Phenotypic Characterisation of *EIF2AK4* Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically with Pulmonary Arterial Hypertension

Running Title: Hadinnapola et al.; Phenotypes of EIF2AK4 Mutation Carriers

Charaka Hadinnapola, MA, MB, BChir, et al.

The full author list is available on page 21.

Addresses for Correspondence: Nicholas Morrell, MD, FRCP, FMedSci Department of Medicine University of Cambridge School of Clinical Medicine Box 157, Addenbrooke's Hospital Hills Road, Cambridge, CB2 0QQ, UK Tel: +44 1223 331666 Fax: +44 1223 336846 Email: nmw23@cam.ac.uk

Abstract

Background—Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (*BMPR2*) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (*EIF2AK4*) are described in pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis (PVOD/PCH). Here, we determined the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH.

Methods—Whole genome sequencing was performed on DNA from patients with idiopathic and heritable PAH, as well as PVOD/PCH recruited to the NIHR BioResource - Rare Diseases Study. Heterozygous variants in *BMPR2* and biallelic *EIF2AK4* variants with a minor allele frequency of < 1:10,000 in control data sets and predicted to be deleterious (by CADD, PolyPhen-2 and SIFT predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured.

Results—Eight hundred and sixty-four patients with idiopathic or heritable PAH and 16 with PVOD/PCH were recruited. Mutations in *BMPR2* were identified in 130 patients (14.8%). Biallelic mutations in *EIF2AK4* were identified in 5 patients with a clinical diagnosis of PVOD/PCH. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic *EIF2AK4* mutations. These patients had a reduced transfer coefficient for carbon monoxide (KCO: 33 [IQR: 30 - 35] % predicted) and younger age at diagnosis (29 [23 - 38] years) as well as more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest, compared to PAH patients without *EIF2AK4* mutations. However, radiological assessment alone could not accurately identify biallelic *EIF2AK4* mutation carriers. PAH patients with biallelic *EIF2AK4* mutations had a shorter survival.

Conclusions—Biallelic *EIF2AK4* mutations are found in patients classified clinically as idiopathic and heritable PAH. These patients cannot be identified reliably by CT, but a low KCO and a young age of diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation.

Key Words: genetics, human; pulmonary hypertension; prognosis; EIF2AK4, pulmonary veno-occlusive disease

Clinical Perspective

What is new?

- 1% of patients with a clinical diagnosis of PAH carry biallelic *EIF2AK4* mutations.
- Patients diagnosed clinically with PAH who had a KCO < 50% predicted and age of diagnosis < 50 years were more likely to carry biallelic *EIF2AK4* mutations. The diagnostic yield for genetic testing in this group was 53%.
- Radiological assessment was unable to distinguish reliably between these patients and idiopathic PAH patients.
- Histology from these patients may show predominately pulmonary arteriopathy, with subtle involvement of the pulmonary veins and capillaries.
- PAH patients with biallelic *EIF2AK4* mutations had a worse prognosis compared to other PAH patients.

What are the clinical implications?

- Younger patients diagnosed with idiopathic PAH, but with a low KCO, have a high frequency of biallelic *EIF2AK4* mutations.
- Such patients should be reclassified as pulmonary veno-occlusive disease/pulmonary capillary haemangiomatosis (PVOD/PCH).
- Similar to patients with PVOD/PCH these patients have a poor prognosis compared to other PAH patients.
- The spectrum of radiological and histological changes associated with biallelic *EIF2AK4* mutations is wider than previously assumed. The presence of only subtle or infrequent features associated with PVOD may lead to misclassification of these patients as PAH.
- Genetic testing allows early identification of these patients, facilitating appropriate management.

Pulmonary arterial hypertension (PAH) is a heterogeneous and rare disorder that can be classified into idiopathic and heritable forms, associated with an underlying condition, such as connective tissue disease or congenital heart disease, or related to specific drugs and toxins ^{1, 2}. In addition, pulmonary veno-occlusive disease (PVOD) and pulmonary capillary haemangiomatosis (PCH) are even rarer forms of pulmonary hypertension that are grouped together with PAH under the current classification system ².

Clinical features described in patients with PVOD/PCH include a low transfer coefficient for carbon monoxide (KCO) and oxygen desaturation on exertion, as well as the presence of centrilobular ground glass opacification, interlobular septal thickening and mediastinal lymphadenopathy on high resolution computed tomography (HRCT) of the lung parenchyma ^{3,4}. However, these clinical and radiological features have also been reported in idiopathic PAH ⁵⁻⁷. Consequently, the clinical distinction between PVOD/PCH and idiopathic PAH can be challenging. It has been estimated that 10% of patients with PVOD/PCH are misdiagnosed as idiopathic PAH ^{8,9}. The diagnosis of PVOD/PCH is often only confirmed post mortem, or from explanted lungs, by histology.

The histological features of PVOD/PCH typically include pulmonary venous obstructions and pulmonary capillary proliferation, although the distribution of these changes within the lung can be heterogeneous ^{10, 11}. Pulmonary artery smooth muscle hypertrophy and intimal hyperplasia, similar to the changes observed in other forms of PAH, may also be present. Furthermore, pulmonary venous changes have been reported in cases of idiopathic PAH, scleroderma-associated PAH and those with *BMPR2* mutations, to varying extents ^{12, 13}.

A major advance in the molecular diagnosis of PVOD/PCH was the finding of biallelic mutations in the gene encoding the eukaryotic translation initiation factor 2 alpha kinase 4

(EIF2AK4) in both familial (100%) and sporadic (20-25%) cases of PVOD/PCH ^{14, 15}. EIF2AK4 is an activator of the integrated stress response (ISR) pathway, and responds to environmental stresses, including amino acid deprivation, by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 ^{11, 16, 17}. These discoveries suggest that *EIF2AK4* mutations are specific to PVOD/PCH and that finding biallelic *EIF2AK4* mutations in a patient with pulmonary hypertension would be diagnostic of PVOD/PCH. Patients with PVOD/PCH have a poor prognosis and risk fatal pulmonary oedema with the use of pulmonary artery vasodilator therapies ^{4, 18-20}. Consequently, early and accurate diagnosis is vital to guide clinical management.

Heterozygous mutations in the gene encoding the bone morphogenetic protein type 2 receptor (*BMPR2*) are the most common genetic cause of PAH. They are found in approximately 17% of individuals with idiopathic PAH and 82% with a family history of the disease ²¹. However, mutations in *BMPR2* have also been reported in patients with histologically proven PVOD ^{4, 22-24}. Thus, there remains considerable uncertainty to what extent the finding of *EIF2AK4* or *BMPR2* mutations reliably predict the clinical phenotype and response to therapy in a population of patients with PAH.

Here we report the genetic and phenotypic characteristics of patients assessed for *BMPR2* and *EIF2AK4* mutations, through whole genome sequencing, within a large cohort (n=880) of PAH patients recruited to the National Institute of Health Research (NIHR) BioResource – Rare Diseases (BRIDGE) Study (Supplementary Table 1). The frequency of mutations in other previously reported genes associated with PAH will be reported in a future publication. In this study, we identified and characterised patients with a clinical and radiological diagnosis of idiopathic PAH who were found to possess biallelic *EIF2AK4* mutations. These patients had a

low KCO and were diagnosed at a younger age compared with idiopathic PAH patients without mutations in these genes. We show that, in common with patients diagnosed clinically with PVOD/PCH, PAH patients with biallelic *EIF2AK4* mutations have a shorter survival. We conclude that clinical assessment alone is inadequate for the accurate diagnosis of PVOD/PCH. Clinical genetic testing in younger patients presenting clinically with PAH but with a low KCO, will allow appropriate classification, leading to better risk stratification and management of these patients.

Methods

Ethical approval and consent

UK patients (621 [70.6%]) were recruited prospectively to the BRIDGE Study and provided written informed consent for genetic analysis and the capture of clinical data (NIHR BioResource - Rare Diseases Study 13/EE/0325). Additionally, the study included patients recruited retrospectively from non-UK centres (191 [21.7%]), and deceased UK patients (68 [7.7%]), if they had signed local tissue bank consent forms allowing genetic sequencing. Explanted lung tissue from an individual undergoing lung transplantation for end stage PAH was collected under Papworth Hospital Research Tissue Bank ethics (08/H0304/56).

Recruitment and patients

The BRIDGE Study is a prospective study recruiting both prevalent and incident patients with selected rare diseases. Recruitment to the BRIDGE PAH Study started in January 2013 and the last patient included in this analysis was recruited on 15/06/2016. Patients with idiopathic PAH, heritable PAH, PVOD and PCH, diagnosed according to international guidelines at specialist pulmonary hypertension centres in the United Kingdom, Netherlands and France, were recruited

(Figure 1 and Supplementary Table 2)². This included 14 patients with confirmed mutations in *BMPR2*.

Throughout the manuscript, we classify patients recruited to the study as idiopathic PAH or familial PAH based on the absence or presence of a family history of the disease. The term heritable PAH does not distinguish between sporadic PAH patients with a mutation, and patients with a mutation where there is a family history. Therefore, the term "heritable PAH" is only used when referring to previous publications and guidelines.

Patients with other rare diseases and their unaffected relatives recruited to the BRIDGE Study (Supplementary Table 3) acted as non-PAH controls for the genetic analysis.

Whole genome sequencing and variant calling

Next generation sequencing using 100-150 base pair paired-end sequencing was performed on DNA libraries created from genomic DNA using Illumina HiSeq 2500 and HiSeq X (Illumina Inc, San Diego, USA).

Reads were aligned against the Genome Reference Consortium human genome (build 37) (GRCh37) and variants were called using the Issac Aligner and Variant Caller respectively (version 2, Illumina Inc.). Variants in *BMPR2* and *EIF2AK4* were extracted and annotated using Ensembl's Variant Effect Predictor (VEP) v84 ²⁵. Deletions (resulting in the loss of more than 50bp) were identified by applying Isaac Copy Number Variant Caller (Canvas, Illumina) and Isaac Structural Variant Caller (Manta, Illumina). Further information is provided in the supplemental materials.

Likely causal variants were identified based on minor allele frequency (MAF) and predicted deleteriousness. Variants were considered further if they had a MAF of less than 1 in 10,000 in unrelated non-PAH BRIDGE controls and the ExAC database ²⁶. The rare variants that

passed the MAF filtering were then assessed for deleteriousness. Variants were considered pathogenic based on a combined annotation dependent depletion (CADD) score of 15 or higher and PolyPhen-2 *or* SIFT predictions not classified as "benign" or "tolerated" respectively ²⁷⁻²⁹.

Over-representation analyses

For comparison of variant frequencies between disease and control groups only variants from unrelated individuals were used. The PRIMUS software package was used to identify non-related individuals amongst both non-PAH BRIDGE controls and PAH patients ³⁰. The number of unrelated control subjects was maximised by including either patients with other rare diseases or their unaffected relatives. The frequency of rare and predicted deleterious heterozygous *EIF2AK4* variants in PAH index cases was also compared to publically available information in the ExAC database (http://exac.broadinstitute.org)²⁶. This analysis provides the maximum estimate of the frequency of heterozygous *EIF2AK4* variants in the ExAC database as variants in ExAC were assumed not to be in a compound heterozygous state.

Phenotypic data capture and CT assessment

Paper and electronic patient records of PAH patients were reviewed to capture demographic and phenotypic variables from the time of diagnosis and follow up. Survival data for UK patients were obtained from recruiting centres through the NHS National Spine and local databases. Anonymised information was captured securely online using the free OpenClinica® software, adapted for data capture specific to PAH.

CT images of the chest, where available, were reviewed independently by 2 cardiothoracic radiologists (AS and NS), with specialist imaging experience in pulmonary hypertension, blinded to the underlying diagnoses using a customised proforma. Further

information is provided in the supplemental materials, Supplementary Table 4 and Supplementary Table 5.

Statistical analysis

Statistical analysis was performed in R (<u>www.r-project.org</u>). Further information is provided in the supplemental materials.

Semi-parametric Cox-proportional hazard models were used to assess survival between groups using the "survival" package in R. Time from diagnosis to both death and death or transplantation was assessed. Age at diagnosis and gender were used as covariates in the models. To avoid immortal time bias arising from the inclusion of retrospectively recruited patients and prevalent patients, a sensitivity analysis was conducted. In this analysis only prospectively recruited patients from the UK were included and patients entered the risk set only from the time they consented to the study. Further information is provided in the supplemental materials.

Results

Study patients

Whole genome sequencing was performed on 932 patients recruited to the NIHR BRIDGE PAH Study and 7134 non-PAH control subjects recruited to other NIHR BRIDGE Study cohorts. Fifty-two patients were excluded from further analysis because they did not have a clinical diagnosis of idiopathic PAH, heritable PAH, PVOD or PCH (Figure 1). The remaining 880 patients (of which 872 were defined as unrelated index cases) consisted of 16 patients (1.8%) with a clinical diagnosis of PVOD/PCH, 56 (6.4%) with PAH and a family history of the disease (referred to as familial PAH) and 808 (91.8%) with idiopathic PAH and no known family

history. One of the 16 patients with a clinical diagnosis of PVOD/PCH had an affected sister, whereas the remainder had the sporadic form of the disease.

BMPR2 mutations in the PAH cohort

Rare and predicted deleterious *BMPR2* mutations (single nucleotide variants, indels and larger deletions) were found in 41 patients (73.2%) with familial PAH and 89 patients (11.0%) with idiopathic PAH. No *BMPR2* mutations were found in patients with a clinical diagnosis of PVOD/PCH.

Rare and predicted deleterious EIF2AK4 variants in the PAH cohort

Sixty-nine rare and predicted deleterious *EIF2AK4* single nucleotide variants and indels were present in the NIHR BRIDGE Study. No large deletions were found that affected the *EIF2AK4* gene locus. The variants are summarised in Supplementary Table 6. Five of the 16 patients (31.3%) with clinically diagnosed PVOD/PCH carried biallelic *EIF2AK4* mutations (2 homozygotes and 3 compound heterozygotes).

Twenty-five *EIF2AK4* variants were also found in 19 patients (2.2%) diagnosed clinically with PAH, in whom there was no clinical diagnosis of PVOD/PCH (5 homozygotes, 4 compound heterozygotes and 10 heterozygotes; Supplementary Table 7). One of these patients with a homozygous *EIF2AK4* mutation (c.3097C>T creating a premature stop codon) had a sister who had died of PAH. There was no reported family history of PVOD/PCH.

The remaining rare *EIF2AK4* variants were found in a heterozygous state in 36 control subjects (0.5%). Four of these variants appeared in more than 1 non-PAH control subject and none were shared with PAH patients.

Over-representation of rare heterozygous EIF2AK4 variants in idiopathic PAH patients compared to control subjects

The proportion of patients with a clinical diagnosis of idiopathic PAH carrying heterozygous rare *EIF2AK4* variants (1.2%) was significantly greater than the non-PAH control subjects (0.5%; p = 0.030). A similar over-representation in idiopathic PAH patients was observed when compared to allele frequencies in the ExAC database (0.6%; p = 0.042). Two idiopathic PAH patients with heterozygous rare *EIF2AK4* variants also carried a rare and predicted deleterious *BMPR2* mutation.

Phenotype of patients with a clinical diagnosis of PAH and biallelic EIF2AK4 mutations

Patients with a clinical diagnosis of PAH and biallelic *EIF2AK4* mutations presented at a younger age (median [IQR]: 29 [23 - 38] years) compared to patients without these variants (51 [37 - 65] years; p = 0.024) (Table 1). Mean pulmonary artery pressure, cardiac output and pulmonary vascular resistance were not significantly different between PAH patients with biallelic *EIF2AK4* mutations and the other groups. As previously reported, haemodynamic variables were significantly more severe in patients with *BMPR2* mutations compared to those without any mutations in these genes.

The PAH patients with biallelic *EIF2AK4* mutations exhibited a reduced KCO (33 [30 - 35] % predicted) compared to *BMPR2* mutation carriers (81 [73 - 92] % predicted, p < 0.001) and PAH patients with no identified mutation (71 [51 - 85] % predicted, p = 0.001). PAH patients with biallelic *EIF2AK4* mutations had no obstructive or restrictive deficit on spirometry. These differences remained after exclusion of patients with abnormal spirometry in the other groups (FEV₁ < 80% or FVC < 80%) (Supplementary Table 8).

Digital clubbing was over-represented amongst patients with biallelic *EIF2AK4* mutations diagnosed clinically with PAH (42%; p=0.002). Eleven percent of patients with a clinical diagnosis of PVOD were clubbed.

Only one patient with a heterozygous rare and predicted deleterious *EIF2AK4* variant (c.2516T>C) had a reduced KCO (54% predicted) with normal spirometry (FEV₁ 102% predicted, FVC 98% predicted and TLC 100% predicted). Although, there was mild paraseptal emphysema on thoracic CT (< 5% of the lung parenchyma affected). This patient, a 44-year-old Caucasian male diagnosed with idiopathic PAH, also carried a rare and deleterious *BMPR2* splice acceptor mutation (c.853-2A>G).

We questioned whether KCO was a predictor of biallelic *EIF2AK4* mutations in the wider cohort. However, amongst PAH patients with no mutations and normal spirometry (n=255), a reduced KCO (< 50% predicted) was present in 65 patients (25.5%). In these patients with a reduced KCO and preserved spirometry, 90.8% were aged over 50 years at diagnosis and 69.2% had a history of coronary artery disease, left ventricular dysfunction or cardiovascular risk factors (diabetes mellitus, systemic hypertension or hyperlipidaemia).

Given the high prevalence of a low KCO with preserved spirometry in the wider cohort, we restricted an analysis to patients under the age of 50 years, who at the time of diagnosis had normal spirometry (n=164). Even, in this group a significant proportion (15, 9.1%) had a KCO < 50% predicted (Figure 2). Eight of these 15 patients carried biallelic *EIF2AK4* mutations. One patient with biallelic *EIF2AK4* mutations was aged 70 years at diagnosis and subsequently did not meet this cut-off.

Amongst patients with normal spirometry, the presence of a KCO < 50% predicted and age at diagnosis < 50 years had a high sensitivity (0.889) and specificity (0.977) for identifying

patients who carry biallelic *EIF2AK4* mutations, the positive predictive value was low (0.533). Nevertheless, in terms of the diagnostic yield, while genetic testing for biallelic *EIF2AK4* mutations in the entire cohort of patients diagnosed clinically with PAH yielded a 1% detection rate, the presence of biallelic *EIF2AK4* mutations in PAH patients with a KCO < 50% with normal spirometry and aged under 50 at diagnosis was 53%.

CT features of EIF2AK4 mutation carriers

Centrilobular ground glass opacification extent, mediastinal lymphadenopathy and interlobular septal thickening are considered suggestive of PVOD/PCH. However, we found subtle or gross centrilobular ground glass opacification in 38% of patients diagnosed clinically with PAH and carrying no mutations (n=21) and 67% of PAH patients with *BMPR2* mutations (n=21). This was not significantly different compared to patients with a clinical diagnosis of PAH and biallelic *EIF2AK4* mutations (86%, n=7) and patients with a clinical diagnosis of PVOD (50%, n=14). Gross interlobular septal thickening and mediastinal lymphadenopathy was significantly more frequent amongst patients with PAH and biallelic *EIF2AK4* mutations (29% and 57% respectively) and those with PVOD (64% and 79%) compared to patients with PAH and no mutation (5% and 0%) or *BMPR2* mutations (5% and 10%). A radiological suspicion of PVOD/PCH was raised in 71% of those with PVOD, 57% of patients with a clinical diagnosis of PAH and 5% of those with *BMPR2* mutations (Table 2).

A further CT analysis comparing patients with biallelic *EIF2AK4* mutations (with a clinical diagnosis of PVOD/PCH or PAH; n=11) and those with a clinical diagnosis of PVOD but not carrying biallelic *EIF2AK4* mutations (n=10) was made (Supplementary Table 9). Patients with biallelic *EIF2AK4* mutations were younger at diagnosis (27 [IQR: 23 - 34] years)

compared to those with PVOD and no *EIF2AK4* mutations (68 [64 - 72] years, p=0.001). The patients with biallelic *EIF2AK4* mutations also had a lower KCO (32 [29 – 33] % predicted) compared to patients with PVOD and no *EIF2AK4* mutations (41.4 [37 – 54] % predicted, p=0.013). Centrilobular ground glass opacification appeared more extensive in those with biallelic *EIF2AK4* mutations (82%) compared to those without a mutation (10%; p=0.012). However, pleural effusions were more common amongst those without a mutation (40%) compared to patients with biallelic *EIF2AK4* mutations (0%, p=0.035). This may suggest that patients with biallelic *EIF2AK4* mutations have a distinct radiological phenotype compared to patients with PVOD and no biallelic *EIF2AK4* mutations.

Response to pulmonary artery vasodilator therapies

The response to pulmonary artery vasodilator therapies at 1 and 3 years was assessed for patients with a clinical diagnosis of PAH and biallelic *EIF2AK4* mutations as well as the other PAH patients included in the CT analysis. Patients with a clinical diagnosis of PAH and biallelic *EIF2AK4* mutations did not improve their functional class at either 1 year or 3 years post diagnosis unlike the other PAH groups (Supplementary Table 10).

Histological features of biallelic EIF2AK4 mutation carrier

The explanted lungs of one patient diagnosed with idiopathic PAH but found to have a homozygous *EIF2AK4* missense mutation (c.1795G>C, p.G599R) were assessed. The predominant histological feature was pulmonary arterial vasculopathy. The pulmonary arteries predominantly showed concentric and eccentric intimal fibrosis. No plexiform lesions were observed. Although infrequent, there was some fibrosis of the septal veins and venules, some of which were nearly completely occluded. Although there was evidence of capillary congestion, no capillary hemangiomatosis was observed (Figure 3). The missense variant carried by this patient

was not reported in the ExAC database, occurs in a conserved area of the genome (GERP score 5.5) and was predicted to be deleterious (CADD score 32, PolyPhen-2 prediction of "probably damaging [1]", SIFT prediction of "deleterious [0]"). The same homozygous mutation was also found in a second unrelated patient with a clinical diagnosis of idiopathic PAH.

Impact of genotype on survival

Eight hundred and fifty-eight patients were included in the Cox proportional hazards model (Supplementary Table 11, Supplemental Figure 1). Patients diagnosed clinically as PAH with biallelic *EIF2AK4* mutations had a shorter survival time from diagnosis compared to the *BMPR2* mutation carriers (p < 0.001) and those without any variants in PAH associated genes (p < 0.001). Age (p < 0.001) and gender (p = 0.001) also had a significant effect on survival, with male sex and an older age at diagnosis associated with shorter survival in the model. Similar results were obtained when assessing the time to death or transplantation (Supplementary Tables 12). In the sensitivity analysis, including only prospectively recruited UK patients, only 2 events occurred in the biallelic *EIF2AK4* group. Thus no significant difference was observed in mortality between patients diagnosed clinically as PAH with biallelic *EIF2AK4* mutations and patients with *BMPR2* mutations (p = 0.215), or patients without any variants in PAH associated genes (p = 0.282; Supplementary Table 13).

Discussion

This is the first study to analyse the frequency of *EIF2AK4* rare variation in a large cohort of PAH patients and make detailed phenotypic and radiological assessments. Previously the presence of biallelic *EIF2AK4* mutations were reported in patients with a clear clinical diagnosis of PVOD/PCH as well as a large kindred and a single family with a possible diagnosis of PAH ²⁰.

^{31, 32}. As expected, we identified a high frequency of biallelic *EIF2AK4* mutations in patients with a clear clinical presentation of PVOD/PCH. However, we also found biallelic *EIF2AK4* mutations in patients with a clinical diagnosis of PAH.

The discovery of biallelic *EIF2AK4* mutations in PVOD/PCH raised the possibility of rapid molecular diagnosis in the majority of patients with familial, and up to 25% of patients with sporadic PVOD/PCH ^{14, 15}. In the present study, the presence of biallelic *EIF2AK4* mutations was associated with a poor prognosis, even in patients who have a clinical diagnosis of PAH, and who did not develop pulmonary oedema in response to pulmonary artery vasodilator therapies. Therefore, early identification of these patients through genetic testing may prompt early referral for lung transplantation similar to patients with clinically diagnosed PVOD/PCH ¹⁸.

The presence of biallelic *EIF2AK4* mutations in patients with a clinical diagnosis of PAH raises the question whether *EIF2AK4* mutations can cause classical idiopathic PAH, or whether there are cases of PVOD/PCH caused by *EIF2AK4* mutations that are wrongly classified even by expert centres. We further show that phenotypic, radiological and histological assessments can be difficult to interpret. The presence of subtle or infrequent features may lead to an incorrect diagnosis of PAH in patients with biallelic *EIF2AK4* mutations. This study suggests that patients with pathogenic biallelic *EIF2AK4* mutations may present with a spectrum of phenotypic, radiological and histological and histological features that can overlap with PAH.

PAH patients with biallelic *EIF2AK4* mutations demonstrated a reduced KCO despite normal spirometry, which is characteristic of patients with PVOD/PCH. The reduced KCO likely reflects widespread reduction in alveolar gas exchange due to endothelial proliferation and patchy thickening of the blood gas barrier by the process of capillary haemangiomatosis. Ultrastructural thickening of the capillary basement membrane may also play a role ³³. In

keeping with previous reports in PVOD/PCH we also show that PAH patients with biallelic mutations in *EIF2AK4* are younger at diagnosis than patients with either *BMPR2* mutations or no known mutation ^{14, 20}. However, the presence of these characteristic features has a low positive predictive value for the identification of patients with biallelic *EIF2AK4* mutations.

In contrast to previous descriptions of patients with PVOD, none of the patients with clinically diagnosed PAH and biallelic *EIF2AK4* mutations developed pulmonary oedema in response to pulmonary artery vasodilator therapies. For example, intravenous prostanoids were used in 50% of these patients. In classical PVOD patients, pulmonary oedema with intravenous prostanoids has been reported in up to 44% of patients after a median treatment duration of just 9 days ⁴. Presumably the extent and severity of the pulmonary venous involvement in these patients might underlie the differing responses to prostanoids.

It is generally considered that HRCT imaging is a useful non-invasive test to assist in the diagnosis of suspected PVOD/PCH ¹¹. Although there was an increased prevalence of mediastinal lymphadenopathy and interlobular septal thickening in PAH patients with biallelic *EIF2AK4* mutations, we found that radiological features at the time of diagnosis could not accurately determine the underlying genotype ⁶. The differing radiological features of all patients with biallelic *EIF2AK4* mutations compared with PVOD cases without mutations is of interest. This may reflect differences between the younger onset genetic cases of PVOD, compared with the predominantly older group of patients without *EIF2AK4* mutations in whom other non-genetic factors, such as exposure to inorganic solvents, may play an important role ³⁴.

Histological examination (usually post mortem or from explanted lungs) is often considered essential for diagnostic confirmation of PVOD/PCH but may be confounded by the heterogeneous nature of vascular pathology ³⁵. Surgical biopsy of the lung in patients with severe

PAH is contraindicated and a limitation of this study is that lung tissue from only one patient with biallelic *EIF2AK4* mutations was available for analysis. This patient had a rare and predicted deleterious homozygous missense mutation in *EIF2AK4*. The predominant feature on assessment of the explanted lung tissue was of pulmonary arteriopathy, as usually seen in PAH. Although only infrequent, fibrosis of the septal venules and the possible presence of siderophages in the alveolar space were observed. These features are found in patients with PVOD/PCH. This case supports the hypothesis that patients with biallelic *EIF2AK4* mutations may present with a spectrum of venous and arterial involvement.

There are increasing reports of phenotypic, radiological and histological similarities between PAH and PVOD/PCH ^{6, 12, 13}. Tenorio et al. reported a homozygous missense mutation *EIF2AK4* in a large kindred of Iberian Romani with apparent heritable PAH ³¹. This kindred is likely to have PVOD/PCH as these diagnoses were not confirmed histologically and PVOD was suspected in half the patients. More recently, Best et al. also report two sisters with apparent heritable PAH carrying biallelic *EIF2AK4* mutations ³². These patients also had a reduced KCO but had not had HRCT assessment of their lung parenchyma which may have altered their clinical diagnosis. Taken together, these previous reports are compatible with the findings in this larger cohort, that patients with a clinical presentation of idiopathic or heritable PAH may in fact have underlying PVOD/PCH as determined by genetic analysis.

A strength of this study is the centralised reporting of radiographic features. However, the data collection was retrospective and incomplete in some cases. Assessing rare diseases, such as PAH and PVOD/PCH, with a prospective study recruiting incident cases would take a prohibitively long time. This is especially true when assessing survival and response to therapy. In this study including prevalent and retrospectively recruited patients, we demonstrated a worse

prognosis in patients with a clinical diagnosis of PAH and biallelic *EIF2AK4*. However, the inclusion of prevalent and retrospectively recruited patients can introduce bias such as immortal time bias, when there are long periods between diagnosis and enrolment in the study. The effect of immortal time bias and other confouders such as the inclusion of prevalent and incident cases can be difficult to predict. In all groups there are likely to be patients who died prior to study enrolment, and thus would not feature in any analysis. When we attempted to eliminate these sources of bias in a sensitivity analysis restricted to prospectively recruited patients from the UK, the study did not have sufficient power to show a difference in survival between different genotypes. Further studies of survival and response to therapy will be needed to definitively show whether "misclassified" PAH patients with biallelic *EIF2AK4* mutations have a similarly *Accelentation* poor prognosis as classical PVOD patients with these mutations.

The genetic architecture of idiopathic and heritable PAH remains to be fully elucidated. Ongoing analysis of whole genome sequence data in our cohort is likely to reveal novel rare variation underlying this condition. Mutations in *BMPR2* account for approximately 17% of idiopathic PAH patients and other known PAH genes account for approximately 1-2% of all cases ^{21, 36}. In the present study *BMPR2* mutations were found in 11% of patients without a family history of PAH. It is worth noting that patients with the sporadic form of the disease with no reported family history represent a higher burden of *BMPR2* mutations (n=89) compared to those with a family history (n=49). This has important implications for clinical genetic testing in patients with sporadic as well as familial disease.

In previous studies mutations in both *EIF2AK4* alleles are required to cause PVOD and PCH ^{14, 15}. In autosomal recessive disorders, it is unusual for the heterozygous state to manifest the disease phenotype and thus heterozygous *EIF2AK4* variants would not be expected to be

pathogenic. In this study, we found a significant over-representation of heterozygous rare and predicted deleterious *EIF2AK4* variants in PAH compared to control subjects and report 2 patients with rare variants in both *BMPR2* and *EIF2AK4*. Recently, the possibility that heterozygous *EIF2AK4* variants influence the penetrance of *BMPR2* mutations has been raised in a single family with PAH ³⁷. Further studies are required to determine whether heterozygous *EIF2AK4* variants contribute to aetiology in PAH.

In summary, we demonstrate that biallelic *EIF2AK4* mutations are found in patients diagnosed clinically with idiopathic and familial PAH. These patients may have subtle features suggestive of PVOD/PCH on close inspection and are likely to have underlying PVOD/PCH. The spectrum of phenotypic, radiological and histological features found in patients with biallelic *EIF2AK4* mutations made by current clinical assessments is wider and less clear cut than previously recognised. This may lead to misclassification of patients as PAH rather than PVOD and hinders accurate risk stratification. Ascertaining the *EIF2AK4* mutation status of patients through clinical genetic testing provides additional information to aid risk stratification and guide management. In a young patient presenting with apparent PAH, the presence of a low KCO with normal spirometry strongly suggests the presence of underlying biallelic *EIF2AK4* mutations have a worse prognosis compared to patients with *BMPR2* mutations and those without these mutations. Clinical genetic testing should aid identification of this high-risk group and facilitate early referral for lung transplantation and appropriate management.

Authors

Charaka Hadinnapola, MA, MB, BChir¹; Marta Bleda, PhD¹; Matthias Haimel, BSc^{1,2};

Nicholas Screaton, BM, BCh, FRCR, FRCP³; Andrew Swift, FRCP, PhD⁴;

Peter Dorfmüller, MD PhD⁵; Stephen D. Preston, FRCPath³; Mark Southwood, PhD³;

Jules Hernandez-Sanchez, PhD³; Jennifer Martin, BSc^{1,2}; Carmen Treacy, BSc¹;

Katherine Yates, BSc^{1,2}; Harm Bogaard, MD, PhD⁶; Colin Church, FRCP, PhD⁷;

Gerry Coghlan, MD, FRCP⁸; Robin Condliffe, MD⁹; Paul A. Corris, MBBS, FRCP¹⁰;

Simon Gibbs, MD, FRCP¹¹; Barbara Girerd, PhD⁵; Simon Holden, FRCP, PhD¹²;

Marc Humbert, MD, PhD⁵; David G Kiely, MD⁹; Allan Lawrie, PhD⁴; Rajiv Machado, PhD¹³;

Robert MacKenzie Ross, MB, BChir¹⁴; Shahin Moledina, MBChB¹⁵; David Montani, MD, PhD⁵;

Michael Newnham, MBBS¹; Andrew Peacock, MD⁷; Joanna Pepke-Zaba, PhD FRCP³;

Paula Rayner-Matthews, BSc²; Olga Shamardina, PhD²; Florent Soubrier, MD PhD¹⁶;

Laura Southgate, PhD¹⁷; Jay Suntharalingam, MD, FRCP¹⁴; Mark Toshner, MD^{1,3};

Richard Trembath, FRCP FMedSci¹⁷; Anton Vonk Noordegraaf, MD⁶;

Martin R. Wilkins, MD, FRCP FMedSci¹¹; Stephen J. Wort, PhD, FRCP¹⁸;

John Wharton, PhD¹¹; The NIHR BioResource – Rare Diseases Consortium; UK National

Cohort Study of Idiopathic and Heritable PAH; Stefan Gräf, PhD^{1,2,19*}; Nicholas W. Morrell,

MD, FRCP, FMedSci^{1,2*}

*Joint senior authors

Affiliations

¹Dept. of Medicine, University of Cambridge, Cambridge, UK; ²NIHR BioResource – Rare Diseases; ³Papworth Hospital, Cambridge, UK; ⁴Sheffield University, Sheffield, UK;

⁵Université Paris-Sud, Paris, France; ⁶VU University Medical Centre, Amsterdam, Netherlands; ⁷Golden Jubilee Hospital, Glasgow, UK; ⁸Royal Free Hospital, London, UK; ⁹Royal Hallamshire Hospital, Sheffield, UK; ¹⁰Newcastle University, Newcastle, UK; ¹¹Imperial College London, London, UK; ¹²Addenbrooke's Hospital, Cambridge, UK; ¹³University of Lincoln, Lincoln, UK; ¹⁴Royal United Hospitals Bath NHS Foundation Trust, Bath, UK; ¹⁵Great Ormond Street Hospital, London, UK; ¹⁶Hôpital Pitié Salpétrière, Paris, France; ¹⁷King's College London, London, UK; ¹⁸Royal Brompton Hospital, London, UK; ¹⁹Dept. of Haematology, University of Cambridge, Cambridge, UK

Acknowledgements

We would like to acknowledge the help of all the pulmonary hypertension centres, research nurses and clinical staff involved in the recruitment of patients. We thank the patients and their families who were recruited to this study, and the Pulmonary Hypertension Association (UK). We acknowledge the support of the National Institute of Health Research (NIHR) Rare Diseases Translational Research Collaboration, Imperial NIHR Clinical Research Facility, the Cambridge NIHR Biomedical Research Centre, the Netherlands CardioVascular Research Initiative, the Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences.

Sources of Funding

The National Institute of Health Research (NIHR) BioResource for Rare Diseases provided funding for sequencing and analysis. The study was supported by a British Heart Foundation Special Project Grant and a Medical Research Council (UK) Experimental Challenge Award.

Disclosures

None

References

1. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM and Souza R. Updated clinical classification of pulmonary hypertension. *J Am Coll Cardiol*. 2013;62:D34-41.

2. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M and Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). *Eur Respir J.* 2015;46:903-75.

3. Resten A, Maitre S, Humbert M, Rabiller A, Sitbon O, Capron F, Simonneau G and Musset D. Pulmonary hypertension: CT of the chest in pulmonary venoocclusive disease. *AJR Am J Roentgenol*. 2004;183:65-70.

4. Montani D, Achouh L, Dorfmuller P, Le Pavec J, Sztrymf B, Tcherakian C, Rabiller A, Haque R, Sitbon O, Jais X, Dartevelle P, Maitre S, Capron F, Musset D, Simonneau G and Humbert M. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. *Medicine* (*Baltimore*). 2008;87:220-33.

5. Trip P, Girerd B, Bogaard HJ, de Man FS, Boonstra A, Garcia G, Humbert M, Montani D and Vonk-Noordegraaf A. Diffusion capacity and BMPR2 mutations in pulmonary arterial hypertension. *Eur Respir J*. 2014;43:1195-8.

6. Rajaram S, Swift AJ, Condliffe R, Johns C, Elliot CA, Hill C, Davies C, Hurdman J, Sabroe I, Wild JM and Kiely DG. CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE Registry. *Thorax*. 2015;70:382-7.

7. Trip P, Nossent EJ, de Man FS, van den Berk IA, Boonstra A, Groepenhoff H, Leter EM, Westerhof N, Grunberg K, Bogaard HJ and Vonk-Noordegraaf A. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: patient characteristics and treatment responses. *Eur Respir J*. 2013;42:1575-85.

8. Mandel J, Mark EJ and Hales CA. Pulmonary veno-occlusive disease. *Am J Respir Crit Care Med.* 2000;162:1964-73.

9. Pietra GG, Edwards WD, Kay JM, Rich S, Kernis J, Schloo B, Ayres SM, Bergofsky EH, Brundage BH and Detre KM. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. *Circulation*. 1989;80:1198-206.

10. Lantuejoul S, Sheppard MN, Corrin B, Burke MM and Nicholson AG. Pulmonary venoocclusive disease and pulmonary capillary hemangiomatosis: a clinicopathologic study of 35 cases. *Am J Surg Pathol*. 2006;30:850-7.

11. Montani D, Lau EM, Dorfmuller P, Girerd B, Jais X, Savale L, Perros F, Nossent E, Garcia G, Parent F, Fadel E, Soubrier F, Sitbon O, Simonneau G and Humbert M. Pulmonary veno-occlusive disease. *Eur Respir J.* 2016;47:1518-34.

12. Dorfmuller P, Humbert M, Perros F, Sanchez O, Simonneau G, Muller KM and Capron F. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. *Hum Pathol.* 2007;38:893-902.

13. Ghigna MR, Guignabert C, Montani D, Girerd B, Jais X, Savale L, Herve P, Thomas de Montpreville V, Mercier O, Sitbon O, Soubrier F, Fadel E, Simonneau G, Humbert M and Dorfmuller P. BMPR2 mutation status influences bronchial vascular changes in pulmonary arterial hypertension. *Eur Respir J.* 2016;48:1668-1681.

14. Eyries M, Montani D, Girerd B, Perret C, Leroy A, Lonjou C, Chelghoum N, Coulet F, Bonnet D, Dorfmuller P, Fadel E, Sitbon O, Simonneau G, Tregouet DA, Humbert M and Soubrier F. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. *Nat Genet*. 2014;46:65-9.

15. Best DH, Sumner KL, Austin ED, Chung WK, Brown LM, Borczuk AC, Rosenzweig EB, Bayrak-Toydemir P, Mao R, Cahill BC, Tazelaar HD, Leslie KO, Hemnes AR, Robbins IM and Elliott CG. EIF2AK4 mutations in pulmonary capillary hemangiomatosis. *Chest*. 2014;145:231-6.

16. Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF and Hinnebusch AG. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. *Cell*. 1992;68:585-96.

17. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM and Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. *Mol Cell*. 2003;11:619-33.

18. Wille KM, Sharma NS, Kulkarni T, Lammi MR, Barney JB, Bellot SC, Cantor RS, Naftel DC, Diaz-Guzman E and McGiffin DC. Characteristics of patients with pulmonary venoocclusive disease awaiting transplantation. *Ann Am Thorac Soc.* 2014;11:1411-8.

19. Palmer SM, Robinson LJ, Wang A, Gossage JR, Bashore T and Tapson VF. Massive pulmonary edema and death after prostacyclin infusion in a patient with pulmonary veno-occlusive disease. *Chest.* 1998;113:237-40.

20. Montani D, Girerd B, Jais X, Levy M, Amar D, Savale L, Dorfmuller P, Seferian A, Lau EM, Eyries M, Le Pavec J, Parent F, Bonnet D, Soubrier F, Fadel E, Sitbon O, Simonneau G and

Humbert M. Clinical phenotypes and outcomes of heritable and sporadic pulmonary venoocclusive disease: a population-based study. *Lancet Respir Med.* 2017;5:125-134.

21. Evans JD, Girerd B, Montani D, Wang XJ, Galie N, Austin ED, Elliott G, Asano K, Grunig E, Yan Y, Jing ZC, Manes A, Palazzini M, Wheeler LA, Nakayama I, Satoh T, Eichstaedt C, Hinderhofer K, Wolf M, Rosenzweig EB, Chung WK, Soubrier F, Simonneau G, Sitbon O, Graf S, Kaptoge S, Di Angelantonio E, Humbert M and Morrell NW. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. *Lancet Respir Med.* 2016;4:129-37.

22. Runo JR, Vnencak-Jones CL, Prince M, Loyd JE, Wheeler L, Robbins IM, Lane KB, Newman JH, Johnson J, Nichols WC and Phillips JA, 3rd. Pulmonary veno-occlusive disease caused by an inherited mutation in bone morphogenetic protein receptor II. *Am J Respir Crit Care Med.* 2003;167:889-94.

23. Aldred MA, Vijayakrishnan J, James V, Soubrier F, Gomez-Sanchez MA, Martensson G, Galie N, Manes A, Corris P, Simonneau G, Humbert M, Morrell NW and Trembath RC. BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. *Hum Mutat*. 2006;27:212-3.

24. Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, Gruenig E, Janssen B, Koehler R, Seeger W, Eickelberg O, Olschewski H, Elliott CG, Glissmeyer E, Carlquist J, Kim M, Torbicki A, Fijalkowska A, Szewczyk G, Parma J, Abramowicz MJ, Galie N, Morisaki H, Kyotani S, Nakanishi N, Morisaki T, Humbert M, Simonneau G, Sitbon O, Soubrier F, Coulet F, Morrell NW and Trembath RC. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. *Hum Mutat.* 2006;27:121-32.

25. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P and Cunningham F. The Ensembl Variant Effect Predictor. *Genome Biol.* 2016;17:122.

26. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ and MacArthur DG. Analysis of protein-coding genetic variation in 60,706 humans. *Nature*. 2016;536:285-91.

27. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR. A method and server for predicting damaging missense mutations. *Nat Methods*. 2010;7:248-9.

28. Ng PC and Henikoff S. Predicting deleterious amino acid substitutions. *Genome Res.* 2001;11:863-74.

29. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM and Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet*. 2014;46:310-5.

30. Staples J, Qiao D, Cho M, Silverman E, Nickerson D and Below J. PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent. *Am J Hum Genet*. 2014;95:553-64.

31. Tenorio J, Navas P, Barrios E, Fernandez L, Nevado J, Quezada CA, Lopez-Meseguer M, Arias P, Mena R, Lobo JL, Alvarez C, Heath K, Escribano-Subias P and Lapunzina P. A founder EIF2AK4 mutation causes an aggressive form of pulmonary arterial hypertension in Iberian Gypsies. *Clin Genet*. 2015;88:579-83.

32. Best DH, Sumner KL, Smith BP, Damjanovich-Colmenares K, Nakayama I, Brown LM, Ha Y, Paul E, Morris A, Jama MA, Dodson MW, Bayrak-Toydemir P and Elliott CG. EIF2AK4 Mutations in Patients Diagnosed with Pulmonary Arterial Hypertension. *Chest.* 2016.

33. Villaschi S and Pietra GG. Alveolo-capillary membrane in primary pulmonary hypertension. *Appl Pathol.* 1986;4:132-7.

34. Montani D, Lau EM, Descatha A, Jais X, Savale L, Andujar P, Bensefa-Colas L, Girerd B, Zendah I, Le Pavec J, Seferian A, Perros F, Dorfmuller P, Fadel E, Soubrier F, Sitbon O, Simonneau G and Humbert M. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease. *Eur Respir J*. 2015;46:1721-31.

35. Pietra GG, Capron F, Stewart S, Leone O, Humbert M, Robbins IM, Reid LM and Tuder RM. Pathologic assessment of vasculopathies in pulmonary hypertension. *J Am Coll Cardiol*. 2004;43:25s-32s.

36. Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH, Chung WK, Benjamin N, Elliott CG, Eyries M, Fischer C, Graf S, Hinderhofer K, Humbert M, Keiles SB, Loyd JE, Morrell NW, Newman JH, Soubrier F, Trembath RC, Viales RR and Grunig E. Pulmonary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects. *Hum Mutat*. 2015;36:1113-27.

37. Eichstaedt CA, Song J, Benjamin N, Harutyunova S, Fischer C, Grunig E and Hinderhofer K. EIF2AK4 mutation as "second hit" in hereditary pulmonary arterial hypertension. *Respir Res.* 2016;17:141.

	PAH patients wit <i>BMPR2</i> mutation	h s * associated genes	n no PAH patients w EIF2AK4 heterozygous variants	vith PAH patients with biallelic <i>EIF2AK4</i> mutations	PVOD/PCH patients	р
n	130	704	8	9	16	
Age (years)	39 [31 - 52]	51 [37 - 65]	49 [36 - 67]	29 [23 - 38]	57 [41 - 69]	< 0.001
Gender (n female [%])	85 [65.4%]	494 [70.2%]	7 [87.5%]	4 [44.4%]	9 [56.2%]	0.18
Ethnicity (n white Caucasian [%])	108 [83.1%]	551 [78.5%]	5 [62.5%]	2 [22.2%]	13 [81.2%]	0.002
Digital clubbing (n [%])	6 [9.7%]	10 [3.4%]	0 [0%]	3 [42.9%]	1 [11.1%]	0.002
BMI	28 [24 - 33]	28 [24 - 33]	26 [23 - 28]	24 [20 - 27]	27 [24 - 31]	0.216
mPAP (mmHg)	57 [51 - 69]	52 [44 - 61]	44 [42 - 52]	52 [46 - 65]	48 [40 - 58]	< 0.001
CO (L/min)	3 [3 - 4]	4 [3 - 5]	3 [3 - 5]	5 [3 - 6]	4 [3 - 4]	< 0.001
PVR (WU)	15 [11 - 20]	10 [7 - 14]	9 [6 - 10]	9 [8 - 13]	10 [9 - 12]	< 0.001
Vasoresponders (n [%])	0 [0%]	28 [17.5%]	0 [0%]	0 [0%]	0 [0%]	0.011
FEV ₁ (%pred)	90 [78 - 99]	84 [72 - 95]	83 [71 - 94]	94 [85 - 100]	85 [70 - 95]	0.031
FVC (%pred)	97 [86 - 109]	95 [82 - 106]	96 [75 - 98]	100 [86 - 119]	97 [81 - 103]	0.310
KCO (% pred)	81 [73 - 92]	71 [51 - 85]	81 [72 - 95]	33 [30 - 35]	37 [32 - 47]	< 0.001
Resting S_AO_2 (%)	96 [94 - 97]	96 [93 - 97]	98 [98 - 98]	91 [90 - 94]	94 [91 - 95]	0.010
S_AO_2 post walk test (%)	94 [90 - 97]	92 [85 - 96]	94 [84 - 96]	78 [75 - 82]	88 [85 - 89]	< 0.001

Table 1. Phenotypic summary of *EIF2AK4* variant carriers. Patients with a clinical diagnosis of PAH and biallelic *EIF2AK4* mutations are younger at diagnosis and have a significantly reduced KCO compared to other groups.

BMI - body mass index, mPAP - mean pulmonary artery pressure, PVR - pulmonary vascular resistance, FEV1 - forced expiratory volume in 1 second, FVC - forced vital capacity, KCO - transfer coefficient for carbon monoxide. * Also includes the 2 patients with a heterozygous EIF2AK4 variant and a BMPR2 variant. Data presented as median [IQR] unless indicated. Percentages were calculated using the number of patients for whom data were available as the denominator.

	Group	PAH patients with <i>BMPR2</i> mutations	PAH patients with no mutations in the previously reported PAH genes	PAH patients with heterozygous <i>EIF2AK4</i> variants	PAH patients with biallelic <i>EIF2AK4</i> mutations	PVOD	р
	n	21	21	4	7	14	
Centrilobular ground glass opacification density	None	7 [33.3%]	13 [61.9%]	2 [50.0%]	1 [14.3%]	7 [50.0%]	
	Subtle	12 [57.1%]	5 [23.8%]	0 [0.0%]	2 [28.6%]	3 [21.4%]	0.122
	Present	2 [9.5%]	3 [14.3%]	2 [50.0%]	4 [57.1%]	4 [28.6%]	
	None	8 [38.1%]	13 [61.9%]	2 [50.0%]	1 [4.3%]	8 [57.1%]	
	<5%	0 [0.0%]	3 [14.3%]	0 [0.0%]	1 [14.3%]	1 [7.1%]	0.077
Centrilobular ground glass opacification extent	5-25%	2 [9.5%]	0 [0.0%]	1 [25.0%]	2 [28.6%]	1 [7.1%]	
	25-50%	2 [9.5%]	4 [19.0%]	0 [0.0%]	0 [0.0%]	2 [14.3%]	
	50-75%	5 [23.8%]	1 [4.8%]	0 [0.0%]	2 [28.6%]	0 [0.0%]	
	75-100%	4 [19.0%]	0 [0.0%]	1 [25.0%]	1 [14.3%]	2 [14.3%]	
Interlahedon contal	None	17 [81.0%]	18 [85.7%]	4 [100.0%]	5 [71.4%]	4 [28.6%]	
thickening	Subtle	3 [14.3%]	2 [9.5%]	0 [0.0%]	0 [0.0%]	1 [7.1%]	0.001
	Present	1 [4.8%]	1 [4.8%]	0 [0.0%]	2 [28.6%]	9 [64.3%]	
Mediastinal	None	19 [90.5%]	21 [100.0%]	4 [100.0%]	3 [42.9%]	3 [21.4%]	<0.001
lymphadenopathy	Present	2 [9.5%]	0 [0.0%]	0 [0.0%]	4 [57.1%]	11 [78.6%]	<0.001
Pleural effusion	None	17 [81.0%]	21 [100.0%]	3 [75.0%]	7 [100.0%]	10 [71.4%]	0.049
	Small	4 [19.0%]	0 [0.0%]	1 [25.0%]	9 [0.0%]	4 [28.6%]	0.048
Neovascularity	None	12 [57.1%]	18 [85.7%]	4 [100.0%]	6 [85.7%]	13 [92.9%]	0.077
	Present	9 [42.9%]	3 [14.3%]	0 [0.0%]	1 [14.3%]	1 [7.1%]	
CT diagnosis	PAH	20 [95.2%]	18 [85.7%]	3 [75.0%]	3 [42.9%]	4 [28.6%]	
	Possible PVOD/PCH	1 [4.8%]	3 [14.3%]	1 [25.0%]	4 [57.1%]	10 [71.4%]	

Table 2. Radiological features and consensus radiological diagnosis of PAH patients in the CT substudy

Data presented as n [%].

Figure Legends

Figure 1. Subjects recruited to the NIHR BioResource – Rare Diseases Study and the clinical diagnostic categories of PAH patients included in this study.

Figure 2. The transfer coefficient for carbon monoxide (KCO) is influenced by genotype in pulmonary arterial hypertension. Patients with $FEV_1 < 80$ % predicted and FVC < 80 % predicted and diagnosed with PAH or PVOD/PCH after 50 years of age excluded from the plot.

Figure 3. Representative histopathological images from one patient with clinically reconstruction diagnosed idiopathic PAH but found to have a rare (not reported in the ExAC database) and predicted deleterious (CADD score 32) homozygous *EIF2AK4* missense variant (c.1795G>C). The patient was of Pakistani origin and did not have a family history of PAH or PVOD. At presentation, he was 22 years old and had a reduced KCO (31% predicted) despite preserved spirometry. HRCT of his chest showed subtle but extensive (50-75% involvement) ground glass opacification. No interlobular septal thickening or mediastinal lymphadenopathy was observed. No suspicion of PVOD/PCH was raised based on radiological appearances. Histopathology was reviewed by two independent pathologists each confirming the predominant histological pattern to be one of pulmonary arterial vasculopathy. The pulmonary arteries showed eccentric and concentric intimal fibrosis and medial hypertrophy (A, B) as well as some lesions with features of recanalised thrombus (C). Several concentrically muscularised arterioles were also observed (D). No complex plexiform lesions were present. There was patchy thickening of the alveolar septa with capillary congestion and pigmented intra-alveolar

macrophages similar to PCH (E, F). Venous remodelling was difficult to trace and infrequent, but present. Fibrous thickening of the intima in septal veins (G, I) and a micro-vessel (H).

Phenotypic Characterisation of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically with Pulmonary Arterial Hypertension

Charaka Hadinnapola, Marta Bleda, Matthias Haimel, Nicholas Screaton, Andrew J. Swift, Peter Dorfmüller, Stephen D. Preston, Mark Southwood, Jules Hernandez-Sanchez, Jennifer Martin, Carmen Treacy, Katherine Yates, Harm Bogaard, Colin Church, Gerry Coghlan, Robin Condliffe, Paul A. Corris, Simon R. Gibbs, Barbara Girerd, Simon Holden, Marc Humbert, David G. Kiely, Allan Lawrie, Rajiv D. Machado, Robert MacKenzie Ross, Shahin Moledina, David Montani, Michael Newnham, Andrew J. Peacock, Joanna Pepke-Zaba, Paula J. Rayner-Matthews, Olga Shamardina, Florent Soubrier, Laura Southgate, Jay Suntharalingam, Mark R. Toshner, Richard C. Trembath, Anton Vonk Noordegraaf, Martin R. Wilkins, Stephen J. Wort, John Wharton, Stefan Gräf and Nicholas W. Morrell

The NIHR BioResource - Rare Diseases Consortium & UK National Cohort Study of Idiopathic and Heritable PAH

Circulation. published online September 28, 2017; *Circulation* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2017 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/early/2017/09/25/CIRCULATIONAHA.117.028351 Free via Open Access

Data Supplement (unedited) at: http://circ.ahajournals.org/content/suppl/2017/09/25/CIRCULATIONAHA.117.028351.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at: http://circ.ahajournals.org//subscriptions/

APPENDIX

Name	Institution	Country
Principal Investigators BRIDGE Consortium Projects		
Timothy Aitman	Imperial College/University of Edinburgh University of Oxford/Oxford University	UK
David Bennett	Hospitals	UK
Mark Caulfield	Queen Mary University of London University of Cambridge/Cambridge University	UK
Patrick Chinnery	Hospitals	UK
Daniel Gale	University College London	UK
Ania Koziell	Guy's and St Thomas' NHS Foundation Trust	UK
Taco W Kuijpers	Emma Children's Hospital AMC, Amsterdam	Netherlands
	Imperial College Healthcare NHS	
Michael A Laffan	Trust/Imperial College London	UK
	University of Cambridge/Cambridge University	
Eamonn Maher	Hospitals	UK
	University of Cambridge/Cambridge University	
Hugh S Markus	Hospitals	UK
Nick clas Maxwell	University of Cambridge/Cambridge University	
Nicholas Morrell	Hospitals	UK
Willem H Ouweband	Transplant/ Wellcome Trust Sanger Institute	ПК
David Perry	Combridge University Hospitals	
David Ferry	University of Cambridge/Cambridge University	UK
E Lucy Baymond	Hospitals	ЦΚ
	University of Oxford/Oxford University	U.N.
Irene Roberts	Hospitals NHS FT	UK
	University of Cambridge/Cambridge University	
Kenneth Smith	Hospitals	UK

Adrian Thrasher	Great Ormond Street Hospital	UK
Hugh Watkins	University of Oxford/Oxford University Hospitals NHS FT	UK
Catherine Williamson	King's College London University of Cambridge/Cambridge University	UK
Geoffrey Woods	Hospitals	UK
NIIHR BioResource - Rare Diseases - Management Team		
Sofie Ashford	University of Cambridge	UK
John R Bradley	Cambridge University Hospitals	UK
Debra Fletcher	University of Cambridge	UK
Tracey Hammerton	University of Cambridge	UK
Roger James	University of Cambridge	UK
Nathalie Kingston	University of Cambridge	UK
Willem H Ouwehand	University of Cambridge	UK
Christopher J Penkett	University of Cambridge	UK
	University of Cambridge/Cambridge University	
F Lucy Raymond	Hospitals	UK
Kathleen Stirrups	University of Cambridge	UK
Marijke Veltman	University of Cambridge	UK
Tim Young	University of Cambridge	UK
Enrolment and Ethics		
Sofie Ashford	University of Cambridge	UK
Matthew Brown	University of Cambridge	UK
Naomi Clements-Brod	University of Cambridge	UK
John Davis	University of Cambridge	UK
Eleanor Dewhurst	University of Cambridge	UK
Marie Erwood	University of Cambridge	UK
Amy Frary	University of Cambridge	UK
Rachel Linger	University of Cambridge	UK
Jennifer Martin	University of Cambridge	UK
Sofia Papadia	University of Cambridge	UK
-----------------------	--	-----------
Karola Rehnstrom	University of Cambridge	UK
Hannah Stark	University of Cambridge	UK
BRIDGE-BPD Consortium		
	Department of Haematology, Castle Hill	
	Hospital, Hull and East Yorkshire NHS	
David Allsup	Foundation Trust	UK
	Department of Haematology, Guys and St	
Steve Austin	Thomas' NHS Foundation Trust	UK
	Institut für Immunologie und	
	Transfusionsmedizin, Ernst-Moritz-Arndt-	
Tamam Bakchoul	University of Greifswald, Greifswald	Germany
	The Katharine Dormandy Haemophilia Centre	
	and Thrombosis Unit, Royal Free London NHS	
Tadbir K Bariana	Foundation Trust/University College London	UK
Paula Bolton-Maggs	NHS Blood and Transplant, Manchester	UK
	Royal Hospital for Children, NHS Greater	
Elizabeth Chalmers	Glasgow and Clyde	UK
	Arthur Bloom Haemophilia Centre, University	
Peter Collins	Hospital of Wales Heath Park, Cardiff, Wales	UK
	Pathology and Laboratory Medicine, University	
	of Western Australia, Crawley, Western	
Wendy N Erber	Australia	Australia
	Salisbury Hospital, Salisbury NHS Fondation	
Tamara Everington	Trust	UK
	Haematological Laboratory, Trousseau	
Remi Favier	Children's Hospital and INSERM U1009, Paris	France
	Department of Cardiovascular Sciences, Center	
	for Molecular and Vascular Biology, University	
Kathleen Freson	of Leuven	Belgium
	Beth Israel Deaconess Medical Centre, Harvard	
Bruce Furie	Medical School, Boston	USA

	Cambridge University Hospitals NHS	
Michael Gattens	Foundation Trust	UK
	The Katharine Dormandy Haemophilia Centre	
	and Thrombosis Unit, Royal Free London NHS	
Keith Gomez	Foundation Trust/University College London	UK
	Department of Haematology, University of	
Daniel Greene	Cambridge/MRC-BSU	UK
	Institute for Immunology and Transfusion	
	Medicine, Ernst-Moritz-Arndt-University of	
Andreas Greinacher	Greifswald, Greifswald	Germany
	The Royal London Hospital, Barts Health NHS	
Daniel Hart	Foundation Trust	UK
Johan WM Heemskerk	Maastricht University, Maastricht	Netherlands
	Maastricht University Medical Centre,	
Yvonne Henskens	Maastricht	Netherlands
	Southampton General Hospital, University	
Rashid Kazmi	Hospital Southampton NHS FT	UK
	Oxford Haemophilia and Thrombosis Centre,	
	Oxford University Hospitals NHS Trust, The	
David Keeling	Churchill Hospital, Oxford	UK
	Cambridge University Hospitals NHS	
Anne M Kelly	Foundation Trust	UK
	Imperial College Healthcare NHS Trust/Imperial	College
Michael A Laffan	London	
	Division of Hematology, Children's Hospital of	
	Philadelphia/ Department of Pediatrics,	
	Perelman School of Medicine at the University	
Michele P Lambert	of Pennsylvania, Philadelphia	USA
	Imperial College Healthcare NHS	
Claire Lentaigne	Trust/Imperial College London	UK
	Department of Haematology, Great Ormond	
Ri Liesner	Street Hospital for Children NHS Trust, London	UK

	Haemophilia, Haemostasis and Thrombosis	
	Centre, Hampshire Hospitals NHS Foundation	
Sarah Mangles	Trust, Aldermaston Road, Basingstoke	UK
	Department of Haematology, Great Ormond	
Mary Mathias	Street Hospital for Children NHS Trust, London	UK
	Imperial College Healthcare NHS	
Carolyn M Millar	Trust/Imperial College London	UK
	University of Bristol/University Hospitals	
Andrew Mumford	Bristol NHS Foundation Trust	UK
	Institut Hospitalo-Universitaire LIRYC, PTIB,	
Paquita Nurden	Hôpital Xavier Arnozan, Pessac	France
	University of Cambridge/ NHS Blood and	
Willem H Ouwehand	Transplant/ Wellcome Trust Sanger Institute	UK
	Department of Haematology, University of	
Sofia Papadia	Cambridge	UK
	Department of Haematology, Sheffield	
Jeanette Payne	Children's Hospital NHS Foundation Trust	UK
	Barts and The London School of Medicine and	
	Dentistry, Haemophilia Centre, The Royal	
John Pasi	London Hospital, London	UK
	Cambridge University Hospitals NHS	
David J Perry	Foundation Trust	UK
	Department of Cardiovascular Sciences, Center	
	for Molecular and Vascular Biology, University	
Kathelijne Peerlinck	of Leuven	Belgium
	Leeds Teaching Hospitals NHS Foundation	
Michael Richards	Trust, Leeds	UK
Matthew Rondina	Madsen Health Center, Salt Lake City	USA
	Haemophilia Centre, Kent & Canterbury	
	Hospital, East Kent Hospitals University	
Catherine Roughley	Foundation Trust	UK
•	Beth Israel Deaconess Medical Centre, Harvard	
Sol Schulman	Medical School, Boston	USA

	Lehrstuhl für Experimentelle Biomedizin,	
Harald Schulze	Universitätsklinikum Würzburg, Würzburg	Germany
Marie Scully	University College London Hospital	UK
	The Royal London Hospital, Barts Health NHS	
Suthesh Sivapalaratnam	Foundation Trust	UK
	Glasgow Royal Infirmary, NHS Greater Glasgow	
R Campbell Tait	and Clyde	UK
	Haematology Department, Royal Victoria	
Kate Talks	Infirmary, Newcastle upon Tyne	UK
	Haematology Department, Manchester Royal	
Jecko Thachil	Infirmary, Oxford Road, Mancheste	UK
	Department of Haematology, University of	
Ernest Turro	Cambridge/MRC-BSU	UK
	The Roald Dahl Haemophilia Centre, Royal	
Cheng-Hock Toh	Liverpool Hospital, Liverpool	UK
	Department of Cardiovascular Sciences, Center	
Christen Cost	for Molecular and Vascular Biology, University	Delairme
Chris van Geel	OI Leuven Maastricht University Medical Contro	Belgium
Minka Do Vrios	Maastricht	Nothorlands
		Nethenanus
limothy Q warner	Barts Health NHS Foundation Trust	UK
Sarah Worthury	Pristol NHS Foundation Trust	
Combridge Translational ConOmics Laboratory		UK
Abigail Furnell	University of Combridge	
Abigail Furneli	University of Cambridge	UK
		UK
llenia Simeoni	University of Cambridge	UK
Simon Staines	University of Cambridge	UK
Jonathan Stephens	University of Cambridge	UK
Kathleen Stirrups	University of Cambridge	UK
Deborah Whitehorn	University of Cambridge	UK
Paula Rayner-Matthews	University of Cambridge	UK

Christopher Watt	University of Cambridge	UK
Clinical Bioinformatics		
Antony Attwood	University of Cambridge	UK
Louise Daugherty	University of Cambridge	UK
Sri VV Deevi	University of Cambridge	UK
Csaba Halmagyi	University of Cambridge	UK
Fengyuan Hu	University of Cambridge	UK
Roger James	University of Cambridge	UK
Vera Matser	University of Cambridge	UK
Stuart Meacham	University of Cambridge	UK
Karyn Megy	University of Cambridge	UK
Christopher J Penkett	University of Cambridge	UK
Olga Shamardina	University of Cambridge	UK
Kathleen Stirrups	University of Cambridge	UK
Catherine Titterton	University of Cambridge	UK
Salih Tuna	University of Cambridge	UK
Ping Yu	University of Cambridge	UK
Julie von Ziegenweldt	University of Cambridge	UK
Genetic Epidemiology		
William Astle	University of Cambridge	UK
Marta Bleda	University of Cambridge	UK
Keren Carss	University of Cambridge	UK
Stefan Graf	University of Cambridge	UK
Daniel Greene	University of Cambridge	UK
Matthias Haimel	University of Cambridge	UK
Hana Lango-Allen	University of Cambridge	UK
Ernest Turro	University of Cambridge	UK
MRC Biostatistics Unit		
William Astle	University of Cambridge	UK
Daniel Greene	University of Cambridge	UK

Sylvia Richardson	University of Cambridge	UK
Ernest Turro	University of Cambridge	UK
High Performance Computing Service		
Paul Calleja	University of Cambridge	UK
Stuart Rankin	University of Cambridge	UK
Wojciech Turek	University of Cambridge	UK
Administrative Support		
Christine Bryson	University of Cambridge	UK
Julie Anderson	University of Cambridge	UK
Debra Fletcher	University of Cambridge	UK
Coleen McJannet	University of Cambridge	UK
Sophie Stock	University of Cambridge	UK
Tim Young	University of Cambridge	UK
SPEED		
	Birmingham Children's Hospital NHS	
Evangeline Wassmer	Foundation Trust	UK
	Birmingham Children's Hospital NHS	
Aman Sohal	Foundation Trust	UK
Callet Cantra	Birmingham Children's Hospital NHS	
Salkat Santra	Foundation Trust Birmingham Childron's Hospital NHS	UK
lulie Vogt	Foundation Trust	ПК
June voge	Cambridge University Hospitals NHS	ÖK
Manali Chitre	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Deepa Krishnakumar	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Gautum Ambegaonkar	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Anna Maw	Foundation Trust	UK

	Cambridge University Hospitals NHS	
Ruth Armstrong	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Simon Holden	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Soo-Mi Park	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Sarju Mehta	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Joan Paterson	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Jenny Carmichael	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Louise Allen	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Anke Hensiek	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Helen Firth	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Penelope Stein	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Patrick Deegan	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Rainer Doffinger	Foundation Trust	UK
	Cambridge University Hospitals NHS	
Alasdair Parker	Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Maria Bitner-Glindzicz	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Richard Scott	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Jane Hurst	NHS Foundation Trust	UK

	Great Ormond Street Hospital for Children	
Elisabeth Rosser	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Melissa Lees	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Emma Clement	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Robert Henderson	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Dorothy Thompson	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
Alice Gardham	NHS Foundation Trust	UK
	Great Ormond Street Hospital for Children	
	NHS Foundation Trust/University College	
Paul Gissen	London	UK
Dragana Josifova	Guy's and St Thomas' NHS Foundation Trust	UK
Ellen Thomas	Guy's and St Thomas' NHS Foundation Trust	UK
Chris Patch	Guy's and St Thomas' NHS Foundation Trust	UK
Charu Deshpande	Guy's and St Thomas' NHS Foundation Trust	UK
Frances Flinter	Guy's and St Thomas' NHS Foundation Trust	UK
Muriel Holder	Guy's and St Thomas' NHS Foundation Trust	UK
Natalie Canham	London North West Healthcare NHS Trust	UK
Emma Wakeling	London North West Healthcare NHS Trust	UK
Susan Holder	London North West Healthcare NHS Trust	UK
Neeti Ghali	London North West Healthcare NHS Trust	UK
Angie Brady	London North West Healthcare NHS Trust	UK
Virginia Clowes	London North West Healthcare NHS Trust	UK
Robert MacLaren	Moorfields Eye Hospital NHS Foundation Trust	UK
	Moorfields Eye Hospital NHS Foundation	
Andrew Webster	Trust/University College London	UK

	Moorfields Eye Hospital NHS Foundation	
Anthony Moore	Trust/University College London	UK
	Moorfields Eye Hospital NHS Foundation	
Gavin Arno	Trust/University College London	UK
	Moorfields Eye Hospital NHS Foundation	
Michel Michaelides	Trust/University College London	UK
Julia Rankin	Royal Devon & Exeter NHS Foundation Trust	UK
	UCL Great Ormond Street Institute of Child	
Manju Kurian	Health	UK
	University College London Hospitals NHS	
Elaine Murphy	Foundation Trust	UK
Keren Carss	University of Cambridge	UK
Alba Sanchis-Juan	University of Cambridge	UK
Marie Erwood	University of Cambridge	UK
Eleanor Dewhurst	University of Cambridge	UK
	University of Cambridge (CIMR Medical	
Detelina Grozeva	Genetics)	UK
	University of Cambridge/Cambridge University	
F Lucy Raymond	Hospitals	UK
	University of Cambridge/Cambridge University	
Evan Reid	Hospitals NHS Foundation Trust	UK
	University of Cambridge/Cambridge University	
Geoff Woods	Hospitals NHS Foundation Trust	UK
	University of Cambridge/Cambridge University	
Marc Tischkowitz	Hospitals NHS Foundation Trust	UK
	University of Cambridge/Cambridge University	
Richard Sandford	Hospitals NHS Foundation Trust	UK
РАН		
	University of Cambridge/Cambridge University	
Nicholas Morrell	Hospitals	UK
Stefan Gräf	University of Cambridge	UK

	Department of Medicine, University of	
Marta Bleda	Cambridge	UK
	Department of Medicine, University of	
Charaka Hadinnapola	Cambridge	UK
	Department of Medicine, University of	
Matthias Haimel	Cambridge	UK
	Cambridge University Hospitals NHS	
Simon Holden	Foundation Trust	UK
	Department of Medicine, University of	
Jennifer Martin	Cambridge	UK
Sonia Ali	Imperial and Hammersmith	UK
Harm Boggard	VU University Medical Center, Amsterdam	Netherlands
Colin Church	Golden Jubilee National Hospital	UK
Paul Corris	Newcastle Freeman	UK
Gerry Coghlan	Royal Free	UK
Amanda Creaser-Myers	Sheffield CRF, Royal Hallamshire	UK
Victoria Cookson	GOSH	UK
Rosa DaCosta	Royal Brompton	UK
Natalie Dormand	Royal Brompton	UK
Pavandeep K Ghataorhe	Imperial and Hammersmith	UK
Simon Gibbs	Imperial and Hammersmith	UK
Alan Greenhalgh	Newcastle Freeman	UK
Marc Humbert	University of South Paris	France
Anna Huis in't Veld	VU University Medical Center, Amsterdam	Netherlands
Fiona Kennedy	Golden Jubilee National Hospital	UK
David Kiely	Sheffield CRF, Royal Hallamshire	UK
Allan Lawrie	Sheffield CRF, Royal Hallamshire	UK
Rob Mackenzie Ross	Bath	UK
Rajiv Machado	University of Lincoln	UK
Larahmie Masati	Imperial and Hammersmith	UK
Sharon Meehan	Imperial and Hammersmith	UK

Shahin Moledina	GOSH	UK
Shokri Othman	Imperial and Hammersmith	UK
Andrew Peacock	Golden Jubilee National Hospital	UK
Joanna Pepke-Zaba	Papworth Hospital	UK
Val Pollock	Golden Jubilee National Hospital	UK
Gary Polwarth	Papworth Hospital	UK
Christopher J Rhodes	Imperial and Hammersmith	UK
Kevin Rue-Albrecht	Imperial and Hammersmith	UK
Gwen Schotte	VU University Medical Center, Amsterdam	Netherlands
Debbie Shipley	Newcastle Freeman	UK
Laura Southgate	Kings College, London	UK
Respiratory Nurse Specialists	Bath	UK
Jay Suntharalingam	Bath	UK
Yvonne Tan	Royal Free	UK
Mark Toshner	Papworth Hospital	UK
	Department of Medicine, University of	
Carmen Treacy	Cambridge	UK
Richard Trembath	Kings College, London	UK
Anton Vonk Noordegraaf	VU University Medical Center, Amsterdam	Netherlands
Ivy Wanjiku	Imperial and Hammersmith	UK
John Wharton	Imperial and Hammersmith	UK
Martin Wilkins	Imperial and Hammersmith	UK
John Wort	Royal Brompton	UK
John Wharton	Imperial and Hammersmith	UK
PID		
Kenneth Smith	University of Cambridge	UK
Taco Kuijpers	Emma Children's Hospital, Amsterdam UCL Great Ormond Street Institute of Child	Netherlands
Adrian Thrasher	Health	UK
James Thaventhiran	University of Cambridge	UK

Matthew Brown	University of Cambridge	UK
Hana Lango Allen	University of Cambridge	UK
Ilenia Simeoni	University of Cambridge	UK
	University of Cambridge/Cambridge University	,
Emily Staples	Hospitals NHS Foundation Trust	UK
Crina Samarghitean	University of Cambridge	UK
Hana Alachkar	Salford Royal NHS Foundation	UK
Richard Antrobus	University Hospitals Birmingham	UK
Gururaj Arumugakani	Leeds Teaching Hopsital	UK
	UCL Great Ormond Street Institute of Child	
Chiara Bacchelli	Health	UK
Helen Baxendale	Papworth Hospital	UK
Claire Bethune	Plymouth Hopsital	UK
	UCL Great Ormond Street Institute of Child	
Shahnaz Bibi	Health	UK
	UCL Great Ormond Street Institute of Child	
Claire Booth	Health	UK
Michael Browning	Leicester Royal Infirmary	UK
Siobhan Burns	Royal Free Hospital	UK
	Cambridge University Hospitals NHS	
Anita Chandra	Foundation Trust	UK
Nichola Cooper	Imperial College Healthcare NHS Trust	UK
	Cambridge University Hospitals NHS	
Sophie Davies	Foundation Trust	UK
Lisa Devlin	Royal Hospitals Belfast	UK
Rainer Doffinger	University of Cambridge	UK
Elizabeth Drewe	Nottingham University Hospitals NHS Trust	UK
David Edgar	Royal Hospitals Belfast	UK
William Egner	Sheffield Teaching Hospitals	UK
Rohit Ghurye	Barts Health NHS Trust	UK

	UCL Great Ormond Street Institute of Child	
Kimberley Gilmour	Health	UK
Sarah Goddard	University Hospitals of North Midlands	UK
Pavel Gordins	Hull & East Yorkshire Hospitals NHS Trust	UK
Sofia Grigoriadou	Barts Health NHS Trust	UK
Scott Hackett	Birmingham Heartlands	UK
	Royal Hospital for Children, NHS Greater	
Rosie Hague	Glasgow and Clyde	UK
	Epsom & St Helier University Hospitals NHS	
Grant Hayman	Trust	UK
Archana Herwadkar	Salford Royal NHS Foundation	UK
Aarnoud Huissoon	Birmingham Heartlands	UK
Stephen Jolles	University Hospital Wales	UK
Peter Kelleher	Imperial College Healthcare NHS Trust	UK
	Cambridge University Hospitals NHS	
Dinakantha Kumararatne	Foundation Trust	UK
Sara Lear	Norforlk & Norwich University Hospital	UK
Hilary Longhurst	Barts Health NHS Trust	UK
Lorena Lorenzo	Barts Health NHS Trust	UK
	UCL Great Ormond Street Institute of Child	
Jesmeen Maimaris	Health	UK
	Cambridge University Hospitals NHS	
Ania Manson	Foundation Trust	UK
Elizabeth McDermott	Nottingham University Hospitals NHS Trust	UK
	Gartnavel General Hospital, NHS Greater	
Sai Murng	Glasgow and Clyde	UK
Sergey Nejentsev	University of Cambridge	UK
Sadia Noorani	Sandwell and West Birmingham Hospitals	UK
Eric Oksenhendler	Hopital St Louis, Paris	France
Mark Ponsford	University Hospital Wales	UK

UCL Great Ormond Street Institute of Child					
Health	UK				
Sapienza Universita di Roma	Italy				
University Hospitals Birmingham	UK				
Sheffield Teaching Hospitals	UK				
Leeds Teaching Hopsital	UK				
Royal Free Hospital	UK				
Scunthorpe General Hospital	UK				
Royal Free Hospital	UK				
Gartnavel General Hospital, NHS Greater					
Glasgow and Clyde	UK				
Birmingham Heartlands	UK				
Cambridge University Hospitals NHS					
Foundation Trust	UK				
Barts Health NHS Trust	UK				
Frimley Park Hospital	UK				
	UCL Great Ormond Street Institute of Child Health Sapienza Universita di Roma University Hospitals Birmingham Sheffield Teaching Hospitals Leeds Teaching Hopsital Royal Free Hospital Scunthorpe General Hospital Royal Free Hospital Gartnavel General Hospital, NHS Greater Glasgow and Clyde Birmingham Heartlands Cambridge University Hospitals NHS Foundation Trust Barts Health NHS Trust Frimley Park Hospital				

SUPPLEMENTAL MATERIAL:

Phenotypic characterisation of *EIF2AK4* mutation carriers in a large cohort of patients diagnosed clinically with pulmonary arterial hypertension

Hadinnapola et al.

Supplemental Methods:

Whole genome sequencing

Genomic DNA was extracted from whole blood samples prior to assessment of concentration by Qubit, and quality by gel electrophoresis. After fragmentation of DNA into 200bp fragments (Covaris E220, Covaris Inc, Woburn, USA) DNA libraries were created using Tru SeqDNA LT Prep kit (Illumina Inc, San Diego, USA). The libraries underwent next generation sequencing using 100-150 base pair paired-end sequencing using Illumina HiSeq 2500 and HiSeq X (Illumina Inc, San Diego, USA).

Variant calling

Reads were aligned against the Genome Reference Consortium human genome (build 37) (GRCh37) and variants were called using the Issac Aligner and Variant Caller respectively (version 2, Illumina Inc.). Genebuilds for *BMPR2* and *EIF2AK4* genes were based on Ensembl v75. Variants from these genes were extracted and annotated using Ensembl's Variant Effect Predictor (VEP) v84 ¹. VEP was also used to annotate data from the Exome Aggregation Consortium's (ExAC) database ².

Deletions (resulting in the loss of more than 50bp) were identified by applying Isaac copy number variant caller (Canvas, Illumina) and Isaac Structural Variant Caller (Manta, Illumina).

To be called by both Canvas and Manta deletions required a reciprocal overlap of \geq 20%. Overlapping deletions represented in the Zarrei dataset with a reciprocal overlap of \geq 50% and deletions with a non-PAH BRIDGE control frequency of more than 1 in 1,000 were excluded ³.

Analysis of computed tomographic images of the chest

CT images of the chest, where available, were reviewed independently by 2 cardiothoracic radiologists (AS and NS), with specialist imaging experience in pulmonary hypertension, blinded to the underlying diagnoses using a customised proforma (Supplemental Table 4). In addition to CT scans of patients with *EIF2AK4* mutations or with a clinical diagnosis of PVOD in the cohort, CT scans of patients from Papworth Hospital and the Royal Hallamshire Hospital with normal spirometry (FEV₁ > 80% predicted and FVC > 80% predicted) and either *BMPR2* mutations (n=21) or no variants in the known PAH genes (n=21) were analysed (Supplemental Table 5). A consensus read was undertaken for individual CT features and a mutually agreed overall radiological diagnosis was recorded.

Histology

The explanted lung tissue of one patient with a clinical diagnosis of idiopathic PAH and biallelic *EIF2AK4* mutations was available for further analysis. Four micrometre (μm) tissue sections were cut from formalin-fixed paraffin wax embedded blocks from the explanted lung tissue. Representative sections from each lobe of both lungs were stained with Elastic-Van Gieson and Haemotoxylin and Eosin stains. Two expert histopathologists examined the sections independently by light microscopy.

Statistical analysis

Statistical analysis was performed in R (www.r-project.org).

Differences between groups of categorical variables were assessed using the Fisher Exact test. Where one of the variables was an ordinal the Cochran-Armitage test was applied using the chisq_test function from the "coin" package ⁴. Differences in continuous variables were assessed using the Mann–Whitney U test (2 comparator groups) and the Kruskal-Wallis test (3 or more comparator groups). Post-hoc pairwise comparisons were performed using Dunn's Test for multiple testing.

Semi-parametric Cox-proportional hazards models were used to assess survival between groups using the "survival" package in R ⁵. Survival time from diagnosis to death and diagnosis to death or transplantation was assessed. Patients were censored at the date of transplantation for the primary survival analysis. Age at diagnosis and gender were used as covariates in the models.

The proportional hazards assumptions were tested by assessing Schoenfeld residuals over log time 6 . The goodness of fit of the model was assessed by plotting the log of cumulative hazard of Cox-Snell residuals against the log of time and confirming the simple regression has 0 intercept and slope of 1⁷.

The inclusion of retrospectively recruited and prevalent patients in a survival analysis assessing time from diagnosis to death/transplantation can cause immortal time bias. The immortal time is the period between diagnosis and enrolment in the study and so patients

3

had to have survived till this point. Patients with worse prognosis diagnosed at a similar time may not have survived long enough to enrol in the study. To further explore this potential bias, a sensitivity analysis was performed including only on UK patients recruited prospectively to the study. In this multivariate Cox-proportional hazards model, the survival period was defined as the time period from date of diagnosis to date of death and patients only entered the risk set after enrolment into the study (consent date).

Supplemental Tables

Supplemental Table 1. NIHR BioResource – Rare Diseases Collaboration. See spreadsheet.

Centre	Principle	Clinicians and research staff				
	Investigator					
Freeman Hospital, Newcastle,	Paul A Corris	Alan Greenhalgh, Debbie Shipley,				
UK		Margaret Day				
Golden Jubilee National	Andrew	Colin Church, Val Irvine, Fiona Kennedy				
Hospital, Glasgow, UK	Peacock					
Great Ormond Street	Shahin	Victoria Cookson				
Hospital, London, UK	Moledina					
Hammersmith Hospital and	Martin R	Simon Gibbs, John Wharton, Sonia Ali,				
Imperial College, London, UK	Wilkins	Larahmie Masati, Sharon Meehan, Ivy				
		Wanjiku, Shokri Othman				
Papworth Hospital,	Joanna Pepke-	Mark Toshner, Gary Polwarth				
Cambridge, UK	Zaba					
Royal Brompton Hospital,	Stephen J Wort	Rosa DaCosta, Natalie Dormand, Alice				
London, UK		Parker				
Royal Free Hospital, London,	Gerry Coghlan	Yvonne Tan, Dipa Ghedia				
UK						
Royal Hallamshire Hospital,	David G Kiely	Robin Condliffe, Amanda Creaser-Myers,				
Sheffield, UK		Stephen Roney, Sara Walker				
Royal United Hospitals Bath	Јау	Robert MacKenzie Ross, Mark Grover, Ali				
NHS Foundation Trust, Bath,	Suntharalingam	Grove, Jill Peel, Ann Coy				
UK						
University of South Paris	Marc Humbert	David Montani, Florent Soubrier, Barbara				
		Girerd, Mélanie Eyries				
VU University Medical Center,	Anton Vonk	Harm Bogaard, Anna Huis in't Veld, Gwen				
Amsterdam, Netherlands	Noordegraaf	Schotte, Ale Struiksma				
Supplemental Table 2. Special	ist pulmonary hyp	ertension centres participating in the study				

Recruiting cohorts	n				
Genomics England	1965				
Specialist Pathology: Evaluating Exomes in	1356				
Diagnostics					
Primary Immune Disorders	1299				
Bleeding and Platelet Disorders	1004				
Pulmonary Arterial Hypertension	932				
Multiple Primary Malignant Tumours	376				
Hypertrophic Cardiomyopathy	187				
Cerebral Small Vessel Diseases	183				
Steroid Resistant Nephrotic Syndrome	161				
Intrahepatic Cholestasis of Pregnancy	140				
Stem Cell & Myeloid Disorders	132				
Primary Membranoproliferative Glomerulonephritis	128				
Neuropathic Pain Disorder	114				
Leber Hereditary Optic Neuropathy	59				
Control	15				
Ehlers-Danlos Syndromes	15				
Supplemental Table 3. NIHR BioResource - Rare Diseases Study recruiting cohorts and GEL					

Parameter	Response
ID	
Date of birth	
Unenhanced CT	(Y/N)
СТРА	(Y/N)
HRCT	(Y/N)
Expiratory CT	(Y/N)
Pulmonary artery diameter (cm)	
Aorta diameter (cm)	
Ground glass opacification centrilobular pattern DENSITY	(None / Subtle / Present)
Ground glass centrilobular pattern EXTENT	(0, <5%, 5-25, 25-50, >50)
Ground glass DISTRIBUTION	(central (C)/peripheral (P)/zonal (Z) or diffuse (D))
Non-specific mosaic pattern / GGO	
Neovascularity vessels	(Y/N)
Arterio-venous malformations	(Y/N)
Bronchial arteries	(Y/N)
Largest bronchial artery size	
Interlobular septal thickening	(None, Subtle, Present)
Mediastinal lymphadenopathy	(Y/N)
Emphysema	(Y/N) and % of parenchyma involved
Fibrosis	(Y/N) and % of parenchyma involved
Pleural effusion	(Y/N)
Air trapping	(Y/N)
Comments	
Likely diagnosis	Any suspicion of PVOD or PCH / PAH
Supplemental Table 4. Proforma used in	analysis of CT scans

Group	n
PAH patients with BMPR2 variants	21
PAH patients with biallelic EIF2AK4 variants	7
PVOD patients	14
PAH patients with heterozygous <i>EIF2AK4</i> variants	4
PAH patients with no variants in the previously reported PAH genes	21
Supplemental Table 5. CT scans of patien patients with PAH carrying biallelic <i>EIF2AK</i> reassessed by radiologists blinded to the comparison CT scans of PAH patients spirometry (FEV ₁ > 80 % predicted an predicted) who either had no mutations reported PAH genes or carried <i>BMPR2</i> r assessed.	ts with PVOD and 4 mutations were e diagnosis. For with normal d FVC > 80 % in the previously mutations were

Project	HGVSc	•								
		Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen-2	SIFT	CADD Phred Score	EIF2AK4 genotype
BRIDGE control	c.292C>G	missense variant	p.L98V	0	1	0.00001656	probably damaging (0.999)	deleterious (0)	25.7	Heterozygous variant
BRIDGE control	c.354_355delTG	frameshift variant	p.C118Wfs*7	0	2	Not found in ExAC			35	Heterozygous variant
BRIDGE control	c.745C>T	stop gained & splice region variant	p.R249*	0	1	0.00007451			39	Heterozygous variant
BRIDGE control	c.746G>A	missense variant & splice region variant	p.R249Q	0	1	2.48E-05	probably damaging (0.999)	deleterious (0.02)	34	Heterozygous variant
BRIDGE control	c.767G>T	missense variant	p.C256F	0	1	1.66E-05	possibly damaging (0.904)	deleterious (0.02)	28.4	Heterozygous variant
BRIDGE control	c.985G>A	missense variant	p.E329K	0	1	Not found in ExAC	probably damaging (0.981)	deleterious (0.01)	34	Heterozygous variant
BRIDGE control	c.1153dupG	frameshift variant	p.V385Gfs*30	0	1	0.00003308			32	Heterozygous variant
BRIDGE control	c.1190T>A	missense variant	p.I397N	0	1	Not found in ExAC	possibly damaging (0.67)	deleterious (0)	32	Heterozygous variant

variants in NIHR BRIDGE Study. Transcript: ENST00000263791.5. *EIF2AK4* variants are not shared between PAH patients and controls. Biallelic *EIF2AK4* variants are seen only in PAH cases.

	Supplemental Table 6. Page 2/9										
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen-2	SIFT	CADD Phred Score	EIF2AK4 genotype	
BRIDGE control	c.1215C>G	stop gained	p.Y405*	0	2	Not found in ExAC			29.4	Heterozygous variant	
BRIDGE control	c.1331A>G	missense variant	p.Y444C	0	1	Not found in ExAC	probably damaging (1)	deleterious (0)	28.7	Heterozygous variant	
BRIDGE control	c.1345C>T	missense variant	p.R449C	0	1	0.00001654	probably damaging (1)	deleterious (0)	35	Heterozygous variant	
BRIDGE control	c.2249T>A	missense variant & splice region variant	p.L750Q	0	1	Not found in ExAC	probably damaging (1)	deleterious (0)	28	Heterozygous variant	
BRIDGE control	c.2298delG	frameshift variant	p.N767Tfs*24	0	1	Not found in ExAC			28.3	Heterozygous variant	
BRIDGE control	c.2720A>T	missense variant	p.Y907F	0	4	1.66E-05	probably damaging (1)	deleterious (0)	31	Heterozygous variant	
BRIDGE control	c.2828C>T	missense variant	p.T943M	0	1	0.00003311	probably damaging (1)	deleterious (0)	34	Heterozygous variant	
BRIDGE control	c.3104_3106delT CT	inframe deletion	p.F1035del	0	1	Not found in ExAC			22	Heterozygous variant	
Suppleme variants in are seen o	Supplemental Table 6. Summary of rare (ExAC MAF <0.0001) and predicted deleterious (CADD score >15 and not benign by both PolyPhen-2 and SIFT) <i>EIF2AK4</i> variants in NIHR BRIDGE Study. Transcript: ENST00000263791.5. <i>EIF2AK4</i> variants are not shared between PAH patients and controls. Biallelic <i>EIF2AK4</i> variants are seen only in PAH cases.										

	Supplemental Table 6. Page 3/9									
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype
BRIDGE control	c.3217C>T	missense variant	p.R1073C	0	1	0.0000166	probably damaging (1)	deleterious (0)	35	Heterozygous variant
BRIDGE control	c.3223T>G	missense variant	p.F1075V	0	1	0.0000083	probably damaging (0.997)	deleterious (0)	32	Heterozygous variant
BRIDGE control	c.3344C>T	missense variant	p.P1115L	0	1	8.26E-06	probably damaging (1)	deleterious (0)	35	Heterozygous variant
BRIDGE control	c.3358-3C>T	splice region variant & intron variant	p.NA	0	1	Not found in ExAC			17.15	Heterozygous variant
BRIDGE control	c.3406C>T	stop gained & splice region variant	p.R1136*	0	1	Not found in ExAC			40	Heterozygous variant
BRIDGE control	c.3430A>T	missense variant	p.R1144W	0	1	0.0000248	probably damaging (1)	deleterious (0)	33	Heterozygous variant
BRIDGE control	c.3986T>C	missense variant	p.F1329S	0	1	Not found in ExAC	probably damaging (1)	deleterious (0)	33	Heterozygous variant
Suppleme variants in are seen o	Supplemental Table 6. Summary of rare (ExAC MAF <0.0001) and predicted deleterious (CADD score >15 and not benign by both PolyPhen-2 and SIFT) <i>EIF2AK4</i> variants in NIHR BRIDGE Study. Transcript: ENST00000263791.5. <i>EIF2AK4</i> variants are not shared between PAH patients and controls. Biallelic <i>EIF2AK4</i> variants are seen only in PAH cases.									

Supplemental Table 6. Page 4/9										
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype
BRIDGE control	c.3992T>C	missense variant	p.F1331S	0	1	8.28E-06	possibly damaging (0.872)	deleterious (0.01)	28.4	Heterozygous variant
BRIDGE control	c.4039G>A	missense variant	p.A1347T	0	1	8.28E-05	probably damaging (1)	deleterious (0)	34	Heterozygous variant
BRIDGE control	c.4388_4389+12 delAGGTAAAGAC GTCA	splice donor variant & coding sequence variant & intron variant	p.NA	0	1	Not found in ExAC			36	Heterozygous variant
BRIDGE control	c.4397C>A	missense variant	p.S1466Y	0	2	Not found in ExAC	probably damaging (0.988)	deleterious (0)	33	Heterozygous variant
BRIDGE control	c.4729G>A	missense variant & splice region variant	p.V1577M	0	1	Not found in ExAC	probably damaging (0.999)	deleterious (0)	29.6	Heterozygous variant
BRIDGE control	c.4751dupT	frameshift variant	p.L1585lfs*11	0	1	Not found in ExAC			34	Heterozygous variant
BRIDGE control	c.4920_4931delT AGAGATGACTA	inframe deletion	p.R1641_Y1644 del	0	1	Not found in ExAC			23	Heterozygous variant
Suppleme variants in are seen o	ntal Table 6. Summ NIHR BRIDGE Study only in PAH cases.	ary of rare (ExAC N . Transcript: ENST	MAF <0.0001) and 00000263791.5.	predicted d IF2AK4 vari	eleterious ((ants are no	CADD score >: t shared betw	L5 and not bei een PAH patie	nign by both Po ents and contro	olyPhen-2 a lls. Biallelic	nd SIFT) <i>EIF2AK4</i> <i>EIF2AK4</i> variants

	Supplemental Table 6. Page 5/9									
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype
РАН	c.44C>T	missense variant	p.P15L	1	0	8.32E-06	unknown (0)	deleterious low confidence (0.03)	23.5	Heterozygous variant
РАН	c.220G>A	missense variant	p.D74N	1	0	1.66E-05	possibly damaging (0.954)	deleterious (0)	32	Heterozygous variant
PAH	c.1072_1073dup GT	frameshift variant	p.V359*	1	0	Not found in ExAC			32	Heterozygous variant
РАН	c.1660G>T	missense variant & splice region variant	p.D554Y	1	0	Not found in ExAC	probably damaging (0.966)	deleterious (0)	28	Heterozygous variant
РАН	c.2446C>T	stop gained	p.Q816*	1	0	Not found in ExAC			41	Heterozygous variant
РАН	c.2516T>C	missense variant	p.1839T	1	0	Not found in ExAC	probably damaging (1)	deleterious (0)	28.9	Heterozygous variant
РАН	c.3218G>T	missense variant	p.R1073L	1	0	Not found in ExAC	probably damaging (0.995)	deleterious (0.01)	35	Heterozygous variant
РАН	c.3604C>T	missense variant	p.H1202Y	1	0	Not found in ExAC	probably damaging (1)	deleterious (0)	29.7	Heterozygous variant

Supplemental Table 6. Summary of rare (ExAC MAF <0.0001) and predicted deleterious (CADD score >15 and not being by both PolyPhen-2 and SIFT) *EIF2AK4* variants in NIHR BRIDGE Study. Transcript: ENST00000263791.5. *EIF2AK4* variants are not shared between PAH patients and controls. Biallelic *EIF2AK4* variants are seen only in PAH cases.

	Supplemental Table 6. Page 6/9									
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype
РАН	c.3711_3713del GAG	inframe deletion	p.R1238del	1	0	0.0000083			21.6	Heterozygous variant
РАН	c.3722A>G	missense variant	p.E1241G	1	0	Not found in ExAC	probably damaging (0.971)	deleterious (0)	27.2	Heterozygous variant
РАН	c.4646G>A	missense variant	p.R1549H	1	0	0.0000910	probably damaging (0.998)	deleterious (0.01)	35	Heterozygous variant
РАН	c.145-2A>G	splice acceptor variant	p.NA	1	0	Not found in ExAC			23.9	Additional second (likely trans) variant identified
РАН	c.257+4A>C	splice region variant & intron variant	p.NA	1	0	8.28E-06			15.5	Additional second (likely trans) variant identified
РАН	c.1392delT	frameshift variant	p.R465Vfs*38	1	0	2.48E-05			35	Additional second (likely trans) variant identified
РАН	c.1739dupA	frameshift variant	p.R581Efs*9	1	0	Not found in ExAC			35	Additional second (likely trans) variant identified
Suppleme variants in are seen o	Supplemental Table 6. Summary of rare (ExAC MAF <0.0001) and predicted deleterious (CADD score >15 and not benign by both PolyPhen-2 and SIFT) <i>EIF2AK4</i> variants in NIHR BRIDGE Study. Transcript: ENST00000263791.5. <i>EIF2AK4</i> variants are not shared between PAH patients and controls. Biallelic <i>EIF2AK4</i> variants are seen only in PAH cases.									

Supplemental Table 6. Page 7/9												
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype		
РАН	c.1820T>G	missense variant & splice region variant	p.V607G	1	0	Not found in ExAC	probably damaging (1)	deleterious (0)	27.3	Additional second (likely trans) variant identified		
РАН	c.2727C>G	missense variant	p.S909R	1	0	Not found in ExAC	probably damaging (1)	deleterious (0)	33	Additional second (likely trans) variant identified		
РАН	c.2827A>G	missense variant	p.T943A	1	0	Not found in ExAC	probably damaging (1)	deleterious (0)	26.4	Additional second (likely trans) variant identified		
РАН	c.2841delG	frameshift variant	p.1948Sfs*35	1	0	Not found in ExAC			35	Additional second (likely trans) variant identified		
РАН	c.3055_3064delC TGACCAACG	frameshift variant	p.L1019Wfs*9	1	0	Not found in ExAC			36	Additional second (likely trans) variant identified		
РАН	c.3097C>T	stop gained	p.Q1033*	3	0	8.24E-06			45	Additional second (likely trans) variant identified		
Suppleme variants in are seen c	ental Table 6. Summ NIHR BRIDGE Study only in PAH cases.	ary of rare (ExAC N . Transcript: ENST Bold - variants ide	MAF <0.0001) and 00000263791.5. <i>I</i>	predicted d EIF2AK4 vari an one patie	eleterious (G ants are not ent in the PA	CADD score >: shared betw	L5 and not bei een PAH patie AF - minor alle	nign by both Po ents and contro ele frequency	lyPhen-2 a ls. Biallelic	nd SIFT) <i>EIF2AK4</i> <i>EIF2AK4</i> variants		

Supplemental Table 6. Page 8/9												
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype		
РАН	c.3325G>A	missense variant	p.G1109R	1	0	0.0000082	probably damaging (1)	deleterious (0.02)	35	Additional second (likely trans) variant identified		
РАН	c.3884T>G	missense variant	p.L1295R	1	0	Not found in ExAC	probably damaging (1)	deleterious (0)	32	Additional second (likely trans) variant identified		
РАН	c.4400dupT	frameshift variant	p.E1468Rfs*14	1	0	Not found in ExAC			36	Additional second (likely trans) variant identified		
РАН	c.4418_4421delC AGA	frameshift variant	p.T1473Rfs*17	1	0	0.0000083			36	Additional second (likely trans) variant identified		
РАН	c.4769delT	frameshift variant	p.L1590*	1	0	0.0000083			33	Additional second (likely trans) variant identified		
РАН	c.281dupA	frameshift variant	p.N94Lfs*8	2	0	Not found in ExAC			35	Homozygous variant		
РАН	c.1159_1160delC T	frameshift variant	p.L387Cfs*27	2	0	Not found in ExAC			29.6	Homozygous variant		
Suppleme variants in are seen c	ental Table 6. Summ NIHR BRIDGE Study only in PAH cases.	ary of rare (ExAC) . Transcript: ENST	MAF <0.0001) and 00000263791.5.	predicted d EIF2AK4 vari	eleterious ((iants are not	CADD score >: shared betw	15 and not bei een PAH patie	nign by both Po ents and contro	olyPhen-2 a lls. Biallelic	nd SIFT) <i>EIF2AK4</i> <i>EIF2AK4</i> variants		

	Supplemental Table 6. Page 9/9												
Project	HGVSc	Consequence	HGVSp	Allele count PAH patients	Allele count non-PAH BRIDGE controls	ExAC MAF	PolyPhen- 2	SIFT	CADD Phred Score	EIF2AK4 genotype			
РАН	c.1795G>C	missense variant	p.G599R	4	0	Not found in ExAC	probably damaging (1)	deleterious (0)	32	Homozygous variant			
PAH	c.3097C>T	stop gained	p.Q1033*	3	0	8.24E-06			45	Homozygous variant			
PAH	c.3605A>T	missense variant	p.H1202L	2	0	Not found in ExAC	probably damaging (1)	deleterious (0)	31	Homozygous variant			
РАН	c.4392dupT	frameshift variant & splice region variant	p.K1465*	2	0	Not found in ExAC			35	Homozygous variant			
Suppleme variants in are seen o	Supplemental Table 6. Summary of rare (ExAC MAF <0.0001) and predicted deleterious (CADD score >15 and not benign by both PolyPhen-2 and SIFT) <i>EIF2AK4</i> variants in NIHR BRIDGE Study. Transcript: ENST00000263791.5. <i>EIF2AK4</i> variants are not shared between PAH patients and controls. Biallelic <i>EIF2AK4</i> variants are seen only in PAH cases.												
	•	<u>Bold</u> - variants ider	ntified in more th	nan one patie	ent in the PA	H Cohort. M	AF - minor alle	ele frequency					

							Suppler	nenta	l Table	e 7. F	age 1/	/4							
Age (years)	Gender	Ethnicity	<i>ElF2AK4</i> variant HGVSc	Consequence type	EIF2AK4 genotype	<i>BMPR2</i> mutation	Non-protein coding <i>EIF2AK4</i> variant	mPAP (mmHg)	Cardiac output (L/min)	FC	FEV1(% pred)	FVC (% pred)	KCO (% pred)	Digital clubbing	CT diagnosis	Family history PAH	Pulmonary artery vasodilator therapy	Pulmonary oedema with treatment	Histology assessed
23	м	British	c.3884T>G	missense variant	C Het			52	33	3	97	119	33	Ves	Possible		PDE5i + FRA + IV	No	
23	IVI	British	c.3055_30 64delCTGA CCAACG	frameshift variant	Chet			52	5.5	C	57	115	33	163	PCH		Prostanoid	NO	
18	48 M	Other	c.4400dup T	frameshift variant	C Hot			46	6.4	3	116	120	45	No	CT not available		ERA + PDE5i +	No	
40	IVI	Other	c.1739dup A	frameshift variant	Chet			40	0.4	C	110	120	45	NO	for analysis		inhaled Prostanoid	NO	
			c.2827A>G	missense variant											CT not				
38	F	Other Asian	c.4418_44 21delCAGA	frameshift variant	C Het			40	4.5	2				No	available for		ERA + PDE5i	No	
			c.145- 2A>G	splice acceptor variant											anaiysis				
Sup	upplemental Table 7. Phenotypic and genotypic description of patients with a clinical diagnosis of PAH with <i>EIF2AK4</i> variants. mPAP – mean pulmonary artery pressure, FC – functional																		
	азэ, г		eu expiratory	receptor a	ntagonist	t, C Het – com	pound hetero	zygou	s, Hom	– hoi	nozygo	ous, He	t – hete	erozygo	us, Unk – ur	iknown			JUIEIIII

							Suppler	nenta	al Table	7. P	age 2,	/4							
Age (years)	Gender	Ethnicity	<i>ElF2AK4</i> variant HGVSc	Consequence type	EIF2AK4 genotype	<i>BMPR2</i> mutation	Non-protein coding <i>EIF2AK4</i> variant	mPAP (mmHg)	Cardiac output (L/min)	FC	FEV ¹ (% pred)	FVC (% pred)	KCO (% pred)	Digital clubbing	CT diagnosis	Family history PAH	Pulmonary artery vasodilator therapy	Pulmonary oedema with treatment	Histology assessed
			c.1392del T	frameshift variant													PDE5i +		
70	F	British	c.257+4A >C	splice region variant & intron variant	C Het			76	6.6	3	101	127	33	Unk	Possible PVOD / PCH		ERA + inhaled Prostanoid	No	
36	F	Indian	c.3605A> T	missense variant	Hom			44	2.7	3	73	83	40	Yes	Possible PVOD / PCH		ERA + PDE5i + inhaled Prostanoid	No	
22	Μ	Pakistani	c.1795G> C	missense variant	Hom			65	3.0	3	92	93	31	Yes	РАН		ERA + PDE5i + IV Prostanoid	No	Yes
29	М	Pakistani	c.3097C> T	stop gained	Hom			50	4.9	3	99	107	27	Unk	РАН	Sister died from PAH	PDE5i	No	
18	М	Not stated	c.1159_1 160delCT	frameshift variant	Hom			92		3	86	82	28	No	Possible PVOD / PCH		ERA + IV Prostanoid	No	
25	F	Pakistani	c.1795G> C	missense variant	Hom			57	5.6	3	82	87	33	No	РАН		PDE5i + ERA	No	
Sup cl	plem ass, F	ental Table : EV ₁ – forcec	7. Phenotypi expiratory v	ic and genoty olume in 1s, I receptor a	pic descri FVC - forc ntagonist	ption of patien ced vital capac c, C Het – comp	nts with a clin ity, Kco – tran pound hetero:	ical di sfer c zygou	agnosis oefficie s, Hom	of P/ nt fo – hoi	AH witl r carbo nozygo	n <i>EIF2A</i> in mono ous, Het	<i>K4</i> vari oxide, F t – hete	ants. m PDE5i – erozygo	PAP – mear phosphodie ous, Unk – ur	n pulmona sterase typ iknown	ry artery press pe 5 inhibitor,	ure, FC – fu ERA – end	unctional othelin

							Suppler	nenta	al Table	e 7. F	Page 3	/4							
Age (years)	Gender	Ethnicity	<i>EIF2AK4</i> variant HGVSc	Consequence type	EIF2AK4 genotype	<i>BMPR2</i> mutation	Non-protein coding <i>EIF2AK4</i> variant	mPAP (mmHg)	Cardiac output (L/min)	FC	FEV1(% pred)	FVC (% pred)	KCO (% pred)	Digital clubbing	CT diagnosis	Family history PAH	Pulmonary artery vasodilator therapy	Pulmonary oedema with treatment	Histology assessed
24	F	Not	c.2446C> T	stop gained	Het (both on			60	5.2	ر م	96	97	81	Unk	CT not available	Father and	Link	Unk	
24	I	stated	c.3218G> T	missense variant	same allele) *			00	5.2	ר	90	57	01	UIK	for analysis	died of PAH	UIK	Ulik	
39	F	British	c.1072_1 073dupG T	frameshift variant	Het			54	3.0	2	87	98	72	No	CT not available for analysis		ERA	No	
40	F	British	c.44C>T	missense variant	Het		c.4303- 50delT	43	5.6	2	99	96	109	Unk	Possible PVOD / PCH		ERA	No	
44	М	British	c.2516T> C	missense variant	Het	c.853- 2A>G (splice acceptor variant)	c.361- 180A>G	53	3.8	3	102	98	54	Unk	РАН		PDE5i + ERA	No	
25	F	British	c.3722A> G	missense variant	Het					3	53	49	41	No	CT not available for analysis		PDE5i + ERA + IV Prostanoid	No	
Sup cl	plem ass, Fl	ental Table	7. Phenotyp d expiratory v receptor	ic and genoty volume in 1s, I • antagonist, C	pic descri FVC - forc CHet – co	iption of patier ced vital capac ompound heter	nts with a clin ity, Kco – tran rozygous, Hor	ical di Isfer c <u>n – h</u> c	agnosis oefficie omozyg	of P nt fo ous, I	AH witl r carbo Het – h	h <i>EIF2A</i> on mono eterozy	<i>K4</i> vari oxide, F /gous, l	ants. m PDE5i – Jnk – u	PAP – mear phosphodie nknown, *m	n pulmona sterase typ aternally i	ry artery press pe 5 inhibitor, I nherited	ure, FC – fu ERA – ende	unctional othelin

							Suppler	nenta	l Table	e 7. F	Page 4/	/4							
Age (years)	Gender	Ethnicity	<i>EIF2AK4</i> variant HGVSc	Consequence type	EIF2AK4 genotype	<i>BMPR2</i> mutation	Non-protein coding <i>EIF2AK4</i> variant	mPAP (mmHg)	Cardiac output (L/min)	FC	FEV1(% pred)	FVC (% pred)	KCO (% pred)	Digital clubbing	CT diagnosis	Family history PAH	Pulmonary artery vasodilator therapy	Pulmonary oedema with treatment	Histology assessed
66	F	Not stated	c.4646G> A	missense variant	Het			44	2.1	3	79	100		Unk	РАН		PDE5i + ERA	No	
72	М	British	c.1660G> T	missense variant & splice region variant	Het			30	2.8	3				No	РАН		IV Prostanoid	No	
59	F	Other	c.3711_3 713delGA G	inframe deletion	Het			41	3.4	3	68	68	95	Unk	РАН		ERA + PDE5i	No	
48	F	British	c.3604C> T	missense variant	Het	c.2695C>T (stop gained)		57	4.4	4	90	100	61	Unk	РАН		PDE5i + ERA	No	
70	70 F Other White c.220G>A missense variant Het 42 5.4 2 Unk CT not available for analysis ERA Unk																		
Sup cla	plem ass, F	ental Table	 Phenotypi expiratory v 	c and genoty olume in 1s, I receptor a	pic descri FVC - forc ntagonisi	iption of patie ced vital capac t, C Het – com	nts with a clin ity, Kco – tran oound hetero:	ical di sfer c zygou	agnosis oefficie s, Hom	of P. nt fo – ho	AH witl r carbo mozygo	n <i>EIF2A</i> n mono ous, He	<i>K4</i> vari oxide, F t – hete	ants. m PDE5i – erozygo	PAP – mear phosphodie ous, Unk – ur	n pulmona sterase typ Iknown	ry artery press pe 5 inhibitor, l	ure, FC – fu ERA – end	unctional othelin

Supplemental Table 8. Page 1/2												
	PAH patients with <i>BMPR2</i> mutations *	PAH patients with no mutations in PAH associated genes	PAH patients with <i>EIF2AK4</i> heterozygous variants	PAH patients with biallelic <i>EIF2AK4</i> mutations	PVOD/PCH patients	р						
n	64	255	3	7	5							
Age (years)	42 [31 - 52]	53 [39 - 67]	39 [32 - 40]	25 [23 - 38]	63 [27 - 76]	<0.001						
Gender (n female [%])	45 [70.3%]	179 [70.2%]	3 [100%]	2 [28.6%]	4 [80%]	0.161						
Ethnicity (n white Caucasian [%])	50 [78.1%]	226 [88.6%]	2 [66.7%]	2 [28.6%]	4 [80%]	<0.001						
Digital clubbing (n [%])	5 [13.2%]	3 [2.2%]	0 [0%]	2 [40%]	0 [0%]	0.004						
BMI	28 [25 - 33]	27 [24 - 31]	24 [24 - 25]	24 [21 - 27]	27 [24 - 32]	0.202						
Supplemental Table 8. Phen biallelic <i>EIF2A</i> mPAP – mean pulmonary art forced vital capacity, KCO – t variants and a <i>BMPR2</i> mutation	 Supplemental Table 8. Phenotype summary of patients with preserved spirometry (FEV₁ > 80 % predicted and FVC > 80 % predicted). PAH patients with biallelic <i>EIF2AK4</i> mutations are still younger at diagnosis and have a significantly reduced KCO compared to other groups. mPAP – mean pulmonary artery pressure, CO – cardiac output, PVR – pulmonary vascular resistance, FEV₁ – forced expiratory volume in 1 second, FVC – forced vital capacity, KCO – transfer coefficient for carbon monoxide, BMI – body mass index. * Also includes the 2 patients with heterozygous <i>EIF2AK4</i> variants and a <i>BMPR2</i> mutation. Data presented as median [IQR] unless indicated. Percentages were calculated using the number of patients for whom data were available as the denominator. 											
Supplemental Table 8. Page 2/2												
--	----------------	---	--------------	--	----------------------	--------	--					
PAH patients with <i>BMPR2</i> mutations *		PAH patients with noPAH patients withmutations in PAHEIF2AK4 heterozygousassociated genesvariants		PAH patients with biallelic <i>EIF2AK4</i> mutations	PVOD/PCH patients	р						
mPAP (mmHg)	56 (15)	51 (18)	54 (8)	57 (20)	57 (7)	0.008						
CO (L/min)	3 [3 - 4]	4 [3 - 5]	5 [4 - 5]	5 [4 - 6]	3 [3 - 3]	<0.001						
PVR (WU)	14 [10 - 18]	10 [7 - 14]	8 [7 - 9]	9 [8 - 15]	14 [11 - 19]	<0.001						
Vasoresponders (n [%])	0 [0%]	18 [21.7%]	0 [0%]	0 [0%]		0.016						
FEV ₁ (%pred)	97 [88 - 102]	93 [87 - 101]	96 [92 - 97]	97 [89 - 100]	98 [94 - 106]	0.525						
FVC (%pred)	102 [96 - 113]	103 [96 - 112]	97 [96 - 98]	107 [90 - 120]	109 [101 - 113]	0.704						
KCO (%pred)	80 [71 - 93]	68 [46 - 84]	81 [76 - 95]	33 [30 - 33]	33 [28 - 37]	<0.001						
Resting S _A O ₂ (%)	96 [94 - 98]	96 [93 - 98]	98 [98 - 99]	91 [90 - 92]	95 [91 - 95]	0.021						
S _A O ₂ post walk test (%)	95 [90 - 98]	91 [85 - 96]	94 [87 - 96]	80 [75 - 84]	85 [85 - 88]	<0.001						

Supplemental Table 8. Phenotype summary of patients with preserved spirometry (FEV₁ > 80 % predicted and FVC > 80 % predicted). PAH patients with biallelic *EIF2AK4* mutations are still younger at diagnosis and have a significantly reduced KCO compared to other groups.
mPAP – mean pulmonary artery pressure, CO – cardiac output, PVR – pulmonary vascular resistance, FEV₁ – forced expiratory volume in 1 second, FVC – forced vital capacity, KCO – transfer coefficient for carbon monoxide, BMI – body mass index. * Also includes the 2 patients with heterozygous *EIF2AK4* variants and a *BMPR2* mutation. Data presented as median [IQR] unless indicated. Percentages were calculated using the number of patients for whom data

were available as the denominator.

Supplemental Table 9. Page 1/2						
Group		All biallelic <i>EIF2AK4</i> mutation carriers	PVOD with no <i>EIF2AK4</i> mutation	р		
n		11	10			
Age (years)		26.8 [22.5 - 34.3]	68.3 [63.9 - 72.1]	0.001		
Gender (n female [%])		6 [54.5%]	5 [50.0%]	1.000		
Ethnicity (n white Caucasian [%])		5 [45.5%]	9 [90.0%]	0.063		
mPAP (mmHg)		52 [47 - 63]	48 [42 - 57]	0.342		
PCWP (mmHg)		11 [7.5 - 12]	11.5 [9.0 – 12.2]	0.560		
FEV ₁ (% pred)		93.1 [82.8 - 98.5]	79.0 [72.3 – 91.0]	0.236		
FVC (% pred)		95.5 [84.6 - 108.5]	96.0 [73.0 – 101.0]	0.720		
KCO (% pred)		32.0 [28.7 – 33.0]	41.4 [36.8 – 54.0]	0.013		
	None	2 [18.2%]	6 [60.0%]	0.012		
Centrilobular ground glass	Subtle	2 [18.2%]	3 [30.0%]			
	Present	7 [63.6%]	1 [10.0%]			
Supplemental Table 9. Phenotypic and radiological characteristics of biallelic <i>EIF2AK4</i> mutation carriers compared to patients with a clinical diagnosis of PVOD and no <i>EIF2AK4</i> mutation.						
mPAP – mean pulmonary artery pressure, PCWP – pulmonary capillary wedge pressure, FEV ₁ – forced expiratory volume 1 s, FVC – forced vital capacity, KCO – transfer coefficient for carbon monoxide. Data presented as						

median [IQR] unless stated.

Supplemental Table 9. Page 2/2						
Group		All biallelic <i>EIF2AK4</i> mutation carriers	PVOD with no <i>EIF2AK4</i> mutation	р		
	None	2 [18.2%]	7 [70.0%]			
	<5%	1 [9.1%]	1 [10.0%]			
Centrilobular ground glass	5-25%	2 [18.2%]	1 [10.0%]	0.007		
opacification extent	25-50%	1 [9.1%]	1 [10.0%]	0.007		
	50-75%	2 [18.2%]	0 [0.0%]			
	75-100%	3 [27.3%]	0 [0.0%]			
	None	7 [63.6%]	2 [20.0%]	0.068		
Interlobular septal thickening	Subtle	0 [0.0%]	1 [10.0%]			
	Present	4 [36.4%]	7 [70.0%]			
Mediastinal	None	4 [36.4%]	2 [20.0%]	0.025		
lymphadenopathy	Present	7 [63.6%]	8 [80.0%]	0.635		
Disurgi offusion	None	11 [100.0%]	6 [60.0%]	0.035		
Pleural effusion	Small	0 [0.0%]	4 [40.0%]			
Necessarilarity	None	10 [90.9%]	9 [90.0%]	1.000		
Neovascularity	Present	1 [9.1%]	1 [10.0%]			
CT diagnosis	РАН	4 [36.4%]	3 [30.0%]			
CT diagnosis	Possible PVOD/PCH	7 [63.6%]	7 [70.0%]			
Supplemental Table 9. Phenotypic and radiological characteristics of biallelic <i>EIF2AK4</i> mutation carriers						
compared to p	atients with a clinical di	agnosis of PVOD and no	EIF2AK4 mutation.			
mPAP - mean pulmonary artery pressure, PCWP - pulmonary capillary wedge pressure, FEV ₁ - forced expiratory						
volume 1 s, FVC - forced vital capacity, KCO - transfer coefficient for carbon monoxide. Data presented as						
median IIQRI unless stated.						

Group	Time to assessment 1 (days)	n	Change in 6mwd (m)	Change in FC	Time to assessment 2 (days)	n	Change in 6mwd (m)	Change in FC	Number on prostanoid therapy before the 2 nd assessment [%]
PAH BMPR2	357 [314 - 386]	21	+69 [20 - 100]	-1 [-11]	1120 [1055 - 1174]	18	+45 [31 - 115]	-1 [-10.5]	5 [23%]
PAH biallelic EIF2AK4	358 [335 -388]	9	+28 [-13 - 77]	0 [-1 - 0]	1102 [1090 – 1112]	5	+62 [-8 - 132]	0 [0 - 0]	1 [10%]
PAH no mutation	387 [340 - 414]	16	+81 [61 - 151]	-1 [-1 - 0]	1118 [1105 - 1159]	9	+104 [20 - 144]	-1 [-1 - 0]	4 [17%]
р	0.295		0.343	0.039	0.730		0.748	0.044	0.816
Supplemental Table 10. Response to pulmonary artery vasodilator therapies at 1 and 3 years after diagnosis compared to baseline. 6mwd - six-									
minute walk test distance, FC - functional class. Drop in number of patients between assessment 1 and 2 due to death, transplantation or lack of									
	sufficient follow up time. Data presented as median [IQR] unless stated.								

Variable	Hazard Ratio [95% confidence interval]	р		
PAH BMPR2 mutation*	0.148 [0.055 - 0.396]	<0.001		
PAH no mutation*	0.179 [0.073 - 0.440]	<0.001		
PVOD*	0.393 [0.075 - 2.065]	0.27		
Age at diagnosis	1.043 [1.033 - 1.053]	<0.001		
Male gender	1.631 [1.222 - 2.179]	<0.001		
Supplemental Table 11. Cov propertional bazards model accossing time to death				

Supplemental Table 11. Cox proportional hazards model assessing time to death. Patients with a clinical diagnosis of PAH and biallelic *EIF2AK4* mutations had an increased risk of death compared to other PAH patients. Number of patients = 858. Events = 194. * compared to the PAH biallelic *EIF2AK4* mutation carriers

Variable	Hazard Ratio [95% confidence interval]	р				
PAH BMPR2 mutation*	0.175 [0.066 - 0.462]	<0.001				
PAH no mutation*	0.203 [0.083 - 0.501]	<0.001				
PVOD*	0.840 [0.222 - 3.193]	0.798				
Age at diagnosis	1.036 [1.027 - 1.046]	<0.001				
Male gender	1.542 [1.165 - 2.042]	0.002				
Supplemental Table 12. Cox proportional hazards model assessing time to death or transplantation. Number of patients = 858. Events = 208. * compared to the PAH biallelic <i>EIF2AK4</i> mutation carriers						

Variable	Hazard Ratio [95% confidence interval]	р
PAH BMPR2 mutation*	0.376 [0.080 - 1.763]	0.215
PAH no mutation*	0.456 [0.109 - 1.905]	0.282
PVOD*	1.029 [0.133 - 7.953]	0.978
Age at diagnosis	1.034 [1.020 - 1.046]	<0.001
Male gender	1.515 [1.000 - 2.296]	0.051

Supplemental Table 13. Sensitivity analysis including only prospectively recruited UK patients. Cox proportional hazards model assessing time to death. Number of patients = 608. Events = 95.

* compared to the PAH biallelic EIF2AK4 mutation carriers

Supplemental Figures

Figure S1

Supplemental Figure Legends:

Figure S1: Kaplan – Meier survival curves showing survival time (time to death) for patients with a clinical diagnosis of PAH or PVOD.

Supplemental References

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P and 1. Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122. 2. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ and MacArthur DG. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285-91.

3. Zarrei M, MacDonald JR, Merico D and Scherer SW. A copy number variation map of the human genome. *Nat Rev Genet*. 2015;16:172-83.

4. Hothorn T, Hornik K, Wiel MAvd and Zeileis A. A Lego System for Conditional Inference. *The American Statistician*. 2012;60:257-263.

5. Therneau T and Grambsch P. *Modeling Survival Data: Extending the Cox Model.* 1 ed. New York: Springer-Verlag 2000.

6. Grambsch P and Therneau H. Proportional hazards tests and diagnostics based on weighted residuals. *Biometrika*. 1994;81:515-526.

7. Collett D. *Modelling Survival Data in Medical Research.* 3rd ed. London: Chapman & Hall/CRC; 2014.