Table S1: Estimating the percentage change in risk [95% CI] per 10 μ g/m³ increase in pollutant: Single pollutant regression models§

Daily mean Pollutant (UDLM lags 0-1)	All Stroke (No. of cases =1,758)	Ischaemic Stroke (No. of cases=1,311)	Haemorrhagic Stroke (No. of cases=256)					
	% change [95% CI]	% change [95% CI] % change [95% CI]						
Single pollutant regression model								
PM _{2.5}	-4.5 [-12.4, 4.2]	-6.6 [-15.7, 3.5]	-14.4 [-32.1, 8.0]					
PM_{10}	-4.1[-9.6, 1.8]	-4.8 [-11.2, 2.0]	-12.3 [-25.1, 2.7]					
O_3	-2.2 [-6.9, 2.7]	-1.0 [-6.5, 4.8]	-4.8 [-16.9, 9.0]					
NO_2	-0.1 [-5.4, 5.5]	-1.3 [-7.3, 5.1]	-2.1 [-14.7, 12.3]					
NO_X	0.6 [-1.1, 2.3]	-0.1 [-2.0, 1.9]	1.1 [-2.7, 5.1]					

[§]The conditional logistic regression model fits the pollutant at lags 0 and 1 and adjusts for, two natural cubic splines (df=2) for temperature (lags 0-1 and lags 2-6), two natural cubic splines (df=2) for humidity (lags 0-1 and lags 2-6), public holidays and a sine /cosine annual cycle

Table S2: Estimating the percentage change in risk [95% CI] per 10μg/m³ increased in measured§ pollutant.

	All Stroke	All Stroke		Ischaemic Stroke		Haemorrhagic Stroke		
	No. of cases	% Change [95% CI]	No. of cases	% Change [95% CI]	No. of cases	% Change [95% CI]		
Single Pollutant Regression model:								
PM _{2.5}	1,662	-6.1 [-13.3, 1.8]	1,235	-7.1 [-15.4, 2.0]	239	-10.7 [-29.5, 13.1]		
PM_{10}	1,653	-4.0 [-9.2, 1.4]	1,226	-3.8 [-9.6, 2.4]	238	-10.0 [-22.8, 4.9]		
O_3	1,691	-1.0 [-5.7, 4.1]	1,255	-0.3 [-5.8, 5.6]	243	2.4 [-10.4, 16.9]		
NO_2	1,691	-1.1 [-5.1, 3.2]	1,262	-1.5 [-6.1, 3.4]	238	0.7 [-9.8, 12.4]		
NO_x	1,693	-0.2 [-1.4, 1.1]	1,263	-0.4 [-1.9, 1.0]	239	0.3 [-2.8, 3.5]		

[§] Pollutant measured at an urban background central London (Bloomsbury) monitoring site (Source: Automatic Urban and Rural Monitoring Network (AURN) Data Archive. © Crown 2015 copyright Defra via uk-air.defra.gov.uk, licenced under the Open Government Licence (OGL))

[‡]The conditional logistic model fits the pollutant at lag 0 and adjusts for, two natural cubic splines (df=2) for temperature (lags 0-1 and lags 2-6), two natural cubic splines (df=2) for humidity (lags 0-1 and lags 2-6), public holidays and a sine / cosine annual cycle. Models containing PM_{2.5} also included a binary variable to indicate whether data were gathered by a TEOM or an FDMS monitor.