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A3: Astrocytoma WHO grade L.
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AGG: Aggressive tumour (GB and ME).
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AUC: Area Under the Curve.

CCA: Canonical correlation analysis.

CDVC: Clinical Data Validation Committee.

CSF: Cerebrospinal fluid.

DMS: Data manipulation software.

DSS: Decision-support system.

eTumour: Web Accessible MR Decision Support System for Brain Tumour Diagnosis and
Prognosis, Incorporating in vivo and ex vivo Genomic and Metabolomic Data.

GB: Glioblastoma.

iDB: INTERPRET database.

ICA: Independent Component Analysis

INTERPRET: International network for Pattern Recognition of Tumours Using Magnetic
Resonance.

jDMS: Java data manipulation software.

jMRUI: Java MRUI.

KNN: K-nearest neigbour algorithm.

LDA: Linear discriminant analysis.

LGG: Low grade glial tumour.

LY: Lymphoma.

ME: Metastasis.

ml/Gly: m-Inositol glycine ratio.

MN: Meningioma.

MRUI: Magnetic resonance user interface.

NO: Normal brain.

OA: Oligoastrocytoma WHO grade II.

OD: Oligodendroglioma WHO grade II.

PACS: picture archiving and commnication sytem (PACS).

PCA: Principal component analysis.

PN: Primitive neuroectodermal tumour.

QC: Quality control.

QDA: quadratic discriminant analysis.

SVM: support vector machines.

TE: echo time

TR: recycling time.

viDB: validated INTERPRET database.

WHO: World Health Organisation.



ABSTRACT

The INTERPRET project was a multicentre European collaboration, carried out from 2000 to
2002, which developed a decision-support system (DSS) for helping neuroradiologists with no
experience of MRS to utilise spectroscopic data for the diagnosis and grading of human brain
tumours. INTERPRET gathered a large collection of MR spectra of brain tumours and pseudo-
tumoural lesions from seven centres. Consensus acquisition protocols, a standard processing
pipeline and strict methods for quality control of the aquired data were put in place. Particular
emphasis was put on ensuring the diagnostic certainty of each case, for which all cases were
evaluated by a clinical data validation committee. One outcome of the project is a database of
304 fully-validated spectra from brain tumours, pseudotumoural lesions and normal brains,
along with their associated images and clinical data, which remains available to the scientific
and medical community. The second is the INTERPRET DSS, which has continued to be

developed and clinically evaluated after the project ended.

We also review here the results of the post-INTERPRET period. We evaluate the results of the
studies with the INTERPRET database by other consortia or research groups. A summary of the
clinical evaluations that have been performed on the post-INTERPRET DSS versions is also
presented. Several have shown that diagnostic certainty can be improved for certain tumour
types when the INTERPRET DSS is used in conjunction with conventional radiological image
interpretation. About 30 papers concerned with the INTERPRET single voxel dataset have so
far been published. We discuss stengths and weaknesses of the DSS and the lessons learned.

Finally we speculate on how the INTERPRET concept might be carried into the future.

271 words, max 300.



THE ORIGINS OF INTERPRET

Magnetic Resonance Spectroscopy (MRS) of cancers in the human body, which has been
possible for 30 years (1), provides a unique and entirely non-invasive method for detecting
and quantifying metabolites within tumours. It can nowadays be performed on standard
clinical MRI instruments; obtaining a matrix of MR spectra from a suspicious cerebral mass
adds about 5-10 minutes to a routine diagnostic evaluation at 3T. However, despite many
years of successful research, MRS is rarely used as a routine clinical method. Likely issues that
have inhibited its use include a perceived requirement for the end-user to understand
biochemistry and metabolism, and the need for time-consuming and expert data

manipulation, especially if quantitative metabolite concentrations are required.

During the early 1990s Sian Howells and colleagues at SGUL (partner acronyms are given in
table S1) demonstrated that subjective expert interpretation of MR spectra was not always
necessary for tumour diagnosis, since computer-based pattern recognition methods
(sometimes termed “chemometrics”) could classify *'P MRS spectra from animal tumour
biopsies (2) and from animal tumours scanned non-invasively in vivo (3). Several studies over
the next few years (4,5) demonstrated that statistical methods could be used to classify *H MR
spectra of human brain tumours, indicating both the type of brain tumour (glioma,
meningioma etc.) and in some cases its grade of malignancy. A highly malignant glioblastoma
multiforme, for instance, has a completely different spectrum from a low-grade glioma (Figure
1). However these early brain tumour classsifiers required quantification of the peaks and

consequently, they were not widely adopted.

In contrast, the chemometric classification methods developed by Howells (3,6) used “raw”

spectra, with no quantification or even assignment of the peaks. If such an approach could be



applied to in vivo 'H spectra of human tumours there would be no need for expert
interpretation or manipulation of the spectrum, opening the way for the development of an
automated method for spectral classification that could be used by radiologists or other
medical practitioners with no specialist knowledge of MRS. To achieve this a large dataset of
spectra from tumours with known diagnoses would be required, in order to train the classifier

to recognise a spectra of a new patient undergoing diagnosis..

The initial grant application for what became the INTERPRET project was developed in the late
1990s by Rosemary Tate and John Griffiths, then at SGUL; this application responded to a call
from the European Union Framework 5. However, several issues had to be addressed before

the application could be completed (7).

Development of the INTERPRET collaboration

First, it was clear that a collaborative project would be needed to create a database of the size
required for automated spectral analysis. Second, data analysis experts would be needed to

create algorithms for classifying the spectra.

A third issue was the format for presentation of the results to the user. Given the large variety
of cancer types, some very rare, it was unlikely that a prototype system could give a clear cut
diagnosis. Preliminary work at Sussex University (8) showed that the best approach was to
implement a decision support system (DSS) that would display the unknown case in a feature-
space that demonstrated how closely it corresponded to the spectra of cases with known
diagnoses. Since the intended users would probably be radiologists, images and a limited
amount of clinical data should be provided with each case. All this information would need to
be uploaded into the developing database over the internet and then be subject to quality
control and curation. Experts in all these matters were therefore recruited to the

collaboration.



Brain tumours were the obvious exemplar for several reasons. Lesions in the brain give better
spectra than those from other parts of the body, because (i) the normal brain lacks the lipid
deposits that give confounding peaks in tumour spectra from elsewhere in the body (although
scalp lipids can be a problem for some peripheral brain tumours); (ii) the brain is not subject to
significant respiratory motion; (iii) it was already known that brain tumours could be classified
from their 'H spectra (4,5); (iv) most brain tumours are currently diagnosed by a
histopathologist, using a specimen obtained by stereotactic needle biopsy, which is a very
unpleasant experience for the patient and incurs morbidity and even mortality (9-11), so a
non-invasive method that could reduce the need for brain biopsy would be welcome(12); (v)
several European groups were already working on brain tumour MRS, which facilitated the

recruitment of collaborators.

The resulting INTERPRET consortium consisted of radiologists, computer scientists and
biochemists , plus neuro surgeons and neuropathologists. The EU call required that the
collaboration should include industrial partners to ensure that the diagnostic tool developed
by INTERPRET would be commercially marketed, so a software company (PRAXIM) and an

instrument company (Siemens) were invited to join.

The project took the form of an EU-funded collaboration (/ST-1999-10310), from January 1%,
2000, to December 31%, 2002, and was led by Carles Arus, from the Universitat Autbnoma de
Barcelona in Spain. Seven clinical magnetic resonance centres in six countries participated in

the prospective data acquisition (Table S1).

MR methods

The participating centres used the following 1.5T machines: GE Signa, Signa Advantage, and LX
CV/i 1.5T, Philips NT and ACS NT 1.5T and Siemens Vision 1.5T. Consensus acquisition

parameters for Single Voxel (SV) spectroscopy are summarised in Table S2. Before the MRS



acquisition, a basic set of MR images was acquired to ensure that the voxel was entirely
located within the lesion and avoid contamination from normal adjacent brain parenchyma or
oedema. When contrast was administered, MRS was performed after contrast. Two centres
also performed multivoxel MRS imaging (MRSI), one using the PRESS long TE protocol and the
other the STEAM short TE protocol

(http://gabrmn.uab.es/interpret/mrs data/mrs data.html).

MRS processing pipeline

Consensus acquisition protocols were developed to minimise differences in the data format,
and the post-processing algorithms and methodologies were standardised (13,14). In 2000, the
DICOM standard for spectroscopy was still under development, and retrospective data came
with a rich variety of spectral widths and numbers of data points (Table S2). Therefore, an
automated processing pipeline, the data manipulation software (DMS), was developed for
converting spectra into an “INTERPRET Canonical Format”, a 512-point spectrum covering the
[-2.7, 7.1] ppm range (Table S3). The canonical spectra had three different uses: (i) classifier
development, (ii) display of the spectrum for quality control, (iii) allowing radiologists to input

spectra into the DSS without cumbersome manual processing.

Quality control of MRS data

The quality assessment system ensured traceability of records and quality control (QC) records
for both MRS and clinical data (15). Each instrument’s performance was checked bimonthly
and, more rigorously, annually by measurements on a specially designed phantom (15) and by
taking spectra from five healthy volunteers. QC of spectra uploaded to the database was
performed automatically on two indices calculated by the DMS: the signal-to-noise ratio of the
processed spectrum and the linewidth of the water peak in the unsuppressed water file (Table

S4). A final manual check by a committee of expert spectroscopists looked for other artefacts



such as large baseline distortions, residual water peaks or large phasing errors. All QC

information is stored in the iDB as metadata.

Quality control of clinical data

This was the responsibility of the Clinical Data Validation Committee (CDVC) of practising
neurosurgeons, neuroradiologists and cancer clinicians and chaired by Antony Bell,

(http://gabrmn.uab.es/interpret/clinical data/clinical data.html)(16). They verified each case

and tagged those suitable for classifier development. The main criteria were a consensus
diagnosis and appropriate clinical information (i.e. age, sex, tumour location). The histological
diagnoses from either needle biopsies or surgical specimens were verified by
neuropathologists (Peter Wilkins, Isidre Ferrer and Pieter Wesseling) who also checked each

other’s diagnoses for consistency (17,18).

Databases

The final version of the INTERPRET iDB contains MRS data (SV or MV spectra) for 775 patients
(Table S1). Since paraffin biopsy sections could not be obtained from all retrospective cases, a
consensus histopathological diagnosis is available for 477 cases. The number of cases with at
least one good quality SV short echo spectrum, acquired from the solid part of the mass in the
region where the biopsy or tumor resection took place is 282. These latter cases, together with
data from 22 normal volunteers, form the viDB (18), which continues to be the project’s

publicly available database (http://gabrmn.uab.es/interpretvalidateddb/).

Classification of MR spectra

Inevitably there were more cases from common cancers and too few cases of many rarer types
to form adequate training sets. Certain cancer types were therefore aggregated together in

order to have large enough groups for classifier development. The viDB contained short TE



spectra for 35 low-grade glial tumours (LGG) -comprising 22 astrocytomas (A2), 6
oligoastrocytomas (OA) and 7 oligodendrogliomas (OD) of WHO grade II- 123 aggressive
tumours (AGG) -comprising 85 glioblastomas (GB) and 38 metastases (ME) - and 62 low-grade
meningiomas (MN) which included meningiomas of WHO grades | and Il. The rest of cases
corresponded to 22 normal volunteers, 10 malignant brain lymphomas (LY), 8 abscesses (AB),

and 44 cases from 17 different pathologies and/or grades (18).

The software classifiers had to categorise the spectra purely according to their metabolic
profiles, uninfluenced by issues such as scanner brand, pulse sequence or TE. A preliminary
study (19) developed classifiers using spectra obtained with different instruments, by STEAM
or PRESS sequences, and with TEs ranging from 20 to 32 ms. None of those factors affected
classification performance, provided that all the spectra had been processed in the same way

and interpolated to the same number of points and sweep width.

The definitive INTERPRET classifier, a short TE classifier for the most common brain tumour
types, was developed using features selected by correlation analysis(19). It was trained to
distinguish three classes: LGG, AGG, and MN. The number of features was restricted according
to the size of the training set (generally n/3, where n is the number in the smallest group) to
avoid overfitting (20,21). The “LGG vs. AGG vs. MN” classifier gave excellent results with the
independent test set (89% accuracy) and the short TE classifier was chosen over the long TE
one for its slightly better performance. Development of a “GB vs. ME” classifier was also
attempted; it showed reasonable results (70-80% correct classifications) when data from a
single centre were used, but when it was tested with data from the other centres (19) accuracy

dropped to about 62% (short TE) and 48.7% (long TE).

These INTERPRET classifiers, developed at SGUL by Rosemary Tate, used a very simple

technique, linear discriminant analysis (LDA), run on commercial programs (SAS, SPSS).



In another SGUL study (22) Christophe Ladroue explored the potential of independent
component analysis (ICA) to automatically extract features from brain tumour spectra that
related to the underlying metabolite signals (23). Early studies at St George’s (23) and in Sabine
van Huffel’s group from KUL, also demonstrated that for many classification tasks (e.g. those
involving the LGG, AGG, and MN tumour groups) sophisticated non-linear methods were no

more successful than simple linear methods for short TE (24) and long TE (25) spectra.

There were also attempts to build classifiers for the multivoxel data, initially using information
contained in the variously acquired MRl images (T1, T2, Proton Density and Gadolinium
Enhanced T1). Unsupervised classifiers were constructed that segmented an image and
objectively identified the possible tumorous area (26). A supervised classifier (LDA)
discriminated between healthy and tumour regions and also between OD and A2 in a limited
set of patients (26-28).This system was capable of segmenting and identifying the volume of
interest into voxels belonging to healthy tissue, cerebrospinal fluid, WHO grade Il, Il and IV
glial tumours, unknown areas and voxels on which no decision could be made. The voxels were
coloured according to these classes and an associated probability of membership to each class

was provided in a prototype Decision Support System for multivoxel data (29) (Figure 2).

The Decision Support System (DSS)

The SV DSS was developed by the Human-Computer Interaction team at UOS (30). Key users
(radiologists and spectroscopists, both experts and beginners in MRS) , helped to set the
functional requirements of the system, and later to evaluate versions containing preliminary
datasets and classifiers (31). Usability aspects tested included whether a 2D or a 3D display of
cases in the classification space was more useful, and how the system was used by different
user types, with a video camera recording user’s interactions for further analysis. The final DSS

prototype (31) was both a visual interface, displaying the cases in the database, and an
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automated classifier for new cases. The left-hand panel presents the distribution of cases in
the database as an interactive 2D scatterplot using the first two dimensions of the selected
classifier. Cases in this space, represented by a symbol indicating the tumour type, can be
selected and case data including spectra displayed and compared in the right-hand panels
(Figure 3Figure-3). A spectrum from an undiagnosed case is automatically positioned in the
scatterplot and users may choose to compare spectra from the new case with spectra from
similarly positioned known cases or with averaged plots of the spectra of selected tumour
classes. The DSS can also be used to create and explore the distribution of spectra from
selected tumour groups, in interactive 2D scatterplots of spectrum intensities or intensity

ratios at user chosen ppm values.

INTERPRET AFTER INTERPRET

Work on many aspects of the INTERPRET project continued after the end of its funding period.

From the INTERPRET DSS prototype to the industrial INTERPRET DSS

To turn the prototype DSS into a commercially marketable system, PRAXIM developed the
“Industrial INTERPRET DSS”. In 2003, PRAXIM passed its rights to SCITO, a related company,
which continued that work. In the first step towards CE accreditation, the UAB team verified
the traceability of all the cases in the database, obtaining a final list of 304 cases. SCITO then
re-engineered the system as one of the modules in an automated client-server application
called RADIONET, which was intended to provide a unified solution for the radiological

examination process (http://www.scito.com/produit_radionet_en.html).

UAB made further developments of the INTERPRET DSS independently of RADIONET, partly to
facilitate bilateral clinical collaborations. The DMS was modified so that data could be entered
on-line, and the data associated with some cases were corrected and re-labeled, which meant

that the Java code had to be altered and classifiers retrained (32).
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The eTumour Project

eTumour (2004-2009), led by Bernardo Celda at the University of Valencia, was a larger project

(ftp://ftp.cordis.europa.eu/pub/lifescihealth/docs/canpr315 en.pdf) that expanded the

INTERPRET approach to include multimodal analysis of in vivo MRI and MRSI with ex-vivo
transcriptomic (RNA microarrays) and metabolomic (HR-MAS) data obtained from brain
tumour biopsies from the same patients in order to explore the potential of all this
information, taken together, in predicting response to therapy. Since eTumour involved all the
original INTERPRET data-provider partners as well as some new ones (33) it benefited from
lessons learned during INTERPRET, particularly with respect to the acquisition protocols,

quality control strategies, database, pattern recognition methods and the DSS.

Database preservation

The viDB (http://gabrmn.uab.es/interpretvalidateddb/) can be accessed in two ways. Anyone

requesting access for scientific or medical purposes can be granted “view permission”, i.e.
being able to look at the data but not being able to download either the processed or the
unprocessed spectra; it has resulted in about 50 requests. Permission to download the raw
data is available upon request to the coordinator, subject to permission from the original data-
contributing partners of INTERPRET. This type of access has been granted to five research
groups and two consortia (eTumour and HealthAgents (34))and very successful in allowing
numerous pattern recognition studies to be performed on the existing data (35-56). The
complete iDB has been a relatively unexploited resource, particularly those cases with
different degrees of validation and completeness. Both INTERPRET databases are
administered and maintained by the UAB team, without specific funding targeting their

maintenance.
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Using the DMS with the new MRS data formats

The DMS and DMS pipeline have been further developed during the post-INTERPRET period. At
UAB, Guillem Mercadal developed the jDMS (32), a Java based MRS format conversion
software, which automatically translates any spectrum processed manually with jMRUI into
the 512-point INTERPRET canonical format (32). jDMS eliminated the need for constantly
updating the MRS format conversion routines within the DMS to cope with the numerous MRS
formats and updates that have appeared in the 13 years since the original software was
developed, thus keeping the DSS alive and usable. It also permits the use of jMRUI for manual
phasing of spectra when the Klose algorithm does not work perfectly. The jDMS was, de facto,
adopted by the eTumour (33) and HealthAgents (57) multicentre projects, both to display
processed spectra, for quality control, and to obtain data matrices for classifier development
(35,37-40,42), and also by the CURIAM DSS (58), which derived from these projects. The jDMS
also facilitated scientific collaborations with artificial intelligence research groups who could
then obtain a consistent, clean data matrix without having to learn how to phase a spectrum

or process MRS data.

The DMS pipeline has been recently integrated into the MRUI software as a plug-in named

JMRUI2XML (http://gabrmn.uab.es/ijmrui2xml), so as to automate the data processing of any

SV or MV spectral format, ready for exporting for example in the INTERPRET canonical format

into pattern recognition algorithms or the INTERPRET DSS (Figure 4).

Pattern recognition: does the particular method matter?

Sharing the SV INTERPRET data resulted in numerous published studies (35-48,59,60) which
mainly developed classifiers or feature extraction methods by using the INTERPRET data either
as the training set or as a test set. Both approaches were used in a study performed by

eTumour (37), in which 253 pairwise classifiers for GB, MN, ME, and LGG were obtained for
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211 short TE spectra from INTERPRET (the training set) and 97 spectra from eight different

centres of the eTumour consortium (the test set).

Lessons learned from the pattern-recognition studies

Single voxel

1. Classifiers developed in this way are robust, and perform well on independent data from

several centres and manufacturers, acquired at different times by different operators.

2. Most studies addressed relatively easy problems that gave results of around 90% (whether
it in terms of accuracy, AUC, or any other measure of performance)(37), no matter what
feature extraction or classification methods were employed. The basic paradigm continued
to be the “most common tumour types” problem (“LGG vs. AGG vs. MN”), first attempted
by (16). Later authors (32,35,40,41,44) developed variations and simplifications of the
same problem. In (52), for example, all bilateral combinations of MN, OD, OA, A2, GL, ME,
NO, LY, PN, A3 (astrocytomas WHO grade Ill) and AB (abscesses) were tested. In the main
INTERPRET-eTumour paper (37), the seven bilateral combinations were between the GB,
ME, MN classes and the AGG superclass. In the latest study using the INTERPRET data,
published in 2013 (53), the classes were: “LGG vs. ME”, “MN vs. LGG”, “LGG vs. GL”, “MN

vs. GL”, “MN vs. NO (normal brain parenchyma)” and “GB vs. ME”".

3. Classification boundaries are not necessarily linear when investigating automatic detection
of poor quality brain tumour spectra. This was found comparing a Least Squares-Support
Vector Machine (LS-SVM) analysis with LDA (61). Also non-linear methods of data

reduction may be of help for classification of glial tumour subclasses(60).

4. Difficult problems have more rarely been attempted, the paradigm being “GB vs. ME”".
Despite having very different (and in the case of ME, very heterogeneous) origins, these

two groups of tumours have remarkably similar spectra, so GB and ME were originally
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joined into a single group for analysis of multiclass (i.e. more than two classes) problems
(24,25). Discrimination of GB from ME is a situation in which the importance of using an
independent test set can be observed. Studies that attempted this bilateral discrimination
without using a test set, for example (48,52,54), claimed results in the 90% range. In
contrast, in most studies that used an independent test set the performance of their
classifiers was no better than random (25,37,53). A successful classification was achieved
in one study (55) that had three distinctive characteristics: first, training the classifier with
INTERPRET data and testing it with an independent test set of 40 cases from three
different hospitals and two manufacturers’ instruments. Second, the use of a simple and
well-known classifier (a single-layer perceptron) but an exhaustive feature selection
method. Third was the use of both short and long TE concatenated spectra as input. The
best classifier used 4 features of the long TE and one from the short TE spectrum and is

available in the latest version of the INTERPRET DSS (http://gabrmn.uab.es/dss).

Some outlier cases have been consistently misclassified. Four such outliers (cases 10009,
11390, 10063 and 10450) were first recognized in a study (35) that used an already curated
dataset of INTERPRET cases. The same group of outliers was found in the INTERPRET-
eTumour study (37). Another study (45) that used Sammon’s mapping for visualization of
cases, coupled to generative topographic mapping to automatically identify outliers
categorized them as artifact-related (outliers caused by artifacts) and class-related (spectra

that are outliers with respect to their class).

Short and long TE spectra can be concatenated, which can help in some bilateral
discriminations, e.g. the “GB vs. ME” problem (55), or for distinguishing meningiomas from

other tumour types (35).
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7. 3T and 1.5T data, processed with the DMS and converted to the INTERPRET canonical
format, can be compatible in terms of classification (39). This study trained a classifier with
short TE INTERPRET spectra and tested it with sets of short TE eTumour spectra obtained
at 1.5T and 3T. The classification problem was “AGG vs. LGG”, either using peak heights or
integrated peak areas, and simple classifiers (LDA, KNN and ANN). The results were similar

for the 1.5T and the 3T sets, despite the training set consisting of 1.5T spectra.

In a further development of the INTERPRET approach, the UAB group developed
SpectraClassifier (62), a program that enables biochemists and other users with no expertise in
pattern recognition to make MRS classifiers . It includes simple tools for feature extraction
(PCA), selection (greedy stepwise (63)) and classification (Fisher LDA). The system has been
successfully used to classify MRSI data of preclinical models (64) and to train classifiers in the

last DSS version (32).

Multivoxel

Arjan Simonetti, then at KUN, initiated the post-INTERPRET studies on MV data from the
dataset accrued during the project (27); other groups subsequently studied essentially the
same group of subjects: 4 volunteers and 20 (28) or 24 patients (in the rest of papers cited
later in this section) with MN, OD WHO grade I, Ill and IV tumours (GB); spectra were acquired
at 1.5T (27). In contrast to the SV studies, the main technique for dimensionality reduction was
peak area integration for 5 (27), 7 (28), 8 (65) or 10 (66,67) of the main metabolites, although
PCA on the whole spectra followed by quadratic discriminant analysis (QDA) was also used
(28). The co-registered T1 weighted pre and post gadolinium, T2 weighted and proton density
images (28) were also used, either for confirming the result of the MV classification with the
anatomy (27), or to improve classification (68-70). The MV data were submitted to a variety of

techniques that had previously been used with SV data. Unsupervised studies used clustering
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by mixtures of multivariate normal distributions (27), ICA (68,71), Kohonen networks (66), QDA
combined with PCA or ICA for feature reduction (28,68), canonical correlation analysis (CCA)
(65), support vector machines (SVM) (72), or the latter two combined (67). The following

lessons were learned, despite being based on a limited number of patients:

1. A 2D image of the brain could be made showing possible tumour areas and possible
tumour heterogeneity in those areas, including some indication of diagnostic
reliability.

2. Despite the lower signal-to-noise ratio, classes similar to those handled by the single
voxel classifiers could be recognised.

3. The use of co-registered MRI images helped to increase the associated accuracy
(69,70).

4. Non-linear methods have better performance in some situations where there is
overlap between classes; for example when using a limited set of features from peak
integration (10 metabolites) and MRI (4 values from T1, T2, Proton Density and
Gadolinium Enhanced T1) to distinguish heterogeneous classes (low grade vs. high
grade tumours) (70). The non-linear LS-SVM with a radial basis function also out-
performed other methods for more subtle discrimination of glial subclasses in the
INTERPRET MV dataset (69).

5. Some of the studies performed recognised the drawback of using supervised methods
— particularly to deal with unexpected tumour types. In one study the latter were
classified as “unknown”(28).

6. Tumour heterogeneity (73) within a voxel, was tackled in different ways: either by
assigning voxels that did not reach a certain threshold of Mahalanobis distance to the

centroids of the respective classes as being of “undecided” pathology (28) or by a two-
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step process in which tumour typing was followed by a segmentation in which the

class “mixed tissue” was introduced (65).

Decision support systems

The SV INTERPRET DSS continued to be developed by UAB (32) and evolved into the current
version 3.1, keeping the look and feel of the original. It currently has classifiers for three
different problems: “most common tumor types”, “tumour vs. pseudotumoural disease” (74),
and “GB vs. ME” (55) and can now be used as jMRUI plugin (Figure 4). It keeps the “make your
own overview” feature as well as the possibility of using short, long or short and long TE
spectra of the same case. The multiplicity of classifiers now means that the user must have a

clear idea of the question to be answered and whether to attempt the analysis with short TE,

long TE or combined TE spectra.

Versions 1 and 2 of the DSS have been clinically tested. A retrospective multicentre evaluation
of the added value of MRS for diagnosing brain tumours compared the diagnostic accuracy
using conventional MRI alone with diagnostic accuracy using the DSS in addition to MRI.
Twenty radiologists (only 4 of whom had been concerned with INTERPRET) from 4 European
countries, reviewed 16 cases, with access to T1 weighted images prior to and after contrast
enhancement, and T2 weighted images before contrast. They then chose one from a list of
possible diagnoses and rated its likelihood on a six-point scale, first with the MRI and clinical
information and then with additional information from the *H spectrum analysed and
displayed by the DSS. Adding the MRS analysis significantly improved on diagnoses made using
MRI alone (AUCyg =0.88, AUCwmrismrs= 0.92, n=834 readings). AUC values were higher after
using the INTERPRET DSS in MN, GB and ME, but only in PN were the AUC significantly

different (AUC= 0.50 vs. 0.83 without or with INTERPRET respectively) (16).
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Version 1 was also evaluated, together with 3 more systems for spectral classification in a
single-centre, prospective study of 40 patients, to see if the MRS information added to MRI
analysis improved preoperative diagnosis and grading of brain tumours (75). First, radiologists
evaluated MRI and spectroscopists evaluated MRS independently — spectroscopists without
any added information related to the patient, radiologists with the usual clinical data. After
predicting the tumour type using a 5-point scale, they exchanged predictions and re-evaluated
their diagnoses. MRS added value to the preoperative radiological evaluation of the “GB and
ME superclass” (AUC yr= 0.83, AUCyrismrs= 0.93, n=12), glial tumours WHO grade Il (AUC yiri=
0.70, AUCwrismrs= 0.84, n=12), glial tumours WHO grades II-lll (AUC yr= 0.81, AUCyrismrs=
0.93, n=13) and tumours of WHO grade IV (AUC yz= 0.85, AUCwrismrs= 0.93 , n= 14). The
INTERPRET DSS was the most successful of the four spectral evaluation systems tested,
significantly out-performing the radiologists in diagnosis of astrocytomas of WHO grade lll

(AUC MRI= 0.66 , AUCD55: 087, n=9 CaseS).

A lesson learned from (75) was that radiologists in public health system centres do not have
the time to embark on formal evaluations of a DSS. Therefore when it was necessary to check
whether a new version of the system, with an added long TE classifier, could improve on the
prospective study, 6 radiologists with no particular knowledge of spectroscopy and 3 expert
MR spectroscopists were left free to use the system to categorise the same 40 cases (76). In
most classes and superclasses of brain tumours the AUC were not significantly different from
the first study (75) except for astrocytomas WHO grade lll, radiologists had an AUCpss =0.59
(n=54 cases/ 238 readings) whereas the expert spectroscopists reached an AUCpss =0.71 (n=27
cases /116 readings). This study demonstrated that radiologists with no expertise in
spectroscopy can use the system, by adhering to basic guidelines. The ability to choose an
echo time other than short TE did not affect results as most classes evaluated did not have

significant differences in the AUC reached in comparison to using only one echo time. In
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principle, this does not seem to agree with previous literature on classifiers (35,77), however
the exact use of the system was not recorded in the latter studies. One important difference is
that in the early studies classifiers were developed using only cases from a few common brain
tumour types (35,77), whereas in the two more recent evaluations the DSS was used on cases
from 15 different WHO classes, some of them as uncommon as melanocytoma or brain

lymphoma (75,76).

The DSS version 2 was also evaluated by the SGUL team (78) as a high or low-grade tumour
classifier in a short TE (30 ms) single voxel, 1.5 T prospective study on 89 patients with grade IV
brain tumors. Prediction of the grade (high/low) with MRI and clinical findings was 82%
accurate, whereas with MRS (visual evaluation by a team of expert spectroscopists) and the
DSS it was 89% and 84% respectively. All 14 biopsied GB patients were diagnosed as GB by a
single neuroradiologist and as high-grade by the DSS, suggesting that the DSS could be used as
a confirmatory test in the quite large group of patients for whom brain biopsy would be
contraindicated (about 25% in the Barcelona study (75)), such as those with poor functional

status or an unfavourable lesion location.

Taken together, these three evaluations show that the system behaves robustly when used in
different ways by different types of users, either for visualising the effects of classifiers or for

decision-suppport, and importantly, to analyse spectra from pathologies for which there is no
specific classifier. In the latter case there will be differences in performance depending on the
protocol chosen, which can be critical for certain tumour types, such in as astrocytomas of

WHO grade lll, and the experience of the person using it.

A recurrent question from users of the DSS has been whether 3T data can be fed into it.

Technically, the answer is: yes, using any of the DMS available . However, despite the
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encouraging pattern recognition results, lack of 3T data from brain tumours acquired in

compatible conditions has hampered that type of clinical evaluation.

As an illustration of the retrospective studies that are possible with the INTERPRET DSS, we
used the eTumour database, which contains 7 SV 3T cases with good quality spectra and
validated histopathology, all of which have both short and long TE SV data. We processed
them with the latest j]MRUI plugins mentioned in the previous section (jMRUI2XML and DSS)
(Figure 4). Table 1 lists the cases, their diagnoses and the results of using the INTERPRET DSS as
a classifier. There was a 100% succcess rate for all classifiers except in the long TE “most
common tumour types” classifier where 1 glioblastoma was wrongly classified as LGG (Table 1
and Figure 3Figure-3). One of the 7 cases was radiation necrosis (et3568), which is not
represented as a possible diagnosis, so we considered the classification of AGG to be
acceptable in terms of necrosis detection. We could have excluded this case from the analysis,
but we decided to keep it since it illustrates the difference between a classifier and a DSS
aimed at diagnosis of brain tumours: in a DSS the clinician does not know the diagnosis in
advance and therefore may enter cases into the system which belong to other classes than

those that the embedded classifiers are able to deal with.

Various DSS versions have been distributed to about 200 users, and the system is currently in
clinical use at Uppsala University Hospital (79). Surveys were performed among registered DSS
users in 2011 and 2012: 63% of the respondents used the DSS between once a month and
once every six months. Half used it to evaluate real cases, the remainder as a learning tool or
for teaching; 64% worked in hospitals and 84% in academia (77% worked in academia in
collaboration with public clinical centres). All worked with SV spectroscopy and 62% also with
MV. A much more extensive survey has been recently performed in the context of the
TRANSACT project (http://www.transact-itn.eu/), on the use of jMRUI, the INTERPRET DSS and

SpectraClassifier.
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ACHIEVEMENTS OF INTERPRET AND POSSIBLE FUTURE

DEVELOPMENTS

The INTERPRET collaboration set out to develop a non-invasive method for diagnosing and
grading brain tumours using 'H MRS, one that would eventually substitute for the subjective
analysis of a biopsy in cases where such biopsy is not available or advisable, and would require
no understanding of MRS or biochemistry on the part of the user. It accrued several hundred
quality-controlled spectra and associated MRI images, histopathology and clinical details; the
uploading and quality control procedures were automated. INTERPRET also developed and
tested numerous mathematical classifiers and created a decision support system — the DSS —
for presenting the data to the user; finally, the overall prototype system was tested several

times. How well did INTERPRET succeed in its original aims?

Successes

A major technical problem solved by the INTERPRET consortium was development of a data
input procedure that could cope with the proliferation of incompatible and constantly

changing MRS data formats used by the three major manufacturers.

Additional successes were the production of classifier algorithms that worked with raw spectra
rather than the metabolite concentrations or integrated peak areas required by previous
classification programs, and the demonstration that a useful database could be created by
combining spectra acquired on instruments from different manufacturers, using fundamentally
different acquisition protocols and numerous software generations. The software classifiers
could be “taught” to ignore all these irrelevant issues and focus only on the differences
between the tumour classes. It was even possible to classify 3T spectra using a database

composed of 1.5T spectra (39).
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Several clinical studies have tested the INTERPRET DSS. In view of the limited number of
tumour classes that were adequately represented in its database, it was not expected that the
prototype would be able to make definitive diagnoses. Despite those initial misgivings, it has
performed successfully in several prospective clinical tests, and it is clear that for certain
classes of tumour, notably low-grade glial tumours, it significantly improves the diagnostic

ability of experienced neuroradiologists.

The need for constantly updating the format conversion routines due to changes in the various
manufacturers’ data formats was overcome during the project by brute force and later by the
jDMS input program. This has allowed the on-going use of the INTERPRET system by many
researchers and clinicians. The recent release of the jMRUI2XML jMRUI plugin should solve the

problem definitively as long as jMRUI can cope with new spectral formats.

The INTERPRET prototype is still in regular use more than a decade after the project ended.

Its database has provided a resource for many studies, particularly to develop new classifiers
and it is even used by some clinicians to assist diagnosis. It also has a role in teaching.
Furthermore, two subsequent EU collaborative projects, eTumour and HealthAgents were built

on the foundations laid by INTERPRET.

Weaknesses

There were a number of obvious weaknesses of the INTERPRET project outcome. Because of
the limited size of its database it was necessary to aggregate some tumour types into
unfamiliar groupings (e.g. “AGG” or “LGG”), while many rarer tumour types were not
represented at all. This obviously limits the routine use of the DSS for clinical diagnosis. The
same problem meant that the DSS was not configured to offer a proposed diagnosis with a
percentage probability, a feature that some users find desirable, or even essential, and which

has subsequently been adopted by eTumour (58). Furthermore, the classifiers developed so
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far cannot make some clinically important distinctions, e.g. beween lymphomas and other

grade IV brain tumours, or between glial subclasses or grades.

In INTERPRET, 32% of the cases did not have an agreed histopathologic diagnosis (either
missing or not agreed) (18). In addition, pathologists are less likely to agree on intermediate
grade diagnoses, perhaps because conventional histopathological grading of brain tumours can
be difficult (and subjective), particularly for distinguishing intermediate grades (80-83).
Preliminary investigation of some of these spectra showed a profile indicative of an
intermediate grade. Indeed, some evidence suggests that spectra may be a better indicator of

prognosis in terms of survival than the pathology-assigned WHO grade (84,85).

An objection to the whole idea of developing a non-invasive method for brain tumour
diagnosis is that “They are all going to be operated on anyway so why not just biopsy them?”.
However, a significant number of patients with suspicious intracerebral massess are not, or
should not be biopsied(78). In addition, efforts are being made to develop more anticancer
drugs that will cross the blood-brain barrier. If a solely non-surgical treatment of brain
tumours by chemotherapy (and radiotherapy) becomes possible then a non-invasive diagnostic

test would have great value.

Can the INTERPRET concept be further developed?

The original impulse to develop INTERPRET came from a desire to find a “killer app” for MRS —
that is an application that would be so compelling that it would cause users to purchase the
necessary equipment and software. From a health economics perspective, bringing MRS into
routine practice requires that the costs associated with the additional imaging and radiologist
reporting time are balanced against a significant increase in diagnostic performance and the

resulting costs of the downstream investigations and treatments. Although successful in many
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ways, INTERPRET did not pass the “killer app” threshold. What would a future INTERPRET

need in order to bring MRS into routine use for brain tumour diagnosis?

Clinical needs

Diagnosis prediction: Ideally, the system should diagnose and grade all cancer types and
grades that routinely present at a brain cancer centre, although there is no certainty, of
course, that all tumour types and grades will have MRS-detectable differential features. The
system should also be able to advise a user about which tumour types cannot be distinguished
with MRS at each particular magnetic field or set of acquisition conditions. However, to make
routine diagnoses , many more classifiers would also have to be developed including: Grade IV
tumours (LY vs. PN vs. GB vs. ME) ; Grades of glioma (WHO grades Il vs. Il vs. IV); Subtypes of
glioma, both the classical ones defined by conventional histopathology (OD vs. A2 vs. OA) and
the emerging ones based on genetic markers (86,87); Less common tumour types, e.g.
hemangiopericytoma (88); Pediatric brain tumours (42,89,90).

A new INTERPRET database should include 3T and eventually 7T spectra, and contain
adequate numbers (220) of cases of all the major cancer types and grades (although there will
always be some cancers so rare that they cannot be scanned in adequate numbers). This
database should also include childhood tumours. Given the constant technical improvement
in spectroscopic techniques (86,91,92), the database should be an open-ended project, for
example to account for data acquired at 7T. There is some evidence of the compatibility of
1.5T MRS classifier being applied to 3T MRS data (39) and that acquisition of additional (well
validated) MRS tumour data can be used to further optimise a classifier incrementally without
recourse to the full original training data set (40). Hence optimisation could be an ongoing
process with more subtle classifiers emerging as enough data of the different tumour types at
each field strength is obtained. One solution would be to require users of the system to upload

the final diagnosis and clinical details of the case, which would then take its place in the
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database. One would have to rely on the local histopathologist’s diagnosis and on automated
QC procedures.

Prognosis prediction: Ideally the new system should be able to tell whether a tumour type or
molecular sub-type is likely to respond to a therapy. Additionally, in glioblastomas, the system
should be able to differentiate true progression from pseudoprogression or true response
from pseudoresponse (93). Such features would enhance the usefulness of the system, as it
would then provide action recommendations, rather than mere assessments (94).

Regional determination of heterogeneity: Another possibility would be to develop a tool for
assigning tumour type and grade to each voxel in a spectroscopic image — in effect using the
DSS to create a “nosologic image”(28,95,96), either for diagnosis or for prognosis prediction.
This is in line with recent data about the invasive assessment of human brain intratumour

genetic and epigenetic heterogeneity (97).

Workflow needs

To integrate seamlessly with radiologist workflow and working practices (94) the DSS should
fully automate MRS preprocessing, quality control and classification. It should also give
percentage likelihoods for each prediction and give diagnoses in terms that are familiar to
clinicians — e.g.”oligodendroglioma”, or “low grade glial tumour” rather than “LGG”. The
system could also tutor users in making use of and understanding the significance of MRS data
and motivate them through game-like diagnostic challenges that would demonstrate the
added value of MRS data (98). But such a system must fully integrate with the hospitals’
picture archiving and commnication sytem (PACS) used for standard radiological images, so
that any report and data visualisation based on the DSS output can be stored along with the
routine MRI data. It is feasible for the MRS(l) and relevant MRI data to be automatically re-
directed to a standalone system for analysis and automated generation of nosologic images,
for example, that are then returned to the system for viewing and archiving with the standard
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MRI in almost real-time. Alternatively, the DSS software could provide post-acquisition
analysis, with previously archived MRS(l) and MRI data taken from PACS for processing,

analysis and generation of an expert report to be subsequently archived to PACS.

Secondly, who would own and maintain this new DSS and its large database? One solution
would be to develop a commercial DSS that could be sold to users. The ownership of the
database necessary for the use of that DSS is a more difficult question. The current iDB and
viDB consist of de-identified spectra obtained from patients in many different countries. All
these patients gave informed consent, but numerous national legal frameworks were involved.
These databases are owned by the original INTERPRET partners who allow them to be used by
the INTERPRET DSS. If a larger database is to be developed it would probably be simplest if it is
also owned and maintained by a non-commercial entity, as it would be challenging (and
probably expensive) to develop a legal framework that allowed its commercial ownership. One
possible solution would be to integrate it into a large data infrastructure such as Elixir, which is
currently under construction (http://www.elixir-europe.org/about/rationale). An alternative
approach to these technological and medico-legal challenges, would be not to have a
centralised database but rather a cloud database, whereby each contributing centre owns and
manages its own local database, sharing only de-identified spectral features that are relevant
for classification. This alternative approach poses the technological challenge of redesigning
the classification algorithms to use distributed datasets, which is already an active area of
research (99,100). This concept, using software agents (34) had already been explored during
HealthAgents (41,101,102) but, unfortunately, with no practical continuity or commercial

exploitation after the funding period ended.

All the studies so far have been designed to demonstrate that use of MRS data by the

prototype DSS improves diagnostic power. A DSS for practical clinical use should have

27



classifiers that use both MRS data, clinical data and MRI data. Simple parameters such as the
patient’s age and sex are already available in the database and could significantly refine certain
diagnoses. Another source of information that could be exploited in a future system would be
the MRI images (or indeed any other images) of the tumour. Texture analysis software or
morphological analysis could produce quantitative parameters that could be used by a

classifier (103-105).

One final speculation: it has always been tacitly assumed that the aim of INTERPRET and its
subsequent developments was to reproduce the diagnosis made by a histopathologist. In
reality, it is not impossible that MRS-based classification of cancers might improve on
histopathology. MRS detects changes in the spectral pattern caused by small-molecule
metabolites such as 2-hydroxyglutarate, lipids and even macromolecules in the living tumour,
all of which contain a different type of information from that available on the classical
microscope slides used for histopathology, or even from the genomic data that are nowadays

coming into use for tumour classification (87,106-109).

Perhaps, for instance, MRS-based classifiers could be devised that will provide a more accurate
prognosis for some brain tumour sub-types (84,110,111), or could define sub-categories that
would help to personalize the treatment of patients. Studies of that type will require another
level of information gathering. Long-term data on disease progression and treatment
response will have to be collected for the patients whose spectra are in the database and then
classifiers constructed that will act as prognostic (i.e. course of disease) and predictive (i.e.
response to treatment) biomarkers. Finally, it will be necessary to make prospective
predictions by using those classifiers on a new cohort of patients and then to wait several
years and see whether the predictions were accurate. The big challenge here would be to
develop strategies that may work, at least partially, in a non-supervised or semi-supervised

way (50).For any of these strategies to have a direct translation into clinical practice, it is
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mandatory that studies are performed according to evidence based medicine (EBM) criteria

such as STARD (112), in contrast to most clinical MRS literature (reviewed by (113)).Otherwise,

MRS would risk denial of reimbursement as happened some years ago (CPT 76390) across

hundreds of healthcare providers in the USA (113). For this, efforts in standardising MRS data

acquisition and analysis, and in particular the implementation of technical improvements to

enable good quality MRS acquisitions to be performed faster and robustly, as well as clinical

guidelines for MRS use should be encouraged (114).

MRS is already more than 30 years old: let us hope that its future is long enough for these

possibilities to be realized.
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Figure 1. Top, mean (i.e. average) short TE (20-32 msec) spectra; bottom, mean long TE (135-144 msec) spectra,
both from the INTERPRET validated database (18). A2, astrocytomas of WHO grade II; OA, oligoastrocytomas of
WHO grade IlI; OD, oligodendrogliomas of WHO grade Il; GB, glioblastoma multiforme; ME, metastasis; LY,
lymphoma; AB, abscess; MN, meningioma; PN, primitive neuroectodermal tumour; LGG, low-grade glial tumours;
AGG, aggressive tumours; WHO, World Health Organization; “n”, number of cases used to calculate the mean.
Roman numbers stand for the WHO grades of the tumours according to the WHO classification. Colour legend:
blue, LGG; red, AGG; brown: WHO grade 1V; yellow, AB; grey, MN.
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Figure 3. The INTERPRET DSS version 3.1 screen for the “LGG vs. AGG. vs MN” short and long TE classifier. The
screen is divided in two main parts, left and right. The overview space of cases in the database is displayed on the
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left side, where each case is a coloured circle (see legend on the bottom left). The right part has two panels (top
and bottom) for visual inspection of the MRS of individual spectra. In this example, the left panel is subdivided in
two subpanels, one for each TE. The top right panels display the short and long TE 3T spectra of et3572, an
oligodendroglioma of WHO grade Il acquired at the Cambridge partner during eTumour: et3572 is displayed as a
yellow symbol in the overview space, and it can be seen that it is correctly classified in the LGG class. The bottom
right panels display the short and long TE 1.5 T spectra of case et2274 acquired in Barcelona during the eTumour
project (filled blue diamond in the overview space); it is an oligodendroglioma of WHO grade II. With the short TE
classifier, the DSS positions et2274 as AGG (not shown), in agreement with another study that also used it (37)
and concluded that et2274 was an outlier due to the uncommon mobile lipid pattern (high 0.9 and 1.3 ppm
resonances of about the same intensity, disappearing at long TE therefore indicating that these are not necrotic
lipids). The long TE classifier and the short and long TE classifier embedded in the DSS however, position et2274
correctly as a LGG. See also reference (39) for compatibility of 3T with 1.5T data classifiers.
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Figure 4. Top, jMRUI with unprocessed spectrum (left panel), long TE case et3568, and jMRUI2XML, in which the
INTERPRET processing parameters have been loaded (right panel). Bottom, jMRUI with the processed spectrum
according to the INTERPRET processing parameters (left panel) and the DSS in which the same spectrum has been
loaded (right panel). In the DSS, the yellow symbol is where this spectrum is positioned by the classifier. The
Spectrum can be seen in the top right part of the DSS. It is compared with the mean AGG (bottom right of the
DSS). Note that this spectrum corresponds to radiation necrosis, a diagnosis not dealt with by the classifiers

handled by the DSS.

42



Glioblastoma vs.

Most common tumour types classifier Metastasis Histopathological diagnosis
classifier
Case 511:;3;:; idl(:slsglgi Short+long TE | Short+Long TE Consensus histology b
number . - classifier classifier . £y oy Original pathologist Consulting pathologist A Consulting pathologist B
. predicted predicted . . consulting pathologists
in eTDB predicted class | predicted class
class class
DYSEMBRYOPLASTIC
DIFFUSE ASTROCYTOMA DIFFUSE DIFFUSE
et3356 LGG LGG LGG NA NEUROEPITHELIAL
9400/3 TUMOUR 9413/0 ASTROCYTOMA 9400/3 | ASTROCYTOMA 9400/3
et3460 AGG AGG AGG GBM GLIOBLASTOMA 9440/3 GLIOBLASTOMA 9440/3 GLIOBLASTOMA 9440/3 | GLIOBLASTOMA 9440/3
13564 AGG AGG AGG GBM GLIOBLASTOMA 9440/3 ANAPLASTIC GLIOBLASTOMA 9440/3 | GLIOBLASTOMA 9440/3
N GANGLIOGLIOMA 9505/3
et3568 AGG AGG AGG NA OTHER RADIATION NECROSIS OTHER OTHER
et3569 AGG LGG AGG GBM GLIOBLASTOMA 9440/3 GLIOBLASTOMA 9440/3 GLIOBLASTOMA 9440/3 | GLIOBLASTOMA 9440/3
OLIGODENDROGLIOMA OLIGODENDROGLIOMA OLIGODENDROGLIOMA | OLIGODENDROGLIOMA
et3s572 LGG LGG LGG NA 9450/3 9450/3 9450/3 9450/3
et3573 AGG AGG AGG NA GLIOBLASTOMA 9440/3 GLIOBLASTOMA 9440/3 GLIOBLASTOMA 9440/3 | GLIOBLASTOMA 9440/3

Table 1. Results of evaluating the seven 3T cases from the eTumour database with the DSS. NA: not applicable. The histopathological diagnoses by the different experts have been
included as illustration of the limitations of the gold standard for diagnosing brain tumours.
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SUPPLEMENTARY

FOR

MATERIALS

Classification of Brain Tumours from MR Spectra: The INTERPRET Collaboration and its

Outcomes

By

Margarida Julia-Sapé , John R. Griffiths, A. Rosemary Tate, Franklyn A. Howe, Dionisio
Acosta, Geert Postma, Joshua Underwood, Carles Majés, Carles Arus

Cases contributed

iDB viDB
Contributing centre Place Main role Total | SV | MV sV
CDP CETIR, Centre Diagnostic Pedralbes- Barcelona and.ESplugues del Data contributor 230 230 - 82
Llobregat, Spain
IDI, Ir.15t|tut de Diagnostic per la Imatge-Unitat | L H95p|talet del Llobregat, Data contributor 204 | 204 ) 118
Bellvitge Spain
SGUL, St George's University of London London, United Kingdom Data contributor 159 159 - 75
U!\.ACN' Universitair Medisch Centrum Nijmegen, The Netherlands Data contributor 60 46 50 13
Nijmegen
E;E’#:}T;;E:ﬁ lLJJ;;\;ersne Joseph Grenoble, France Data contributor 70 5 70 -
Data contributor
FLENI, F i0 la Luch |
, Fundacion parala. ucha contra a.s Buenos Aires, Argentina (Associated 37 37 2 6
Enfermedades Neuroldgicas de la Infancia
partner)
Data contributor
MUL, Uniwersytet Medyczny w Lodzi Lodzi, Poland (Associated 15 15 - 10
partner)
Database and DSS
UOS, University of Sussex Brighton, United Kingdom development, data - - - -
analysis
KUN, Radboud University Nijmegen Nijmegen, the Netherlands Data analysis - - - -
PRAXIM, SARL Grenoble, France Commercialisation - - - -
Siemens AG, Medizinische Technik Erlangen, Germany Advisory - - - -
UAB, Universitat Autonoma de Barcelona Cerdanyola del Vallés, Spain COOI’dII.’latIOI’l, data - - - -
managing

Table S1. Participating clinical centres as well as roles and number of cases contributed to the databases. Patients
scanned at CDP were referred from 6 hospitals in the Barcelona (Spain) area, which contributed clinical data and
histology slides. INTERPRET database (iDB), INTERPRET validated database (viDB).

PARAMETER STEAM (SHORT TE) PRESS (SHORT TE) PRESS (LONG TE)

TE 20 ms (20— 32 ms) 30-32 ms (30-32 ms) 136 ms (135 — 144 ms)

TR 2000 ms (1600 —2000 | 2000 ms (1600 — 2000 ms) 2000 ms (1600 — 2000 ms)
ms)

Volume 4-8cm’ 4-8cm’ 4-8cm’

Number of averages metabolites | 256 192 -128 192-128

Number of averages water 81032 8to 16 810 16

Number of points 512 [Philips] 512 [Philips] 512 [Philips]
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1024 [Siemens]
2048 [GE]

1024 [Siemens]
2048 [GE]

1024 [Siemens]
2048 [GE]

Bandwidth

1000 Hz [Philips]
1000 Hz [Siemens]
2500 Hz [GE]

1000 Hz [Philips]
1000 Hz [Siemens]
2500 Hz [GE]

1000 Hz [Philips]
1000 Hz [Siemens]
2500 Hz [GE]

Dummy scans

4

4

4

Table S2. Consensus acquisition protocols for new data with ranges used for retrospective data accepted into the
INTERPRET database. TE and TR ranges used for retrospective data are given in parentheses.
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ORDER IN WHICH

IT WAS PROCEDURE

PERFORMED

1" Lineshape correction and zero order phasing using water reference with the Klose method
2" 0.8 Hz exponential line broadening

3" Processing by FFT

4" Water removal by HLSVD: 5 components removed within £0.37 ppm of water resonance
5" Residual water suppression: points at 4.2 to 5.1 ppm set to zero

6" Linear interpolation to 512 points over 1000 Hz of Siemens and Philips data

7" Spectrum alignment: maximum of choline peak shifted to 3.21ppm

8th Normalisation of spectrum to Euclidian norm of peak heights

Table S3. Consensus data processing into the INTERPRET canonical format for spectrum display and analysis.

PROCESS PARAMETERS ACCEPT IF
Automatic Water linewidth (WBW) WBW < 8Hz
. S = Maximum metabolite signal in range 0 — 3.4ppm; N = standard deviation
Automatic noise in range 9 — 11ppm. SNR = S/N SNR>10
Visual inspection by expert spectroscopists.
Manual Possible artefacts that cause rejection: high scalp lipids; poor phasing; large 2 experts agree

baseline artefacts; metabolite peaks of suspect origin

Table S4. Consensus QC of all spectral data.
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