

Manuscript Submission and Peer Review System

Disclaimer: The manuscript and its contents are confidential, intended for journal review purposes only, and not to be further disclosed.

URL: http://circgenetics-submit.aha-journals.org

Title: New Insights into the Genetic Basis of Inherited Arrhythmia Syndromes

Manuscript number: CIRCCVG/2016/001571R1

Author(s): Elijah Behr, St George's University of London Belinda Gray, Royal Prince Alfred Hospital

New Insights into the Genetic Basis of Inherited Arrhythmia Syndromes

Running title: Gray & Behr; Genetic Basis of Inherited Arrhythmia Syndromes

Belinda Gray, BSc (Med) MBBS FRACP¹⁻³ and Elijah R Behr MA MBBS MD FRCP^{4,5}

¹Department of Cardiology, Royal Prince Alfred Hospital; ²Sydney Medical School, University of Sydney, ³Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, NSW, Australia; ⁴Cardiology Clinical Academic Group, St George's University of London; ⁵St George's University Hospitals NHS Foundation Trust, London, United Kingdom

Correspondence:

Dr Elijah R. Behr St George's University of London Cranmer Terrace London SW17 0RE United Kingdom Tel: +442087252994 E-mail: <u>ebehr@sgul.ac.uk</u>

Journal Subject Terms: Arrhythmias; Genetics; Sudden Cardiac Death

Key words: long QT syndrome; genetic heart disease; Brugada syndrome; catecholaminergic polymorphic ventricular tachycardia; pathogenicity; calmodulinopathies; triadin knockout syndrome; next generation sequencing; inherited arrhythmia syndromes

Introduction

Inherited arrhythmia syndromes encompass a number of different diseases including long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS), idiopathic ventricular fibrillation (IVF) and progressive cardiac conduction system disease (PCCD).¹ The heart is typically structurally normal with no evidence of disease macroscopically. They are an important cause for sudden cardiac death (SCD) in the young and an autopsy is typically negative.^{2, 3}

Ventricular arrhythmias are due to mutations of ion channels and their interacting proteins, predominantly involving potassium, sodium and calcium handling.⁴ Genetic studies have identified the specific genetic abnormalities that underpin these diseases even permitting diagnosis in the deceased using post-mortem genetic testing (the "molecular autopsy").³ Most arrhythmia syndromes are inherited in an autosomal dominant manner, such that first degree family members have a 50% chance of inheriting the disease. Identification of the mutation allows for predictive genetic testing in other living family members.⁴ 'Variable penetrance' is common in all arrhythmia syndromes, the same mutation in the same family causing wide variation in phenotype.⁴ This suggests that other factors such as genetic modifiers and environmental factors may influence the phenotype.

This review will highlight the latest developments in understanding the genetic basis of inherited arrhythmia syndromes and discusses the new opportunities and challenges faced with evolving genetic technologies including determining pathogenicity and the utility of large genetic databases. Finally, we will discuss newly described entities that continue the evolving theme of genetic syndromes with phenotypic overlap. Early views that a single genotype

associates with a particular phenotype continue to be challenged by our greater understanding of the genotype phenotype relationship.

Inherited Arrhythmia Syndromes

Long QT Syndrome

Congenital LQTS is diagnosed in the presence of a prolonged corrected QT (QTc) interval after secondary causes (e.g. QT-prolonging medications or electrolyte abnormalities) are excluded.¹ The 2013 HRS/EHRA/APHRS guidelines recommended that LQTS also be diagnosed in the presence of an LQTS risk (Schwartz) score \geq 3.5 or in the presence of an unequivocally pathogenic variant in one of the known LQTS genes.¹ Patients with unexplained syncope and a borderline QTc between 480-499ms in recurrent ECGs, or who were asymptomatic but had repeated measurements of over 500ms, may also be diagnosed with LQTS.¹ The more recent 2015 ESC guidelines softened these criteria to QTc \geq 480ms in an asymptomatic patient or a QTc \geq 460ms in the presence of unexplained syncope.⁵ It was argued that higher values equated to high risk LQTS and were therefore too conservative.

QT prolongation results from ion channel dysfunction that prolongs cellular repolarisation.^{6, 7} There are currently 15 genes known to cause congenital LQTS, however the main 3 genotypes account for >90% of genetically confirmed LQTS (**Table 1**).^{1, 4} The genetic cause remains elusive in 25% of LQTS families.¹² LQT1 is caused by loss of function mutations affecting *KCNQ1* the gene encoding for I_{Ks} (slow) channel.⁴ Both haploinsufficiency and dominant-negative mechanisms of *KCNQ1* mutations are described.^{13, 14} LQT2 is caused by loss of function mutations in *KCNH2* the gene encoding for the I_{Kr} (rapid) channel predominantly due to failure of trafficking to the cell membrane surface.^{15, 16} Gain of function mutations in *SCN5A*, the gene encoding for I_{Na} , causes failed inactivation and increased late current leading to LQT3.¹⁷

Whilst most LQTS is inherited in an autosomal dominant manner, the rare recessive form (Jervell and Lange-Nielsen Syndrome [JLNS]) leads to a severe LQTS phenotype and associated sensorineural deafness.¹⁸ Indeed, greater severity is typical when more than one mutation is identified.⁴

A recent study has suggested that LQTS may be preferentially transmitted from the maternal allele, with higher than expected maternal transmission and inheritance, particularly with LQT1.¹⁹ The authors also found that this phenomenon was not linked to locus-specific grandparental origin allele transmission distortion and in fact appears to be related to the severity of channel dysfunction. The authors postulate that that altered potassium channel function may modulate reproduction, particularly *KCNQ1* which is expressed in the granulosa and trophoblastic cells of the ovaries.¹⁹ LQTS-associated potassium channel dysfunction has also been proposed recently as a possible mechanism for some stillbirths given that LQTS susceptibility variants can be identified in some cases.²⁰ This hypothesis follows on from evidence that some sudden infant death syndrome (SIDS) may also be due to LQTS.⁴

Common variants (single nucleotide polymorphism or SNPs) at the *NOSIAP* locus have been shown to modify phenotype by affecting both the QT interval and the likelihood of symptoms in LQTS, whilst common variants in *KCNQ1* within the 3'untranslated region may also influence disease severity.²¹⁻²³ A recent genome-wide association and replication study identified a total of 35 SNP tagged loci associated with QT interval amongst around 100,000 individuals of European ancestry, 6 of which were found to have rare coding variants in LQTS patients absent in controls.²⁴ Whilst this does not equate to pathogenicity, it is likely that these loci may also modify the LQTS phenotype to some extent.

Genotyping in LQTS is useful diagnostically, therapeutically and to a lesser extent,

prognostically.^{1, 12} Beta-blockers are the mainstay of therapy, with LQT1 patients, particularly those with mutations in cytoplasmic loops, most protected regardless of drug and LQT2 patients responding best to nadolol.^{25, 26} Sodium channel blockers (e.g. mexiletine) can be useful in addition to betablockers for patients who have LQT3.²⁷ High risk features include severe QT prolongation, boys, female adults, prior cardiac arrest and syncope despite beta-blocker therapy. However only LQT2 females and those with high risk genetic profiles (i.e. multiple mutations or JLNS) have been associated with sufficient additional risk to suggest a potential risk-stratifying role.⁵ Additionally the biophysical consequences of the mutation may offer alternative methods for stratification.²⁸

Brugada Syndrome

BrS was first formally described in 1992, whereby Brugada et al reported 8 patients with characteristic cove-shaped ST elevation in the right precordial leads with associated SCD due to ventricular fibrillation (VF).²⁹ Diagnostic criteria from a recent consensus report require the patient to have a spontaneous type 1 Brugada pattern ECG defined as $\geq 2mm$ ST elevation with type 1 morphology in ≥ 1 right precordial lead V1 or V2 in either 2nd, 3rd or 4th intercostal space.³⁰ Unlike the earlier 2013 Guidelines,¹ if the type 1 pattern is only revealed after sodium channel blocker challenge, the diagnosis of BrS also requires one of the following: documented VF or polymorphic ventricular tachycardia (VT), suspected arrhythmic syncope, family history of SCD with negative autopsy, BrS ECG in family members, or nocturnal agonal respiration. This follows recent data suggesting a higher than expected yield of positive results in ajmaline provocation tests in an apparently healthy control population.³¹

Traditionally BrS has been proposed as a primary electrical disease involving a relative impairment of the inward sodium current compared to the transient outward potassium current

(I_{to}) in the right ventricular outflow tract (RVOT).³⁰ However a transgenic mini-pig model of a truncating SCN5A mutation showed evidence of conduction disease but without a type 1 ECG pattern.³² This may reflect that haploinsufficiency leads to an isolated conduction disease phenotype without the necessary further genetic variation associated with BrS in humans (see below); the young age of the pigs given that BrS exhibits age related penetrance; and/or the absence of I_{to} in the pig myocardium. The diagnosis of BrS has also required the exclusion of overt structural heart disease and the pathophysiology has been attributed to transmural and epicardial heterogeneity of repolarization. However, there is mounting evidence that BrS may represent one end of a spectrum of subtle structural disease.³³ In particular imaging studies have suggested abnormalities of the right ventricle and RVOT.^{34, 35} Epicardial ablation studies have identified fractionated signals consistent with slowed conduction and fibrosis which have been confirmed by other investigators both invasively and using ECG imaging.³⁶⁻³⁸ Subsequent pathological studies in open surgical ablation and sudden death victims from BrS families have confirmed subtle epicardial fibrosis and reduced connexin-43 in the RVOT.³⁹ An experimental perfused canine wedge model has however proposed that these fractionated potentials may result from phase II re-entry.⁴⁰

BrS has traditionally been considered as an autosomal dominant inherited disease. However, this convention has also been challenged. The most common associated genetic abnormality is a loss of function mutation in *SCN5A*. However, a mutation is identified in only one fifth of patients.⁴ Strong linkage studies associating *SCN5A* with BrS do not exist, with the exception of families with overlap phenotypes with LQTS and PCCD.⁴¹ Additionally, the genotype-phenotype correlation within families shows worrying mismatch. Probst et al, described 5 out of 13 large BrS families with known *SCN5A* mutations with several individuals

with a type 1 Brugada ECG pattern *within the same family* who were mutation-negative.⁴² Mutations in 22 other genes encoding components and interacting proteins of the sodium channel, calcium channel, and potassium channels have also been implicated in BrS (**Table 2**) however few are based on strong linkage studies and most are rare.^{4, 43}

Furthermore, a genome-wide association study identified three SNPs with additive effects on the likelihood of BrS irrespective of the presence of an SCN5A mutation.⁴⁴ These included two SNPs at the SCN5A and SCN10A locus; SCN10A encoding the alpha subunit of the neuronal Nav1.8 current associated with nociception. This prompted investigation by Hu et al that suggested that mutations in SCN10A are present in up to 16% of BrS patients.⁴⁵ A contemporaneous study assessed the burden of rare coding variants in BrS associated genes in patients compared to a control group and only showed enrichment of SCN5A. This concluded that previously reported genes including SCN10A do not account for BrS cases in patients of European ancestry.⁴⁶ Additionally, a subsequent study of 45 known cardiac genes in SCN5A negative cases showed enrichment of the DSC2 gene linked to arrhythmogenic right ventricular cardiomyopathy (ARVC) but not the other BrS genes.⁴⁷ These data reinforced the possible role for ARVC associated rare variants in BrS that had already been proposed for the PKP2 gene in an earlier study.⁴⁸ Another study of potential novel candidate genes in SCN5A negative cases showed a similar low yield although a probable mutation was identified in TBX5, a transcription factor for SCN5A and SCN10A.⁴⁹ The study also confirmed previous findings that SNPs at the SCN10A locus associates with BrS but rare variation was not significantly associated. Collectively these studies support the theory that BrS is an oligogenic disease with the potential that ion channel and structural rare variants may have modulatory influences upon a 'common substrate'. Together with other factors such as age, gender and environmental exposures, these

affect the susceptibility for the BrS phenotype and potentially contribute to the subtle structural disease that has been associated with the disorder. This may also account for the unexpectedly high yield of ajmaline provocation in the general population, whereby susceptibility to BrS is partly due to genetic variation prevalent in the general population.³¹ The role for diagnostic genetic testing is therefore relatively limited at this time until we are able to dissect the interaction of rare and common variation.

Catecholaminergic Polymorphic Ventricular Tachycardia

CPVT is a highly lethal, rare inherited arrhythmia syndrome characterised by bidirectional and polymorphic VT which is adrenergically stimulated, typically through physical exertion.^{50, 51} The diagnostic criteria require a structurally normal heart and normal baseline ECG, with the development of polymorphic or bidirectional VT following exercise or catecholamine, usually in a patient aged <40yrs.¹ CPVT can also be diagnosed in patients who are found to be carriers of a known clearly pathogenic genetic variant as well as in family members of an index case who develop premature ventricular contractions (PVCs) during exercise.¹

The pathophysiology of CPVT is dependent upon abnormal intracellular calcium handling leading to triggered activity.⁵² Linkage studies in 2 large Finnish families with autosomal dominantly inherited CPVT first identified linkage at chromosome 1q42-43.⁵³ Subsequent studies indicated the gene encoding the cardiac ryanodine receptor gene (*RYR2*) to be responsible (CPVT1).^{1,4} In CPVT, *RYR2* is 'leaky' under adrenergic activation, causing an excess of calcium release into the cytosol in diastole resulting in increased activation of the sodium-calcium exchanger and delayed after-depolarisations.⁵⁴ A rarer form of autosomal recessive CPVT (CPVT2) is known to result from mutations in the cardiac calsequestrin gene (*CASQ2*) an important calcium storage and buffering protein in the sarcoplasmic reticulum

interacting with *RYR2*.⁴ A recent study has also shown linkage to a heterozygous *CASQ2* variant in autosomal dominant CPVT for the first time.⁵⁵

Collectively, these two genes combined account for around 50-65% of cases of CPVT.¹² Other genes, including Calmodulin (*CALM1*), Triadin (*TRDN*), *TECLR*, Ankyrin-B (*Ank2*) and *KCNJ2* account for rare cases of CPVT.^{4, 56} Whether *Ank2* and *KCNJ2* represent phenocopies or overlap syndromes with LQT4 and 7 respectively remains a moot point (**Table 3**).

Short QT Syndrome

SQTS is a rare inherited arrhythmia syndrome characterised by syncope or sudden cardiac death associated with a shortened QTc interval. The diagnosis requires the presence of a very short QTc \leq 330ms, or a QTc \leq 360ms in association with one of the following: family history of SQTS, pathogenic mutation, family history of sudden death at age \leq 40 years; and/or survival of a VT/VF episode in the absence of heart disease.¹ SQTS was first described in 2000⁵⁷ and since then candidate gene studies have linked SQTS to missense mutations causing gain of function in potassium channels (*KCNH2*- SQT1, *KCNQ1*- SQT2, *KCNJ2*- SQT3).^{4, 58} There is also an association with loss of function mutations in calcium channels (*CACNA1C* and *CACNB2b*) in association with a BrS phenotype.^{4, 58} SQTS is very rare with the largest series of 73 patients demonstrating a low genetic yield of 14% despite familial disease being evident in 44%.⁵⁸ It is unclear whether there may be an overlap with idiopathic VF (IVF) cases with only moderate QT shortening leading to underdiagnosis.

Idiopathic Ventricular Fibrillation

IVF describes patients who experience a resuscitated cardiac arrest, ideally with documented VF in the absence of other causes for VF i.e. metabolic, toxicological, cardiac (including other channelopathies and structural heart disease), respiratory and infectious.¹ The arrhythmias are

believed to be precipitated by short-coupled premature ventricular contractions (PVCs) due to Purkinje fibre potentials leading to polymorphic VT.⁵⁹⁻⁶¹

Whilst IVF remains largely unexplained, the genetic basis for disease has been proposed in some cases. Alders et al linked disease with *DPP6* gene though a genome-wide haplotype sharing analysis in three distantly related Dutch families. Carriers demonstrated high penetrance with 50% experiencing an episode of VF or sudden death before age 58.⁶² Marsman et al used exome sequencing to link IVF to *CALM1* in a family of Moroccan descent.⁶³ A recent report described a family with a likely IVF phenotype, with short-coupled PVCs at rest and a novel *RYR2* mutation H29D causing diastolic calcium leak at rest.⁶⁴ Finally a very recent report highlights *IRX3* as a putative gene in humans and animal models.⁶⁵ Collectively these reports suggest potential monogenic causes for IVF. However due to the lack of large IVF families it remains possible that the disease may be oligogenic.⁶⁶ Additionally, the prevalence of IVF is declining as more patients initially diagnosed with IVF are subsequently diagnosed with a different inherited arrhythmia syndrome such as BrS.⁶⁶

Progressive Cardiac Conduction System Disease (PCCD)

Progressive cardiac conduction system disease (PCCD) is diagnosed in young patients (<50 years) exhibiting abnormalities of conduction with and without a structurally normal heart in the absence of skeletal myopathies.¹ When there is a clear familial pattern to disease it is typically autosomal dominant and genetic testing has diagnostic utility.¹ The majority of familial cases with a structurally normal heart are attributed to mutations in *SCN5A* and *TRPM4*.¹² Cases due to *SCN5A* mutations can be associated with a BrS overlap syndrome.^{12,41,67} There are also rare associations with other genes (*SCN1B, SCN10A, KCNK17*).⁶⁸ PCCD with congenital heart disease is associated with transcription factor mutations (e.g. NKX2.5, GATA4)⁶⁹ and PCCD

with dilated cardiomyopathy or LV dysfunction is associated with lamin A/C (*LMNA*) or desmin (*DES*) variants.¹² The presence of a *LMNA* mutation carries prognostic utility and may influence ICD implantation.¹

Genetic Testing and Next Generation Sequencing

Identification of the likely pathogenic variant in a family permits predictive (cascade) testing in family members. Those who are not found to carry the variant are released from regular clinical screening.⁷⁰ The best approach to improving the pre-test probability of a pathogenic variant being identified is to ensure the clinical phenotype is clearly defined, whether there is a family history of disease and that only genes which are plausible for the phenotype are assessed.¹²

Diagnostic testing had traditionally relied upon Sanger sequencing and disease causation or pathogenicity was often inferred only by absence of a variant in relatively small control populations. Since 2005, next-generation sequencing (NGS) methods have become increasingly available including cardiac gene panel testing, whole exome and whole genome sequencing. These allow large volumes of data to be analysed quickly and comprehensively at lower cost and have helped identify causative genes in disease where traditional methods have previously failed.⁷¹ These differing approaches as well as their relevant advantages and disadvantages are shown in **Supplementary Material**.

NGS has also facilitated large public databases of genetic variation such as the 1000 Genomes project, the Exome Sequencing Project (ESP) or Exome Aggregation Consortium (ExAC) that have indicated rare variants to be more common than expected.³⁰ For example, in *SCN5A* there is a 3-5% background 'noise' of rare variants amongst healthy individuals.⁷² Therefore up to 1 in 20 so-called positive genetic tests for BrS could in fact be false-positives.³⁰ The current 'signal-to-noise ratio' for the top four inherited arrhythmia genes ranges between

4.5:1 (*SCN5A* for LQT3) and 70:1 (*KCNQ1* for LQT1).⁷³ Additionally, variants previously thought of as being pathogenic in early Sanger studies are now accepted to be too common to be causative of rare disease and are therefore false positives. For example, 1 in 23 individuals in the ESP database carried a previously published BrS-associated variant.⁷⁴ Similarly Refsgaard et al identified 33 rare variants previously associated with LQTS in the ESP database suggesting a disease prevalence of 1 in 31 rather than 1 in 2000.⁷⁵ Ghouse et al showed that 10 variants previously associated with LQTS were in fact found frequently amongst a Danish population sample.⁷⁶ Finally, Van Driest et al showed no significant difference in arrhythmic phenotype between those with and without rare *KCNH2* or *SCN5A* variants in an unselected population.⁷⁷ They also showed poor concordance amongst laboratories when designating rare variants as pathogenic.

Thus in order to strengthen utility of contemporary genetic testing there are stringent criteria to determine pathogenicity. It is no longer considered a binary variable, but instead a probabilistic spectrum of pathogenicity as shown in **Figure 1**.^{70, 78, 79} Criteria have been published by the American College of Medical Genetics and Genomics (ACMG) and are currently being updated with cardiac specific recommendations.⁸⁰

Assessing Pathogenicity

Online databases of previously reported pathogenic variants have provided important tools for recognising unequivocally pathogenic variants although they are only as robust as the data entered and require regular updating and stringent curation. The ClinVar (*www.ncbi.nlm.nih.gov/clinvar/*) and ClinGen (*www.clinicalgenome.org*) initiatives offer important opportunities for global harmonisation of such data.⁸¹

Rarity can still be helpful when assessing likelihood of pathogenicity.⁸² The public databases are integral to determining which variants are truly rare or novel and which are part of normal background genetic variation within cardiac inherited arrhythmia genes.³⁰ The prevalence of the disease being tested for should, however, be considered. For example, the disease prevalence of CPVT is 1/10,000; therefore, a variant with a population frequency of 0.0001, whilst rare, would potentially account for all CPVT cases globally and is therefore too common to be pathogenic. Novelty or substantially lower allele frequency than the disease prevalence is therefore required to support pathogenicity.

Loss of function is a known mechanism of disease pathogenesis for most inherited arrhythmia syndromes and an important step in assessing pathogenicity is reviewing the predicted effect of the variant on protein function. This is relatively straightforward for nonsense, frameshift or splice-site mutations but less so for missense variants. *In silico* software tools and functional studies, either *in vivo* or *in vitro*, can then also be used to assess the physiological effect of the variant and predict likelihood of pathogenicity although they are not always reliable.^{30, 80, 82} Kapplinger et al used multiple *in silico* tools and ion channel topography to improve variant classification as benign or pathogenic.⁷² All tools bar the Grantham score showed some predictive value although none showed strong independent utility.

Despite these efforts variants of uncertain significance (VUS) have become increasingly problematic. These are typically absent from population databases and may have computational evidence suggestive of pathogenicity. Lack of functional or segregation data however means that the variant cannot be classified as likely pathogenic or benign. Genetic counselling is critical to ensure the patients understand this potential complication of genetic testing.¹² Predictive testing

should therefore only be performed in monogenic disease when a variant has been classified as pathogenic or likely pathogenic.⁷⁰

The Changing Landscape of Inherited Arrhythmia Syndromes

Inherited arrhythmia syndromes have typically been attributed to autosomal dominant inheritance due to monogenic abnormalities. As discussed above, these diseases may be genetically more complex and oligogenic, particularly in BrS (**Figure 2A**). The simple genotype equals phenotype equation is also increasingly questioned. This was first evidenced by *SCN5A* overlap syndrome of BrS, PCCD and LQTS⁴¹ followed by association with other phenotypes,⁶⁷ as well as dilated cardiomyopathy and atrial fibrillation.⁴ There is also evidence of CPVT and LQTS overlap phenotypes due to different *ANK2* and *KCNJ2* mutations. The evolving relationship between genotype and phenotype is depicted in **Figure 2B**.

New Entities

Calmodulinopathies

Calmodulin is a ubiquitous calcium binding protein.⁸³ The importance of calmodulin binding to KCNQ1 for correct IK_s channel function was first highlighted using patch-clamp experiments 10 years ago.⁸⁴ Shamgar et al showed that LQTS mutations located near the C-terminal affect calmodulin binding, channel gating and assembly as well as calcium-sensitive IK_s-current stimulation. Defective calcium binding due to mutant calmodulin causes ventricular action potentials to be significantly prolonged.^{85, 86} This cellular work has translated to the bedside with the evolution of the "calmodulinopathies".

Human calmodulin is encoded by three separate genes (*CALM1*, *CALM2*, *CALM3*), located on three different chromosomes, with the same amino acid sequences present in the three protein products of the genes.⁸⁷ Mutations in *CALM1* and *CALM2* were first identified through

whole exome sequencing in two unrelated infants with severe OT prolongation and recurrent cardiac arrest in infancy.¹⁰ This was confirmed in two additional similar cases.¹⁰ A large linkage study in a Swedish family with a dominantly inherited CPVT-like phenotype established linkage to a heterozygous CALM1 mutation.¹¹ A second CPVT patient was identified with a different de novo missense mutation in *CALM1*.¹¹ A recent exome sequencing study assessed the prevalence of CALM1-3 variants in 38 gene-negative LQT patients and found a significant proportion of calmodulin variants in this cohort compared to ExAC (13.2% vs 0.04%).⁹ These cases had a young age of onset, high rate of cardiac arrest and severe QTc interval prolongation. Functional characterisation of one calmodulin variant (E141G) revealed a reduction in calcium binding affinity by a factor of 11 and functionally dominant loss of inactivation of L-type calcium channels with mild effects on late sodium current. CALM1 has also been linked to familial idiopathic VF.⁶³ Currently CALM1 and CALM2 are known as LOT14 and LOT15 genes (Table 1) whilst CALM1 is also CPVT4 gene (Table 3). CALM3 has not yet been classified. It seems the term "calmodulinopathies" encompasses an LQTS/CVPT/IVF overlap syndrome with severe arrhythmic phenotype demonstrated from a young age (Figure 2B).

Triadin Knockout Syndrome

Triadin (TRDN) is an important protein in the formation of the macromolecular calcium release complex, working with junctin to anchor CASQ2 to RYR2.⁸⁸ Mouse models with complete knockout of the *TRDN* gene have significantly altered structure and function of the calcium release complex.⁸⁹ The first study of *TRDN* was performed in a cohort of 97 patients with genotype negative CPVT and identified three mutations in two families with recessive CPVT.⁸⁸ Two mutations were premature truncations whilst the third was a missense mutation with subsequent functional studies confirming mutant TRDN protein. More recently triadin knockout

syndrome has also been associated with a distinct autosomal recessive LQTS phenotype.⁸ Exome sequencing in a trio of unaffected parents with a severely affected 10-year-old daughter identified a homozygous frameshift mutation. Subsequent sequencing in a cohort of 33 additional unaffected patients with gene negative LQTS revealed 4 additional patients with homozygous or compound heterozygous *TRDN* frameshift mutations. All patients carried the same distinct phenotype of extensive T-wave inversion in the precordial ECG leads V1-V4 (similar to ARVC), QTc prolongation and severe disease expression at a young age, with arrhythmias particularly precipitated by exercise.⁸ The mechanism underpinning the *TRDN* knockout syndrome appears to be reduction in negative feedback on the L-type calcium channel leading to increased intracellular calcium, increased frequency of sarcoplasmic reticulum calcium release and subsequent VT, particularly with adrenergic stimulation.⁸⁹ L-type calcium channel blocking agents have been proposed as potential therapeutic options in patients with this distinct syndrome.⁸ The triadin knockout syndrome appears to be an overlap syndrome with a LQTS/CPVT/ARVC overlap phenotype (**Figure 2B**).

Gene Therapies for Inherited Arrhythmia Syndromes

Recent work has highlighted that it may be possible to cure arrhythmia syndromes in the not too distant future. A *CASQ2* knockout mouse model of CPVT was rescued with CASQ2 via an adeno-associated viral vector (AAV9). The arrhythmic phenotype and ultrastructural abnormalities were also rescued with absence of arrhythmias in the rescued mice.⁹⁰ Subsequent work showed similar success in rescuing the phenotype from a knock-in murine model with CASQ2 R33Q homozygous mutation with administration of AAV9-CASQ2 at birth. The mice continued to display no evidence of CPVT at 1 year of age. Whilst still early in evolution, these animal models provide an exciting insight into where potential gene therapy options may arise.

Conclusion

Our understanding of inherited arrhythmia syndromes continues to evolve. Clinicians must continue to use caution when interpreting genetic variants and when using genetic results to determine management of patients and families with inherited arrhythmia syndromes. There is increasing genetic and phenotypic heterogeneity and mounting evidence that BrS is an oligogenic disorder. The era of NGS has evolved rapidly providing challenges including attributing pathogenicity, background genetic noise and increased detection of VUS; as well as new opportunities, including identification of new inherited arrhythmia entities such as the calmodulinopathies and Triadin disease. Our early understanding that a particular genotype causes a specific phenotype is further challenged with these new entities.

Disclosures: None

References:

1. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. *Heart Rhythm*. 2013;10:1932-1963.

2. Behr ER, Dalageorgou C, Christiansen M, Syrris P, Hughes S, Tome Esteban MT, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. *Eur Heart J.* 2008;29:1670-1680.

3. Miles CJ, Behr ER. The role of genetic testing in unexplained sudden death. *Transl Res.* 2016;168:59-73.

4. Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. *Nat Rev Cardiol.* 2013;10:571-83.

5. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. *Eur Heart J.* 2015;36:2793-2867.

6. Keating MT, Sanguinetti MC. Molecular genetic insights into cardiovascular disease. *Science*. 1996;272:681-685.

7. Chiang CE, Roden DM. The long QT syndromes: genetic basis and clinical implications. *J Am Coll Cardiol*. 2000;36:1-12.

8. Altmann HM, Tester DJ, Will ML, Middha S, Evans JM, Eckloff BW, et al. Homozygous/Compound Heterozygous Triadin Mutations Associated With Autosomal-Recessive Long-QT Syndrome and Pediatric Sudden Cardiac Arrest: Elucidation of the Triadin Knockout Syndrome. *Circulation*. 2015;131:2051-2060.

9. Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal DO, et al. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. *Circ Cardiovasc Genet*. 2016;9:136-146.

10. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. *Circulation*. 2013;127:1009-1017.

11. Nyegaard M, Overgaard MT, Sondergaard MT, Vranas M, Behr ER, Hildebrandt LL, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. *Am J Hum Genet*. 2012;91:703-712.

12. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies. *Heart Rhythm.* 2011;8:1308-1339.

13. Heijman J, Spatjens RL, Seyen SR, Lentink V, Kuijpers HJ, Boulet IR, et al. Dominantnegative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1. *Circ Res.* 2012;110:211-219.

14. Schwartz PJ, Ackerman MJ, George AL, Jr., Wilde AA. Impact of genetics on the clinical management of channelopathies. *J Am Coll Cardiol*. 2013;62:169-180.

15. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. *Cell*. 1995;81:299-307.

16. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. *Cell*. 1995;80:795-803.

17. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. *Cell*. 1995;80:805-811.

18. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. *Am Heart J*. 1957;54:59-68.

19. Itoh H, Berthet M, Fressart V, Denjoy I, Maugenre S, Klug D, et al. Asymmetry of parental origin in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction. *Eur J Hum Genet*. 2016;24:1160-1166.

20. Crotti L, Tester DJ, White WM, Bartos DC, Insolia R, Besana A, et al. Long QT syndrome-associated mutations in intrauterine fetal death. *JAMA*. 2013;309:1473-1482.

21. Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA, et al. NOS1AP is a genetic modifier of the long-QT syndrome. *Circulation*. 2009;120:1657-1663.

22. Tomas M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A, et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. *J Am Coll Cardiol*. 2010;55:2745-2752.

23. Amin AS, Giudicessi JR, Tijsen AJ, Spanjaart AM, Reckman YJ, Klemens CA, et al. Variants in the 3' untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. *Eur Heart J.* 2012;33:714-723.

24. Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. *Nat Genet*. 2014;46:826-836.

25. Abu-Zeitone A, Peterson DR, Polonsky B, McNitt S, Moss AJ. Efficacy of different betablockers in the treatment of long QT syndrome. *J Am Coll Cardiol*. 2014;64:1352-1358.

26. Barsheshet A, Goldenberg I, O-Uchi J, Moss AJ, Jons C, Shimizu W, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. *Circulation*. 2012;125:1988-1996.

27. Mazzanti A, Maragna R, Faragli A, Monteforte N, Bloise R, Memmi M, et al. Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3. *J Am Coll Cardiol*. 2016;67:1053-1058.

28. Jons C, O-Uchi J, Moss AJ, Reumann M, Rice JJ, Goldenberg I, et al. Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients. *Sci Transl Med.* 2011;3:76ra28.

29. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. *J Am Coll Cardiol*. 1992;20:1391-1396.

30. Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, et al. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. *Heart Rhythm.* 2016;13:e295-324.

31. Hasdemir C, Payzin S, Kocabas U, Sahin H, Yildirim N, Alp A, et al. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. *Heart Rhythm.* 2015;12:1584-1594.

32. Park DS, Cerrone M, Morley G, Vasquez C, Fowler S, Liu N, et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. *J Clin Invest*. 2015;125:403-412.

33. Gray B, Semsarian C, Sy RW. Brugada syndrome: a heterogeneous disease with a common ECG phenotype? *J Cardiovasc Electrophysiol*. 2014;25:450-456.

34. Catalano O, Antonaci S, Moro G, Mussida M, Frascaroli M, Baldi M, et al. Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. *Eur Heart J*. 2009;30:2241-2248.

35. Bastiaenan R, Cox A, Castelletti S, Wijeyeratne Y, Colbeck N, Pakroo N, et al. Late gadolinium enhancement in Brugada syndrome: a marker for subtle underlying cardiomyopathy? *Heart Rhythm.* 2016 (In Press).

36. Nademanee K, Veerakul G, Chandanamattha P, Chaothawee L, Ariyachaipanich A, Jirasirirojanakorn K, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. *Circulation*. 2011;123:1270-1279.

37. Brugada J, Pappone C, Berruezo A, Vicedomini G, Manguso F, Ciconte G, et al. Brugada Syndrome Phenotype Elimination by Epicardial Substrate Ablation. *Circ Arrhythm Electrophysiol.* 2015;8:1373-1381.

38. Zhang J, Sacher F, Hoffmayer K, O'Hara T, Strom M, Cuculich P, et al. Cardiac electrophysiological substrate underlying the ECG phenotype and electrogram abnormalities in Brugada syndrome patients. *Circulation*. 2015;131:1950-1959.

39. Nademanee K, Raju H, de Noronha SV, Papadakis M, Robinson L, Rothery S, et al. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome. *J Am Coll Cardiol*. 2015;66:1976-1986.

40. Szel T, Antzelevitch C. Abnormal repolarization as the basis for late potentials and fractionated electrograms recorded from epicardium in experimental models of Brugada syndrome. *J Am Coll Cardiol.* 2014;63:2037-2045.

41. Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. *Circ Res.* 1999;85:1206-1213.

42. Probst V, Wilde AA, Barc J, Sacher F, Babuty D, Mabo P, et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. *Circ Cardiovasc Genet*. 2009;2:552-557.

43. Gourraud JB, Barc J, Thollet A, Le Scouarnec S, Le Marec H, Schott JJ, et al. The Brugada Syndrome: A Rare Arrhythmia Disorder with Complex Inheritance. *Front Cardiovasc Med.* 2016;3:9. doi: 10.3389/fcvm.2016.00009. eCollection 2016.

44. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. *Nat Genet*. 2013;45:1044-1049.

45. Hu D, Barajas-Martinez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. *J Am Coll Cardiol*. 2014;64:66-79.

46. Le Scouarnec S, Karakachoff M, Gourraud JB, Lindenbaum P, Bonnaud S, Portero V, et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. *Hum Mol Genet*. 2015;24:2757-2763.

47. Di Resta C, Pietrelli A, Sala S, Della Bella P, De Bellis G, Ferrari M, et al. High throughput genetic characterization of a cohort of brugada syndrome patients. *Hum Mol Genet*. 2015;24:5828-5835

48. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. *Circulation*. 2014;129:1092-1103.

49. Behr ER, Savio-Galimberti E, Barc J, Holst AG, Petropoulou E, Prins BP, et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. *Cardiovasc Res.* 2015;106:520-529.

50. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. *Circulation*. 1995;91:1512-1519.

51. Coumel P, Fidelle J, Lucet V, Attuel P, Bouvrain Y. Catecholamine-induced severe ventricular arrhythmias with Adams-Stokes syndrome in children:report of four cases. *Br Heart J*. 1978;40:28-37.

52. Priori SG, Chen SR. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. *Circ Res.* 2011;108:871-883.

53. Swan H, Piippo K, Viitasalo M, Heikkila P, Paavonen T, Kainulainen K, et al. Arrhythmic disorder mapped to chromosome 1q42-q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. *J Am Coll Cardiol*. 1999;34:2035-2042.

54. Jiang D, Wang R, Xiao B, Kong H, Hunt DJ, Choi P, et al. Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. *Circ Res.* 2005;97:1173-1181.

55. Gray B, Bagnall RD, Lam L, Ingles J, Turner C, Haan E, et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. *Heart Rhythm.* 2016;13:1652-1660.

56. Lieve KV, van der Werf C, Wilde AA. Catecholaminergic Polymorphic Ventricular Tachycardia. *Circ J.* 2016;80:1285-1291.

57. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR et al. Idiopathic short QT interval: a new clinical syndrome? *Cardiology*. 2000;94:99-102.

58. Mazzanti A, Kanthan A, Monteforte N, Memmi M, Bloise R, Novelli V, et al. Novel insight into the natural history of short QT syndrome. *J Am Coll Cardiol.* 2014;63:1300-1308.

59. Haissaguerre M, Shoda M, Jais P, Nogami A, Shah DC, Kautzner J, et al. Mapping and ablation of idiopathic ventricular fibrillation. *Circulation*. 2002;106:962-967.

60. Viskin S, Lesh MD, Eldar M, Fish R, Setbon I, Laniado S, et al. Mode of onset of malignant ventricular arrhythmias in idiopathic ventricular fibrillation. *J Cardiovasc Electrophysiol*. 1997;8:1115-1120.

61. Aizawa Y, Chinushi M, Hasegawa K, Naiki N, Horie M, Kaneko Y, et al. Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization. *J Am Coll Cardiol*. 2013;62:1015-1019.

62. Alders M, Koopmann TT, Christiaans I, Postema PG, Beekman L, Tanck MW, et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. *Am J Hum Genet*. 2009;84:468-476.

63. Marsman RF, Barc J, Beekman L, Alders M, Dooijes D, van den Wijngaard A, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. *J Am Coll Cardiol*. 2014;63:259-266.

64. Cheung JW, Meli AC, Xie W, Mittal S, Reiken S, Wronska A, et al. Short-coupled polymorphic ventricular tachycardia at rest linked to a novel ryanodine receptor (RyR2) mutation: leaky RyR2 channels under non-stress conditions. *Int J Cardiol*. 2015;180:228-236.

65. Koizumi A, Sasano T, Kimura W, Miyamoto Y, Aiba T, Ishikawa T, et al. Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias. *Eur Heart J*. 2016;37:1469-1475.

66. Visser M, van der Heijden JF, Doevendans PA, Loh P, Wilde AA, Hassink RJ. Idiopathic Ventricular Fibrillation: The Struggle for Definition, Diagnosis, and Follow-Up. *Circ Arrhythm Electrophysiol*. 2016;9(5). pii: e003817. doi: 10.1161/CIRCEP.115.003817.

67. Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. *J Clin Invest*. 2008;118:2219-2229.

68. Baruteau AE, Probst V, Abriel H. Inherited progressive cardiac conduction disorders. *Curr Opin Cardiol.* 2015;30:33-39.

69. Smits JP, Veldkamp MW, Wilde AA. Mechanisms of inherited cardiac conduction disease. *Europace*. 2005;7:122-137.

70. Ingles J, Semsarian C. The value of cardiac genetic testing. *Trends Cardiovasc Med.* 2014;24:217-224.

71. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. *Nat Rev Genet*. 2011;12:745-755.

72. Kapplinger JD, Giudicessi JR, Ye D, Tester DJ, Callis TE, Valdivia CR, et al. Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Na(v)1.5 Cardiac Sodium Channel. *Circ Cardiovasc Genet*. 2015;8:582-595.

73. Ackerman MJ. Genetic purgatory and the cardiac channelopathies: Exposing the variants of uncertain/unknown significance issue. *Heart Rhythm.* 2015;12:2325-2331.

74. Risgaard B, Jabbari R, Refsgaard L, Holst AG, Haunso S, Sadjadieh A, et al. High prevalence of genetic variants previously associated with Brugada syndrome in new exome data. *Clin Genet*. 2013;84:489-495.

75. Refsgaard L, Holst AG, Sadjadieh G, Haunso S, Nielsen JB, Olesen MS. High prevalence of genetic variants previously associated with LQT syndrome in new exome data. *Eur J Hum Genet*. 2012;20:905-908.

76. Ghouse J, Have CT, Weeke P, Bille Nielsen J, Ahlberg G, Balslev-Harder M, et al. Rare genetic variants previously associated with congenital forms of long QT syndrome have little or no effect on the QT interval. *Eur Heart J*. 2015;36:2523-2529.

77. Van Driest SL, Wells QS, Stallings S, Bush WS, Gordon A, Nickerson DA, et al. Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records. *JAMA*. 2016;315:47-57.

78. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. *J Am Coll Cardiol*. 2012;60:705-715.

79. Ingles J, Semsarian C. Conveying a probabilistic genetic test result to families with an inherited heart disease. *Heart Rhythm.* 2014;11:1073-1078.

80. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants. *Genet Med*. 2015;17:405-424.

81. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen--the Clinical Genome Resource. *N Engl J Med*. 2015;372:2235-2242.

82. McNally EM, George AL, Jr. New approaches to establish genetic causality. *Trends Cardiovasc Med.* 2015;25:646-652.

83. Chin D, Means AR. Calmodulin: a prototypical calcium sensor. *Trends Cell Biol.* 2000;10:322-328.

84. Shamgar L, Ma L, Schmitt N, Haitin Y, Peretz A, Wiener R, et al. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. *Circ Res.* 2006;98:1055-63.

85. Maier LS, Bers DM, Brown JH. Calmodulin and Ca2+/calmodulin kinases in the heart - physiology and pathophysiology. *Cardiovasc Res.* 2007;73:629-630.

86. Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. *Proc Natl Acad Sci USA*. 2002;99:17185-17190.

87. Fischer R, Koller M, Flura M, Mathews S, Strehler-Page MA, Krebs J, et al. Multiple divergent mRNAs code for a single human calmodulin. *J Biol Chem.* 1988;263:17055-17062.

88. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. *Hum Mol Genet*. 2012;21:2759-67.

89. Chopra N, Yang T, Asghari P, Moore ED, Huke S, Akin B, et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. *Proc Natl Acad Sci USA*. 2009;106:7636-7641.

90. Denegri M, Avelino-Cruz JE, Boncompagni S, De Simone SA, Auricchio A, Villani L, et al. Viral gene transfer rescues arrhythmogenic phenotype and ultrastructural abnormalities in adult calsequestrin-null mice with inherited arrhythmias. *Circ Res.* 2012;110:663-668.

LQTS type	Gene	Protein	Current	Frequency
LQT1	KCNQ1	Kv7.1	IKs♥	40-45%
LQT2	KCNH2	KV11.1	IKr♥	30-35%
LQT3	SCN5A	Nav1.5	INa♠	10%
LQT4	ANK2	Ankyrin-B	Na+/K+♥	1%
LQT5	KCNE1	MinK	IKs♥	1%
LQT6	KCNE2	MiRP1	IKr♥	Rare
LQT7	KCNJ2	Kir2.1	IK1♥	Rare
LQT8	CACNA1C	CaV1.2	ICa-L ↑	Rare
LQT9	CAV3	Caveolin3	INa♠	Rare
LQT10	SCN4B	SCNβ4subunit	INa♠	Rare
LQT11	AKAP9	Yotiao	IKs♥	Rare
LQT12	SNTA1	Syntrophin-α1	INa♥	Rare
LQT13	KCNJ5	Kir3.4	IKACH↓	Rare
LQT14	CALM1	Calmodulin1	Calcium signalling	Rare
LQT15	CALM2	Calmodulin2	Calcium signalling	Rare
LQT16	TRDN	Triadin	ICa-L↑	Rare
Jervell and Lange-Nielsen syndrome (Autosomal Recessive)				
JLN1	KCNQ1	Kv7.1	IKs♥	Rare
JLN2	KCNE1	MinK	IKs♥	Rare

Table 1: Genes associated with long QT syndrome (modified from Wilde and Behr)^{4, 8-11}

Gene	Protein	Prevalence
SCN5A	α -subunit Nav1.5 Sodium channel	20-25%
<i>GPD1L</i>	Glycerol-3-phosphate dehydrogenase 1-like	rare
CACNA1C	α -subunit α 1C Cav1.2 Calcium channel	1-2%
CACNB2b	β-subunit Cavβ2b calcium channel	1-2%
SCN1b	β-subunit Navβ1 sodium channel	rare
KCNE3	β-subunit MiRP2 potassium channel	rare
SCN3b	β-subunit Navβ3 sodium channel	rare
HCN4	Hyperpolarization-activated cyclic nucleotide- gated channel 4	rare
KCND3	α-subunit KV4.3 potassium channel	rare
KCNJ8	α-subunit KIR6.1 potassium channel	rare
CACNA2D1	δ -subunit Cav $\alpha 2\delta 1$ calcium channel	rare
KCNE5	β-subunit potassium channel	rare
RANGRF	RAN guanine nucleotide release factor	rare
KCND2	α -subunit KV4.2 potassium channel	rare
TRPM4	Calcium-activated non-selective ion channel	rare
SCN2B	β-subunit Navβ2 sodium channel	rare
PKP2	Plakophilin 2	rare
ABCC9	ATP-sensitive potassium channels	rare
SLMAP	Sarcolemma-associated protein	rare
KCNH2	α -subunit of HERG potassium channel	rare
SCN10A	α -subunit Nav1.8 sodium channel	1-16%
FGF12	Fibroblast growth factor 12	rare
SEMA3A	Semaphorin family protein	rare
	SCN5A GPD1L CACNA1C CACNB2b SCN1b KCNE3 SCN3b HCN4 KCND3 KCNJ8 CACNA2D1 KCNE5 RANGRF KCND2 TRPM4 SCN2B PKP2 ABCC9 SLMAP KCNH2 SCN10A FGF12	SCN5A α -subunit Nav1.5 Sodium channelGPD1LGlycerol-3-phosphate dehydrogenase 1-likeCACNA1C α -subunit α 1C Cav1.2 Calcium channelCACNB2b β -subunit Cav β 2b calcium channelSCN1b β -subunit Nav β 1 sodium channelSCN1b β -subunit Nav β 3 sodium channelKCNE3 β -subunit MiRP2 potassium channelHCN4Hyperpolarization-activated cyclic nucleotide- gated channel 4KCND3 α -subunit KIR6.1 potassium channelKCNJ8 α -subunit KIR6.1 potassium channelKCN55 β -subunit potassium channelRANGRFRAN guanine nucleotide release factorKCND2 α -subunit KV4.2 potassium channelRANGRFRAN guanine nucleotide release factorKCND2 α -subunit Nav β 2 sodium channelSCN2B β -subunit Nav β 2 sodium channelSLMAPSarcolemma-associated proteinKCNH2 α -subunit of HERG potassium channelSCN10A α -subunit Nav1.8 sodium channelFGF12Fibroblast growth factor 12

Table 2: Genes Associated with Brugada Syndrome (Modified from Wilde and Behr; and Gourraud et al.)^{4,43}

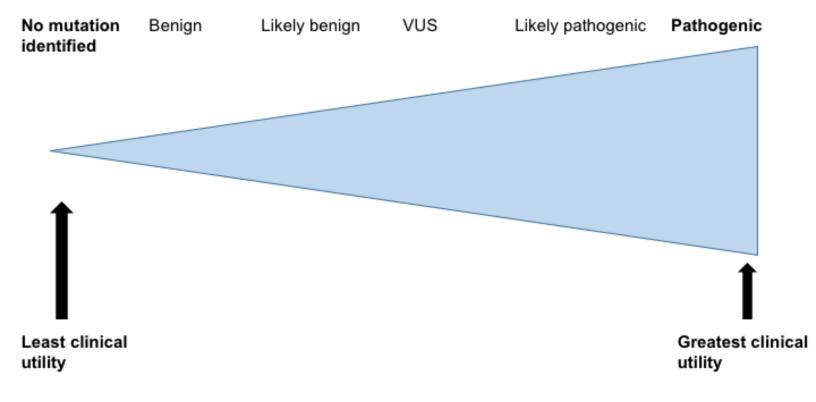

Name	Gene	Protein	Frequency
CPVT1	RYR2	Cardiac Ryanodine Receptor 2	50-60%
CPVT2	CASQ2	Cardiac Calsequestrin	~5%
CPVT3	TECLR	Originally mapped to chromosome 7 p14-p22, now reallocated to chromosome 4	Rare
CPVT4	CALM1	Calmodulin	Rare
CPVT5	TRDN	Triadin	Rare
? LQT4 overlap	ANK2	Ankyrin B	Rare
? LQT7 overlap	KCNJ2	Potassium Inwardly Rectifying Channel Kir2.1	Rare
Dischait	nerial a	ind not t	

Table 3: Genes associated with CPVT (Modified from Wilde and Behr)⁴

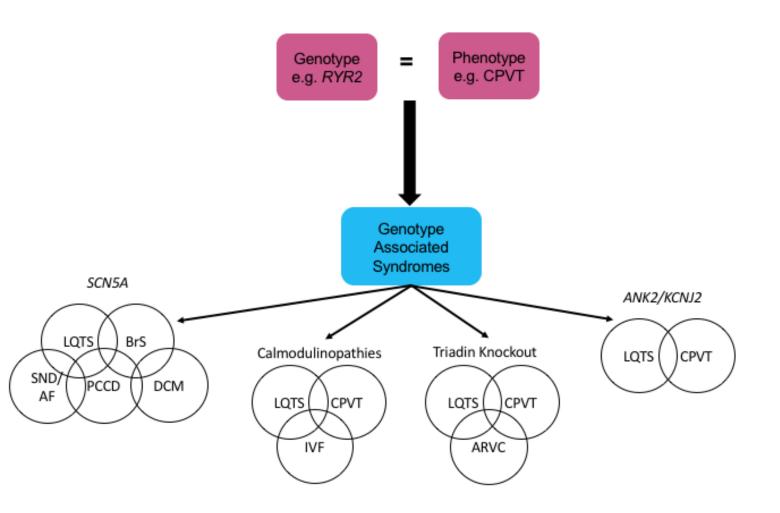

Figure Legends:

Figure 1: Probabilistic nature of genetic results (Modified with permission from Maron et al)⁷⁸

Figure 2: (A) Spectrum of underlying genetic abnormalities in inherited arrhythmia syndromes(B) Changing landscape of genotype-phenotype interaction in inherited arrhythmia syndromes

CPVT	SQTS	PCCD	LQTS	ľ	VF	BrS
MONOGENIC Mendelian inheritance)		→	OLIGO Multiple Genetic	

