but not BMI (all female cohort of similar age)	All-cause, Cardio- pulmonary Respiratory, Lung Cancer
CHD survivors cohort Population based cohort of CHD survivors (Rome)	Italy	1998- 2000	35-84	[55] Rosenlund M et al 2008	6,513	29 th day after event to end June 2005	1995/1996: Annual mean	LUR: Census block- level	Age, sex, area- based socioeconomic status but not smoking or BMI	All-cause

Rome longitudinal study Population based cohort of long-term (5+ years) residents of Rome.	Italy	2001	>=30	[25] Cesaroni G et al 2013 [26] Cesaroni G et al 2012	1,265,058 684,204 (subset age 45-80 in 2001)	Oct 2001-Dec 2010 2001-2006	Oct 1996-Dec 2010: Cumulative mean exposure, time varying 1995/1996: Annual mean	LUR: Address-level allowing for change of residence LUR: Address-level	Age, sex, education, occupation but not smoking or BMI Age, sex, education, occupation but not smoking or BMI	All-cause, CV, CHD, Cerebrovascular, Respiratory, Lung Cancer All-cause
Dutch Environmental Longitudinal Study DUELS Dutch inhabitants who had lived at the same address between 1/1/1999 and 1/1/2004	Nether- lands	2004	>=30	[35] Fisher PH et al 2015	7,218,363	2004-2010	2001	LUR: 100 x 100m level	Age, sex, standardised disposable household income but not smoking or BMI	All-cause, CV, Respiratory, Lung Cancer
Netherlands Cohort Study (NLCS-AIR) Subjects selected from 323 of the 714 municipalities of the	Nether- lands	1986	55-69	[19] Beelen et al, 2009	117,528	1987-1996	1987-1996	LUR, Monitoring, GIS: Address-level (baseline address)	Age, sex, smoking, neighbourhood indicators of socioeconomic status but not BMI	CV, CHD, HF, Cerebrovascular, Cardiac Dysrhythmia
Netherlands				[23] Brunekreef B et al 2009	117,528	1987-1996	1987-1996	LUR, Monitoring, GIS: Address-level (baseline address)	Age, sex, smoking, neighbourhood level and COROP area-level percentage of persons with high & low income but not BMI	All-cause, CV, Respiratory, Lung Cancer
				[41] Hoek et al 2002	Random sample: 4,492	Sept 1986- Oct 1994	1987-1990	LUR, Monitoring, GIS: Address- level (baseline address)	Age, sex, smoking, BMI, education, occupation	All-cause, Cardio- pulmonary
Oslo cohort Inhabitants of Oslo	Norway	1992	51-90	[52] Naess O et al 2007	143,842	1992-1998	1992-1995	DM: Neighbourhood level	Age, education, occupational class but not smoking or BMI	CV, COPD, Lung Cancer

									(sex-specific analyses)	
				North	American Coh	orts				
Adventist Health Study on the Health Effects of Smog (AHSMOG) Sub-sample of the Adventist Health Survey. All subjects,	USA	1977	27-95	[28] Chen LH et al 2005	3,239 [1,149 M; 2090 F]	1977-1998	1973-1998: Annual mean, time varying (4- year window)	Monitor data: Interpolation to ZIP code centroid (<50km from monitor), allowing for change of residence	Age, sex, past smoking, BMI, years of education.	CHD
Seventh Day Adventists, white, non- Hispanic and resident in California.				[17] Abbey D et al 1999	5,652 [~3621 F; ~2031 M]	1977-1992	1973-1992: Cumulative monthly mean exposure, time varying	Monitor data: Interpolation to ZIP code centroid (<50km from monitor), allowing for change of residence	Age, sex, past smoking, BMI, years of education (sex-specific analyses)	All-cause, Cardio- pulmonary, Respiratory, Lung Cancer
American Cancer Society Prevention II Study (ACS CSP-II)	USA	1982	>=30	[60] Turner et al, 2016	669,046	1982-2004	Annual average for 2006	LUR (~30 m): Address-level	Age, sex, smoking, BMI, occupational and educational factors	All-cause, CV, COPD, Diabetes, Lung Cancer
Friends, neighbours, acquaintances of American Cancer Study (ACS) volunteers				[43] Jerrett M et al 2013	73,711 California	1982-2000	1988-2002	LUR: Address-level	Age, sex, smoking, BMI, occupational and educational factors.	All-cause, CV, CHD, Stroke, Respiratory, Lung Cancer
				[46] Krewski et al 2009	406,917	1982-2000	1980	Monitoring Data: MSA level	Age, sex, smoking, BMI, occupational and educational factors.	All-cause, Cardio- pulmonary, CHD, Lung Cancer
				[51] McKean-Cowen et al, 2009	527,123	1982-2000	1982-1998	Monitoring Data: MSA level	Age, sex, smoking, educational level but not BMI	Brain cancer
				[42] Krewski et al, 2000	552,138 (295,223 with PM _{2.5})	1982-1989	1980	Monitoring data: City level	Age, sex, smoking, BMI, educational level	All-cause, Cardio- pulmonary, Lung Cancer
---	--------	---------------	-------------------------	----------------------------------	---	------------------------	--	---	--	---
California Teachers Study (CTS) Prospective cohort of female public school professionals living in California.	USA	1995	>=30	[49] Lipset MJ et al 2011	12,336	June 1997- Dec 2005	June 1996-Dec 2005: Cumulative mean exposure, time varying	Monitor data & IDW: 250x250m grid level , allowing for change of residence	Age, smoking, BMI, ecological variables for income, education, unemployment	All-cause, CV, CHD, Cerebrovascular, Respiratory, Lung Cancer
Six Cities Random sample from white subjects in six communities	USA	1974- 1977	25-74	[42] Krewski et al, 2000	8,111	1974-1989	1977-1985	Monitor data: City-level	Age, sex, smoking, BMI, education level	All-cause, Cardio- pulmonary, Lung Cancer
US trucking industry cohort Men employed in four trucking companies	USA	1985	15.3-84.9	[39] Hart JE et al 2011	53,814	1985-2000	1985-2000	LUR + spatial smoothing: Address-level	Age, years of work in each of 8 job groups but not smoking or BMI (all male cohort)	All-cause, CV, CHD, Respiratory, COPD, Lung Cancer
Washington University-EPRI Veterans cohort US male veterans with a diagnosis of	USA	1975- 1976	Mean (SD) 51 (12)	[47] Lipfert et al 2006a	~15,200 survivors (1997)	1997-2001	1997-2001	Monitor data: County-level	Age, smoking, BMI, zip code and /or country-level education and income (male only cohort)	All-cause
hypertension				[48] Lipfert et al 2006b	28,635 survivors (1997)	1997-2001	1999-2001	Monitor data: County-level	Age, smoking, BMI, zip-code level: income, education and poverty status (male only cohort)	All-cause
Canadian Census Health and Environment Cohort (Can CHEC) Population based cohort of residents	Canada	1991	25-89	[31] Crouse DL et al 2015a	735,590 [10 cities]	Jun 1991-Dec 2006	1984-2006: Annual mean exposure, time varying (7-year moving window)	LUR: Post-code level allowing for change in residence	Age, sex, education, employment status, occupational classification, household income but no direct adjustment for smoking or BMI	All-cause, CV, CHD, Cerebrovascular, Respiratory

				[30] Crouse DL et al 2015b	2,521,525	Jun 1991-Dec 2006	1984-2006: Annual mean exposure, time varying (7-year moving window)	LUR: Post-code level allowing for change in residence	Age, sex, education, employment status, occupational classification, household income but no direct adjustment for smoking or BMI	All-cause, CV, CHD, Cerebrovascular, Respiratory, COPD, Diabetes, Lung Cancer
Ontario tax cohort Retrospective cohort study. Random sample from federal family income tax database of subjects living in 3 cities in Ontario.	Canada	1982- 1986	35-85	[27] Chen H et al 2013	205,440	1982-2004	1982-2004: 3- year moving average, time varying	LUR: Post-code level allowing for change of residence	Age, sex, annual household income, but not smoking or BMI	CV, CHD, Cerebrovascular
Toronto respiratory cohort Subjects treated at a respiratory disease clinic in Toronto	Canada	1992- 1999	Median (IQR) 60 (49-69)	[44] Jerrett M et al 2009	2,360	1992-2002	Average (Autumn 2002 and Spring 2004)	LUR: Address-level	Age, sex, smoking, BMI, EA-level deprivation index	All-cause, CV, Respiratory
Vacouver cohort Long-term (5+ years) residents of Metropolitan Vancouver with no CHD bistory.	Canada	1999	45-85	[37] Gan WQ et al 2011	452,735	1999-2002	1994-1998	LUR (10m): Address-level allowing for change of residence	Age, sex, neighbourhood socioeconomic status but not smoking or BMI	CHD
				[36] Gan WQ et al 2013	467,994	1999-2002	1994-1998	LUR: Address- level allowing for change of residence	Age, sex, neighbourhood socioeconomic status but not smoking or BMI	COPD

				C	hinese Cohorts	3				
Shenyang cohort Population based retrospective cohort of family members living in 5 urban districts of Shenyang city.	China	2009	35-103	[63] Zhang P et al 2011	9,941	1998-2009	1998-2009: Annual mean exposure, time varying	Monitoring data: District-level	Age, sex, smoking, BMI, educational level, personal income	CV, Cerebrovascular
				[33] Dong G-H et al 2012	9,941	1998-2009	1998-2009: Annual mean exposure, time varying	Monitoring data: District-level	Age, sex, smoking, BMI, educational level, household income	Respiratory
Four northern Chinese cities Random sample of neighbourhoods within 1km of a monitor.	China	1998	23-89	[29] Chen et al, 2016	39,054	1998-2009	1998-2009 Annual average, time varying OR 1998 annual average	Monitor data: nearest monitor <1km.	Age, sex, BMI, household income, occupation	All-cause, Lung Cancer
				Ja	panese Cohort:	S				
Shizuoka elderly cohort Age-sex - stratification random sample of residents from 74 municipalities of Shizuoka	Japan	Dec 1999	65-84	[62] Yorifuji T et al 2010	13,444	Dec 1999- Mar 2006	Apr 2000-Mar 2006	LUR: Address-level	Age, sex, smoking, BMI, financial capability	All-cause, CV, CHD, Cerebrovascular, Cardio- pulmonary, Respiratory, COPD, Pneumonia, Lung Cancer

				[61] Yorifuji T et al 2013	13,412	Dec 1999-Jan 2009	Apr 1996-March 2009: Annual mean exposure, time varying	LUR: Address-level	Age, sex, smoking, BMI, financial capability	All-cause, CV, CHD, Cerebrovascular (and sub-types), Cardio- pulmonary, Respiratory, COPD, Pneumonia, Lung Cancer
3 Japanese Prefectures Subjects living in 6 areas in 3 prefectures	Japan	1983- 1985	>=40	[45] Katanoda K et al 2011	63,520	10 years (max to Oct 1995)	1974-1983	Monitor data: area-level	Age, sex, smoking, health insurance type / occupational exposure, but not BMI	Respiratory, COPD, Pneumonia, Lung Cancer
				Ta	aiwanese Cohoi	rt				
TCS Civil servants in Greater Taipei area	Taiwan	1989- 1992	Employed Mean (SD) 41.3 (10.5)	[59] Tseng et al, 2015	43,227	1992-2008	2000-2008	Monitor data: District-level	Age, sex, smoking, BMI, income, educational level	CV

¶ lung cancer and for female all natural causes not adjusted for BMI;

This is not meant to be a complete list of covariates but focusses only on a few "key" variables.

References

17. Abbey DE, Nishino N, McDonnell WF, Burchette RJ, Knutsen SF, Lawrence Beeson W, et al. Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med. 1999;159(2):373-82.

18. Andersen ZJ, Kristiansen LC, Andersen KK, Olsen TS, Hvidberg M, Jensen SS, et al. Stroke and Long-Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide A Cohort Study. Stroke. 2012;43(2):320-5.

19. Beelen R, Hoek G, Houthuijs D, Van Den Brandt PA, Goldbohm RA, Fischer P, et al. The joint association of air pollution and noise from road traffic with cardiovascular mortality in a cohort study. Occupational and Environmental Medicine. 2009;66(4):243-50.

20. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. The Lancet. 2014;383(9919):785-95.

21. Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K, et al. Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts. Epidemiology. 2014;25(3):368-78.

22. Bentayeb M, Wagner V, Stempfelet M, Zins M, Goldberg M, Pascal M, et al. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study. Environment International. 2015;85:5-14.

23. Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, et al. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Research report (Health Effects Institute). 2009(139):5-71; discussion 3-7189.

24. Carey IM, Atkinson RW, Kent AJ, Van Staa T, Cook DG, Anderson HR. Mortality associations with long-term exposure to outdoor air pollution in a national English cohort. American Journal of Respiratory and Critical Care Medicine. 2013;187(11):1226-33.

25. Cesaroni G, Badaloni C, Gariazzo C, Stafoggia M, Sozzi R, Davoli M, et al. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environmental Health Perspectives. 2013;121(3):324-31.

26. Cesaroni G, Porta D, Badaloni C, Stafoggia M, Eeftens M, Meliefste K, et al. Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. Environmental Health: A Global Access Science Source. 2012;11:48.

27. Chen H, Goldberg MS, Burnett RT, Jerrett M, Wheeler AJ, Villeneuve PJ. Long-term exposure to traffic-related air pollution and cardiovascular mortality. Epidemiology. 2013;24(1):35-43.

28. Chen LH, Knutsen SF, Shavlik D, Beeson WL, Petersen F, Ghamsary M, et al. The association between fatal coronary heart disease and ambient particulate air pollution: Are females at greater risk? Environmental Health Perspectives. 2005;113(12):1723-9.

29. Chen X, Zhang LW, Huang JJ, Song FJ, Zhang LP, Qian ZM, et al. Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China. Science of the Total Environment. 2016;571:855-61.

30. Crouse DL, Peters PA, Hystad P, Brook JR, van Donkelaar A, Martin RV, et al. Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). Environmental Health Perspectives. 2015;123(11):1180-6.

31. Crouse DL, Peters PA, Villeneuve PJ, Proux MO, Shin HH, Goldberg MS, et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian Census Health and Environment Cohort (CanCHEC). J Expo Sci Environ Epidemiol. 2015;25(5):482-9.

32. Dimakopoulou K, Samoli E, Beelen R, Stafoggia M, Andersen ZJ, Hoffmann B, et al. Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project. American Journal of Respiratory and Critical Care Medicine. 2014;189(6):684-96.

33. Dong GH, Zhang P, Sun B, Zhang L, Chen X, Ma N, et al. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: A 12-year population-based retrospective cohort study. Respiration. 2012;84(5):360-8.

34. Filleul L, Rondeau V, Vandentorren S, Le Moual N, Cantagrel A, Annesi-Maesano I, et al. Twenty five year mortality and air pollution: results from the French PAARC survey. Occupational and Environmental Medicine. 2005;62(7):453-60.

35. Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, et al. Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS). Environ Health Perspect. 2015;123(7):697-704.

36. Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. American Journal of Respiratory and Critical Care Medicine. 2013;187(7):721-7.

37. Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environmental Health Perspectives. 2011;119(4):501-7.

38. Gehring U, Heinrich J, Kramer U, Grote V, Hochadel M, Sugiri D, et al. Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology. 2006;17(5):545-51.

 Hart JE, Garshick E, Dockery DW, Smith TJ, Ryan L, Laden F. Long-Term Ambient Multipollutant Exposures and Mortality. American Journal of Respiratory and Critical Care Medicine. 2011;183(1):73-8.

40. Heinrich J, Thiering E, Rzehak P, Kramer U, Hochadel M, Rauchfuss KM, et al. Long-term exposure to NO2 and PM10 and all-cause and cause-specific mortality in a prospective cohort of women. Occup Environ Med. 2013;70(3):179-86.

41. Hoek G, Brunekreef B, Goldbohm S, Fischer P, Van Den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet. 2002;360(9341):1203-9.

42. Institute HE. Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality: A Special Report of the Institute's Particle Epidemiology Reanalysis Projec. 2000.

43. Jerrett M, Burnett RT, Beckerman BS, Turner MC, Krewski D, Thurston G, et al. Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med. 2013;188(5):593-9.

44. Jerrett M, Finkelstein MM, Brook JR, Arain MA, Kanaroglou P, Stieb DM, et al. A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada. Environmental Health Perspectives. 2009;117(5):772-7.

45. Katanoda K, Sobue T, Satoh H, Tajima K, Suzuki T, Nakatsuka H, et al. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. Journal of Epidemiology. 2011;21(2):132-43.

46. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, et al. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Research report (Health Effects Institute). 2009(140):5-114; discussion 5-36.

47. Lipfert FW, Baty JD, Miller JP, Wyzga RE. PM2.5 constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. Inhalation Toxicology. 2006;18(9):645-57.

48. Lipfert FW, Wyzga RE, Baty JD, Miller JP. Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of US veterans. Atmospheric Environment. 2006;40(1):154-69.

49. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, et al. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. American Journal of Respiratory and Critical Care Medicine. 2011;184(7):828-35.

50. Maheswaran R, Pearson T, Smeeton NC, Beevers SD, Campbell MJ, Wolfe CD. Impact of outdoor air pollution on survival after stroke: Population-based cohort study. Stroke. 2010;41(5):869-77.

51. McKean-Cowdin R, Calle EE, Peters JM, Henley J, Hannan L, Thurston GD, et al. Ambient air pollution and brain cancer mortality. Cancer Causes and Control. 2009;20(9):1645-51.

52. Naess O, Nafstad P, Aamodt G, Claussen B, Rosland P. Relation between concentration of air pollution and cause-specific mortality: Four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. American Journal of Epidemiology. 2007;165(4):435-43.

53. Raaschou-Nielsen O, Andersen ZJ, Jensen SS, Ketzel M, Sorensen M, Hansen J, et al. Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study. Environmental Health: A Global Access Science Source. 2012;11:60.

54. Raaschou-Nielsen O, Sorensen M, Ketzel M, Hertel O, Loft S, Tjonneland A, et al. Long-term exposure to traffic-related air pollution and diabetes-associated mortality: a cohort study. Diabetologia. 2013;56(1):36-46.

55. Rosenlund M, Picciotto S, Forastiere F, Stafoggia M, Perucci CA. Traffic-related air pollution in relation to incidence and prognosis of coronary heart disease. Epidemiology. 2008;19(1):121-8.

56. Schikowski T, Sugiri D, Ranft U, Gehring U, Heinrich J, Wichmann HE, et al. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality? Respiratory research. 2007;8:20.

57. Sorensen M, Luhdorf P, Ketzel M, Andersen ZJ, Tjonneland A, Overvad K, et al. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? Environmental Research. 2014;133:49-55.

58. Tonne C, Wilkinson P. Long-term exposure to air pollution is associated with survival following acute coronary syndrome. European Heart Journal. 2013;34(17):1306-11.

59. Tseng E, Ho WC, Lin MH, Cheng TJ, Chen PC, Lin HH. Chronic exposure to particulate matter and risk of cardiovascular mortality: cohort study from Taiwan. BMC Public Health. 2015;15:936.

60. Turner MC, Jerrett M, Pope CA, Krewski D, Gapstur SM, Diver WR, et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. American Journal of Respiratory and Critical Care Medicine. 2016;193(10):1134-42.

61. Yorifuji T, Kashima S, Tsuda T, Ishikawa-Takata K, Ohta T, Tsuruta K, et al. Long-term exposure to traffic-related air pollution and the risk of death from hemorrhagic stroke and lung cancer in Shizuoka, Japan. Science of the Total Environment. 2013;443:397-402.

62. Yorifuji T, Kashima S, Tsuda T, Takao S, Suzuki E, Doi H, et al. Long-term exposure to trafficrelated air pollution and mortality in Shizuoka, Japan. Occupational and Environmental Medicine. 2010;67(2):111-7.

63. Zhang PF, Dong GH, Sun BJ, Zhang LW, Chen X, Ma NN, et al. Long-Term Exposure to Ambient Air Pollution and Mortality Due to Cardiovascular Disease and Cerebrovascular Disease in Shenyang, China. Plos One. 2011;6(6).

64. Tonne C, Halonen JI, Beevers SD, Dajnak D, Gulliver J, Kelly FJ, et al. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. Int J Hyg Environ Health. 2016;219(1):72-8.

eFigure 1 All-cause mortality

Study	Year	Cohort	Setting	N	Sex	Age	Adjustment	ES (95% CI)
Crouse et al *	2015a	CanCHEC	Canada	735.590	FM	25-89	Indirect smoking and BMI	1.05 (1.03. 1
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	Indirect smoking and BMI	1.03 (1.03, 1.
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	FM	60 (49 69)	· · · · · · · · · · · · · · · · · · ·	1.23 (1.00, 1
HEI*	2000	ACS CPS-II	USA	552,138	FM	>=30	•	0.99 (0.99, 1.
Krewski et al *	2009	ACS CPS-II	USA	406,917	FM	>=30	•	1.00 (0.99, 1.
Jerrett et al *	2013	ACS CPS-II	USA	73,711	FM	>=30	+	1.04 (1.01, 1.
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	•	1.02 (1.01, 1.
Abbey et al	1999	AHSMOG	USA	5,652	FM	27-95	+	1.00 (0.98, 1.
Lipsett et al	2011	CTS	USA	12,336	F	>=30	-	0.98 (0.95, 1.
HEI	2000	Six Cities	USA	8,111	FM	25-74	 →-	1.08 (1.02, 1.
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9	No BMI, Smoking	1.05 (1.03, 1.
_ipfert et al *	2006a	Washington University-EPRI Veterans cond	ortUSA	~15,200	м	51 (12)		1.02 (0.98, 1.
Lipfert et al	2006b	Washington University-EPRI Veterans coho	ntJSA	28,635	м	51 (12)	←	1.03 (0.99, 1.
Raaschou-Nielsen et al	* 2012	DCH	Denmark	52,061	FM	50-64	 →-	1.08 (1.02, 1.
Carey et al	2013	CPRD	England	830,429	FM	40-89	*	1.02 (1.00, 1.
Maheswaren et al	2010	SLSR	England	3,320	FM	70.4 (14.6)	No BMI	▶ 1.41 (1.14, 1.
Fonne et al	2013	MINAP (ACS survivors)	England & Wales	154,204	FM	>25	No BMI	1.01 (0.98, 1.
Beelen et al	2014b	ESCAPE	Europe	367,251	FM	All	*	1.01 (0.99, 1.
Bentayeb et al	2015	Gazel	France	20,327	FM	35-50	_ •-	1.07 (1.00, 1.
Filleul et al	2005	PAARC	France	14,284	FM	25-59	_ ←	1.14 (1.03, 1.
Gehring et al *	2006	German cohort	Germany	4,752	F	50-59	No BMI, Age	1.12 (1.01, 1.
Heinrich et al *	2013	German cohort	Germany	4,752	F	50-59	No BMI, Age(?)	1.11 (1.04, 1.
Rosenlund et al	2008	CHD survivors cohort	Italy	6,513	FM	35-84	No BMI, Smoking	0.95 (0.89, 1.
Cesaroni et al *	2012	Rome longitudinal study	Italy	684,204	FM	45-80	No BMI, Smoking	1.06 (1.04, 1.
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	No BMI, Smoking	1.03 (1.02, 1.
Fonne et al *	2016	MINAP (ACS survivors)	London	18,138	FM	>25	No BMI	1.05 (0.98, 1.
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	No BMI, Smoking	1.03 (1.02, 1.
Hoek et al *	2002	NLCS-AIR	Netherlands	2,788	FM	55-69		1.08 (0.94, 1.
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	No BMI	1.03 (1.00, 1.
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	★	0.93 (0.90, 0.
Yorifuji et al *	2010	Shizuoka elderly cohort	Japan	13,444	FM	65-84	_ \	1.02 (0.96, 1.
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84		1.12 (1.07, 1.

 \ast indicates exclusion from meta-analysis. Refer to methods/results sections of manuscript.

Study	Year	Cohort	Setting	N		ES (95% CI)	% Weight
Crouse et al	2015b	CanCHEC	Canada	2,521,525	•	1.03 (1.03, 1.04)	15.10
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	₩	1.23 (1.00, 1.51)	0.01
Hart et al	2011	US trucking industry cohort	USA	53,814	*	1.05 (1.03, 1.08)	1.10
Lipsett et al	2011	CTS	USA	12,336		0.98 (0.95, 1.02)	0.50
Lipfert et al	2006b	Washington University-EPRI Veterans cohort	USA	28,635	+ -	1.03 (0.99, 1.07)	0.47
Abbey et al	1999	AHSMOG	USA	5,652	*	1.00 (0.98, 1.02)	1.23
HEI	2000	Six Cities	USA	8,111	⊢ ∙	1.08 (1.02, 1.14)	0.22
Turner et al	2016	ACS CPS-II	USA	669,046	•	1.02 (1.01, 1.03)	11.08
Carey et al	2013	CPRD	England	830,429	*	1.02 (1.00, 1.05)	1.00
Maheswaren et al	2010	SLSR	England	3,320	$ \longrightarrow$	1.41 (1.14, 1.75)	0.01
Tonne et al	2013	MINAP (ACS survivors)	England & Wales	154,204	+	1.01 (0.98, 1.04)	0.67
Beelen et al	2014b	ESCAPE	Europe	367,251	÷.	1.01 (0.99, 1.03)	1.69
Filleul et al	2005	PAARC	France	14,284		1.14 (1.03, 1.26)	0.06
Bentayeb et al	2015	Gazel	France	20,327	├ ╋──	1.07 (1.00, 1.15)	0.11
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	•	1.03 (1.02, 1.03)	13.49
Rosenlund et al	2008	CHD survivors cohort	Italy	6,513		0.95 (0.89, 1.02)	0.13
Fischer et al	2015	DUELS	Netherlands	7,218,363	•	1.03 (1.02, 1.03)	51.16
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	†	1.03 (1.00, 1.05)	0.96
Chen et al	2016	Four northern Chinese cities	China	39,054	+	0.93 (0.90, 0.95)	0.73
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412		1.12 (1.07, 1.18)	0.27
Overall (I-squared =	83.9%, p =	0.000)				1.03 (1.02, 1.03)	100.00
					.9 1 1.1 1.2		

eFigure 2b All-cause mortality - random effects model

Study	Year	Cohort	Setting	Ν		ES (95% CI)	Weig
Crouse et al	2015b	CanCHEC	Canada	2,521,525	•	1.03 (1.03, 1.04)	9.81
errett et al	2009	Toronto respiratory cohort	Canada	2,360		1.23 (1.00, 1.51)	0.21
lart et al	2011	US trucking industry cohort	USA	53,814	+	1.05 (1.03, 1.08)	6.31
ipsett et al	2011	CTS	USA	12,336	+	0.98 (0.95, 1.02)	4.31
ipfert et al	2006b	Washington University-EPRI Veterans cohort	USA	28,635	-+-	1.03 (0.99, 1.07)	4.17
Abbey et al	1999	AHSMOG	USA	5,652	+	1.00 (0.98, 1.02)	6.58
IEI	2000	Six Cities	USA	8,111		1.08 (1.02, 1.14)	2.45
urner et al	2016	ACS CPS-II	USA	669,046	•	1.02 (1.01, 1.03)	9.65
arey et al	2013	CPRD	England	830,429	+	1.02 (1.00, 1.05)	6.06
faheswaren et al	2010	SLSR	England	3,320		1.41 (1.14, 1.75)	0.19
onne et al	2013	MINAP (ACS survivors)	England & Wales	154,204	+	1.01 (0.98, 1.04)	5.07
eelen et al	2014b	ESCAPE	Europe	367,251	+	1.01 (0.99, 1.03)	7.28
illeul et al	2005	PAARC	France	14,284	· · · · · ·	1.14 (1.03, 1.26)	0.86
entayeb et al	2015	Gazel	France	20,327	<u>li</u> e-	1.07 (1.00, 1.15)	1.45
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	•	1.03 (1.02, 1.03)	9.76
Rosenlund et al	2008	CHD survivors cohort	Italy	6,513		0.95 (0.89, 1.02)	1.60
ischer et al	2015	DUELS	Netherlands	7,218,363	•	1.03 (1.02, 1.03)	10.12
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	+	1.03 (1.00, 1.05)	5.97
Chen et al	2016	Four northern Chinese cities	China	39,054	→ []	0.93 (0.90, 0.95)	5.26
/orifuji et al	2013	Shizuoka elderly cohort	Japan	13,412		1.12 (1.07, 1.18)	2.90
Overall (I-squared = 8	3.9%, p =	0.000)				1.02 (1.01, 1.03)	100.
with estimated predicti	ve interva	n offerts analysis				. (0.99, 1.06)	

eFigure 3 All-cause mortality - stratification by pre-existing disease on recruitment

										%
Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	Weight
General										
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	•		1.03 (1.03, 1.04)	11.35
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9	+		1.05 (1.03, 1.08)	7.04
Lipsett et al	2011	CTS	USA	12,336	F	>=30	-		0.98 (0.95, 1.02)	4.71
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	+		1.00 (0.98, 1.02)	7.36
HEI	2000	Six Cities	USA	8,111	FM	25-74		-	1.08 (1.02, 1.14)	2.63
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	•		1.02 (1.01, 1.03)	11.16
Carey et al	2013	CPRD	England	830,429	FM	40-89	+		1.02 (1.00, 1.05)	6.75
Beelen et al	2014b	ESCAPE	Europe	367,251	FM	All	+		1.01 (0.99, 1.03)	7.93
Filleul et al	2005	PAARC	France	14,284	FM	25-59	- T-	•—	1.14 (1.03, 1.26)	0.91
Bentayeb et al	2015	Gazel	France	20,327	FM	35-50	.	-	1.07 (1.00, 1.15)	1.54
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	•		1.03 (1.02, 1.03)	11.29
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	•		1.03 (1.02, 1.03)	11.75
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	+		1.03 (1.00, 1.05)	6.64
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	+		0.93 (0.90, 0.95)	5.80
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84		-	1.12 (1.07, 1.18)	3.13
Subtotal (I-squa	red = 86	.1%, p = 0.000)					0		1.02 (1.01, 1.03)	100.00
							l l			
Preexisting										
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	FM	60 (49 69)		•	1.23 (1.00, 1.51)	6.73
Lipfert et al	2006b	Washington University-EPRI Veterans coho	rtUSA	28,635	М	51 (12)	-		1.03 (0.99, 1.07)	31.07
Maheswaren et a	al 2010	SLSR	England	3,320	FM	70.4 (14.6)		\longrightarrow	1.41 (1.14, 1.75)	6.23
Tonne et al	2013	MINAP (ACS survivors)	England & Wales	154,204	FM	>25	-		1.01 (0.98, 1.04)	32.14
Rosenlund et al	2008	CHD survivors cohort	Italy	6,513	FM	35-84			0.95 (0.89, 1.02)	23.84
Subtotal (I-squa	red = 76	.3%, p = 0.002)					\diamond		1.04 (0.98, 1.10)	100.00
NOTE: Woighto	oro from	random offacta analysia								
NOTE: weights	ale IIOM	ranuom enects analysis								
							.9 1 1.	1.2		

eFigure 4 All-cause mortality - stratification by age range at cohort recruitment

Study	Year	Cohort	Setting	N	Sex	Age	ES (95% CI)	% Weight
Adult								
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	1.03 (1.03, 1.04)	13.39
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9	1.05 (1.03, 1.08)	7.77
Lipsett et al	2011	CTS	USA	12,336	F	>=30	0.98 (0.95, 1.02)	5.03
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	1.00 (0.98, 1.02)	8.16
HEI	2000	Six Cities	USA	8,111	FM	25-74	1.08 (1.02, 1.14)	2.73
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	1.02 (1.01, 1.03)	13.11
Carey et al	2013	CPRD	England	830,429	FM	40-89	1.02 (1.00, 1.05)	7.42
Beelen et al	2014b	ESCAPE	Europe	367,251	FM	All	1.01 (0.99, 1.03)	8.87
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	1.03 (1.02, 1.03)	13.30
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	1.03 (1.02, 1.03)	13.94
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	0.93 (0.90, 0.95)	6.29
Subtotal (I-squa	red = 87	.6%, p = 0.000)				\diamond	1.02 (1.01, 1.03)	100.00
Restricted								
Filleul et al	2005	PAARC	France	14,284	FM	25-59	1.14 (1.03, 1.26)	17.45
Bentayeb et al	2015	Gazel	France	20,327	FM	35-50	1.07 (1.00, 1.15)	22.27
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	1.03 (1.00, 1.05)	32.27
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84	1.12 (1.07, 1.18)	28.01
Subtotal (I-squa	red = 78	.9%, p = 0.003)				\langle	1.08 (1.02, 1.15)	100.00
NOTE: Weights a	are from	random effects analysis						
							1	

eFigure 5 Cardiovascular mortality

							Confounder			
Study	Year	Cohort	Setting	N	Sex	Age	Adjustment			ES (95% CI)
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85	Indirect Smoking, No BMI			1.08 (1.03, 1.12)
Crouse et al *	2015a	CanCHEC	Canada	735,590	FM	25-89	Indirect smoking and BMI	•	1	1.04 (1.02, 1.07)
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	Indirect smoking and BMI	•		1.03 (1.02, 1.04)
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	FM	60 (49 69)		1.5		1.64 (1.13, 2.37)
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9	No BMI, Smoking	٠		1.04 (1.00, 1.09)
Jerrett et al *	2013	ACS CPS-II	USA	73,711	FM	>=30		٠		1.06 (1.01, 1.11)
Lipsett et al	2011	CTS	USA	12,336	F	>=30		+		0.99 (0.94, 1.05)
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		•		1.04 (1.03, 1.05)
Zhang et al *	2011	Shenyang cohort	China	9,941	FM	35-103				2.46 (2.31, 2.62)
Raaschou-Nielsen et al *	2012	DCH	Denmark	52,061	FM	50-64			-	1.16 (1.03, 1.31)
Carey et al	2013	CPRD	England	830,429	FM	40-89		٠		1.00 (0.97, 1.03)
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All				1.01 (0.97, 1.06)
Bentayeb et al	2015	Gazel	France	20,327	FM	35-50		-	—	1.00 (0.76, 1.30)
Schikowski et al *	2007	German cohort	Germany	4,750	F	50-59	No BMI, Age			1.40 (1.14, 1.72)
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	No BMI, Smoking	•		1.03 (1.02, 1.04)
Beelen et al *	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	No BMI	+		1.03 (0.98, 1.08)
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	No BMI	+		1.02 (0.98, 1.07)
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	No BMI, Smoking	•		1.00 (0.99, 1.01)
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90	No BMI, Smoking	•		1.02 (1.00, 1.05)
Tseng et al	2015	TCS	Taiwan	43,227	FM	41.3 (10.5)		•	-	0.95 (0.75, 1.21)
Yorifuji et al *	2010	Shizuoka elderly cohort	Japan	13,444	FM	65-84			_	1.15 (1.03, 1.28)
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84		.	•	1.24 (1.15, 1.33)
									1	
								9 1 1.1	.2	

 \ast indicates exclusion from meta-analysis. Refer to methods/results section of manuscript.

eFigure 6a Cardiovascular mortality – fixed effects model

y Year Chort Setting N ES (95% C) net al 2013 Ontario tax cohort Canada 205,440 1.08 (1.03, 1.12) ase et al 2016 Candhe 2.521,525 1.03 (1.02, 1.04) et al 2010 Tornor respiratory cohort Canada 2,521,525 1.64 (1.13, 2.37) et al 2011 US trucking industry cohort USA 5,814 1.04 (1.00, 1.09) et al 2014 CTS USA 5,814 0.99 (0.94, 1.05) et al 2014 CTS USA 69,046 1.04 (1.03, 1.02) et al 2015 CRPD Engiand 830,429 1.00 (0.97, 1.03) yet al 2014 ESCAPE Erope 30,72 1.00 (0.97, 1.03) apob et al 2015 Gazel France 2.037 1.00 (0.97, 1.03) urret al 2013 Rome longitudinal study Italy 2.65,658 1.03 (1.02, 1.04) urret al 2015 UELS Netherlands 1.75,28 1.02 (0.98, 1.07) 1.02 (0.98, 1.07) 1.02 (0.98, 1.07) st								
Year Cohort Setting N ES (95% C) et al 2013 Ontario tax cohort Canada 2,521,525 1,03 (1.02, 1.04) et al 2014 Vario respiratory cohort Canada 2,521,525 1,64 (1.13, 2.37) t at al 2014 US trucking industry cohort USA 2,360 1,64 (1.03, 1.02) t at al 2011 US trucking industry cohort USA 53,814 1,04 (1.00, 1.09) t at al 2014 CS CPS-II USA 12,336 0,99 (0.94, 1.05) r et al 2015 CSCPS-II USA 669,046 1,04 (1.03, 1.05) r et al 2013 CPRD England 830,429 1,00 (0.97, 1.08) r et al 2014 ESCAPE Europe 367,383 1,00 (0.97, 1.09) oni et al 2015 Guel Santom France 2,18,363 1,00 (0.97, 1.09) ar et al 2015 UELS Netherlands 1,7528 1,02 (1.09, 1.07) s et al 2016 Norwat 143,842 1,02 (1.00, 1.05) 1,02 (1.00, 1.05) g et al 2								
al 2013 Ontario tax cohort Canada 205,440 1,08 (1,03,1,12) et al 2015b CanCHEC Canada 2,521,525 1,03 (1,02, 1,04) t al 2009 Toronto respiratory cohort Canada 2,360 1,64 (1,13, 2,37) al 2011 US tucking industry cohort USA 5,3814 1,04 (1,00, 1,09) t al 2016 ACS CPS-II USA 12,336 0,99 (0,94, 1,05) t al 2013 CPRD England 830,429 1,00 (0,97, 1,03) t al 2014 ESCAPE Europe 367,383 1,00 (0,97, 1,06) t al al 2015 Gazel France 2,0327 1,00 (0,97, 1,06) t al al 2015 DUELS Netherlands 17,528 1,00 (0,99, 1,01) et al 2015 DUELS Netherlands 117,528 1,02 (1,00, 1,05) t al 2015 TCS Taiwan 43,227 0,95 (0,75, 1,21) t al 2013 Shizuka elderly cohort Japan 13,412 1,24 (1,15, 1,33) 1,01 (0,21, 1,03		Year	Cohort	Setting	Ν			ES (95% CI)
et al 2013 Ontario tax cohort Canada 205,40 I.08 (1.03, 1.12) e et al 2015b CanCHEC Canada 2,521,525 1.03 (1.02, 1.04) et al 2010 Toronto respiratory cohort Canada 2,360 1.64 (1.13, 2.37) t al 2011 US trucking industry cohort USA 53,814 1.04 (1.00, 1.09) t et al 2016 ACS CPS-II USA 669,046 1.04 (1.03, 1.05) et al 2014 CSC PS-II USA 669,046 1.04 (1.03, 1.05) et al 2014 SCAPE Europe 367,383 1.01 (0.97, 1.06) r et al 2015 Gazel France 20,327 1.00 (0.76, 1.30) oni et al 2015 DUELS Netherlands 1.7528 1.00 (0.99, 1.01) r et al 2015 DUELS Netherlands 1.7528 1.02 (1.00, 1.05) et al 2015 Gls cohort Norway 143,842 0.95 (0.75, 1.21) et al 2015 TS <							1	
e et al 2015 Can CHEC Canada 2,521,525 1,03 (1,02, 1,04) t et al 2009 Toronto respiratory cohort Canada 2,360 1,64 (1,13, 2,37) t al 2011 US trucking industry cohort USA 53,814 1,04 (1,00, 1,09) t et al 2014 CTS USA 12,336 0,99 (0,94, 1,05) r et al 2015 ACS CPS-II USA 669,046 1,04 (1,03, 1,05) r et al 2014 CRPD England 830,429 1,00 (0,97, 1,03) n et al 2015 Gazel Engpe 367,383 1,01 (0,97, 1,06) opie et al 2015 DUELS Netherlands 1,265,058 1,00 (0,76, 1,30) r et al 2015 DUELS Netherlands 1,7528 1,02 (0,98, 1,07) s et al 2007 Kols cohort Norway 143,842 0,95 (0,75, 1,21) s et al 2015 TCS Taiwan 3,227 0,95 (0,75, 1,21) s et al 2013 Kizucka elderly cohort Japan 1,412 1,24 (1,15, 1,33) <td< td=""><td>et al</td><td>2013</td><td>Ontario tax cohort</td><td>Canada</td><td>205,440</td><td></td><td>₩</td><td>1.08 (1.03, 1.12)</td></td<>	et al	2013	Ontario tax cohort	Canada	205,440		₩	1.08 (1.03, 1.12)
tetal 2009 Toronto respiratory cohort Canada 2,360 1,64 (1,13, 2,.37) t al 2011 US trucking industry cohort USA 53,814 1,04 (1,00, 1,09) t et al 2014 CTS USA 12,336 0,99 (0,94, 1,05) r et al 2015 ACS CPS-II USA 669,046 1,04 (1,03, 1,05) r et al 2014 ECS CPS-II USA 669,046 1,00 (0,97, 1,03) n et al 2014 ECS CPS-II England 830,429 1,00 (0,97, 1,03) n et al 2015 Gazel Europe 367,383 1,01 (0,97, 1,06) yeb et al 2015 Gazel France 20,327 1,00 (0,76, 1,30) ori et al 2015 DUELS Netherlands 1,726,363 1,00 (0,98, 1,07) set al 2007 Kle cohort Norway 143,842 1,02 (1,00, 1,05) set al 2015 TCS Taiwan 43,227 0,95 (0,75, 1,21) set al 2013 Kle alederly cohort Japan 13,412 1,24 (1,15, 1,33) il (l -square = 8.4%, p =	e et al	2015b	CanCHEC	Canada	2,521,525		•	1.03 (1.02, 1.04)
et al2011US trucking industry cohortUSA53,8141.04 (1.00, 1.09)st et al2010CTSUSA12,3360.99 (0.94, 1.06)er et al2016ACS CPS-IIUSA669,0461.04 (1.03, 1.05)y et al2013CPRDEngland830,4291.00 (0.97, 1.03)an et al2014aESCAPEEurope367,3831.01 (0.97, 1.06)ayeb et al2015GazelFrance20,3271.00 (0.76, 1.30)aroni et al2015DUELSNetherlands1.255,0581.00 (0.99, 1.01)ekreef et al2009NLCS-AIRNetherlands117,5281.02 (1.00, 1.05)ag et al2015TCSTaiwan43,2270.95 (0.75, 1.21)uj et al2013Shizuka elderly cohortJapan1.34120.95 (0.75, 1.21)all (I-squared = 83.4%, p =)1.34121.03 (1.02, 1.03)	ett et al	2009	Toronto respiratory cohort	Canada	2,360			• 1.64 (1.13, 2.37)
att et al 2011 CTS USA 12,336 0.99 (0.94, 1.05) er et al 2016 ACS CPS-II USA 669,046 1.04 (1.03, 1.05) y et al 2013 CPRD England 830,429 1.00 (0.97, 1.03) en et al 2014 ESCAPE Europe 367,383 1.01 (0.97, 1.06) ayeb et al 2015 Gazel France 20,327 1.00 (0.76, 1.30) uroni et al 2013 Rome longitudinal study Italy 1.265,058 1.03 (1.02, 1.04) wer et al 2015 UELS Netherlands 17,528 1.00 (0.96, 1.27) es et al 2007 Oslo cohort Norway 143,842 1.02 (1.00, 1.05) g et al 2015 TCS Taiwan 43,227 0.95 (0.75, 1.21) uji et al 2013 Shizuoka elderly cohort Japan 1.3,412 1.03 (1.02, 1.03) all (-squared = 83.4%, p = JUND Japan 1.3,412 Japan 1.03 (1.02, 1.03)	et al	2011	US trucking industry cohort	USA	53,814		.	1.04 (1.00, 1.09)
er et al 2016 ACS CPS-II USA 669,046 1.04 (1.03, 1.05) y et al 2013 CPRD England 830,429 1.00 (0.97, 1.03) an et al 2014 ESCAPE Europe 367,383 1.01 (0.97, 1.06) ayeb et al 2015 Gazel France 20,327 1.00 (0.76, 1.30) aroni et al 2015 DUELS Netherlands 7,218,363 1.03 (1.02, 1.04) her et al 2009 NLCS-AIR Netherlands 17,528 1.02 (0.98, 1.07) ss et al 2007 Oslo cohort Norway 143,842 1.02 (1.00, 1.05) uji et al 2013 Shizuka elderly cohort Japan 1.3,412 1.24 (1.15, 1.33) all (I-squared = 83.4%, p =) 1.3,412 1.03 (1.02, 1.03)	ett et al	2011	CTS	USA	12,336			0.99 (0.94, 1.05)
y et al 2013 CPRD England 830,429 1.00 (0.97, 1.03) en et al 2014a ESCAPE Europe 367,383 1.01 (0.97, 1.06) ayeb et al 2015 Gazel France 20,327 1.00 (0.76, 1.30) aroni et al 2015 DUELS Netherlands 7,218,363 1.00 (0.99, 1.01) ekreef et al 2009 NLCS-AIR Netherlands 17,528 1.02 (0.98, 1.07) ag et al 2015 TCS Taiwan 43,227 0.95 (0.75, 1.21) uji et al 2013 Shizuoka elderly cohort Japan 1.3,412 1.02 (1.02, 1.03)	er et al	2016	ACS CPS-II	USA	669,046		•	1.04 (1.03, 1.05)
an et al 2014a ESCAPE Europe 367,383 1.01 (0.97, 1.06) ayeb et al 2015 Gazel France 20,327 1.00 (0.76, 1.30) roni et al 2013 Rome longitudinal study Italy 1.265,058 1.00 (0.76, 1.30) et et al 2009 NLCS-AIR Netherlands 17,528 1.02 (0.98, 1.07) es et al 2007 Oslo cohort Norway 143,842 1.02 (1.00, 1.05) g et al 2013 Srizuoka elderly cohort Japan 3,412 1.24 (1.15, 1.33) all (I-squared = 83.4%, p = JUUT) Japan 1.3,412 1.03 (1.02, 1.03)	y et al	2013	CPRD	England	830,429		•	1.00 (0.97, 1.03)
yyeb et al 2015 Gazel France 20,327 1.00 (0.76, 1.30) roni et al 2013 Rome longitudinal study Italy 1,265,058 1.03 (1.02, 1.04) er et al 2015 DUELS Netherlands 7,218,363 1.00 (0.76, 1.30) skreef et al 2009 NLCS-AIR Netherlands 117,528 1.02 (0.98, 1.07) s et al 2015 TCS Norway 143,842 1.02 (1.00, 1.05) g et al 2015 TCS Taiwan 43,227 0.95 (0.75, 1.21) jij et al 2013 Shizuoka elderly cohort Japan 13,412 1.02 (1.03, 1.03) all (I-squared = 83.4%, p = 0.00)	en et al	2014a	ESCAPE	Europe	367,383		÷	1.01 (0.97, 1.06)
train 2013 Rome longitudinal study Italy 1,265,058 1.03 (1.02, 1.04) er et al 2015 DUELS Netherlands 7,218,363 1.00 (0.99, 1.01) akreef et al 2009 NLCS-AIR Netherlands 117,528 1.02 (0.98, 1.07) s et al 2015 TCS Norway 143,842 1.02 (1.00, 1.05) g et al 2015 TCS Taiwan 43,227 0.95 (0.75, 1.21) all (1-squared = 83.4%, p = 0.00) Japan 13,412 1.02 (1.00, 1.05) 1.03 (1.02, 1.03)	ayeb et al	2015	Gazel	France	20,327	_		1.00 (0.76, 1.30)
er et al 2015 DUELS Netherlands 7,218,363 1,00 (0.99, 1.01) skreef et al 2009 NLCS-AIR Netherlands 117,528 1,02 (0.98, 1.07) s et al 2007 Oslo cohort Norway 143,842 1,02 (1.00, 1.05) g et al 2015 TCS Taiwan 43,227 0,95 (0.75, 1.21) ji et al 2013 Shizuoka elderly cohort Japan 13,412 1,24 (1.15, 1.33) all (I-squared = 83,4%, p = 0.00) 1.03 (1.02, 1.03) 1,03 (1.02, 1.03) 1,03 (1.02, 1.03)	roni et al	2013	Rome longitudinal study	Italy	1,265,058		•	1.03 (1.02, 1.04)
ekreef et al 2009 NLCS-AIR Netherlands 117,528 1.02 (0.98, 1.07) ss et al 2007 Oslo cohort Norway 143,842 1.02 (1.00, 1.05) sg et al 2015 TCS Taiwan 43,227 0.95 (0.75, 1.21) uji et al 2013 Shizuoka elderly cohort Japan 13,412 1.24 (1.15, 1.33) all (I-squared = 83.4%, p = 0.00) 1.03 (1.02, 1.03) 1.03 (1.02, 1.03)	ner et al	2015	DUELS	Netherlands	7,218,363		•	1.00 (0.99, 1.01)
ss et al 2007 Oslo cohort Norway 143,842 ● 1.02 (1.00, 1.05) ig et al 2015 TCS Taiwan 43,227 ● 0.95 (0.75, 1.21) uji et al 2013 Shizuoka elderly cohort Japan 13,412 ● 1.24 (1.15, 1.33) all (l-squared = 83.4%, p = 0.000) I.03 (1.02, 1.03) I.03 (1.02, 1.03) I.03 (1.02, 1.03)	ekreef et al	2009	NLCS-AIR	Netherlands	117,528		÷.	1.02 (0.98, 1.07)
g et al 2015 TCS Taiwan 43,227 → 1 0.95 (0.75, 1.21) uji et al 2013 Shizuoka elderly cohort Japan 13,412 → 1.24 (1.15, 1.33) all (I-squared = 83.4%, p = 0.000) 1.03 (1.02, 1.03)	ss et al	2007	Oslo cohort	Norway	143,842		•	1.02 (1.00, 1.05)
uji et al 2013 Shizuoka elderly cohort Japan 13,412 - 1.24 (1.15, 1.33) all (I-squared = 83.4%, p = 0.000) 1.03 (1.02, 1.03)	ng et al	2015	TCS	Taiwan	43,227			0.95 (0.75, 1.21)
all (l-squared = 83.4%, p = 0.000) 1.03 (1.02, 1.03)	ifuji et al	2013	Shizuoka elderly cohort	Japan	13,412		-	1.24 (1.15, 1.33)
	rall (I-squared :	= 83.4%, p =	0.000)					1.03 (1.02, 1.03)

eFigure 6b Cardiovascular mortality – random effects model

Study	Year	Cohort	Setting	N		ES (95% CI)	% Weight
Chen et al	2013	Ontario tax cohort	Canada	205,440	-	1.08 (1.03, 1.12)	5.66
Crouse et al	2015b	CanCHEC	Canada	2,521,525	•	1.03 (1.02, 1.04)	12.37
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	; ●	1.64 (1.13, 2.37)	0.15
Hart et al	2011	US trucking industry cohort	USA	53,814	+	1.04 (1.00, 1.09)	6.38
Lipsett et al	2011	CTS	USA	12,336	-	0.99 (0.94, 1.05)	4.36
Turner et al	2016	ACS CPS-II	USA	669,046	•	1.04 (1.03, 1.05)	12.50
Carey et al	2013	CPRD	England	830,429	+	1.00 (0.97, 1.03)	8.64
Beelen et al	2014a	ESCAPE	Europe	367,383	+	1.01 (0.97, 1.06)	5.74
Bentayeb et al	2015	Gazel	France	20,327		1.00 (0.76, 1.30)	0.28
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	•	1.03 (1.02, 1.04)	12.24
Fischer et al	2015	DUELS	Netherlands	7,218,363	•	1.00 (0.99, 1.01)	12.19
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	+	1.02 (0.98, 1.07)	6.08
Naess et al	2007	Oslo cohort	Norway	143,842	•	1.02 (1.00, 1.05)	10.12
Tseng et al	2015	TCS	Taiwan	43,227		0.95 (0.75, 1.21)	0.34
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	-	1.24 (1.15, 1.33)	2.96
Overall (I-squared	= 83.4%, p	= 0.000)				1.03 (1.02, 1.05)	100.00
with estimated prec	lictive interv	al				. (0.98, 1.08)	
NOTE: Weights are	e from rande	om effects analysis			9 1 1.11.2		

eFigure 7 Cardiovascular mortality - stratification by pre-existing disease on recruitment

Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	% Weight
General										
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85		+	1.08 (1.03, 1.12)	5.54
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		•	1.03 (1.02, 1.04)	12.59
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9		•	1.04 (1.00, 1.09)	6.27
Lipsett et al	2011	CTS	USA	12,336	F	>=30	-	÷-	0.99 (0.94, 1.05)	4.23
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		•	1.04 (1.03, 1.05)	12.74
Carey et al	2013	CPRD	England	830,429	FM	40-89		•	1.00 (0.97, 1.03)	8.60
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All		*	1.01 (0.97, 1.06)	5.62
Bentayeb et al	2015	Gazel	France	20,327	FM	35-50		♠	1.00 (0.76, 1.30)	0.27
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		•	1.03 (1.02, 1.04)	12.45
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		•	1.00 (0.99, 1.01)	12.40
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69		÷	1.02 (0.98, 1.07)	5.97
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90		•	1.02 (1.00, 1.05)	10.16
Tseng et al	2015	TCS	Taiwan	43,227	FM	41.3 (10.5)		<u>+</u>	0.95 (0.75, 1.21)	0.32
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84		-	1.24 (1.15, 1.33)	2.85
Subtotal (I-squa	red = 83	.3%, p = 0.000)						0	1.03 (1.02, 1.04)	100.00
Preexisting										
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	FM	60 (49 69)		— • —	1.64 (1.13, 2.37)	100.00
Subtotal (I-squa	red = .%	o, p = .)							1.64 (1.13, 2.37)	100.00
NOTE: Weights	are from	random effects analysis								
							.7 .8 .9	1 1.11.21.3		

eFigure 8 Cardiovascular mortality - stratification by age range at cohort recruitment

Study	Year	Cohort	Setting	N	Sex	Age				ES (95% CI)	% Weight
Adult											
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85				1.08 (1.03, 1.12)	5.20
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		•		1.03 (1.02, 1.04)	14.95
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9	– F	•		1.04 (1.00, 1.09)	6.01
Lipsett et al	2011	CTS	USA	12,336	F	>=30	-			0.99 (0.94, 1.05)	3.82
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		•		1.04 (1.03, 1.05)	15.21
Carey et al	2013	CPRD	England	830,429	FM	40-89		E		1.00 (0.97, 1.03)	8.88
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All		E		1.01 (0.97, 1.06)	5.29
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		•		1.03 (1.02, 1.04)	14.70
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	+	E		1.00 (0.99, 1.01)	14.62
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90		•-		1.02 (1.00, 1.05)	11.06
Tseng et al	2015	TCS	Taiwan	43,227	FM	41.3 (10.5)	 → -			0.95 (0.75, 1.21)	0.26
Subtotal (I-squar	red = 80.	8%, p = 0.000)						>		1.02 (1.01, 1.04)	100.00
								•			
Restricted								_			
Bentayeb et al	2015	Gazel	France	20,327	FM	35-50	 •			1.00 (0.76, 1.30)	19.65
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	1.1-	-		1.02 (0.98, 1.07)	41.28
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84			•	1.24 (1.15, 1.33)	39.07
Subtotal (I-squar	red = 90.	2%, p = 0.000)					-	\sim	>	1.10 (0.93, 1.29)	100.00
NOTE: Weights a	are from	random effects analysis									

eFigure 9 Cardiovascular mortality - stratification by level of adjustment for smoking and BMI

Study	Year	Cohort	Setting	N	Sex	Age					ES (95% CI)	% Weight
Individual												
Lipsett et al	2011	CTS	USA	12,336	F	>=30		-	·		0.99 (0.94, 1.05)	15.41
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30			•		1.04 (1.03, 1.05)	36.27
Carey et al	2013	CPRD	England	830,429	FM	40-89		-	•		1.00 (0.97, 1.03)	27.39
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All		- 7	•		1.01 (0.97, 1.06)	19.57
Tseng et al	2015	TCS	Taiwan	43,227	FM	41.3 (10.5)			— —	_	0.95 (0.75, 1.21)	1.35
Subtotal (I-squ	ared = 68	.0%, p = 0.014)							\diamond		1.01 (0.99, 1.04)	100.00
None/Indirect												
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85					1.08 (1.03, 1.12)	7.52
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89			•		1.03 (1.02, 1.04)	22.74
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9					1.04 (1.00, 1.09)	8.74
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		_	+		1.03 (1.02, 1.04)	22.33
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30			•		1.00 (0.99, 1.01)	22.20
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90					1.02 (1.00, 1.05)	16.48
Subtotal (I-squ	ared = 82	.4%, p = 0.000)									1.03 (1.01, 1.04)	100.00
NOTE: Weights	are from	random effects analysis										
						.7	 .8	.9	1 1.1	1.2		

eFigure 10 Cardiovascular mortality - stratification by spatial resolution of NO_2 concentration estimates

										%
Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	Weight
LUR Address										
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85			1.08 (1.03, 1.12)	7.06
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		•	1.03 (1.02, 1.04)	19.50
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9			1.04 (1.00, 1.09)	8.15
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		•	1.04 (1.03, 1.05)	19.81
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All		+	1.01 (0.97, 1.06)	7.18
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		+	1.03 (1.02, 1.04)	19.20
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		•	1.00 (0.99, 1.01)	19.10
Subtotal (I-squ	ared = 87	.1%, p = 0.000)						\Diamond	1.03 (1.01, 1.04)	100.00
Area										
Lipsett et al	2011	CTS	USA	12,336	F	>=30			0.99 (0.94, 1.05)	8.34
Carey et al	2013	CPRD	England	830,429	FM	40-89			1.00 (0.97, 1.03)	32.81
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90		+	1.02 (1.00, 1.05)	58.41
Tseng et al	2015	TCS	Taiwan	43,227	FM	41.3 (10.5)		•	0.95 (0.75, 1.21)	0.44
Subtotal (I-squ	ared = 0.	0%, p = 0.429)						\diamond	1.01 (1.00, 1.03)	100.00
NOTE: Weights	are from	random effects analysis								
						 .7	.8 .9	1 1.1 1.2 1.3		

eFigure 11 CHD mortality

* indicates exclusion from meta-analysis. Refer to methods/results sections of manuscript.

eFigure 12b CHD mortality - random effects model

Study	Year	Cohort	Setting	N		ES (95% CI)	% Weight
Gan et al	2011	Vancouver Cohort	Canada	452,735		1.05 (1.01, 1.09)	9.28
Chen et al	2013	Ontario tax cohort	Canada	205,440		1.09 (1.02, 1.15)	5.62
Crouse et al	2015b	CanCHEC	Canada	2,521,525	•	1.04 (1.03, 1.05)	18.16
Krewski et al	2009	ACS CPS-II	USA	406,917	•	1.02 (1.01, 1.03)	18.58
Hart et al	2011	US trucking industry cohort	USA	53,814	-	1.00 (0.95, 1.06)	6.97
Lipsett et al	2011	CTS	USA	12,336		1.04 (0.96, 1.12)	3.64
Chen et al	2005	AHSMOG	USA	1,149		1.09 (1.00, 1.17)	3.66
Carey et al	2013	CPRD	England	830,429	-	0.99 (0.95, 1.04)	7.69
Beelen et al	2014a	ESCAPE	Europe	367,383		1.00 (0.91, 1.09)	2.91
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	+	1.05 (1.04, 1.07)	17.21
Beelen et al	2009	NLCS-AIR	Netherlands	117,528	-	0.99 (0.93, 1.06)	4.93
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412		1.29 (1.12, 1.48)	1.34
Overall (I-squared	i = 70.6%, p	= 0.000)			+∕>	1.04 (1.02, 1.05)	100.00
with estimated pre	dictive inter	val				. (0.99, 1.09)	
NOTE: Weights a	e from rand	om effects analysis			.9 1 1.1 1.2		

eFigure 13 CHD mortality - stratification by age range at cohort recruitment

Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	% Weight
Adult										
Gan et al	2011	Vancouver Cohort	Canada	452,735	FM	45-85	-		1.05 (1.01, 1.09)	8.96
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85	-•	—	1.09 (1.02, 1.15)	5.05
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	•		1.04 (1.03, 1.05)	21.48
Krewski et al	2009	ACS CPS-II	USA	406,917	FM	>=30	•		1.02 (1.01, 1.03)	22.22
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9	-		1.00 (0.95, 1.06)	6.43
Lipsett et al	2011	CTS	USA	12,336	F	>=30		-	1.04 (0.96, 1.12)	3.14
Chen et al	2005	AHSMOG	USA	1,149	FM	27-95	-		1.09 (1.00, 1.17)	3.16
Carey et al	2013	CPRD	England	830,429	FM	40-89	-		0.99 (0.95, 1.04)	7.19
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All	-+		1.00 (0.91, 1.09)	2.48
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	+		1.05 (1.04, 1.07)	19.88
Subtotal (I-squ	ared = 65	5.5%, p = 0.002)							1.03 (1.02, 1.05)	100.00
Restricted										
Beelen et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	-		0.99 (0.93, 1.06)	52.82
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84		\longrightarrow	1.29 (1.12, 1.48)	47.18
Subtotal (I-squ	ared = 91	.2%, p = 0.001)							1.12 (0.87, 1.45)	100.00
NOTE: Weights	are from	random effects analysis								
						.8	1	1.2 1.4		

eFigure 14 CHD mortality - stratification by level of adjustment for smoking and BMII

Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	% Weight
Individual										
Krewski et al	2009	ACS CPS-II	USA	406,917	FM	>=30		+	1.02 (1.01, 1.03)	88.03
Lipsett et al	2011	CTS	USA	12,336	F	>=30		· • · · · · · · · · · · · · · · · · · ·	1.04 (0.96, 1.12)	2.16
Chen et al	2005	AHSMOG	USA	1,149	FM	27-95			1.09 (1.00, 1.17)	2.17
Carey et al	2013	CPRD	England	830,429	FM	40-89			0.99 (0.95, 1.04)	5.98
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All		*	1.00 (0.91, 1.09)	1.66
Subtotal (I-squa	ared = 2.8	8%, p = 0.391)						\diamond	1.02 (1.01, 1.03)	100.00
None/Indirect										
Gan et al	2011	Vancouver Cohort	Canada	452,735	FM	45-85			1.05 (1.01, 1.09)	6.12
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85			1.09 (1.02, 1.15)	2.82
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		-	1.04 (1.03, 1.05)	51.23
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9		<u>+ </u>	1.00 (0.95, 1.06)	3.84
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		-	1.05 (1.04, 1.07)	35.99
Subtotal (I-squa	ared = 13.	.4%, p = 0.329)						\diamond	1.04 (1.03, 1.06)	100.00
NOTE: Weights	are from	random effects analysis								
							l .9	1 1.1 1	.2	

eFigure 15 CHD mortality - stratification by spatial resolution of NO_2 concentration estimates

Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	% Weight
LUR Address										
Gan et al	2011	Vancouver Cohort	Canada	452,735	FM	45-85		•—	1.05 (1.01, 1.09)	5.76
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85			1.09 (1.02, 1.15)	2.64
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		•	1.04 (1.03, 1.05)	51.49
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9		-	1.00 (0.95, 1.06)	3.60
Beelen et al	2014a	ESCAPE	Europe	367,383	FM	All -			1.00 (0.91, 1.09)	1.16
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	- I -	-	1.05 (1.04, 1.07)	35.35
Subtotal (I-squa	ared = 9.3	3%, p = 0.356)						Σ	1.04 (1.03, 1.05)	100.00
Area										
Krewski et al	2009	ACS CPS-II	USA	406,917	FM	>=30	+		1.02 (1.01, 1.03)	67.84
Lipsett et al	2011	CTS	USA	12,336	F	>=30			1.04 (0.96, 1.12)	7.28
Chen et al	2005	AHSMOG	USA	1,149	FM	27-95		•	1.09 (1.00, 1.17)	7.33
Carey et al	2013	CPRD	England	830,429	FM	40-89			0.99 (0.95, 1.04)	17.55
Subtotal (I-squa	ared = 24	.4%, p = 0.265)					\diamond	•	1.02 (1.00, 1.04)	100.00
NOTE: Weights	are from	random effects analysis								
						 .9	1	1.1 1	 .2	

eFigure 16 Cerebrovascular mortality

							Confounder		
Study	Year	Cohort	Setting	N	Sex	Age	Adjustment		ES (95% CI)
Chen et al	2013	Ontario tax cohort	Canada	205,440	FM	35-85	Indirect Smoking, No BMI	-	0.96 (0.89, 1.04)
Crouse et al *	2015a	CanCHEC	Canada	735,590	FM	25-89	Indirect smoking and BMI	<u>+</u>	1.01 (0.96, 1.07)
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	Indirect smoking and BMI	•	1.00 (0.99, 1.02)
Lipsett et al	2011	CTS	USA	12,336	F	>=30			0.93 (0.83, 1.03)
Zhang et al *	2011	Shenyang cohort	China	9,941	FM	35-103		-	2.44 (2.27, 2.62)
Raaschou-Nielsen et al *	2012	DCH	Denmark	52,061	FM	50-64		+ •	1.09 (0.83, 1.43)
Beelen et al	2014a	ESCAPE	Europe	367,251	FM	All		+	1.01 (0.93, 1.10)
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	No BMI, Smoking	•	1.01 (0.99, 1.03)
Beelen et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	No BMI		1.15 (1.02, 1.29)
Yonfuji et al *	2010	Shizucka elderly cohort	Japan	13,444	FM	65-84		+	1.09 (0.94, 1.27)
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84			1.19 (1.06, 1.34)

* indicates exclusion from meta-analysis. Refer to methods/results sections of manuscript.

eFigure 17a Cerebrovascular mortality - fixed effects model

eFigure 17b Cerebrovascular mortality - random effects model

eFigure 18 Cerebrovascular mortality - stratification by age range at cohort recruitment

eFigure 19 Cerebrovascular mortality - stratification by level of adjustment for smoking and BMI

eFigure 20 Cerebrovascular mortality - stratification by spatial resolution of NO_2 concentration

eFigure 21 Respiratory mortality

							Confounder		
Study	Year	Cohort	Setting	N	Sex	Age	Adjustment		ES (95% CI)
Crouse et al *	2015a	CanCHEC	Canada	735,590	FM	25-89	Indirect smoking and BMI	+	1.04 (1.00, 1.09)
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	Indirect smoking and BMI	•	1.02 (1.00, 1.04)
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	FM	60 (49 69)		*	1.08 (0.64, 1.84)
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95		•	0.98 (0.93, 1.03)
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9	No BMI, Smoking	÷	1.04 (0.95, 1.14)
Jerrett et al	2013	ACS CPS-II	USA	73,711	FM	>=30	+	•	1.00 (0.91, 1.10)
Lipsett et al	2011	CTS	USA	12,336	F	>=30	+	•	0.96 (0.86, 1.08)
Dong et al *	2012	Shenyang cohort	China	9,941	FM	35-103			2.97 (2.69, 3.27)
Carey et al	2013	CPRD	England	830,429	FM	40-89		+	1.08 (1.04, 1.13)
Dimakopoulou K	2014	ESCAPE	Europe	307,553	FM	All		-	0.97 (0.89, 1.05)
Heinrich et al *	2013	German cohort	Germany	4,752	F	50-59	No BMI, Age(?)	•	1.08 (0.81, 1.44)
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	No BMI, Smoking	•	1.03 (1.00, 1.06)
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	No BMI	•	1.11 (1.00, 1.23)
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	No BMI, Smoking	•	1.02 (1.01, 1.03)
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40	No BMI	•	1.08 (1.06, 1.10)
Yorifuji et al *	2010	Shizuoka elderly cohort	Japan	13,444	FM	65-84			1.19 (1.02, 1.38)
Yorifuji et al NOTE: Weights are	2013 from rand	Shizuoka elderly cohort om effects analysis	Japan	13,412	FM	65-84		-	1.19 (1.06, 1.34)
							 .9	1 1.11.2	

* indicates exclusion from meta-analysis. Refer to methods/results sections of manuscript.

eFigure 22b Respiratory mortality - random effects model

eFigure 23 Respiratory mortality - stratification by pre-existing disease

Study	Year	Cohort	Setting	Ν	Sex	Age				ES (95% CI)	
General											
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89			•	1.02 (1.00, 1.04)	
Jerrett et al	2013	ACS CPS-II	USA	73,711	FM	>=30		-	-	1.00 (0.91, 1.10)	
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9		_	•	1.04 (0.95, 1.14)	
Lipsett et al	2011	CTS	USA	12,336	F	>=30			_	0.96 (0.86, 1.08)	;
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95		+	÷	0.98 (0.93, 1.03)	
Carey et al	2013	CPRD	England	830,429	FM	40-89			+	1.08 (1.04, 1.13)	
Dimakopoulou K	2014	ESCAPE	Europe	307,553	FM	All		-	_	0.97 (0.89, 1.05)	
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		ł	+	1.03 (1.00, 1.06)	
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		- (•	1.02 (1.01, 1.03)	
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69				1.11 (1.00, 1.23)	
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84				1.19 (1.06, 1.34)	
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40			+	1.08 (1.06, 1.10)	
Subtotal (I-square	ed = 77.1	%, p = 0.000)							\diamond	1.04 (1.01, 1.06)	
Preexisting									_		
Jerrett et al	2009	Toronto respiratory cohort	Canada	2,360	FM	60 (49 69)		-	•	1.08 (0.64, 1.84)	
Subtotal (I-square	ed = .%, p) = .)					\sim			1.08 (0.64, 1.84)	
NOTE: Weights a	re from ra	andom effects analysis									
		,									

eFigure 24 Respiratory mortality - stratification by age range at cohort recruitment

										9
Study	Year	Cohort	Setting	N	Sex	Age			ES (95% Cl)	v
Adult										
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89		•	1.02 (1.00, 1.04)	1
Jerrett et al	2013	ACS CPS-II	USA	73,711	FM	>=30			1.00 (0.91, 1.10)	з
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9			1.04 (0.95, 1.14)	4
Lipsett et al	2011	CTS	USA	12,336	F	>=30		<u> </u>	0.96 (0.86, 1.08)	3
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	-•	-	0.98 (0.93, 1.03)	9
Carey et al	2013	CPRD	England	830,429	FM	40-89			1.08 (1.04, 1.13)	1
Dimakopoulou K	2014	ESCAPE	Europe	307,553	FM	All		<u> </u>	0.97 (0.89, 1.05)	4
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		•	1.03 (1.00, 1.06)	1
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		•	1.02 (1.01, 1.03)	1
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40		•	1.08 (1.06, 1.10)	1
Subtotal (I-square	ed = 77.59	%, p = 0.000)						\diamond	1.03 (1.01, 1.05)	1
Restricted										
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69		• • • • • • • • • • • • • • • • • • •	1.11 (1.00, 1.23)	5
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84		•	1.19 (1.06, 1.34)	4
Subtotal (I-square	ed = 0.0%	, p = 0.391)							1.15 (1.06, 1.24)	1
NO I E: Weights a	re from ra	ndom effects analysis								
										_

eFigure 25 Respiratory mortality - stratification by level of adjustment for smoking and BMI

Study	Year	Cohort	Setting	N	Sex	Age					ES (95% CI)	% Weight
Individual												
Jerrett et al	2013	ACS CPS-II	USA	73,711	FM	>=30		-			1.00 (0.91, 1.10)	16.03
Lipsett et al	2011	CTS	USA	12,336	F	>=30		•		-	0.96 (0.86, 1.08)	14.02
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	_	•	_		0.98 (0.93, 1.03)	25.25
Carey et al	2013	CPRD	England	830,429	FM	40-89				•	1.08 (1.04, 1.13)	26.23
Dimakopoulou K	2014	ESCAPE	Europe	307,553	FM	All		•			0.97 (0.89, 1.05)	18.47
Subtotal (I-square	d = 69.6%	, p = 0.011)						\triangleleft	>		1.00 (0.95, 1.06)	100.00
•												
None/Indirect												
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89					1.02 (1.00, 1.04)	24.56
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9					1.04 (0.95, 1.14)	5.91
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30		ŀ	•		1.03 (1.00, 1.06)	19.90
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30			+		1.02 (1.01, 1.03)	26.52
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40			_	•	1.08 (1.06, 1.10)	23.11
Subtotal (I-square	d = 84.9%	, p = 0.000)							\diamond		1.04 (1.01, 1.06)	100.00
NOTE: Weights are from random effects analysis												
							.9	1		1.1		

eFigure 26 Respiratory mortality - stratification by spatial resolution of NO_2 concentration

Study	Year	Cohort	Setting	N	Sex	Age			ES (95% CI)	% Weight
LUR Address										
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89			1.02 (1.00, 1.04)	23.17
Jerrett et al	2013	ACS CPS-II	USA	73,711	FM	>=30		•	1.00 (0.91, 1.10)	0.68
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9			1.04 (0.95, 1.14)	0.80
Dimakopoulou K	2014	ESCAPE	Europe	307,553	FM	All			0.97 (0.89, 1.05)	0.94
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30			1.03 (1.00, 1.06)	7.57
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30		+	1.02 (1.01, 1.03)	66.83
Subtotal (I-squared	d = 0.0%,	p = 0.822)							1.02 (1.01, 1.03)	100.00
Area										
Lipsett et al	2011	CTS	USA	12,336	F	>=30	•		0.96 (0.86, 1.08)	14.18
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	+	<u> </u>	0.98 (0.93, 1.03)	26.50
Carey et al	2013	CPRD	England	830,429	FM	40-89		·	1.08 (1.04, 1.13)	27.61
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40			1.08 (1.06, 1.10)	31.71
Subtotal (I-squared	d = 83.2%	, p = 0.000)					<		1.04 (0.98, 1.10)	100.00
NOTE: Weights are from random effects analysis										
							l .9	I I 1 1.1		

eFigure 27 COPD mortality

* indicates exclusion from meta-analysis. Refer to methods/results sections of manuscript.

eFigure 28a COPD mortality - fixed effects model

eFigure 28b COPD mortality - random effects model

eFigure 29 COPD mortality - stratification by age range at cohort recruitment

Study	Year	Cohort	Setting	N	Sex	Age		ES (95% CI)	% Weight
Adult									
Gan et al	2013	Vancouver Cohort	Canada	467,994	FM	45-85		1.05 (0.95, 1.15)	2.42
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	-	1.03 (1.01, 1.06)	38.07
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9		0.99 (0.88, 1.10)	1.90
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30		1.00 (0.98, 1.03)	30.35
Carey et al	2013	CPRD	England	830,429	FM	40-89		1.07 (0.99, 1.14)	4.60
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90		1.05 (1.01, 1.09)	15.66
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40		1.02 (0.96, 1.08)	7.01
Subtotal (I-squar	ed = 4.8%	, p = 0.390)					\diamond	1.03 (1.01, 1.04)	100.00
Restricted									
Yorifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84	<	0.98 (0.75, 1.29)	100.00
Subtotal (I-squar	red = .%, p	= .)						0.98 (0.75, 1.29)	100.00
NOTE: Weights a	are from ra	ndom effects analysis							
							I I I I I .8 .9 1 1.1 1.2		

eFigure 30 COPD mortality - stratification by level of adjustment for smoking and BMI

eFigure 31 COPD mortality - stratification by spatial resolution of NO_2 concentration

eFigure 32 Pneumonia mortality

eFigure 33 Lung cancer mortality

							Confounder	
Study	Year	Cohort	Setting	Ν	Sex	Age	Adjustment	ES (95% CI)
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	Indirect smoking and BMI	1.04 (1.02, 1.06)
HEI*	2000	ACS CPS-II	USA	552,138	FM	>=30	•	0.99 (0.97, 1.01)
Krewski et al *	2009	ACS CPS-II	USA	406,917	FM	>=30	•	1.00 (0.98, 1.01)
Jerrett et al *	2013	ACS CPS-II	USA	73,711	FM	>=30		1.15 (1.03, 1.28)
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	•	1.00 (0.97, 1.02)
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95		1.23 (1.06, 1.42)
Lipsett et al	2011	CTS	USA	12,336	F	>=30	_ <u>+</u> _	1.00 (0.86, 1.16)
HEI	2000	Six Cities	USA	8,111	FM	25-74		1.05 (0.86, 1.27)
Hart et al	2011	US trucking industry cohort	USA	53,814	м	15.3-84.9	No BMI, Smoking	1.04 (0.98, 1.10)
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89		0.90 (0.82, 0.98)
Carey et al	2013	CPRD	England	830,429	FM	40-89	+	1.06 (1.00, 1.11)
Filleul et al	2005	PAARC	France	14,284	FM	25-59	· · · · · · · · · · · · · · · · · · ·	1.48 (1.06, 2.07)
Heinrich et al	2013	German cohort	Germany	4,752	F	50-59	No BMI, Age(?)	1.27 (0.95, 1.69)
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	No BMI, Smoking	1.04 (1.02, 1.07)
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	No BMI, Smoking	1.10 (1.09, 1.11)
Brunekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	No BMI	0.97 (0.90, 1.05)
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90	No BMI, Smoking	1.08 (1.03, 1.12)
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40	No BMI	1.08 (1.03, 1.12)
Yorifuji et al *	2010	Shizuoka elderly cohort	Japan	13,444	FM	65-84		0.95 (0.78, 1.16)
Yorifuji et al NOTE: Weights a	2013 re from ra	Shizuoka elderly cohort ndom effects analysis	Japan	13,412	FM	65-84		1.20 (1.03, 1.40)

 \ast indicates exclusion from meta-analysis. Refer to methods/results sections of manuscript.

eFigure 34a Lung cancer mortality - fixed effects model

eFigure 34b Lung cancer mortality - random effects model

eFigure 35 Lung cancer mortality - stratification by age range at cohort recruitment

Study	Year	Cohort	Setting	Ν	Sex	Age	ES (95% CI)	
dult								
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	1.04 (1.02, 1.06))
lart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9	1.04 (0.98, 1.10))
ipsett et al	2011	CTS	USA	12,336	F	>=30	1.00 (0.86, 1.16))
bbey et al	1999	AHSMOG	USA	2,031	FM	27-95	1.23 (1.06, 1.42))
EI	2000	Six Cities	USA	8,111	FM	25-74	1.05 (0.86, 1.27))
urner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	1.00 (0.97, 1.02))
hen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	0.90 (0.82, 0.98)	
arey et al	2013	CPRD	England	830,429	FM	40-89	1.06 (1.00, 1.11)) -
einrich et al	2013	German cohort	Germany	4,752	F	50-59	1.27 (0.95, 1.69))
esaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	1.04 (1.02, 1.07))
scher et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	1.10 (1.09, 1.11))
aess et al	2007	Oslo cohort	Norway	143,842	FM	51-90 🔶	1.08 (1.03, 1.12))
atanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40	1.08 (1.03, 1.12))
ubtotal (I-squa	ared = 89	9.5%, p = 0.000)				\diamond	1.05 (1.02, 1.08))
estricted							_	
illeul et al	2005	PAARC	France	14,284	FM	25-59	+ 1.48 (1.06, 2.07)) :
runekreef et al	2009	NLCS-AIR	Netherlands	117,528	FM	55-69	0.97 (0.90, 1.05)	, ,
orifuji et al	2013	Shizuoka elderly cohort	Japan	13,412	FM	65-84	1.20 (1.03, 1.40)) :
ubtotal (I-squa	red = 81	l.1%, p = 0.005)				\checkmark	1.15 (0.92, 1.42))
075 W								
OTE: Weights	are from	n random effects analysis						
								_

eFigure 36 Lung cancer mortality - stratification by level of adjustment for smoking and BMI

									%
Study	Year	Cohort	Setting	Ν	Sex	Age		ES (95% CI)	v
Individual									
Lipsett et al	2011	CTS	USA	12,336	F	>=30		1.00 (0.86, 1.16)	10
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95		1.23 (1.06, 1.42)	1
HEI	2000	Six Cities	USA	8,111	FM	25-74		1.05 (0.86, 1.27)	7.
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	+	1.00 (0.97, 1.02)	2
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89 -		0.90 (0.82, 0.98)	18
Carey et al	2013	CPRD	England	830,429	FM	40-89		1.06 (1.00, 1.11)	24
Subtotal (I-squa	ared = 71	.5%, p = 0.004)					\Diamond	1.02 (0.96, 1.08)	10
None/Indirect									
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	+	1.04 (1.02, 1.06)	19
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9		1.04 (0.98, 1.10)	11
Heinrich et al	2013	German cohort	Germany	4,752	F	50-59		1.27 (0.95, 1.69)	0.
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	+	1.04 (1.02, 1.07)	18
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	•	1.10 (1.09, 1.11)	20
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90	-	1.08 (1.03, 1.12)	15
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40	-	1.08 (1.03, 1.12)	14
Subtotal (I-squa	ared = 86	8.0%, p = 0.000)					\diamond	1.06 (1.03, 1.10)	1
NOTE WALL									
NOTE: Weights	are from	random effects analysis							

eFigure 37 Lung cancer mortality - stratification by spatial resolution of NO₂ concentration

Study	Year	Cohort	Setting	Ν	Sex	Age	ES (95% CI)	Weigh
Area								
Lipsett et al	2011	CTS	USA	12,336	F	>=30	1.00 (0.86, 1.16	i) 7.78
Abbey et al	1999	AHSMOG	USA	2,031	FM	27-95	1.23 (1.06, 1.42	.) 8.02
HEI	2000	Six Cities	USA	8,111	FM	25-74	1.05 (0.86, 1.27) 5.27
Chen et al	2016	Four northern Chinese cities	China	39,054	FM	23-89	0.90 (0.82, 0.98) 13.83
Carey et al	2013	CPRD	England	830,429	FM	40-89	1.06 (1.00, 1.11) 19.50
Heinrich et al	2013	German cohort	Germany	4,752	F	50-59 —	1.27 (0.95, 1.69) 2.64
Naess et al	2007	Oslo cohort	Norway	143,842	FM	51-90	1.08 (1.03, 1.12	:) 21.66
Katanoda et al	2011	3 Japanease Prefectures	Japan	63,520	FM	>=40	1.08 (1.03, 1.12	:) 21.30
Subtotal (I-squ	ared = 65	5.3%, p = 0.005)					1.05 (1.00, 1.11) 100.0
LUR Address								
Crouse et al	2015b	CanCHEC	Canada	2,521,525	FM	25-89	★ 1.04 (1.02, 1.0€) 21.08
Hart et al	2011	US trucking industry cohort	USA	53,814	М	15.3-84.9	1.04 (0.98, 1.10) 15.66
Turner et al	2016	ACS CPS-II	USA	669,046	FM	>=30	► 1.00 (0.97, 1.02	:) 20.86
Cesaroni et al	2013	Rome longitudinal study	Italy	1,265,058	FM	>=30	➡ 1.04 (1.02, 1.07)) 20.62
Fischer et al	2015	DUELS	Netherlands	7,218,363	FM	>=30	• 1.10 (1.09, 1.11) 21.79
Subtotal (I-squ	ared = 95	5.7%, p = 0.000)					1.04 (1.00, 1.05) 100.0
NOTE: Wajaht	are from	random effects analysis						
NOTE. Weight	are IIUII	rianuom enects dildiysis						