OXFORD Nucle

Nucleic Acids Research

Some supplementary files may need to be viewed online via your Referee Centre at http://mc.manuscriptcentral.com/nar.

DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus

Journal:	Nucleic Acids Research
Manuscript ID	NAR-03656-H-2016.R1
Manuscript Type:	1 Standard Manuscript
Key Words:	DNA restriction, DNA modification, Staphylococcus aureus, epigenetics, endonuclease

SCHOLARONE[™] Manuscripts

1		
2		
3	1	DNA target recognition domains in the Type I restriction and modification
4	2	systems of Stanhylococcus aureus.
5	2	systems of staphylococcus uncust
6	J 1	Lauria D. Caapar ¹⁺ Carath A. Dabarta ¹⁺ John H. Whita ¹⁺ Vuotta Luutan ²⁺ Edward K.M. Bawar ¹
/		Laune P. Cooper, Galetin A. Roberts , John H. White, Wette Luyten, Euward R.W. Bower, Dichard D. Morgan ² Dichard I. Poborts ² Iodi A. Lindcav ³ David T.E. Drydon ^{4*}
8	5	Richard D. Morgan , Richard J. Roberts , Jour A. Lindsay , David T.F. Dryden
9 10	07	1 East-CHEM School of Chamistry, University of Edinburgh The King's Duildings, Edinburgh EHO 201
10	/ 0	1. Edstement School of Chemistry, Oniversity of Edinburgh, the King's Bundings, Edinburgh Eng SrJ,
12	0	UN. 2 New England Bioloha 240 County Bood Inquich NAA 01028 2722 LICA
13	9 10	2. New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA.
14	10	3. Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London,
15	11	SW1/URE, UK.
16	12	4. Department of Biosciences, Durnam University, Stockton Road, Durnam, DH1 3LE, UK.
17	13	
18	14	+ Joint first authors
19	15	* Author for correspondence:
20	16	david.t.dryden@durham.ac.uk, Tel. +44 (0)191 3341200
21	17	
22	18	
23	19	Keywords: DNA restriction, DNA modification, epigenetics, Staphylococcus aureus, Type I restriction
24	20	system, endonuclease, methyltransferase.
25	21	
20 27	22	
21	23	Abbreviations: Restriction and Modification, RM; Horizontal Gene Transfer, HGT; hsd, host specificity
20	24	for DNA; Methyltransferase, MTase; N6-methyl adenine, m6A; N4-methyl cytosine, m4C; C5-methyl
30	25	cytosine, 5mC; Clonal Complex, CC; Sequence Type, ST; Target Recognition Domain, TRD; Single
31	26	Molecule Real Time, SMRT; Enhanced Green Fluorescent Protein, EGFP; Polymerase Chain Reaction,
32	27	PCR; ATP hydrolysis, ATPase; Lysogeny Broth, LB; S-adenosyl-L-methionine, SAM.
33	28	
34	29	
35	30	Abstract
36	31	Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer
37	32	between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA
38	33	restriction and modification (RM) system given the generic name of Sau1, which maintains different
39	34	patterns of methylation on specific target sequences on the genomes of different lineages. We have
40	35	determined the target sequences recognised by the Sau1 Type I RM systems present in a wide range
41	36	of the most prevalent S. aureus lineages and assigned the sequences recognised to particular target
4Z 42	37	recognition domains within the RM enzymes. We used a range of biochemical assays on purified
43	38	enzymes and single molecule real-time sequencing on genomic DNA to determine these target
44 45	39	sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will
45 46	40	facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this
47	41	"untransformable" bacterium.
48	42	
49	43	
50	-	
51		
52		
53		
54		
55		

44 Introduction

Type I DNA restriction-modification (RM) systems are found in about half of the sequenced prokaryotic genomes (1-4). They present a formidable barrier to the invasion of the host cell by foreign DNA whether by transduction, transformation or conjugation and thus exercise control over horizontal gene transfer (HGT) (1,4-8). As an example of their effectiveness, less than 1 in 10^4 or 10^5 phage infections can successfully avoid the classical EcoKI Type I RM system of *Escherichia coli* K12. In some circumstances, such as when antirestriction systems are absent (9), when there are multiple target sites on the phage (10) or when RM expression is raised (11), the barrier due to this single RM system can be even greater. RM systems operate by methylating defined target sequences on the host genome and they maintain this methylation pattern through each round of DNA replication (modification). Foreign DNA entering the cell often contains the same target sequence but in an unmethylated state. These unmethylated target sequences are targeted for endonucleolytic cleavage by the RM system (restriction). The Type I RM system comprises three hsd (host specificity for DNA) genes, hsdR, hsdM and hsdS for restriction, modification and target sequence specificity respectively. The gene products form an $R_2M_2S_1$ complex in which HsdS (or S) recognises the target sequence, HsdM (or M) recognises the methylation status of the target and methylates hemimethylated targets while HsdR (or R) cleaves the DNA containing unmethylated targets after a complex reaction involving ATP hydrolysis and DNA translocation (12). An M_2S_1 complex can act solely as a methyltransferase (MTase) (13). Type I RM enzymes almost always recognise and methylate adenine nucleotides in their target sequences to form N6-methyl adenine (6mA) although a few forming N4-methyl cytosine (m4C) are now known (3,14). In addition to the protection offered by Type I, II and III RM systems, Type IV restriction systems can attack foreign DNA containing methylated sequences not found in the host (15).

The presence of multiple RM systems in a single host can increase the barrier to HGT still further. For instance, Staphylococcus aureus often contains two related Type I RM systems making its transformation extremely inefficient and hindering the genetic analysis of this organism (16-19). These genomes contain two hsdM and two hsdS and share a single hsdR, although some S. aureus strains have different numbers of hsdM and hsdS (Figure 1a). The presence of only a single hsdR is not a problem as it can interact with each hsdMhsdS pair. It has long been known that S. aureus displays a clonal population structure (20) in which HGT between different clonal complexes is exceedingly rare. Multi-locus sequence typing, microarray analysis and whole genome sequencing divides lineages of S. aureus and close relatives into the clonal complexes (CC) (20-23), each of which carries a different range of mobile genetic elements and antibiotic resistance genes on the genome (24-27). Each CC can be further subdivided into sequence types (ST) (22). Waldron and Lindsay (16) first realised that each CC of S. aureus contained a unique pair of Type I RM systems. A Type IV restriction system, SauUSI, was also identified later and recognised as a methyl-dependent restriction enzyme which would prevent the uptake of foreign DNA containing C5-methyl cytosine (5mC) (28,29). Thus most genetic manipulation of S. aureus is confined to strain RN4220, which has a defective Type I RM system due to a premature stop codon in *hsdR*. Furthermore, to avoid the Type IV system, DNA needs to be prepared from an *Escherichia coli* strain, such as *E. coli* ER2796, lacking the Dcm 5mC MTase (30).

The Type I RM systems in different strains of *S. aureus* were given the informal name of *Sau1* by Waldron and Lindsay (16) and it is clear from not only a comparison of the sequences of genes and proteins but also from the ability to use subunits from one strain to complement subunits from other strains (31) that the term Sau1 describes a classical "family" of Type I RM systems. Type I RM families, Type IA to Type IE, were originally defined in E. coli and Salmonella enterica by DNA hybridisation, antibody cross reactivity and subunit complementation (32,33), although now it is more usual to use the high levels of sequence identity (over 90%) in HsdM and HsdR to define a family in silico. Although the name Sau1 for this family of Type I RM systems in S. aureus is an

1		
2		
3	95	informal one not following the usual conventions (34), we retain it as it is established in the
4	96	literature. However, it is important to note that some strains of S. aureus show additional Type I RM
5	97	systems, which show limited amino acid sequence identity to the HsdR, HsdM and HsdS of Sau1
6	98	(Figure 1a). For instance, Monk et al. (35) identified an active Type I RM system, SauJKDIII, in S.
/	99	aureus JKD6159 which showed low sequence identity to members of the Sau1 family. This is clearly
0	100	a member of a new and different Type I RM family whose subunits will be unable to interact with the
9 10	101	Sau1 HsdM and HsdR (DTFD, JAL and MTG Holden, manuscript in preparation).
10	102	
12	103	The Sau1 Type I RM systems are so effective because they show great variability in the target
13	104	sequences recognised thus preventing HGT between CC but allowing HGT between strains within a
14	105	CC (31,35,36). This variability in target sequences is due to the modular construction of the Type I
15	106	RM systems (Figure 1b). The S subunit contains two target recognition domains (TRD) each of which
16	107	recognises one half of a bipartite target, for example the first Type I RM system in CC1, given the
17	108	generic name CC1-1, recognises CCAYNNNNTTAA (adenine methylation sites are underlined)
18	109	(35,36). Swapping TRDs between S subunits generates new targets, for example the second Type I
19	110	RM enzyme in CC1, termed CC1-2, couples the first TRD of CC1-1 with a different second TRD to
20	111	recognise CCAYNNNNNTGT. This swapping is easy because the DNA for S subunits contain
21	112	conserved sequences bounding each TRD. Most <i>S. aureus</i> strains have two copies of <i>hsdS</i> , two of
22	113	hsdM and one of hsdR. Thus there are often four TRDs in each CC, which define the restriction
23	114	barrier against HGT. Some Type I RM enzymes have half-size HsdS incorporating only a single TRD. It
24	115	has been shown that these products are often able to dimerise and recognise symmetric target
25	116	sequences (37-39). We have been able to recapitulate these results on "half-HsdS" enzymes by
20	117	manipulating the CC398-1 S. <i>gureus</i> system (EKM Bower and DTED, unpublished results).
28	118	
20	119	Previously we have identified the target sequences recognised by several common community-
30	120	associated hospital-associated and livestock-associated) MRSA clonal complexes (31.36) and
31	120	recently several more have been identified (3.35.40). Monk et al. (35) and lones et al. (40) have used
32	121	this information to prenare DNA methylated by the MTase M ₂ S, component enzymes to aid the
33	122	transformation of S <i>aureus</i> strains that are usually resistant to transformation
34	125	
35	125	The identification of further targets recognised by the S subunits of Saul Type I RM systems would in
36	125	principle allow more CC to be transformed for genetic analysis. In addition, further understanding of
37	120	the structural requirements for TRDs to recognise different specific DNA sequences is of intense
38	127	interest as the Type I RM systems are very widespread in bacteria and archaea (1.4) and evert a
39	120	considerable prossure on HGT and the evolution of prokaryotes. For instance, the use of multiple
40	129	TPDs being exchanged between strains has been observed in <i>Helicobacter</i> (41) <i>Myconlasma</i> (42, 42)
41	130	Strentosocci (44.4E) and Besteroides (4E)
4Z 42	131	Silepiococci (44,45) and Buclefoldes (40).
43	132	Here we identify many further TRDs and their targets using both biochemical and PacPie single
45	133	melecule real time (SMPT) sequencing methods to define the barriers to HCT in a wide range of S
46	134	aurous CC of global importance
47	133	dureus CC of global importance.
48	130	
49	137	
50	138	Materials and Methods
51	139	Nomenclature for expression plasmids encoding new MTases.
52	140	As each Type IS subunit contains two TRDs and we propose to determine the targets recognised by
53	141	each TRD, we have given each TRD a single letter code, Table 1, and refer to the plasmids as
54	142	pSauIRD1-IRD2, e.g. pSauBI expresses an S subunit containing TRD B and TRD I and the M subunit. If
55	143	the TRD combination is the same as that found in a known clonal complex, then that CC is also given
56	144	in brackets. The MTase would be called M.SauBI in this example and the S subunit S.SauBI and is
57 59	145	from CC22. All sequences are given in the supplementary information.
50 50		
60		

2		
3	146	
4	147	Preparation of M.SauBI (CC22-1), M.SauCD (CC30-1), M.SauJK (CC30-2) and M.SauCL (CC45-1).
5	148	These four MTases were prepared as EGFP-His tag fusions as described in Roberts et al. (31). pSauBI-
6	149	EGFP (CC22-1, genomic DNA from MRSA5906), pSauCD-EGFP (CC30-1, genomic DNA from MRSA252),
7	150	pSauJK-EGFP (CC30-2, genomic DNA from MRSA252) and pSauCL-EGFP (CC45-1, genomic DNA from
8	151	strain 70642) were all constructed by the polymerase chain reaction (PCR) with their hsdS fused to
9	152	DNA encoding EGFP and a His-tag, with the following locus-specific oligonucleotides priming from
10	153	the 3' end of the genes encoding the S subunits:
11	154	CC22-1 BI BS 5'GATCGAATTCCGGATCCAATAAACATCTTTTGTAAAAACAC3'
12	155	CC30-1 CD BS 5'GATCGAATTCCGGATCCTAAGAACATCTTTTGTAAAAAGG3'
13	156	
14	157	
16	158	The sequence for CC45-1 introduced a single mutation R167K in the first TRD in the S subunit but
17	159	since this change is found in other S <i>aureus</i> isolates containing this TRD, the change is presumed to
18	160	he completely neutral
19	161	be completely neutral.
20	162	A now vector for MTase expressions plE119his
21	162	A new vector for wrase expression, pressions.
22	105	in biochemical work, we desided to construct a vestor encoding hed with only a C terminal His tag
23	104	In biochemical work, we decided to construct a vector encoding <i>hsus</i> with only a C-terminal His-tag.
24	103	Vector pJF118nis was made by PCR of the plasmid encoding the MTase CC5-1-EGFP constructed in
25	100	Roberts et al. (31) with these two oligonucleotides:
26	10/	
27	168	and pJFMSEGFPhisBS 5'GAGTGAATCCCCGGGGATCCGTCGACC3'.
28	169	The resulting PCR product was cut with BamHI and unimolecular religation gave pJF118his into
29	170	which the <i>hsdMS</i> operon could be ligated as BamHI fragments and from which all subsequent MTase
30	171	clones were descended.
31	172	
3Z	173	Construction of an MTase plasmid to allow TRD swaps: pSaudeltaXmaI.
34	174	A PCR-based strategy was devised to allow free pairwise assortment of desired TRDs in HsdS. Many,
35	175	but not all of the HsdS subunits, including that encoded by the Type I system in CC398 (36), have a
36	176	predicted proline-glycine sequence near the N-terminus. This dipeptide can be encoded by CCCGGG,
37	177	which would be a target site for Smal or Xmal. Oligonucleotides were designed which would
38	178	introduce this motif in the N-terminus (a replacement with no amino acid changes) and at the C
39	179	terminus (an insertion of two amino acids) of the S subunit of the CC398 system (36), by a two stage
40	180	PCR fusion. Thus, primary PCR products were generated by reactions primed by: PromoterJF
41	181	5'GCTTCTGGCGTCAGGCAGCC3' with 398SmalOligoBS
42	182	5'CCCATTCGCCTTCAAACCCGGGGAATCTCAACTCTGGCAC3' and 398SmalOligoTS
43	183	5'GTGCCAGAGTTGAGATTCCCCGGGTTTGAAGGCGAATGGG3' with 398SmalBamHI
44	184	5'GATCGATCGGATCCCCCGGGAATAAACATCTTTTGAAGTAATGAC3'.
45	185	The purified PCR products were then fused in a secondary PCR reaction primed by PromoterJF with
46	186	398SmalBamHI. The product was then cut with BamHI, and ligated into the BamHI site of pJF118his
47	187	as pSauNE-Xmal. This mutated form of the CC398-1 MTase, could assemble the complete restriction
48	188	enzyme that proved to be active in endonucleolytic cleavage (36). This indicated that insertion of a
49	189	proline and glycine towards the C-terminus did not affect the function of the enzyme. Subsequently,
50	190	on reanalysing the DNA sequence, a single PCR mutation was discovered within the Xmal fragment.
52	191	This caused a mutation A50S but this clearly did not affect the specificity or function of the S subunit
53	192	in our assays. Digestion of pSauNE-XmaI with XmaI followed by intramolecular religation of the
54	193	vector fragment generates pSaudeltaXmal, into which any pairwise combination of TRDS with Xmal
55	194	cohesive ends may be inserted.
56	195	
57		
58		
59		
60		

2		
3	196	Construction of MTases M.SauNI, M.SauND, M.SauNK, M.SauNL, M.SauBE, M.SauJE and M.SauCE
4	197	(ST425-1) containing hybrid S subunits.
5	198	The DNA for each TRD of these S subunits was fused to the DNA for the reciprocal TRD of S.SauNE
6 7	199	(CC398-1). This was achieved by creating primary PCRs with a short area of homology, which then
/ 0	200	allowed base pairing of single strands of each PCR, in a secondary PCR. For example, S.SauBE TRD B
0	201	was generated from an appropriate plasmid template by PCR with oligonucleotides,
9 10	202	TRD1FOR398SmalOligoTS 5'GTGCCAGAGTTGAGATTCCCCGGGTTTGAAGGCGAATGGG3' paired with
10	203	TRD1nearuniversal 5'GTTCTTCTAATTCAATTTGT3'. TRD E was similarly generated by PCR from
12	204	plasmid template with oligonucleotides TRD2nearuniversal 5'ACAAATTGAATTAGAAGAAC3' and
12	205	398SmalBamHI 5'GATCGATCGGATCCCCCGGGAATAAACATCTTTTGAAGTAATGAC3'. The final insert
14	206	was then generated by PCR with the two gel-purified primary oligonucleotides and
15	207	TRD1FOR398SmalOligoTS 5'GTGCCAGAGTTGAGATTCCCCGGGTTTGAAGGCGAATGGG3' and
16	208	398SmalBamHI 5'GATCGATCGGATCCCCCGGGAATAAACATCTTTTGAAGTAATGAC3'. S.SauCL was the
17	209	only subunit for which we could not use the central universal oligonucleotides for PCR and required
18	210	specific substitutes: TRDLFOR/CC45-1
19	211	5'ACAAATTGAATTAGAAGAACAAAAACTTGAATTACTTCAACAACAG3' and TRDC/CC45-1
20	212	5'GTTCTTCTAATTCAATTTGTCGATCGAGTTGCTGAAGAAG3' Fach C-terminus is unique and where
21	212	TRD2 was not TRD E a specific oligonucleotide was employed: TRDIREV/CC22-1c-termsmal
22	213	5'GATCGATCGGATCCCCCGGGAATAAACATCTTTTGTAAAAACAC3' TRDDREV/CC30-1c-termsmal
23	214	5'GATCGATCGCATCCCCCGGTAAGAACATCTTTTGTAAAACACS', INDDREV/CC30-2c-termsmal
24	215	E'CATCCATCCCATCCCCCCCCCCCCCCCCCTATAAAAAAAA
25	210	5 GATEGATEGGATECCCCGGGAATAAAAATTTTTTGAAGTAACCTGS allu TKDLKEV/CC45-1c-ternisinal
26	217	s daredareddareceedddaaraacaredarraadiaaddes . Eden pure secondary Per product
27	210	was cut with Amaranu ligated into the Amarsite of psaudeitaAmar.
28	219	Construction of further Materia with further constitutions of TDDs using south stic source
29	220	Construction of further will ases with further combinations of TRDs using synthetic genes.
30	221	Additional <i>hsas</i> sequences were obtained as synthetic genes from GeneArt (ThermoFisher Scientific)
১ । ৫০	222	with sequences optimised for expression in <i>E. coli</i> (Supplementary information). All the first IRDs
32 33	223	begin with 5'CCCGGGTTTGAAGGCGAATGGGAG3', except that for CC80-2 which begins with
34	224	5'CCCGGGTTTGAAGGCGAATATTCT3'. All the first TRDs end with
35	225	5'CAAATTGAATTAGAAGAACAGAAG3'. All the second TRDs begin with
36	226	3'CAAATTGAATTAGAAGAACAGAAG5' and have a universal reverse oligonucleotide, Trd2unirev
37	227	5'GATCGATCGGATCCCCCGGG3'. These conserved sequences were used to create oligonucleotides to
38	228	prime PCR reactions. Each pure secondary PCR product was cut with Xmal and ligated into the Xmal
39	229	site of pSaudeltaXmaI. The orientation of the fragments was determined by PCR.
40	230	
41	231	Expression and purification of MTases.
42	232	These new MTases and the R subunit of CC5 were expressed in <i>E. coli</i> BL21(DE3) and purified via
43	233	HisTrap chromatography, size exclusion chromatography, diethylaminoethyl (DEAE) anion exchange
44	234	chromatography and, if necessary, Heparin HiTrap chromatography (GE Healthcare, Uppsala,
45	235	Sweden) as described previously (31).
46	236	
47	237	Nuclease and ATPase assays.
48	238	Purified MTases were mixed with the CC5 R subunit and used in assays for ATP hydrolysis (ATPase)
49	239	activity (coupled enzyme assay following a change in absorbance of NADH) and DNA cleavage
50	240	activity (plasmid cutting assay with analysis via agarose gel electrophoresis) as previously described
51	241	(31.36).
52 52	242	
53	243	Preparation of genomic DNA for SMRT sequencing.
55	244	The expression plasmids harbouring the various MTases were used to transform a non-methylating
56	245	(dam dcm) strain of <i>E</i> coli FR2796 (30) Single colonies from the transformation plate of Lysogeny
57	245	Broth (IB) agar medium supplemented with 10 µg/ml kanamycin 10 µg/ml tetracycline as well as
58	<i>2</i> TU	eretr (-2) αδαι πεαιαπισαρριεπειτέα with το μβ/m kunumyen, το μβ/m tetracyenie as well as
59		
60		

100 µg/ml carbenicillin, which acted as a selection marker for the expression construct, were picked and used to inoculate 5 mL of LB containing the same cocktail of antibiotics. The cultures were incubated overnight with shaking at 37°C and 1 mL aliquots of the overnight culture were then pelleted by centrifugation (6000 g, 6 min, 4°C). The culture medium was carefully removed and the cell pellets stored at -20°C until required. Genomic DNA was prepared from each cell pellet using the Wizard Genomic DNA purification kit (Promega, Madison, WI) according to the manufacturer's instructions. The quality of the genomic DNA preparations was initially assessed by agarose gel electrophoresis and from the shape of the absorbance profile from 240 to 340 nm. Genomic DNA from S. aureus strains LGA251 (a kind gift from Mark Holmes) and NCTC13435 (a kind gift from Angela Kearns) was prepared by using the PurElut Bacterial Genomic Kit (EdgeBio, Gaithersburg, MD 20877, USA). The DNA library for SMRT sequencing was prepared and subsequently analysed as described in Anton et al. (30).

260 Methylation of plasmids using M.EcoGII.

M.EcoGII was kindly supplied by Dr. Jain Murray (New England Biolabs) and used to modify plasmids E2, E5, E10, E11 and E12 previously described (31) and plasmid pCN36 (47). 0.45 µg DNA was methylated using 2.0 U of M.EcoGII for 100 min at 37°C in a 50 µl volume. The reaction was in 1xNEB4 buffer (50 mM potassium acetate, 20 mM Tris acetate, 10 mM Mg acetate, 1 mM DTT (pH 7.9@25°C) supplemented with 320 μM S-adenosyl-L-methionine (SAM). As a negative control, DNA was incubated in the same buffer without M.EcoGII. The DNA samples were then supplemented with ATP (20 μ M) and additional SAM (160 μ M) and then digested with a Type I enzyme (CC5-1, CC5-2, CC30-1, CC45-1 or the NY TRD hybrid) for 14 min at 37°C. As a control, methylated and unmethylated DNA was digested with EcoRI.

Results and Discussion

273 Assigning TRDs to target sequences.

Each TRD was given a one letter code (A to Z and a* to f*), Table 1. There were 14 TRD1 examples and 18 TRD2 examples in our survey and these are found in 17 different CC or ST groups. Table 1 lists the target specificity and site of methylation for each TRD in our survey. These data were obtained by pairing TRDs and determining the complete target for each TRD pair as described in the next section and in full in the supplementary information. Of interest are the TRD pairs B and P and U and c*. These pairs recognise the same DNA sequence namely AGG and GAY respectively. Amino acid sequence comparisons of B with P and U with c* are shown in Figure 2.

TRD B and TRD P are virtually identical throughout the TRD region even though TRD B is the first TRD
in the HsdS subunit and TRD P is the second TRD in the HsdS subunit, Figure 2a. While the high level
of sequence identity is expected for Type I systems in the same family, the high level of identity
between TRDs found in the first or second position in the HsdS subunit is more unusual. However,
such a situation has previously been observed in comparisons of the Type I systems in *Salmonella blegdam* and *E. coli* R124 (48).

In contrast, TRDs U and c* are both examples of the second TRD in the HsdS subunit recognising 5'-GAY-3' but the level of identity between them is much lower (~36%) (Figure 2b). This level of identity between TRDs recognising the same target is expected if the TRDs are from different Type I RM families so the low level of identity observed here is unusual. Despite this low level of sequence identity, the predicted secondary structure elements are the same as expected from the early work of Sturrock and Dryden (49). In fact, all of the TRDs in the Sau1 family of RM systems align well when secondary structure elements are taken into consideration (50) and they will have the same protein fold (Supplementary information: PROMALS alignments). Therefore, it should in future be possible

1		
2 3	297	to pre
4	298	done f
5	299	
6	300	
7	301	
8	302	Deterr
9 10	303	Tables
10	304	previo
12	305	specifi
13	306	given i
14	307	MTase
15	308	cleava
16	309	subuni
17	310	transfo
18	311	adenin
19	312	examir
20	313	TRD th
21	314	
22	315	Table 2
23	316	this stu
25	317	SauMF
26	318	with th
27	319	Those
28	320	strain
29	321	cleava
30	322	genom
31	323	these l
32	324	target
33	325	
34 35	326	Identif
36	327	TRDs h
37	328	we cor
38	329	hybrid
39	330	were ι
40	331	hydrol
41	332	sequei
42	333	corres
43	334	expres
44	335	et al. (
45	336	
40 47	337	The D
47 78	338	inserte
40 49	339	sequei
50	340	
51	341	Genon
52	342	SMRT
53	343	not ex
54	344	clear (
55	345	of Mor
56	346	Thus t
57	347	
58		
59		

to **predict** the precise amino acid to nucleotide contacts involved in sequence recognition as was done for the Type IIG TRDs (51,52).

302 Determination of complete target sequences recognised by pairs of TRDs.

Tables 2, 3 and 4 show the TRD combinations investigated in this work and those investigated previously by ourselves and others along with their combined target sequences, methylation specificity and the methods used to determine these parameters. The full experimental data are given in the supplementary information. Many of the TRDs were investigated in more than one MTase and in more than one assay thus our set of data represents a self-consistent set. DNA cleavage and ATP hydrolysis assays were performed on purified MTases mixed with purified R subunit while SMRT data were collected from *E. coli* genomic DNA isolated after the hosts were transformed with a plasmid expressing the MTase or directly from *S. aureus* genomic DNA. The adenines targeted for methylation were determined easily by SMRT sequencing but for systems not examined in this manner, it was assumed if there was a single adenine in the site recognised by the TRD that this was the target for methylation.

315Table 2 contains systems from a range of CC investigated previously as well as several examined in316this study. It is important to note that in our work those systems containing M.SauMRSII plus S.317SauMRSII, M.Sau133ORF1794P plus S.Sau133ORF1794P and M.SauMRSI plus S.SauMRSI are paired318with the HsdR (SauN315ORF189P) from the N315 strain of CC5 in DNA cleavage and ATPase assays.319Those shown in Tables 3 and 4 are studied as HsdS paired with the HsdM (M.SauSTORF499P) from320strain S0385 of CC398 and the HsdR (SauN315ORF189P) from the N315 strain of CC5 (if used in DNA321cleavage or ATPase assays). Therefore, these HsdS are not examined in the context of their natural322genome, but since they are all from the Sau1 family of Type I RM systems and the HsdM and HsdR of323these RM systems are essentially identical in all of the strains, it is reasonable to assume that the324target specificities identified are those that would be recognised in their natural host.

Identifying the complete target recognised by a member of the *Sau1* Type I RM family when both TRDs have unknown targets is difficult and ambiguous as either orientation may be correct. Hence, we combined TRDs with unknown targets with TRD E or TRD N to make a protein recognising a hybrid sequence in which one half of the target was already known(Table 3). A variety of methods were used to determine the target associated with each hybrid including DNA cleavage and ATP hydrolysis assays when the hybrid enzyme could be expressed and purified from *E. coli* and SMRT sequencing when the expression and purification levels were low, for example, the SauJK enzyme corresponding to the second Type I RM enzyme in CC30 did not express in *E. coli* despite its expression in *S. aureus* by Monk *et al.* (35). The ambiguity in assignment of targets in CC93 in Monk *et al.* (35) is resolved because the TRDs M and b* occur in more than one HsdS in our survey.

The DNA sequences for further pairs of TRDs found in a wide range of CC and ST groups were then inserted after the *hsdM* of CC398-1 in our expression vector and examined to ascertain the spacer sequence in the natural system (Table 4).

Genomic DNA from *S. aureus* strains NCTC13435 and LGA251 was prepared and examined using SMRT sequencing as these strains contain two TRD pairs, XY and e*f* respectively, which we could not express in *E. coli*. While SMRT signatures for the other Type I HsdS in these strains were very clear (Supplementary information) and in agreement with our results from *E. coli* (Table 4) and those of Monk *et al.* (35), these TRD pairs still showed no methylation activity even in their normal host. Thus these TRDs pairs are not active.

For Peer Review

348 Analysis of spacer sequence length in *S. aureus* Type I RM systems.

 It is apparent that the number of base pairs separating the adenines targeted for methylation and the number of base pairs in the non-specific spacer between the sequences recognised by the TRDs is not constant, with the former varying between 7 and 9 base pairs and the latter varying between 5 and 7 base pairs. This variation makes it very difficult to predict a Type I RM recognition sequence if one knows only the targets recognised by the two TRDs as the length of the spacer in the target is not recognised in any obvious manner by the TRDs. An example of this is the CC80-1 enzyme (Table 4) containing TRDs X and Y of known specificity. Since the enzyme did not methylate DNA in vivo for the SMRT analysis, the spacer and hence the complete target for CC80-1 remain unknown until the enzyme is purified and analysed biochemically. While it has been observed that insertions of multiples of four amino acids into the alpha helical spacers separating the TRDs can increase the length of the spacer in the target sequence in a predictable manner (65-67), it is clear from the structure of HsdS subunits (Figure 1b) that the junction between the TRDs and the alpha helical spacers in the conserved region is going to be of crucial importance for determining the fine details of the length of the spacer in the target sequence as was found for some Type IIB RM enzymes which contain a subunit equivalent to HsdS (68). Perhaps even single amino acid insertions or deletions will serve to rotate the TRD with respect to the rest of the subunit and thereby change the length of the spacer. Further progress in understanding the correlation between amino acid sequence and the length of the target spacer would be greatly aided by an accurate atomic structure of a Type I enzyme with DNA as the current models (12,13) lack sufficient resolution to be informative on this point.

370 Linking TRDs pairs to further clonal complexes and sequence types.

After determining the recognition sequences for all of the TRDs in Table 1 by creating artificial hybrids (Table 3) we also found that some of these TRD combinations do actually occur in natural systems as given in Table 5 (and supplementary information) (69). As sequence databases expand, more and more of the possible TRD combinations based on the TRDs in Table 1 will be found. As mentioned above, although the sequences recognised by the TRDs are known, the length of the nonspecific spacer separating them is unknown so that the complete target cannot be specified accurately without experimentation.

379 Further TRDs in *S. aureus* Type I RM systems.

Searching the publicly available sequences in the NCBI database with individual TRD sequences revealed that some of those given in Table 1 can be found paired up with further novel TRDs. We have found four new TRDs shown in Table 6 in *S. aureus* strains 21343 and KPL1845. Strain 21343 contains "NOVEL 1" paired with TRD K and the TRD pair NQ described in Table 6. Strain KPL1845 also contains the TRD pair NQ and two further systems comprised of "NOVEL 2" paired with "NOVEL 3" and "NOVEL 4" paired with TRD f*. Undoubtedly further TRDs will be found as sequencing continues.

Improving transformation of *S. aureus* by avoiding targets recognised by the *Sau1* Type I RM family. A general method of preparing DNA suitable for transformation of S. aureus which can overcome the RM barrier should be possible. Several DNA MTases belonging to Type II RM systems have been found which have extremely short target recognition sites, namely Hin1523, Nma1821 and Hia5 (70) and EcoGII recognising and methylating adenine in the targets 5'-A-3', 5'-AB-3' or 5'-BA-3'. The methylation performed by these enzymes should protect any DNA molecule from the RM enzymes described here (or indeed any RM barrier relying upon adenine methylation). Thus, DNA methylated in vitro with these unusual MTases could be used in subsequent transformation experiments even when major RM barriers are present.

397 We used the M.EcoGII adenine MTase (a kind gift from Iain Murray, New England Biolabs) to modify 398 all adenines in several plasmids *in vitro*. The plasmids were from our collection of plasmids used to

determine the target sequences of the *S. aureus* Type I enzymes and have been previously described (31). These plasmids were then mixed with various purified *S. aureus* Type I restriction enzymes or, as a control, the EcoRI restriction enzyme. After one hour of methylation by M.EcoGII, the plasmids were completely resistant to digestion by EcoRI and by the *S. aureus* restriction enzymes (Figure 3). Furthermore, the shuttle vector pCN36 (47) was also protected from digestion by these same enzymes (data not shown). Subsequent experiments using the methylated pCN36 to transform *S. aureus* were unfortunately entirely unsuccessful (unpublished results by JAL using strains HO5096 (CC22), JE2 (CC8) and RN4220 (CC8, *hsdR*⁻). The reason for the failure of transformation with the highly-methylated pCN36 when it should be resistant to all *Sau1* RM systems is not clear. This result may imply a further unrecognised barrier to transformation of *S. aureus* or some aspect of the physical properties of highly methylated DNA. Nevertheless, the method using MTases with very short target recognition sequences may be of use for transformation of other bacterial species.

In conclusion, we have determined the target recognition sequences of a considerable number of TRDs and HsdS specificity subunits of the Type I RM systems in *S. aureus*. This was achieved using a combination of gene synthesis, endonuclease activity, ATP hydrolysis activity and single molecule real-time genome sequencing. The systems analysed cover a large proportion of the known sequence types and clonal complexes of *S. aureus* and delineate more clearly the barrier to

The data obtained here will allow the construction of new *E. coli* strains for preparing methylated shuttle vectors (35) and MTase reagents for *in vitro* methylation of DNA (40) to assist transformation of further *S. aureus* strains. However, these approaches are time consuming and it is worth noting that the common shuttle vector used for transformation of *S. aureus*, pCN36 (47), contains a target site for almost every TRD pair investigated in this paper. This means that pCN36 is inevitably a poor vector for transformation of *S. aureus*. The construction of new shuttle vectors completely lacking *Sau1* targets via DNA synthesis, coupled with careful analysis of the fragments to be ligated into the vector so that they also lack targets, may be an effective way forward to improve transformation of *S. aureus* now that so many target specificities have been determined. Obviously, the avoidance of the sequence AN₆₋₉T, although difficult to achieve without altering protein coding sequences in a vector, would be a general method to negate the effect of the Type I RM systems in *S. aureus* and other

Lastly, the determination of so many recognition sequences of Type I RM systems in different lineages of *S. aureus*, in effect a "Rosetta Stone", means that now the population structure of *S. aureus* can be investigated from an epigenetic/evolutionary perspective (4) as performed previously

DTFD thanks the Institute of Advanced Study, Durham University for providing a fellowship from January to April 2016 and an excellent environment for writing this paper. We thank Dr Jain Murray, New England Biolabs for supplying M.EcoGII, Mark Holmes for donating strain LGA251 and Angela

This work was supported by Biotechnology and Biological Sciences Research Council grant

horizontal gene transfer within the S. aureus population.

with, for example, *H. pylori* (71) and *S. pneumoniae* (72).

1	
2	
3	399
4	400
5	401
0 7	402
8	403
9	404
10	405
11	400
12	407
13	-+08 /100
14	410
15	410
17	412
18	413
19	414
20	415
21	416
22	417
23	418
24 25	419
25	420
27	421
28	422
29	423
30	424
31	425
32	426
33 34	427
35	428
36	429
37	430
38	431
39	432
40	433
41	434
42 13	435
44	430
45	438
46	439
47	440
48	441
49	442
50 51	443
51 52	444
52 53	445
54	446
55	447
56	448
57	449
58	
59	

60

CONCLUSIONS

prokaryotes.

Acknowledgements

Source of funding

to D.T.F.D. and J.A.L.

Kearns for donating strain NCTC13435.

BB/K005804/1 to DTFD and the Wellcome Trust grants GR080463MA to D.T.F.D and 090288/Z/09/ZA

1			
2	150		
3	450		
4 5	451 452		
6	452		
7			
8			
9			
10			
11 12			
12			
14			
15			
16			
17 18			
19			
20			
21			
22			
23			
24 25			
26			
27			
28			
29 20			
30			
32			
33			
34			
35			
30 37			
38			
39			
40			
41 42			
43			
44			
45			
46 47			
47 48			
49			
50			
51			
52 52			
53 54			
55			
56			
57			
58 50			
29			

453 Figure legends

Figure 1. S. aureus genomes showing the genes and the typical organisation of TRDs in the HsdS DNA sequence specificity subunit. (a) Strain ED133 (CC133) has two hsdS; strain 11819-97 (CC80) has three hsdS (CC80) and strain JKD6159 (CC93) contains an extra Type I RM system from a different Type I RM family. From top to bottom: ED133, 11819-97, JKD6159. hsdR (red), hsdM (blue), hsdS (yellow). (b) The structural organisation of the HsdS specificity subunit. The conserved regions (cr) are common to all S subunits within a family. The two target recognition domains (TRD1 and TRD2) define the target sequences recognised by the RM enzyme and can be swapped between S subunits of the same family to generate new specificities.

Figure 2. Amino acid sequence and secondary structure alignment of two pairs of TRDs recognising
the same DNA target. The TRD sequences are highlighted in yellow. Consensus secondary structure
shows "h" for alpha helix and "e" for beta sheet. (a) TRDs B and P are examples of a first and a
second TRD respectively recognising 5'-AGG-3'. (b) TRDs U and c* are both examples of second TRDs
with the same specificity, 5'-GAY-3'. The long predicted alpha helices at the start and the end of the
sequences are the conserved helical spacer regions in the HsdS subunits while the sequence
between these helices makes up the TRD.

Figure 3. General protection from endonuclease activity using M.EcoGII MTase to methylate all adenines. Plasmid without M.EcoGII treatment is digested (- lanes) but plasmid with M.EcoGII treatment is protected from digestion (+ lanes). Panel (a) uses Sau347I (CC45-1, TRDs C and L) restriction enzyme against plasmids E2, E5 and E10 described in (31). Panel (b) uses SauNY (TRDs N and Y) against plasmids E10, E11 and E12 described in (31). Panel (c) uses three different enzymes, SauN315I (CC5-1, TRDs B and D), SauN315II (CC5-2, TRDs A and H) and SauMRSII (CC30-1, TRDs C and D), against plasmid E10. In each panel EcoRI restriction enzyme was used as a control and markers (M) are in kb.

3	482	REFERE	NCES
4	483	1)	Oliveira, P.H., Touchon, M. and Rocha, E.P. (2014) The interplay of restriction-modification
5	484		systems with mobile genetic elements and their prokaryotic hosts. <i>Nucleic Acids Res.</i> 42,
6	485		10618-10631.
7	486	2)	Roberts, R.J., Vincze, T., Posfai J. and Macelis, D. (2015) REBASE - a database for DNA
8	487	_/	restriction and modification: enzymes genes and genomes Nucleic Acids Res 43 D298-
9	188		D200
10	400	2)	D233. Diaw M.L. Clark T.A. Daum C.C. Dautschbauar A.M. Famankay A. Frias P. Fraula I.
11	409	5)	Blow, M.J., Clark, T.A., Daulii, C.G., Deutschbauer, A.M., Folhelikov, A., Fries, K., Frouid, J.,
12	490		Kang, D.D., Maimstrom, K.K., Morgan, K.D., Postal, J., Singn, K., Visel, A., Wetmore, K., Zhao,
13	491		Z., Rubin, E.M., Korlach, J., Pennacchio, L.A. and Roberts, R.J. (2016) The Epigenomic
14	492		Landscape of Prokaryotes. PLoS Genet. 12, e1005854.
15	493	4)	Oliveira, P.H., Touchon, M. and Rocha, E.P. (2016) Regulation of genetic flux between
16	494		bacteria by restriction-modification systems. Proc. Natl. Acad. Sci. U.S.A. 113, 5658-5663.
17	495	5)	Loenen, W.A.M., Dryden, D.T.F, Raleigh, E.A., Wilson, G.G. and Murray, N.E. (2014)
18	496		Highlights of the DNA cutters: a short history of the restriction enzymes. <i>Nucleic Acids Res</i> .
19	497		42, 3-19.
20	498	6)	Loenen, W.A.M., Dryden, D.T.F., Raleigh, E.A. and Wilson, G.G. (2014) Type I restriction
21	499	,	enzymes and their relatives. Nucleic Acids Res. 42, 20-44.
22	500	7)	Pingoud A Wilson G G and Wende W (2014) Type II restriction endonucleasesa
23	501	• /	historical nerspective and more Nucleic Acids Res. 42 7/89-7527
24	502	٥١	Pao D.N. Dryden D.T.E. and Phoemanaik S. (2014) Type III restriction modification
25	502	8)	anzymos: a historical perspective. Nucleic Acide Pac. 12 AE EE
26	503	0)	King C and Murray N.E. (100E) Destriction allowistion and modification antennoment by
27	505	9)	King, G. and Murray, N.E. (1995) Restriction alleviation and modification enhancement by
28	505	40)	the Rac prophage of Escherichia coli K-12. <i>Mol. Microbiol.</i> 16 , 769-777.
29	506	10)	Murray, N.E., Batten, P.L. and Murray, K. (1973) Restriction of bacteriophage lambda by
30	507		Escherichia coli K. J. Mol. Biol. 81, 395-407.
31	508	11)	Webb, J.L., King, G., Ternent, D., Titheradge, A.J.B. and Murray, N.E. (1996) Restriction by
32	509		EcoKI is enhanced by co-operative interactions between target sequences and is dependent
33	510		on DEAD box motifs. <i>EMBO J</i> . 15 , 2003-2009.
34	511	12)	Kennaway, C.K., Taylor, J.E., Song, C.F., Potrzebowski, W., Nicholson, W., White, J.H.,
35	512		Swiderska, A., Obarska-Kosinska, A., Callow, P., Cooper, L.P., Roberts, G.A., Artero, J.B.,
30	513		Bujnicki, J.M., Trinick, J., Kneale, G.G. and Dryden, D.T.F. (2012) Structure and operation of
37	514		the DNA-translocating Type I DNA restriction enzymes. <i>Genes Dev.</i> 26 , 92-104.
30 20	515	13)	Kennaway, C.K., Obarska-Kosinska, A., White, J.H., Tuszynska, I., Cooper, L.P., Buinicki, J.M.,
39	516	- /	Trinick, J. and Dryden, D.T.F. (2009) The structure of M.EcoKI Type I DNA methyltransferase
40	517		with a DNA mimic antirestriction protein <i>Nucleic Acids Res</i> 37 762-770
41	518	14)	Morgan R.D. Luyten V.A. Johnson S.A. Clough F.M. Clark T.A. and Roberts R.I. (2016)
42	510	14)	Novel m/C modification in type I restriction modification systems. Nucleic Acids Pes. 14
40	520		α_{12} α_{25}
45	520	15)	J413-J423.
46	521	15)	Loenen, W.A.W. and Raleign, E.A. (2014) The other face of restriction. modification-
47	522	4.01	dependent enzymes. <i>Nucleic Acias Res.</i> 42 , 56-69.
48	523	16)	Waldron, D.E. and Lindsay, J.A. (2006) Sau1: a novel lineage-specific Type I Restriction-
49	524		Modification system that blocks horizontal gene transfer into <i>Staphylococcus aureus</i> , and
50	525		between S. aureus isolates of different lineages. J. Bacteriol., 188, 5578-5585.
51	526	17)	Lindsay, J.A. (2010) Genomic variation and evolution of <i>Staphylococcus aureus</i> . Intl J. Med.
52	527		Microbiol., 300 , 98-103.
53	528	18)	Monk, I.R., Shah, I.M., Xu, M., Tan, M.W. and Foster, T.J. (2012) Transforming the
54	529		untransformable: application of direct transformation to manipulate genetically
55	530		Staphylococcus aureus and Staphylococcus epidermidis. Mbio., 3 , doi:pii: e00277-11.
56	531	19)	Lindsay, J.A. (2014) Staphylococcus aureus genomics and the impact of horizontal gene
57	532	=57	transfer. Intl. J. Med. Microbiol. 304 . 103-109.
58			······································
59			
60			

Nucleic Acids Research

2		
3	533	20) Feil, E.J., Cooper, J.E., Grundmann, H., Robinson, D.A., Enright, M.C., Berendt, T., Peacock,
4	534	S.J., Smith, J.M., Murphy, M., Spratt, B.G., Moore, C.E. and Day, N.P. (2003) How clonal is
5	535	Staphylococcus aureus? J. Bacteriol. 185, 3307-3316.
6	536	21) Sung, J.M., Lloyd, D.H. and Lindsay, J.A. (2008) Staphylococcus aureus host specificity:
7	537	comparative genomics of human versus animal isolates by multi-strain microarray. Microbiol.
8	538	154 , 1949-1959.
9	539	22) Monecke, S., Coombs, G., Shore, A.C., Coleman, D.C., Akpaka, P., Borg, M., Chow, H., Ip, M.,
10	540	Jatzwauk, L., Jonas, D., Kadlec, K., Kearns, A., Laurent, F., O'Brien, F.G., Pearson, J., Ruppelt,
11	541	A., Schwarz, S., Scicluna, E., Slickers, P., Tan, H.L., Weber, S. and Ehricht, R.A. (2011) A field
12	542	guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus
14	543	aureus. <i>PLoS One</i> . 6 . e17936.
15	544	23) Méric, G., Miragaia, M., de Been, M., Yahara, K., Pascoe, B., Mageiros, L., Mikhail, J., Harris,
16	545	L.G., Wilkinson, T.S., Rolo, J., Lamble, S., Bray, J.E., Jolley, K.A., Hanage, W.P., Bowden, R.,
17	546	Maiden, M.C., Mack, D., de Lencastre, H., Feil, F.L., Corander, J. and Sheppard, S.K. (2015)
18	547	Ecological Overlap and Horizontal Gene Transfer in Staphylococcus gureus and
19	548	Stanbylococcus enidermidis Genome Biol Evol 7 1313-1328
20	549	24) McCarthy A L and Lindsay LA (2010) Genetic variation in Stanhylococcus aureus surface
21	550	and immune evasion genes is lineage associated: implications for varcine design and host-
22	551	nathogen interactions <i>BMC Microbiol</i> 10 173-187
23	552	25) McCarthy A Lindsay A (2012) The distribution of plasmids that carry virulence and
24	553	resistance genes in Stanbylococcus gurgus is lineage accepted BMC Microbiol 12 104 111
25	554	26) McCarthy A L. Witney A A and Lindsay LA (2012) Stanhylococcus aureus temperate
26	555	bacterionhage: carriage and berizontal gang transfer (HCT) is lineage associated. Front Coll
27	556	Infact Microbiol 2 :6 doi: 10.2220/frimb.2012.00006
28	557	11/ject. Microbiol. 2.0. Uol. 10.5569/101110.2012.00000.
29	550	27) McCartiny, A.J., Loemer, A., Wittley, A.A., Gould, K.A., Lloyd, D.H. and Linusay, J.A. (2014)
30	550	Conomo Riol Fixel 6 2607 2708
32	560	Genullie Biol. Evol. 6, 2097-2708.
33	561	28) Corvagila, A.R., François, P., Hernandez, D., Perron, K., Linder, P. and Schrenzel, J. (2010) A
34	560	Type III-like restriction endonuclease functions as a major barrier to norizontal gene transfer
35	302 572	In clinical <i>Staphylococcus dureus</i> strains. <i>Proc. Natl. Acad. Sci. U.S.A.,</i> 10 7, 11954-11958.
36	303 5(4	29) Xu, S.Y., Corvaglia, A.R., Chan, S.H., Zheng, Y. and Linder, P. (2011) A type IV modification-
37	564	dependent restriction enzyme SauUSI from <i>Staphylococcus dureus</i> subsp. aureus USA300.
38	565	Nucleic Acids Res. 39 , 5597-5610.
39	566	30) Anton, B.P., Mongodin, E.F., Agrawal, S., Fomenkov, A., Byrd, D.R., Roberts, R.J. and Raleigh,
40	567	E.A. (2015) Complete Genome Sequence of ER2796, a DNA Methyltransferase-Deficient
41	568	Strain of Escherichia coli K-12. <i>PLoS One</i> . 10 , e012/446.
42	569	31) Roberts, G.A., Houston, P.J., White, J.H., Chen, K., Stephanou, A.S., Cooper, L.P., Dryden,
43	570	D.I.F. and Lindsay, J.A. (2013) Impact of target site distribution for Type I restriction
44	5/1	enzymes on the evolution of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) populations.
40	572	Nucleic Acids Res. 41 , 7472-7484.
40 17	573	32) Barcus, V.A., Titheradge, A.J.B. and Murray, N.E. (1995) The diversity of alleles at the <i>hsd</i>
48	574	locus in natural populations of <i>Escherichia coli</i> . <i>Genetics</i> . 140 , 1187-1197.
49	575	33) Titheradge, A.J.B., King, J., Ryu, J. and Murray, N.E. (2001) Families of restriction enzymes: an
50	576	analysis prompted by molecular and genetic data for type ID restriction and modification
51	577	systems. Nucleic Acids Res. 29, 4195-4205.
52	578	34) Roberts, R.J., Belfort, M., Bestor, T., Bhagwat, A.S., Bickle, T.A., Bitinaite, J., Blumenthal, R.M.,
53	579	Degtyarev, S.Kh., Dryden, D.T.F., Dybvig, K., Firman, K., Gromova, E.S., Gumport, R.I., Halford,
54	580	S.E., Hattman, S., Heitman, J., Hornby, D.P., Janulaitis, A., Jeltsch, A., Josephsen, J., Kiss, A.,
55	581	Klaenhammer, T.R., Kobayashi, I., Kong, H., Krüger, D.H., Lacks, S., Marinus, M.G., Miyahara,
56	582	M., Morgan, R.D., Murray, N.E., Nagaraja, V., Piekarowicz, A., Pingoud, A., Raleigh, E., Rao,
57	583	D.N., Reich, N., Repin, V.E., Selker, E.U., Shaw, P.C., Stein, D.C., Stoddard, B.L., Szybalski, W.,
58		
59		
60		

2		
3	584	Trautner, T.A., Van Etten, J.L., Vitor, J.M., Wilson, G.G. and Xu, S.Y. (2003) A nomenclature
4	585	for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes.
5	586	Nucleic Acids Res. 31 , 1805-1812.
6	587	35) Monk, I.R., Tree, J.J., Howden, B.P., Stinear, T.P. and Foster, T.J. (2015) Complete Bypass of
7	588	Restriction Systems for Major <i>Staphylococcus gureus</i> lineages. <i>MBio</i> . 6 , e00308-15
8	589	36) Chen, K., Stephanou, A.S., Roberts, G.A., White, J.H., Cooper, L.P., Houston, P.J., Lindsay, J.A.
9	590	and Dryden DTE (2016) The Type I Restriction Enzymes as Barriers to Horizontal Gene
10	591	Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated
11	592	Methicillin-Resistant Stanbylococcus aureus Clonal Complexes 133/ST771 and 398 Adv. Exp
12	593	Med Riol 915 81-97
13	594	27) Abadiieva A. Patel I. Webb M. Zinkewich V and Eirman K. (1993) A deletion mutant of
14	595	the type IC restriction endonuclease EcoP12/1 expressing a novel DNA specificity. <i>Nucleic</i>
10	595	Acide Page 21 AA25 AAA2
17	597	Actus Nes. 21, 4455-4445. 29) Maistar I. MacWilliams M. Hühnar D. Lütta H. Skrzunak E. Diakarowicz A. and Bickla
18	508	T A (1002) Macropulation by transposition: drastic modification of DNA recognition by a
19	500	1.A. (1993) Macroevolution by transposition. trastic mounication of DNA recognition by a type I restriction ensume following The transposition. <i>CMBO L</i> 13 , 4585, 4501
20	599	20) MacMilliama M.B. and Bielda T.A. (1006) Concretion of new DNA hinding energiaity by
21	601	39) Macwilliams, M.P. and Bickle, T.A. (1996) Generation of new DNA binding specificity by
22	601	truncation of the type IC ECODXXI hsdS gene. <i>EMBO</i> J. 15 , 4775-4783.
23	602	40) Jones, IVI.J., Donegan, N.P., IVIIkneyeva, I.V. and Cheung, A.L. (2015) Improving
24	603	transformation of <i>Staphylococcus aureus</i> belonging to the CC1, CC5 and CC8 clonal
25	604	complexes. <i>PLoS One</i> . 10 , e0119487.
26	605	41) Furuta, Y., Kawai, M., Uchiyama, I. and Kobayashi, I. (2011) Domain movement within a gene:
27	606	a novel evolutionary mechanism for protein diversification. <i>PLoS One</i> . 6 , e18819.
28	607	42) Dybvig, K., Sitaraman, R. and French, C.T. (1998) A family of phase-variable restriction
29	608	enzymes with differing specificities generated by high-frequency gene rearrangements. <i>Proc.</i>
30	609	Natl. Acad. Sci. U.S.A. 95 , 13923-13928.
31	610	43) Xiao, L., Ptacek, T., Osborne, J.D., Crabb, D.M., Simmons, W.L., Lefkowitz, E.J., Waites, K.B.,
32	611	Atkinson, T.P. and Dybvig, K. (2015) Comparative genome analysis of Mycoplasma
33 24	612	pneumoniae. BMC Genomics. 16 , 610. doi: 10.1186/s12864-015-1801-0.
34	613	44) Li, J., Li, J.W., Feng, Z., Wang, J., An, H., Liu, Y., Wang, Y., Wang, K., Zhang, X., Miao, Z., Liang,
36	614	W., Sebra, R., Wang, G., Wang, W.C. and Zhang JR. (2016) Epigenetic Switch Driven by DNA
37	615	Inversions Dictates Phase Variation in Streptococcus pneumoniae. PLoS Pathog. 12,
38	616	e1005762.
39	617	45) Willemse, N. and Schultsz, C. (2016) Distribution of Type I Restriction–Modification Systems
40	618	in Streptococcus suis: An Outlook. Pathogens, 5, 62; doi:10.3390/pathogens5040062.
41	619	46) Cerdeño-Tárraga, A.M., Patrick, S., Crossman, L.C., Blakely, G., Abratt, V., Lennard, N., Poxton,
42	620	I., Duerden, B., Harris, B., Quail, M.A., Barron, A., Clark, L., Corton, C., Doggett, J., Holden,
43	621	M.T.G., Larke, N., Line, A., Lord, A., Norbertczak, H., Ormond, D., Price, C., Rabbinowitsch, E.,
44	622	Woodward, J., Barrell, B. and Parkhill, J. (2005) Extensive DNA inversions in the B. fragilis
45	623	genome control variable gene expression. Science 307 , 1463-1465.
46	624	47) Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. Novel cassette-based shuttle
47	625	vector system for gram-positive bacteria. Appl Environ Microbiol. 2004 Oct;70(10):6076-85.
48	626	48) Thorpe, P.H., Ternent, D. and Murray, N.E. (1997) The specificity of sty SKI, a type I
49	627	restriction enzyme, implies a structure with rotational symmetry. Nucleic Acids Res. 25,
50	628	1694-1700.
51	629	49) Sturrock, S.S. and Dryden, D.T.F. (1997) A prediction of the amino acids and structures
02 53	630	involved in DNA recognition by type I DNA restriction and modification enzymes. <i>Nucleic</i>
53 54	631	Acids Res. 25, 3408-3414.
55	632	50) Pei I Kim B H Tang M and Grishin N V (2007) PROMALS web server for accurate
56	633	multinle protein sequence alignments Nucleic Acids Res 25 W6/19-652
57	634	51) Morgan R.D. and Luyten Y.A. (2009) Rational engineering of type II restriction endonuclease
58	0.54	Signa and the second second second second second of the second second second second second second second second
59		
60		

1		
2	(25	
3	635	DNA binding and cleavage specificity. Nucleic Acids Res. 37 , 5222-5233.
4 5	030	52) Callanan, S.J., Luyten, Y.A., Gupta, Y.K., Wilson, G.G., Roberts, R.J., Norgan, R.D. and
6	037	Aggarwal, A.K. (2016) Structure of Type IIL Restriction-Modification Enzyme Mmel in
7	038	complex with DNA Has implications for Engineering New Specificities. <i>PLoS Biol.</i> 14,
8	640	e1002442. E2) Debe T. Takayahi F. Kurada M. Yurawa H. Aaki K. Ozyahi A. Nazai V. Iwama N.
9	040 641	53) Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K., Oguchi, A., Nagai, Y., Iwama, N.,
10	041 642	Asano, K., Naimi, T., Kuroua, H., Cui, L., Yamamoto, K. and Hiramatsu, K. (2002) Genome and
11	042 642	Virulence determinants of high virulence community-acquired MRSA. Lancet 359 , 1819-1827.
12	045 644	54) Kuroud, M., Onid, T., Ochiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki,
13	044 645	K., Nagai, T., Lian, J., Ito, T., Kanamori, M., Matsumaru, H., Maruyama, A., Murakami, H.,
14	646	Husbydinia, A., Mizulani-oi, F., Takanasin, N.K., Sawano, T., Indue, K., Kalo, C., Sekinizu, K.,
10 16	647	Furuya K. Voshino C. Shiba T. Hattori M. Ogasawara N. Hayashi H. and Hiramatsu K.
10	6/18	(2001) Whole genome sequencing of meticillin-resistant Stanbulococcus aurous Lancet 357
18	640 649	
19	650	55) Holden M.T. Feil F.I. Lindsay I.A. Peacock S.I. Day N.P. Enright M.C. Foster T.I.
20	651	Moore C.F. Hurst I. Atkin R. Barron A. Bason N. Bentley S.D. Chillingworth C
21	652	Chillingworth T Churcher C Clark I Corton C Cronin A Doggett I Dowd I Feltwell
22	653	T Hance 7 Harris B Hauser H Holroyd S Jagels K James KD Lennard N Line A
23	654	Mayes R Moule S Mungall K Ormond D Quail M A Rabbinowitsch F Rutherford K
24	655	Sanders, M., Sharp, S., Simmonds, M., Stevens, K., Whitehead, S., Barrell, B.G., Spratt, B.G.
25	656	and Parkhill, J. (2004) Complete genomes of two clinical Staphylococcus aureus strains:
20 27	657	evidence for the rapid evolution of virulence and drug resistance. <i>Proc. Natl. Acad. Sci. USA</i>
28	658	101 , 9786-9791.
29	659	56) Chua, K., Seemann, T., Harrison, P.F., Davies, J.K., Coutts, S.J., Chen, H., Haring, V., Moore, R.,
30	660	Howden, B.P. and Stinear, T.P. (2010) Complete genome sequence of Staphylococcus aureus
31	661	strain JKD6159, a unique Australian clone of ST93-IV community methicillin-resistant
32	662	Staphylococcus aureus. J. Bacteriol. 192, 5556-5557.
33	663	57) Guinane, C.M., Ben Zakour, N.L., Tormo-Mas, M.A., Weinert, L.A., Lowder, B.V., Cartwright,
34	664	R.A., Smyth, D.S., Smyth, C.J., Lindsay, J.A., Gould, K.A., Witney, A., Hinds, J., Bollback, J.P.,
35	665	Rambaut, A., Penadés, J.R. and Fitzgerald, J.R. (2010) Evolutionary genomics of
30 37	666	Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host
38	667	adaptation. <i>Genome Biol Evol.</i> 2, 454-466.
39	668	58) Sung, J.M., Lloyd, D.H. and Lindsay, J.A. (2008) Staphylococcus aureus host specificity:
40	669	comparative genomics of human versus animal isolates by multi-strain microarray.
41	670	Microbiology 154 , 1949-1959.
42	671	59) Schijffelen, M.J., Boel, C.H., van Strijp, J.A. and Fluit, A.C. (2010) Whole genome analysis of a
43	672	livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of
44	673	human endocarditis. BMC Genomics 11, 376-386.
45 46	674	60) Holden, M.T., Hsu, L.Y., Kurt, K., Weinert, L.A., Mather, A.E., Harris, S.R., Strommenger, B.,
40 17	675	Layer, F., Witte, W., de Lencastre, H., Skov, R., Westh, H., Zemlickova, H., Coombs, G., Kearns,
48	676	A.M., Hill, R.L., Edgeworth, J., Gould, I., Gant, V., Cooke, J., Edwards, G.F., McAdam, P.R.,
49	677	Templeton, K.E., McCann, A., Zhou, Z., Castillo-Ramierez, S., Feil, E.J., Hudson, L.O., Enright,
50	678	M.C., Balloux, F., Aanensen, D.M., Spratt, B.G., Fitzgerald, J.R., Parkhill, J., Achtman, M.,
51	6/9	Bentley, S.D. and Nubel, U. (2013) A genomic portrait of the emergence, evolution, and
52	680	global spread of a methicillin-resistant <i>Staphylococcus aureus</i> pandemic. <i>Genome Res.</i> 23,
53	081	653-664.
54 55	082 682	51) Garcia-Aivarez, L., Holden, IVI. I., Lindsay, H., Webb, C.K., Brown, D.F., Curran, M.D., Walpole,
55 56	003 684	E., DIOUKS, K., PICKATU, D.J., Teale, C., PARKNIII, J., BENTIEY, S.D., EQWARDS, G.F., GIRVAN, E.K.,
50 57	004 685	Reams, A.W., Pichon, D., Fill, R.L., Larsen, A.K., SKOV, K.L., PEACOCK, S.J., Maskell, D.J. and Holmos, M.A. (2011) Moticillin resistant Stanbulgeoceus surgus with a neural most
58	005	noines, w.a. (2011) wettenni-resistant Staphylococcus aureus with a novel meca
59		
60		

1		
2		
3	686	homologue in human and bovine populations in the UK and Denmark: a descriptive study.
4	687	Lancet Infect. Dis. 11 , 595-603.
5	688	62) Chen, C.J., Unger, C., Hoffmann, W., Lindsay, J.A., Huang, Y.C. and Götz, F. (2013)
6	689	Characterization and comparison of 2 distinct epidemic community-associated methicillin-
1	690	resistant Staphylococcus aureus clones of ST59 lineage. PLoS One 8 , e63210.
8	691	63) Chen, Y., Chatterjee, S.S., Porcella, S.F., Yu, Y.S. and Otto, M. (2013) Complete genome
9	692	sequence of a Pantón-Valentine leukocidin-negative community-associated methicillin-
10	693	resistant <i>Staphylococcus aureus</i> strain of sequence type 72 from Korea. <i>PLoS One</i> 8, e72803.
12	694	64) Holt, D.C., Holden, M.T., Tong, S.Y., Castillo-Ramirez, S., Clarke, L., Quail, M.A., Currie, B.J.,
12	695	Parkhill, J., Bentley, S.D., Feil, E.J. and Giffard, P.M. (2011) A very early-branching
14	696	Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol.
15	697	Evol. 3 , 881-395.
16	698	65) Price, C., Lingner, J., Bickle, T.A., Firman, K. and Glover, S.W. (1989) Basis for changes in DNA
17	699	recognition by the EcoR124 and EcoR124/3 type I DNA restriction and modification enzymes.
18	700	J. Mol. Biol. 205 , 115-125.
19	701	66) Gubler, M., Braguglia, D., Mever, J., Piekarowicz, A. and Bickle, T.A. (1992) Recombination of
20	702	constant and variable modules alters DNA sequence recognition by type IC restriction-
21	703	modification enzymes EMBO / 11 233-240
22	704	67) Adamczyk-Popławska M. Kondrzycka A. Urbanek K and Piekarowicz A. (2003) Tetra-
23	705	amino-acid tandem repeats are involved in HsdS complementation in type IC restriction-
24	706	modification systems <i>Microbiology</i> 149 3311-3319
25	700	68) Jurenaite-Urbanaviciene S. Serksnaite J. Kriukiene F. Giedriene J. Venclovas C and
26	707	Lubys A (2007) Constraints of DNA closuage specificities of type II restriction and enucloses
27	708	by reassortment of target recognition domains. Proc. Natl. Acad. Sci. USA 104 10258 10262
28	709	60) Wattam A.B. Abraham D. Dalay O. Dicz T.L. Driccoll T. Cabbard LL. Cillocnia LL
29	710	Courde D. Hiv, D. Konvon D. Machi, D. Mac. C. Nordborg, F.K. Olson, D. Overbeck, D.
30	711	Gough, R., Hix, D., Kenyon, K., Machi, D., Mao, C., Noruberg, E.K., Olson, R., Overbeek, K.,
32	712	Pusch, G.D., Shukid, Wi., Schullidh, J., Slevens, R.L., Sullivan, D.E., Vonstein, V., Warren, A.,
33	715	Will, R., Wilson, M.J., Yoo, H.S., Zhang, C., Zhang, Y. and Sobral, B.W. (2014) PATRIC, the
34	/14	Dacterial Dioliniormatics database and analysis resource. <i>Nucleic Actus Res.</i> 42 , D581-D591.
35	715	70) Drozdz, Wi., Piekarowicz, A., Bujnicki, J.Wi. and Radiinska, Wi. (2012) Novel non-specific DNA
36	/10	adenine metnyitransferases. <i>Nucleic Acias Res.</i> 40 , 2119-2130.
37	717	71) Kojima, K.K., Furuta, Y., Yahara, K., Fukuyo, M., Shiwa, Y., Nishiumi, S., Yoshida, M.,
38	718	Azuma, T., Yoshikawa, H. and Kobayashi, I. (2016) Population evolution of
39	719	Helicobacter pylori through diversification in DNA methylation and interstrain
40	720	sequence homogenization. Mol. Biol. Evol. 33, 2848-2859.
41	721	72) Croucher, N.J., Coupland, P.G., Stevenson, A.E., Callendrello, A., Bentley, S.D. and
42	722	Hanage, W.P. (2014) Diversification of bacterial genome content through distinct
43	723	mechanisms over different timescales Nature Commun 5 5471 doi:
44 45	724	10 1038/ncommc6/71
40 46	724	10.1000/1100/1111004/1.
40 17	123	/ 5) Larsen, IVI.V., Cosentino, S., Rasmusen, S., Hasman, H., IVIarvig, K.L., Jelsbak, L.,
48	/26	Sicheritz-Ponten, I., Ussery, D.W., Aarestrup, F.M. and Lund, O. (2012) Multilocus
49	727	sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355-
50	728	1361.
51		
52		

Figure 2.

a. B (first TRD) and P (secon	d TRD)	
PROMALS alignment Conservation: TRD P TRD B Consensus_ss:	555555555 999 555555 9999 9999999999 1 QIELEEQKLELFQQQKKGYMQKIFSQELRFKDESGNDYPDWEEKELGEVADRVIRKNKNESKKPLTISG 1 MSNTQKKNVPELRFPGFEGEWEEKKLGDLTDRVIRKNKNLESKKPLTISG hhhhhhhhhhhhhhhhhhh eeeeeheeeee	70 50
Conservation: TRD P TRD B Consensus_ss:	999999999999999999999999999999999999	140 120
Conservation: TRD P TRD B Consensus_ss:	99999999999999999999999999999999999999	210 190
Conservation: TRD P TRD B Consensus_ss:	99999999 99 211 QKLELLQQRKKALLKSMLI 229 191 QKLELLQQQKKGYMQKIFS 210 hhhhhhhhhhhhhhhh	
<pre>b. U and c* (both second TRDs PROMALS alignment Conservation: TRD U TRD c* Consensus_ss:</pre>) 999999999999999999999999999999999999	70 70
Conservation: TRD U TRD c* Consensus_ss:	9999999999999999999999999971 71 <mark>YPVYDAVQEIGKDSNYDIEESYISILKDGAGVGRLNLRPGKSSVIGTMGYIQSNNVD</mark> 71 KLHCKGIEKANINRVLKLGATNYYKRFEGQFIYGKQNFFNGAFDIVPKKFDGLYSSSDVPAFEINTEKIE eeeee ee eeee eeeeee eeeeee eeeeee h	127 140
Conservation: TRD U TRD c* Consensus_ss:	99999999999999999999999999999999999999	193 209
Conservation: TRD U TRD c* Consensus_ss:	9 99 999 999 194 CLKQLKQGLLQSMFI 208 210 LIKKQRQALLQQMFI 224 hhhhhhhhhhhh	

_	
~	
3	
4	
5	
5	
6	
7	
8	
9	
1	Λ
	U
1	1
1	2
1	2
I	3
1	4
1	5
1	6
1	2
1	1
1	8
1	à
	9
2	0
2	1
~	
2	2
2	3
-	1
2	4
2	5
2	6
~	2
• •	1
2	
2	8
2	8 0
22	8 9
2 2 3	8 9 0
2 2 3 3	8 9 0 1
2 2 3 3 2	8 9 0 1 2
2 2 3 3 3	8 9 1 2
2 2 3 3 3 3 3	8 9 1 2 3
2 2 3 3 3 3 3 3 3	8 9 1 2 3 4
2 2 2 3 3 3 3 3 3 3 3 3 3 3	8901234 ₅
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	89012345
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	890123456
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8901234567
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8901234567
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	89012345678
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	890123456789
2 2 3 3 3 3 3 3 3 3 3 3 3 3 4	8901234567890
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4	89012345678901
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4	89012345678901
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4	890123456789012
2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4	8901234567890123
223333333334444	8901234567890123
2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4	89012345678901234
22333333333444444	890123456789012345
2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4	8901234567890123456
223333333334444444	89012345678901234567
2233333333344444444	89012345678901234567

10

1

TRD1 code targ	letter and get	TRD2 cod ta	e letter and rget
А	CC <u>A</u> Y	D	<u>A</u> TC
В	<u>A</u> GG	E	TC <u>A</u> Y
С	GW <u>A</u> G	F	ТТ <u>А</u> А
J	GG <u>A</u>	G	AC <u>A</u>
М	C <u>A</u> G	Н	T <u>A</u> C
N	<u>A</u> CC	I	YTC <u>A</u>
0	CA <u>A</u> C	К	CG <u>A</u>
R	GAR <u>A</u>	L	TTT <u>A</u>
Т	CA <u>A</u> G	Р	<u>A</u> GG
V	CNG <u>A</u>	Q	AC <u>A</u> Y
Х	TCT <u>A</u>	S	GC <u>A</u>
Z	G <u>A</u> C	U	G <u>A</u> Y
b*	GGH <u>A</u>	W	CRA <u>A</u>
e*	G <u>A</u> G	Y	СТ <u>А</u>
		a*	GA <u>A</u>
		с*	G <u>A</u> Y
		d*	CYA <u>A</u>
		f*	GA <u>A</u> Y

Table 1. TRD targets shown from 5' to 3'. The underlined A indicates the site of adenine methylation. TRD pair B and P, and TRD pair U and c^* recognise the same DNA sequence and are highlighted in red. In the targets, Y= C or T; R = A or G; W = A or T; H = A, T or C; N = A, G, T or C.

Table 2. The Sau1 RM systems with published recognition sequences. Target sites are shown from 5' to 3' with the length of the non-specific spacer shown as a number. Underlined A or T indicates the site of adenine methylation on the top or bottom strands respectively. The experimental methods used are indicated as g = target obtained by DNA cleavage with a purified enzyme, s = target obtained by SMRT sequencing of E. coli ER2796 genomic DNA, a = target obtained by ATPase assay with a purified enzyme. Full details are given in the supplementary information. S.Sau1330RF1794P is characterised in this work but is included here as it is part of the RM system found in strain ED133. SauMRSI and SauMRSII characterised by Monk et al. and S.SauSTORF499P characterised by Chen et al. are also further characterised in this work.

Strain name and genome reference	Clonal Complex or Sequence Type	S subunit name in REBASE	Recognition sequence	TRDs assigned	Suggested generic name	Experimental method	Reference for target specificity and method
MW2	CC1	S.SauMW2I	CC <u>A</u> Y-5-T <u>T</u> AA	AF	CC1-1	g, s, a	g (21)
(53)		S.SauMW2II	CC <u>A</u> Y-6- <u>T</u> GT	AG	CC1-2 (CC8-2)	g, s, a	a (36) s (CC8-1 and CC8-2 in strain NRS384 are from ref. 35)
N315	CCF	S.SauN315II	CC <u>A</u> Y-6-G <u>T</u> A	АН	CC5-2	g, s, a	
(54)	LLS	S.SauN315I	<u>A</u> GG-5-GA <u>T</u>	BD	CC5-1 (CC8-1)	g, s, a	
MRSA252	CC30	S.SauMRSII	GW <u>A</u> G-5-GA <u>T</u>	CD	CC30-1	g, s	s (35) g, s (this work)
(55)		S.SauMRSI	GG <u>A</u> -7- <u>T</u> CG	ЈК	CC30-2	S	s (35) s (this work)
IKD6159	CC93	S.SauJKDIII	GA <u>A</u> G-5- <u>T</u> AC or complement	Not a <i>Sau1</i> system	CC93-3	S	s (35) Note the ambiguity in
(56)		S.SauJKDII	GGH <u>A</u> -7- <u>T</u> CG	b*K	CC93-2	S	assigning CC93-1 and CC93-3 is clarified with strains ED133
		S.SauJKDI	C <u>A</u> G-6- <u>T</u> TC	Ma*	CC93-1	S	and 32320 and from Table 3.
ED133	00122	S.Sau133ORF451P	C <u>A</u> G-5-R <u>T</u> GA	ME	CC133-1	g	g (36)
(57)	CC133	S.Sau133ORF1794P	GG <u>A</u> -7- <u>T</u> TRG	Jd*	CC133-2	S	s (this work)
32320 (58)	CC133	S.Sau32320ORFAP	C <u>A</u> G-5-R <u>T</u> GA	ME	CC133-1	g	g (36)
\$0385 (59)	CC398	S.SauSTORF499P	<u>A</u> CC-5-R <u>T</u> GA	NE	CC398-1	g, s	g (36) s (this work)

Table 3. The "artificial" Sau1 systems containing novel pairings of TRDs. Target sites are shown from 5' to 3' with the length of the non-specific spacer shown as a number. Underlined A or T indicates the site of adenine methylation on the top or bottom strands respectively. The experimental methods used are indicated as g = target obtained by DNA cleavage with a purified enzyme, s = target obtained by SMRT sequencing of E. coli ER2796 genomic DNA, a = target obtained by ATPase assay with a purified enzyme. Full details are given in the supplementary information.

		"Artificial" Sau	1 RM systems.		
Recognition sequence	TRDs assigned	Experimental method	Recognition sequence	TRDs assigned	Experimental method
<u>A</u> GG-5-R <u>T</u> GA	BE	а	<u>A</u> CC-6- <u>T</u> TC	Na*	S
GG <u>A</u> -6-R <u>T</u> GA	JE	g, s	<u>A</u> CC-6-R <u>T</u> C	Nc*	S
<u>A</u> CC-6- <u>T</u> GAR	NI	g	<u>A</u> CC-6- <u>T</u> TRG	Nd*	g, s
<u>A</u> CC-6- <u>T</u> CG	NK	g	GAR <u>A</u> -6-R <u>T</u> GA	RE	S
<u>A</u> CC-6- <u>T</u> AAA	NL	g	CA <u>A</u> G-5-R <u>T</u> GA	TE	s
<u>A</u> CC-5-CC <u>T</u>	NP	S	CNG <u>A</u> -6-R <u>T</u> GA	VE	S
<u>A</u> CC-5-R <u>T</u> GT	NQ	g, s	TCT <u>A</u> -6-R <u>T</u> GA	XE	g, s
<u>A</u> CC-6- <u>T</u> GC	NS	S	G <u>A</u> C-5-R <u>T</u> GA	ZE	а
<u>A</u> CC-5-R <u>T</u> C	NU	g, s	G <u>A</u> C-6- <u>T</u> GC	ZS	а
<u>A</u> CC-6- <u>T</u> TYG	NW	g, s	GGH <u>A</u> -6-R <u>T</u> GA	b*E	S
<u>A</u> CC-6- <u>T</u> AG	NY	g, s	G <u>A</u> G-6-R <u>T</u> GA	e*E	g, s

Table 4. The Sau1 RM systems investigated in this project. Target sites are shown from 5' to 3' with the length of the non-specific spacer shown as a number. Underlined A or T indicates the site of adenine methylation on the top or bottom strands respectively. TRD pair e*f* in strain LGA251 was not cloned in E. coli while TRD pair XY was cloned. However, no target modification was observed using SMRT on genomic DNA from either E. coli or S. aureus for these TRD pairs. If the genes are translated, their target is inferred from other TRDs in this table although the spacer length remains undefined. The experimental methods used are indicated as g = target obtained by DNA cleavage with a purified enzyme, s = target obtained by SMRT sequencing of E. coli ER2796 genomic DNA, s* = target obtained by SMRT sequencing of S. aureus genomic DNA, a = target obtained by ATPase assay with a purified enzyme. Full details are given in the supplementary information.

Strain name and genome reference	Clonal Complex or Sequence Type	S subunit name in REBASE	Recognition sequence	TRDs assigned	Suggested generic name	Experimental method
CO1791 (58)	CC97	S.SauC01791ORFAP	CC <u>A</u> Y-6-R <u>T</u> C	Ac*	CC97-1	S
HO5096 (60)	CC22	S.Sau5096I	<u>A</u> GG-6- <u>T</u> GAR	ВІ	CC22-1	g, s
		S.Sau251I	GW <u>A</u> G-5-R <u>T</u> GA	CE	ST425-1	g, s*
LGA251	ST425	S.Sau251ORF16900P	G <u>A</u> G-?-R <u>T</u> TC	e*f*	ST425-2	Not expressed, no signature with s*.
(61)		S.Sau251II	GA <u>A</u> G-5- <u>T</u> AC or complement	Not a Sau1 system	Same as CC93-3	s*
Isolate 3 (19)	CC51	S.SauL3ORFAP	GG <u>A</u> -6-CC <u>T</u>	JP	CC51-1	S
Isolate 3067 (19)	CC45	S.Sau347I	GW <u>A</u> G-6- <u>T</u> AAA	CL	CC45-1	g
Isolate 3150 (19)	CC15	S.SauL315ORFAP	CA <u>A</u> C-5-R <u>T</u> GA	OE	CC15-1	S
SA40 (62)	CC59	S.SauSA40ORF370P	GG <u>A</u> -6-R <u>T</u> GT	JQ	CC59-1	а
CN1	CC72	S.SauCN1ORF415P	GAR <u>A</u> -6-R <u>T</u> GT	RQ	CC72-1	а
(63)	CC72	S.SauCN1ORF1757P	GG <u>A</u> -7- <u>T</u> GC	JS	CC72-2	а
MSHR1132	CC75	S.Sau1132ORF3780P	CA <u>A</u> G-5-R <u>T</u> C	TU	CC75-1	g
(64)		S.Sau1132ORF16570P	CNG <u>A</u> -7- <u>T</u> TYG	vw	CC75-2	S
NCTC13435		S.Sau13435ORF394P	TCT <u>A</u> -?- <u>T</u> AG	ХҮ	ST80-1	Not expressed, no signature with s or s*.
NCBI Biosample identifier:	ST80	S.Sau13435ORF1751P	G <u>A</u> C-6- <u>T</u> TYG	ZW	ST80-2	a, s*
SAMEA2479566		S.Sau13435ORF2165P	TCT <u>A</u> -6-R <u>T</u> TC	Xf*	ST80-3	s, s*
32326 (58)	CC873	S.Sau32326ORFAP	G <u>A</u> G-6-GA <u>T</u>	e*D	CC873-1	а

Table 5. Further TRD pairs found in sequenced strains of S. aureus. Every pair of TRD1 with TRD2 in table 1 was used in a BLASTP sequence search to identify HsdS subunit sequences in publicly accessible databases. Examples of strains containing these TRD pairs are shown. ST and CC are from the PATRIC database (69) or derived using www.cbs.dtu.dk/services/MLST (73). Some TRD pairs are present in many strains while others are rare.

TPD pair	Example Strain	Clonal Complex or	PERASE name	
r KD pair	Example Strain	Sequence Type of example strain	REBASE name	
AD	FDAARGOS_159	ST5	S.Sau159ORF12345P	
AL	K12S0375	ST692	S.Sau375ORFDP	
AU	S. schweitzeri FSA084	-	S.SauFSA084ORF355F	
AW	FDA209P	ST464	S.Sau209ORF1697P	
BG	MRSN8611	ST8	S.Sau8611ORF11430F	
BH	PLAC6019	ST5	S.Sau6019ORF851P	
BU	SA-083	ST101	S.Sau083ORF9680P	
BY	S. argenteus M260-MSHR	-	S.SarM260ORF2316P	
Bf*	SA-083	ST101	S.Sau083ORF1720P	
JE	Tager 104	Tager 104 ST49		
JL	W56227	ST45	S.Sau56227ORF970P	
JW	CIG290 ST45		S.SauCIG290ORF2408	
JW	APS211 ST45		S.SauAPS211ORF9230	
MW	FSA037	FSA037 ST1872		
NQ	KPL1845	ST96	S.Sau1845ORF2596P	
Of*	USA300-TCH959	ST1159	S.SauTCH959ORF2844	
Rf*	Tager 104	ST49	S.Sau104ORF2433P	
ΤY	M21126	ST2250	S.Sau21126ORF1065	
XF	21334	ST109, CC9	S.Sau21334ORF1353	
XF	RKI4	ST27	S.SauRKI4ORF1905P	
XW	103564	ST80-PVL carrier	S.Sau103564ORF678	
ZY	D139 ST145		S.SauD139ORF2470P	
h*\W	ST20130941	ST20130941 CC15		
0 11	SA-120 ST425			

Nucleic Acids Research

Table 6. New TRD pairs associated with pairs shown in Tables 2, 3 and 4. The new TRDs of unknown specificity are termed NOVEL 1, NOVEL 2, NOVEL 3 and NOVEL 4. TRD NOVEL 3 is a second TRD while the others are first TRDs in the HsdS amino acid sequence. Subspecies 21343 and species KPL1845 also contain S.SauNQ (S.Sau213430RF1169P and S.Sau18450RF2596P respectively).

Subspecies 21343 Bioproject accession: PRJNA53699

> S.Sau21343ORF2597P TRD NOVEL 1 + TRD K

MSNTQKKNVPELRFPGFEGEWEEKKLGEVATFAKGKLGAKKDVSQNGVPVILYGELYTKYGAIVSKIFSKTDIPENKLKMAKKNDVLIPSSGETAIDIATASCIYLNKGVAVGGDINILTPQKQDGRFISLSIN GINKNELSKYAQGKTVVHLYNNDIKNLKIAFPSEFEEQVRIGNFFSKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPKWEEKKIEDIASQVYGGGTPNTKIKEFWNGDIPWIQSSDVKVNDL ILQQCNKFISKNSIELSSAKLIPANSIAIVTRVGVGKLCLVEFDYATSQDFLSLSSLKYDKLYSLYSLLYTMKKISANLQGTSIKGITKKELLDSIIKIPHNLEEQQKIGDLFYKIDKYISFNKCKIEILKSLK OGLLKKMFI

Species KPL1845. Bioproject accession: PRJNA169473

> S.Sau1845ORF1619P TRD NOVEL 2 + NOVEL 3

MTEQINTPELRFPEFKNEWSYDLVSDVVTNKSKKFDPKKEEAKKDIELDSIEQNTGRLLDTYISNDFTSQKNKFNKGNVLYSKLRPYLNKYYYATIDGVCSSEIWVLNTLNKDVLANKFLYYFIQTNRFSSVTN KSAGSKMPRADWELVKNIRLYKGSIEEQEKIGYFFSKLDRQIELEEKKLELLEQQKKGYMQKIFAQELRFKDENGNDYPDWVTKKLGDIGKVAMNKRIYKNETTENGEIPFYKIGNFGKNADTFITREKFDEYK EKYPYPNVGDILISASGSIGRTIEYTGEDAYYQDSNIVWLNHNDEVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPTVEEQYKMANFLSKLDKIIDIQIEKIELLKQRKQGLLQKMFV

> S.Sau1845ORF2199P TRD NOVEL 4 + TRD f*

MSNTQKKNVPELRFPEFEGEWKDVKFVSIFQEVSNKTSDLAKYPLFSLTVEKGITPKTERYKRDFLVKKSDNFKIVEPRDIVYNPMNVTLGAIDLSKYNYDIALSGYYHVMKIINSFNPDFISNFLKTEKMIIH YKKIATGSLMEKQRVHFSEFKNIIKKFPTNKEQQKIGDFFSKLDRQIELQVQKLELLQQQKKGYMQKIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDSKNIYIRITDIDEKSRKLNYQNLT TPDELNNKYKLKRNDILFARTGASTGKSYIHKEEKDIYNYYFAGFLIKFEIDEQNNPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLPLVLPNKLEQQKIAEFLDRFDQQIELEKQKIEILQQQKKGL LQSMFI

SUPPLEMENTARY INFORMATION DNA target recognition domains in the Type I restriction/modification systems of Staphylococcus aureus.

Laurie P. Cooper, Gareth A. Roberts, John H. White, Yvette Luyten, Edward K.M. Bower, Richard D. Morgan, Richard J. Roberts, Jodi A. Lindsay, David T.F. Dryden.

Pages 2 and 3: SUPPLEMENTARY INFORMATION FOR TABLE 1.

Pages 4 to 9: Supplementary information for MATERIALS AND METHODS SECTION "Construction of further MTases with further combinations of TRDs using synthetic genes."

Pages 10 to 16: SUPPLEMENTARY INFORMATION FOR TABLE 2.

Pages 17 to 57: SUPPLEMENTARY INFORMATION FOR TABLE 3.

Pages 58 to 85: SUPPLEMENTARY INFORMATION FOR TABLE 4 Pages 86 to 91: SUPPLEMENTARY INFORMATION FOR TABLES 5 AND 6.

Pages 92 to 97: PROMALS ALIGNMENT OF TRD AMINO ACID SEQUENCES WITH SECONDARY STRUCTURE PREDICTIONS.

The TR all of list f The TR	s labelled as NOVEL 1, NOVEL 2 and NOVEL 4 were found
all of list f The TR	
list f The TR	the other TRDs had been analysed but are included in
The TR	r completeness.
	sequences are flanked by the conserved regions so to
obtain	the amino acid sequence of any HsdS subunit simply part
the se	uence for the second TRD directly on to the end of the
sequen	e for the first TRD.
>A CCAY	
MSNTQKKNV RTAINSIVE	£LRFPGFEGEWEEKQLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNIRNGKLNLNDLVYISKDIDDEMKNSRTYYGDV. HANINOHVCIIRLKKEYYYIFFGOYLLSRKGKRKIFLAOSGGSREGINFKEIANLKIFTPTIFEEOOKIGKFFSKLDROII
QQQ	
>B AGG	
RYDSGVLSS	YICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLNVSVNDFFTILIKYPSLEEQQKIGKFFSKLDRQIELEE
>C GWAG	T.RFPGFEGEWEEKOVGEI.I.EFKNGI.NKGKEVFGGGGGTVNFKDVFNNRGTNMNNT @CKVNUNGKET KNVGV@KCDV@@"
YPSVILNDP	NTVFSGFVLRGRPKSGIDLINNNFKRYVFFTNSFRKEMITKSSMTTRALTSGTAINKMKVIYPVSAKEQKKIGDFFSKLD
ELLQQQ	
>j gg <u>a</u> msntokknv	ELRFPEFEGEWEERKLGDLIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSEPLSEIDAVGIGRKGTINKPYJ.T.F.APFWTVD'
ADILFILSL	RKINWKLYDESTGVPSLSKQTINKINRLVPTNKEQQKIGEFFSKLDRQIELEEQKLELLQQQ
>M C <u>A</u> G MSNTOTKNV	ELRFPGFEGEWEEKKLEDLGLFOKSYSFSRAKEGNGKTKHIHYGDIHSKFKTVI.DSDGNTPNTTEKAVFET.TOKGDIVFA
KAVMIDFEP	$\mathbb{S}_{LISGLHTHLFRPLNNAISNFLIFYTKTLSYKKFIRQQGTGISVLGISKKSLLNLNVLIPRSELEQQKIGQFFSKLDRQII$
QQQ	
/M <u>A</u> CC MSNTQKKNV	ELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEISNIDNIKKYYVVEENDFVYNPRMSN
KLGKKGVMS	LYTVFKIQNIDLNFIEFYFKSSKWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQ
>0 CAAC	
MSNKQKKNV	ELRFPGFEGEWEEKKLGEVGTFTSGGTPLKSKSEYWNGDIPWITTGDIHNIKRENITNFITEKGLNESSAKLITNEAILI
MSAILNFEA >R GARA	I'NQACA1YQ'I'NQNINFVFQYFQKLYEFLRSLSNEGSQKNLSLSLLKEITLNYPNEQEQKKIGDFFSKLDRQIELEEQKLE:
MSNTQKKNV	ELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNSSKYISEEAFEKEFKIRPEFGDILMTRIGDI
KFAYYVSLA	LKTKNLNSYFLKNLILSSSIQNELWRKTLHVAFPKKINKNEIGKIKINYPKKQEQQKIGQFFSKLDRQIELEEQKLELLQ
>T CA <u>A</u> G MSNTQTKNV	ELRFPGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDLNNSKVTHSKEKITEYAMKSLKLKLVPKNSVL
GRTGLLKID	IINQAISALLMNHETNPEFIQAFLNYQVKGWKRYAASSRKDPNITKKDIEQFKVPYVSINEQQKIGEFFSKIDHQIELEE
>V CNG <u>A</u> MSNTGKMNV	TIRFPGFEGEWEEKEI.REI.RNPKDKYSYTGGPFGSDI.KKSDYTTDGTOTTOLONTGDGYFYNSNKVFTSNEKAEVI.KSON
MADPIARAA	VPDNNIGKYLMASDGIRLSVDTVHFNTKFVLECINRKSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTTLKEQQKIGQFF
EQKLELLQQ >x TCTA	
MSNTQKKNV	ELRFPGFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEFLRPNSQTKYFIENPPQSVIANKEDILMTRTGI
GAFHNNFFK	KFDKNLYDRLFLVEVLNSSKIQNKILSLAGSSTIPDLNHSDFYSISSSYPLLREQQKIGKFFSKLDRQIELEEQKLELLQ
≥≤ G <u>A</u> C MSNTQTKNV	ELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTGRLIKIYNSKEFSSOKNKFNPONVLYGKLRPYLI
VCSSĒIWVL	STKEDKLLNLFLYYFIQTKRYSDVASKSAGSKMPRADWGLIENIRVYFPELCEQQKIGQFFSKLDRQIELEEQKLELLQQ
>b* GGH <u>A</u> MSNTOKKNA	T.RFPEFEGEWKEKKI.EDTLEFIKDGTHGTHENUNNGPWI.I.SAKNIKNNKIIISSODDRKISESOVKKIVKNVKIEKODII
AIVKNPNNI.	FQRSVAILKTKATYDVGFIFQLFQTKYFKNLLLRKQVVSAQPGLYLGDIRKIKISITNIIEEQRKIGIFFSKLDRQIELEI
>e* G <u>A</u> G	
MSNTQKKNV ESTIDSPSF	sleffgfegeweersissfikeskikgsngshakklivklwGkGvvPkketfkGSDnTQYikkkaQQLMYGKLDFLNCAF0 FINGDSKFLLERIKLKSFYKKFGDIANGSRKAKRINQDTFLSLPVFAPKYDEOLRIGEFFSKLDROIELOKOKLELLOOO
>NOVEL 1	~
MSNTQKKNV	ELRFPGFEGEWEEKKLGEVATFAKGKLGAKKDVSQNGVPVILYGELYTKYGAIVSKIFSKTDIPENKLKMAKKNDVLIPS: avggdiniliteokodgreislsinginknelskyaogktyvnlynndiknikia fosperefoveignesyt deotri pr
>NOVEL 2	M CONTRATT NUMBER OF TO THE THE THE THE TO A TO
MSNTQKKNV	ELRFPEFEGEWKDVKFVSIFQEVSNKTSDLAKYPLFSLTVEKGITPKTERYKRDFLVKKSDNFKIVEPRDIVYNPMNVTL
>NOVEI 4	MALINSENPUFISNFLKTERMIIHIRKIATGSLMERQRVHFSEFRNIIRRFPTNREQQRIGDFFSRLDRQIELQVQRLEL.
MECTNEDE	RFPEFKNEWSYDLVSDVVTNKSKKFDPKKEEAKKDIELDSIEQNTGRLLDTYISNDFTSQKNKFNKGNVLYSKLRPYLNK
MIEQINIPE	

The amino acid sequences in FASTA format of the second TRD with its letter code, DNA target (5' to 3') and its methylation site underlined. The TRD labelled as NOVEL 3 was found once all of the other TRDs had been analysed but is included in this list for completeness.

>D ATC

1 2

3

4

5

6

7 8

9

KKGWOKTFSOELRFKDENGEDYPHWENSKTEKYLKERNERSDKGOMLSVTINSGTIKESELDRKDNSSKNKSNYKVVRKNDTAYNSMRWOGASGKSNY 10 NGIVSPAYTVLYPTQNTSSLFIGYKFKTHRMIHKFKINSQGLTSDTWNLKYKQLKNINIDIPVLEEQEKIGDFFKKMDILISKQKIKIEILEKEKQSFLQ KMFL 11 >E TCAY 12 KKGYMOKIFSOELRFKDENGNDYPEWEETTIKEIAOINXGKKDTKDAITNGSYDFYVRSPIVYKINTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHOR 13 VYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKALLQKMFI 14 >F TTAA KKGYMQKIFSQELRFKDEEGKDYPDWKSKSIQEIFENKGGTALETEFNFDGNYKVISIGSYSINSTYNDQNIRVNKNKKTEKYILSKGDLAMVLNDKTKD 15 GKIIGRSIFIDKDNQYIYNQRTERLIPFAENDNKFLWFLMNTDLIRNKIKGMMQGATQVYINYSSIKLISIQLPLLEEQQKIRGFLEVLSGITTKQLHKI 16 DOLKERKKAFLOKMFI 17 >G ACA KKGYMQKIFTQELRFKDENGEEYPEWENKFIKDIFIFENNRRKPITSSLREKGLYPYYGATGIIDYVKDYLFNNEERLLIGEDGAKWGQFETSSFIANGQ 18 YWVNNHAHVVKSNDHNLFFMNYYLNFKELRAFVTGNAPAKLTHANLCNINLKIPCLTEQDKVSALLKSIDNKMNNQMNRIELLKERKKELLQKMFI 19 >H TAC 20 KKCYIQKIFSQELRFKDEEGNYYKGWNKKQLKDVLEFSNKRTINENEYPVLTSSRQGLILQSDYYKDRKTFAESNIGYFILPKNHITYRSRSDDGIFKFN LNLMIDVGIISKYYPVFKGIDANQYYLTLHLNYQLKKEYIKYATGTSQLVLSQKDLQNIKTKLPSYEEQQKIGDFFSEIDRLVEKQSSKVGRLKVRKKEL 21 LQKMFV 22 >I YTCA 23 KKGYMOKIFSOELRFKNENGNDYPDWERIKFFDVIDKVIDFRGRTPKKLNMEWSDEGYLALSAVNVKKGYIDFNVEAKYGNLDLYTRWMRGNELYKGOVL 24 FTTEAPMGNVAQVPDNKGYILSQRTIAFNSNEKITDNFLASLLSSENVYNDLLKLCSGATAKGVSQKNLNRLYVTIPHSISEQEEIAEFFRKINQLVELQ KYKIEHTKSQKQVFLQKMFI 25 >K CGA 26 KKGYMOKIFSOELRFKDENGNDYPKWEEKKIEDIASOVYGGGTPNTKIKEFWNGDIPWIOSSDVKVNDLILOOCNKFISKNSIELSSAKLIPANSIAIVT 27 RVGVGKLCLVEFDYATSQDFLSLSSLKYDKLYSLYSLLYTMKKISANLQGTSIKGITKKELLDSIIKIPHNLEEQQKIGDLFYKIDKYISFNKCKIEMLK 28 SLKOGLLKKMFI >L TTTA 29 KKGYMOK T FSOFT, FKDENGNDY PNWRTTELKNTLENTVDNRGKTPDNAPSEKYPLLEVNALGYYR PAYTKVSKFVSENTYNNWFREHLKENDTLFSTVG 30 NTGIVSLMDNYKAVIAQNIVGLRVNNNNLPSFIYYMLSYKGNQKKIKRIQMGAVQPSVKVSQFKFIKYLVPIKDEQEKVAKLLIEIDKLVNKQLIKIELL 31 QQRKKALLKSMFI >P AGG 32 KKGYMQKIFSQELRFKDESGNDYPDWEEKELGEVADRVIRKNKNFESKKPLTISGQLGLIDQTEYFSKSVSSKNLENYTLIKNGEFAYNKSYSNGYPLGA 33 IKRLTRYDSGVLSSLYICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLNISVNDFFTILIKYPSLEEQRKIGDFFIKLDRQIELEEQKLEL 34 LQQRKKALLKSMLI >O ACAY 35 KKGYMQKIFSQELRFKDENGEDYSEWEERRFADIFKFHNKLRKFIKENLRVKGSYPYYGATGIIDYVDDFIFDGNYLLIGEDGANIITRSAPLVYLVNGK 36 FWVNNHAHILSPLNGNIOYLYOVAELVNYEKYNTGTAOPKLNIONLKIINVVISTNLEEOOKIGSFLSKLDROIDLEEOKLELLOORKKALLKSMFV 37 >S GCA 38 KKGYMQKIFSQELRFKDENGNDYPDWTNERLGEVTTVTMGQSPKSVNYTDNSNDTVLIQGNADIENGLINPRIYTREVTKLIQKDEIILTVRAPVGKLAM AQINACIGRGVCSIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPVEDERTKIIKLLNSLDVLNSKTDLKIQNLKQRKQSLLQKIFV 39 >U GAY 40 KKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKDNSKGYPVYDAVQEIGKDSNYDIEESYISILKDGAGVGRLNLRPGKSSVI 41 GTMGYIQSNNVDIEFLYYRMKVVDFKKYIIGSTIPHLYFKDYSKETLYIPSSIQEQAKIGMFISNLDKLIENKNLKLNCLKQLKQGLLQSMFI >W CRAA 42 KKGYMOKIFSOELRFKDENGNDYPDWEEKOLGELSOIVRGASPRPIKDPKWFNKESDIGWLRISDVTNONGKIYHLEOKLSIEGOEKTRVLVTTHLLLSI 43 $\texttt{AASIGKPVMNFVKTGVHDGFLIFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPSNHEQEKVGQFFNRNEKLIELQQEKIMYIKR$ 44 CKQVLLQKMFI 45 >Y CTA KKGYMQKIFSQELRFKDENGNDYPDWEKKKLKEIACVYTGNTPSKKENIYWNKGEYVWVTPTDINNSKNIYESENKLTQEGYKKARQLPENTLLVTCIAS 46 ${\tt IGKNAILRKQGSCNQQINAVVPFENINIDYLYYISDSLSTFMKSIAGKTATQIVNKNTFENLEIYLAPFEEQNKIADLISSLEELIEKQASKLIKMKSRK$ 47 QGMLQIMFI 48 >a* GAA KKGYMOKIFSOELRFKDENGNDYPEWENKRIEDIANVNKGFTPSTNNNEYWDNNDKNWLSIAGMNOKYLYKGNKGISKDAAKNYMKVKNDTLIMSFKLTI 49 GKLAIVKAPLYTNEAICHFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIIVKLPNEEEQNIIAKFLLEVDKTVNNQLVKTKLLKQRKK 50 GLLQRMFV 51 >c* GAY KKGYLQKIFSQELRFKDENGNDYPEWRFARFKDFMYKPINIRPAINISKSELLTVKLHCKGIEKANINRVLKLGATNYYKRFEGQFIYGKQNFFNGAFDI 52 VPKKFDGLYSSSDVPAFETNTEKTEPNYFTSYTSRPSFYKSKEKYSTGTGSKRTHENTVLNFSLHLPCLNEOLKTASFVCFLNRKTELLERKTYLTKKOK 53 OALLOOMFI 54 >d* CYAA 55 KKGYMQKIFSQELRFKDENGNDYPEWENVMLQKVLKDKTEGIKRGPFGGALKKDIFVESGYAVYEQRNAIYDISNFRYYINENKYKEMQSFSVQPNDIIM SCSGTIGRLALIPHNYTKGIINQALIRFRTNHKIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPVKFEQDKISQFIHIINRRIEQS 56 EKKIESLKNRKOGFLOKLFV 57 >f* GAAY 58 KKGYMQKIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDSKNIYIRITDIDEKSRKLNYQNLTTPDELNNKYKLKRNDILFARTGASTG 59 KSYIHKEEKDIYNYYFAGFLIKFKINEQNSPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLPLVLPNKLEQQKIAKFLDRFDRQIELEKQKIEI LOOOKKGLLOSMFI 60 >NOVEL 3 KKGYMQKIFAQELRFKDENGNDYPDWVTKKLGDIGKVAMNKRIYKNETTENGEIPFYKIGNFGKNADTFITREKFDEYKEKYPYPNVGDILISASGSIGR TIEYTGEDAYYQDSNIVWLNHNDEVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPTVEEQYKMANFLSKLDKIIDIQIEKIELLKQRKQGLL OKMFV

SUPPLEMENTARY INFORMATION FOR MATERIALS AND METHODS SECTION "CONSTRUCTION OF FURTHER MTASES WITH FURTHER COMBINATIONS OF TRDS USING SYNTHETIC GENES."

The DNA sequence is followed by the predicted amino acid sequence for each TRD. Some synthetic sequences encoded two TRDs.

CC15 TRD O

CC15 TRD O

PGFEGEWEEKKLGEVGTFTSGGTPLKSKSEYWNGDIPWITTGDIHNIKRENITNFITEKGLNESSA KLITNEAILIAMYGQGKTRGMSAILNFEATTNQACAIYQTNQNINFVFQYFQKLYEFLRSLSNEGS QKNLSLSLLKEITLNYPNEQEQKKIGDFFSKLDRQIELEEQK

CC51 TRD P

CC51 TRD P

QIELEEQKLELFQQQKKGYMQKIFSQELRFKDESGNDYPDWEEKELGEVADRVIRKNKNFESKKPL TISGQLGLIDQTEYFSKSVSSKNLENYTLIKNGEFAYNKSYSNGYPLGAIKRLTRYDSGVLSSLYI CFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLNISVNDFFTILIKYPSLEEQRKIGDF FIKLDRQIELEEQKLELLQQRKKALLKSMLI

CC72-1 TRD R + CC59-1 TRD Q

AAATACAATACCGGCACCGCACAGCCGAAACTGAACATTCAGAATCTGAAAATTATCAACGTGGTG ATCAGCACCAATCTGGAAGAACAGCAAAAAATTGGTAGCTTCCTGAGCAAACTGGATCGTCAGATT GACCTGGAAGAACAAAAACTGGAACTGCTGCAACAACGTAAAAAAGCACTGCTGAAAAGCATGTTC GTGCCCGGGGGATCCGATCGATC

CC59-1 TRD Q

1 2

3

4

5

6

7

8 9

10

11

12

13

14 15

16

17 18

19

20

21

22 23

24

25

26

27

28

29 30

31

32

33

34

35

36 37

38

39

40

41

42

43 44

45

46

47

48

49

54

55

56

57 58

59

60

QIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYSEWEERRFADIFKFHNKLRKPIKENLRV KGSYPYYGATGIIDYVDDFIFDGNYLLIGEDGANIITRSAPLVYLVNGKFWVNNHAHILSPLNGNI QYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLSKLDRQIDLEEQKLEL LQQRKKALLKSMFV

CC72-1 TRD R

PGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNSSKYISEEAFEKEFKIRPEFG DILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYFLKNLILSSSIQNELWRKTLHVAFPKK INKNEIGKIKINYPKKQEQQKIGQFFSKLDRQIELEEQK

CC75-1 TRD T and TRD U

CCCGGGTTTGAAGGCGAATGGGAGGAAAAAGAACTGGGCGAAATCTTTCAGATTATTAGCGGTAGC ACACCGCTGAAAAGCAACAAAGAATTTTATGAGAACGGCAACATCAACTGGGTTAAAAACCACCGAT CTGAATAATAGCAAAGTGACCCATAGCAAAGAAAAAATCACCGAGTATGCAATGAAAAGCCTGAAA CTGAAACTGGTGCCGAAAAATAGCGTTCTGATTGCAATGTATGGTGGCTTTAATCAGATTGGTCGT ACCGGTCTGCTGAAAATTGATGCAACCATTAATCAGGCAATTAGCGCACTGCTGATGAATCATGAA ACCAACCCGGAATTTATTCAGGCCTTTCTGAATTATCAGGTGAAAGGTTGGAAACGTTATGCAGCA AGCAGCCGTAAAGATCCGAATATCACCAAAAAAGATATCGAACAGTTCAAAGTGCCGTACGTGAGC ATTAATGAACAGCAGAAAATTGGCGAGTTTTTTAGCAAAATCGATCATCAAATTGAATTAGAAGAA CAGAAGCTGGAACTGCTGCAACAGCAGAAAAAAGGTTATATGCAGAAAATCTTCAGCCAAGAGCTG CGCTTTAAAGATGAAAATGGTGAAGATTATCCGGATTGGGAAGTTACCACCATTCAGAACATTACC AAATACACCAGCAGCAAAAAAAGCAGCAATCAGTATGCCGATAAAGACAACAGCAAAGGTTATCCG GTTTATGATGCCGTTCAAGAAATTGGCAAAGATAGCAACTATGACATCGAAGAGAGCTATATCAGC ATTCTGAAAGATGGTGCCGGTGTTGGTCGTCTGAATCTGCGTCCGGGTAAAAGCAGCGTTATTGGC ACCATGGGTTATATTCAGAGCAACAACGTGGATATCGAGTTCCTGTATTATCGTATGAAAGTGGTG GACTTCAAAAAATACATTATCGGTAGCACCATTCCGCACCTGTATTTCAAAGATTATAGCAAAGAA ACCCTGTACATTCCGAGCAGCATTCAAGAACAGGCAAAAATTGGTATGTTCATCAGCAACCTGGAT AAACTGATCGAGAACAAAAACCTGAAACTGAACTGTCTGAAACAACTGAAACAGGGATTGCTACAA TCTATGTTTATTCCCGGGGGGATCCGATCGATC

CC75-1 TRD T

PGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDLNNSKVTHSKEKITEYAMKSLK LKLVPKNSVLIAMYGGFNQIGRTGLLKIDATINQAISALLMNHETNPEFIQAFLNYQVKGWKRYAA SSRKDPNITKKDIEQFKVPYVSINEQQKIGEFFSKIDHQIELEEQK

CC75-1 TRD U

QIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKD NSKGYPVYDAVQEIGKDSNYDIEESYISILKDGAGVGRLNLRPGKSSVIGTMGYIQSNNVDIEFLY YRMKVVDFKKYIIGSTIPHLYFKDYSKETLYIPSSIQEQAKIGMFISNLDKLIENKNLKLNCLKQL KQGLLQSMFI

CC75-2 TRD V

CCCGGGTTTGAAGGCGAATGGGAGGAAAAAGAACTGCGTGAACTGCGCAATCCGAAAGATAAATAC
 AGCTATACCGGTGGTCCGTTTGGTAGCGATCTGAAAAAAGCGATTATACCACCGATGGCATTCAG
 ATTATTCAGCTGCAGAATATTGGTGACGGCTATTTCTATAACAGCAACAAAGTGTTTACCAGCAAC
 GAAAAAGCCGAAGTTCTGAAAAGCTGTAATGTTTTTCCGGGTGATATTGTGATTGCCAAAATGGCA
 GATCCGATTGCACGTGCCGCAATTGTTCCGGATAATAACATTGGTAAATACCTGATGGCCAGTGAT
 GGTATTCGTCTGAGCGTTGATACCGTTCATTTTAACACCAAATTTGTGCTGGAATGCATCAACCGT
 AAAAGCTTTCGTAAAAAGTCGAGGATAATAGCAGCGGTAGCACCCGTATGCGTATTGGTCTGAGT
 ACCCTGGGTAGCCTGACCCTGAAAACCACCACCCCTGAAAGAACAGCAGAAAATTGGTCAGTTTTTC

8 9

23

24

25

26

27

28 29

30

AGCAAACTGGATCGTCAAATTGAATTAGAAGAACAGAAG

CC75-2 TRD V

PGFEGEWEEKELRELRNPKDKYSYTGGPFGSDLKKSDYTTDGIQIIQLQNIGDGYFYNSNKVFTSN
 EKAEVLKSCNVFPGDIVIAKMADPIARAAIVPDNNIGKYLMASDGIRLSVDTVHFNTKFVLECINR
 KSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTTLKEQQKIGQFFSKLDRQIELEEQK

CC75-2 TRD W

10 CAAATTGAATTAGAAGAACAGAAGCTGGAACTGCTGCAACAGCAGAAAAAAGGTTATATGCAGAAA 11 ATCTTCAGCCAAGAGCTGCGCTTTAAAGATGAAAATGGTAACGATTATCCGGATTGGGAAGAAAAA 12 CAGCTGGGTGAACTGAGCCAGATTGTTCGTGGTGCAAGTCCGCGTCCGATTAAAGATCCGAAATGG 13 TTTAACAAAGAAAGCGATATTGGTTGGCTGCGCATTAGTGATGTTACCAATCAGAATGGCAAAATC 14 15 TATCATCTGGAACAGAAACTGAGCATCGAAGGTCAAGAAAAAACCCGTGTTCTGGTTACCACCCAT 16 CTGCTGCTGAGCATTGCAGCAAGCATTGGTAAACCGGTTATGAACTTTGTGAAAACCGGTGTGCAT 17 GATGGCTTTCTGATTTTTCTGAAACCGAAATTCAACCTGTTCTTTATGTACTATTGGCTGGAATAT 18 TTCAAAGATAAATGGTCCAAATATGGTCAGCCTGGTAGCCAGGTTAATCTGAATAGCGAAATTGTT 19 AAAAGCCAGACCCTGAATATGCCGAGCAATCATGAACAAGAAAAAGTGGGCCAGTTTTTTAACCGC 20 AACGAAAAACTGATTGAACTGCAGCAAGAGAAAATCATGTATATCAAACGTTGCAAACAGGTGCTG 21 CTGCAAAAATGTTTATTCCCGGGGGGATCCGATCGATC 22

CC75-2 TRD W

QIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKW FNKESDIGWLRISDVTNQNGKIYHLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKPVMNFVKTGVH DGFLIFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPSNHEQEKVGQFFNR NEKLIELQQEKIMYIKRCKQVLLQKMFI

CC80-1 TRD X and TRD Y

31 CCCGGGTTTGAAGGCGAATGGGAGGAAAAACAGTTTGCCGACTTCACCAAAATTAACCAGGGTCTG 32 CAGATTGCCATTAATGAACGTAAAACCGAATATAGCCCTGAGCTGTATTTCTATATCACCAACGAA 33 TTTCTGCGTCCGAATAGCCAGACCAAATATTTCATTGAAAAATCCGCCTCAGAGCGTGATTGCCAAC 34 AAAGAAGATATTCTGATGACCCGCACCGGTAATACCGGCAAAGTTGTTACCAATGTTTTTGGTGCC 35 TTCCACAACAACTTTTTCAAAATCAAATTCGATAAAAACCTGTATGATCGCCTGTTTCTGGTTGAA 36 37 GTTCTGAACAGCAGCAAAATCCAGAACAAAATTCTGAGCCTGGCAGGTAGCAGCACCATTCCGGAT 38 CTGAATCATAGCGATTTCTATAGCATTAGCAGCAGCTATCCGCTGCCGCGCGAACAGCAAAAAATT 39 GGCAAATTCTTTAGCAAACTGGATCGTCAAATTGAATTAGAAGAACAGAAGCTGGAACTGCTGCAA 40 CAGCAGAAAAAAGGTTATATGCAGAAAATCTTCAGCCAAGAGCTGCGCTTTAAAGATGAAAATGGT 41 42 43 44 AACAACAGCAAAAACATTTATGAAAGCGAAAACAAACTGACCCAAGAAGGCTACAAAAAAGCACGT 45 CAGCTGCCGGAAAATACCCTGCTGGTTACCTGTATTGCAAGCATTGGTAAAAATGCCATTCTGCGT 46 AAACAGGGTAGCTGTAATCAGCAGATTAATGCAGTTGTGCCGTTTGAGAACATCAACATCGATTAT 47 CTGTATTATATCAGCGATAGCCTGAGCACCTTCATGAAAAGCATTGCAGGTAAAACCGCAACCCAG 48 ATTGTGAACAAAAACACCTTTGAAAAACCTGGAAATTTACCTGGCACCTTTTGAGGAACAGAACAAA 49 50 51

52 CC80-1 TRD X

53 PGFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEFLRPNSQTKYFIENPPQSVIAN
 54 KEDILMTRTGNTGKVVTNVFGAFHNNFFKIKFDKNLYDRLFLVEVLNSSKIQNKILSLAGSSTIPD
 56 LNHSDFYSISSSYPLLREQQKIGKFFSKLDRQIELEEQK

57 CC80-1 TRD Y

58 QIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPDWEKKKLKEIACVYTGNTPSKKENIYW
 59 NKGEYVWVTPTDINNSKNIYESENKLTQEGYKKARQLPENTLLVTCIASIGKNAILRKQGSCNQQI
 60 NAVVPFENINIDYLYYISDSLSTFMKSIAGKTATQIVNKNTFENLEIYLAPFEEQNKIADLISSLE
 ELIEKQASKLIKMKSRKQGMLQIMFI

CC80-2 TRD Z + CC72-2 TRD S

1 2

3

4

5

6

7

8 9

25

26

27

28

29 30

31

32

33

34 35

36 37

38

39

40

41

42

43 44

45

46

47

48

49

50 51

52 53

54

55

56 57

58

59

60

CCCGGGTTTGAAGGCGAATATTCTCTGGATATTTTTGGTAATCTGGCCACCAACAAAAGCGAAAAA TTCAATCCGCAGAATGAAAACGCCAGCATTGATATTGAACTGGATTGCATTGAACAGAATACCGGT CGTCTGATCAAAATCTATAACAGCAAAGAATTTAGCAGCCAGAAAAACAAATTTAACCCGCAGAAC GTGCTGTATGGTAAACTGCGTCCGTATCTGAACAAATATTACTTCACCAAAAAAAGTGGTGTGTGC AGCAGCGAAATTTGGGTTCTGAAAAGCACCAAAGAAGATAAACTGCTGAACCTGTTCCTGTACTAT TTCATTCAGACCAAACGCTATAGTGATGTTGCAAGCAAAAGCGCAGGTAGCAAAATGCCTCGTGCA 10 GATTGGGGTCTGATTGAAAATATTCGTGTGTATTTTCCGGAACTGTGCGAACAGCAGAAAATTGGT 11 CAGTTTTTTAGCAAACTGGACCGTCAAATTGAATTAGAAGAACAGAAGCTGGAACTGCTGCAACAG 12 CAGAAAAAAGGTTATATGCAGAAAATCTTCAGCCAAGAGCTGCGCTTTAAAGATGAAAATGGTAAC 13 GATTATCCGGACTGGACCAATGAACGTCTGGGTGAAGTTACCACCGTTACCATGGGTCAGAGCCCG 14 15 AAAAGCGTGAATTATACCGATAATAGCAATGACACCGTTCTGATTCAGGGTAATGCCGATATTGAA 16 AACGGTCTGATTAATCCGCGTATCTATACCCGTGAAGTGACCAAACTGATTCAGAAAGATGAGATT 17 ATTCTGACCGTTCGTGCACCGGTTGGTAAACTGGCAATGGCACAGATTAATGCATGTATTGGTCGT 18 GGTGTTTGCAGCATTAAAGGCGATAAATTTCTGTATTATTTCCTGGAATGGTTCGCCACCCAGAAT 19 AAATGGATTCGTTTTAGCCAGGGTAGCACCTTTGAAAGCATTAGCGGTAATGATATTCGCAACATC 20 CATATCAAAATCCCCGGTTGAAGATGAACGCACCAAAATTATCAAACTGCTGAATAGCCTGGATGTG 21 CTGAATTCAAAAACCGATCTGAAAATCCAGAATCTGAAACAGCGTAAACAGAGCCTGCTGCAAAAA 22 23 ATCTTTGTGCCCGGGGGGATCCGATCGATC 24

CC80-2 TRD Z

PGFEGEYSLDIFGNLATNKSEKFNPONENASIDIELDCIEONTGRLIKIYNSKEFSSOKNKFNPON VLYGKLRPYLNKYYFTKKSGVCSSEIWVLKSTKEDKLLNLFLYYFIQTKRYSDVASKSAGSKMPRA DWGLIENIRVYFPELCEQQKIGQFFSKLDRQIELEEQK

CC72-2 TRD S

OIELEEOKLELLOOOKKGYMOKIFSOELRFKDENGNDYPDWTNERLGEVTTVTMGOSPKSVNYTDN SNDTVLIQGNADIENGLINPRIYTREVTKLIQKDEIILTVRAPVGKLAMAQINACIGRGVCSIKGD KFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPVEDERTKIIKLLNSLDVLNSKTDLK IQNLKQRKQSLLQKIFV

CC93-2 TRD b*

CCCGGGTTTGAAGGCGAATGGGAGGAGAAAAAACTGGAAGATACCCTGGAATTCATTAAAGATGGC ACCCATGGTACACATGAAAATGTTAATAATGGTCCGTGGCTGCTGAGCGCCAAAAACATTAAAAAC AACAAAATCATCATCAGCAGCGACGATCGCAAAATTAGCGAAAGCGATTACAAAAAAATCTACAAA AACTATAAACTGGAAAAAGGCGATCTGCTGCTGACCATTGTTGGCACCATTGGTCGTGCAGCAATT GTTAAAAATCCGAACAATATTGCCTTTCAGCGTAGCGTTGCAATCCTGAAAACCAAAGCAACCTAT GATGTGGGCTTTATCTTTCAGCTGTTCCAGACCAAATACTTTAAAAACCTGCTGCGTAAACAG GTTGTTAGCGCACAGCCTGGTCTGTATCTGGGTGATATTCGTAAAATCAAAATCAGCATTACCAAC ATCATCGAAGAACAGCGCAAAATCGGTATCTTTTTCAGCAAACTGGATCGTCAAATTGAATTAGAA GAACAGAAG

CC93-2 TRD b*

PGFEGEWEEKKLEDTLEFIKDGTHGTHENVNNGPWLLSAKNIKNNKIIISSDDRKISESDYKKIYK NYKLEKGDLLLTIVGTIGRAAIVKNPNNIAFORSVAILKTKATYDVGFIFOLFOTKYFKNLLLRKO VVSAQPGLYLGDIRKIKISITNIIEEQRKIGIFFSKLDRQIELEEQK

C93-3 TRD a*

CAAATTGAATTAGAAGAACAGAAGCTGGAACTGCTGCAACAGCAGAAAAAAGGTTATATGCAGAAA ATCTTCAGCCAAGAGCTGCGCTTTAAAGATGAAAATGGTAACGATTATCCGGAATGGGAAAACAAA CGCATTGAAGATATTGCCAATGTGAACAAAGGTTTTACCCCGAGCACCAACAATAACGAATATTGG GATAACAACGATAAAAACTGGCTGAGCATTGCAGGCATGAATCAGAAATATCTGTATAAAGGCAAC AAAGGCATCAGCAAAGATGCAGCCAAAAACTATATGAAAGTGAAAAACGACACCCTGATCATGTCC TTTAAACTGACCATTGGTAAACTGGCGATTGTTAAAGCACCGCTGTATACCAATGAAGCCATTTGT CATTTTATCTGGAAAGTGAACAAAATCAACACCGAGTTCATCTACTATTACCTGAACAGCCTGAAC ATTAGCACCTTTGGTGTTCAGGCAGTTAAAGGTGTTACCCTGAATAACGATAGCATCAACAGCATT

3

4

12

35 36

37

38

39

40

41

42 43

44

45 46

47

48 49

50

51

52

53

54

55 56

57

58

59

60

ATTGTGAAACTGCCGAATGAAGAGGAACAGAACATTATCGCAAAATTTCTGCTGGAAGTGGACAAA ACCGTTAATAATCAGCTGGTGAAAACCAAACTGCTGAAACAACGTAAAAAAGGCCTGCTGCAGCGT ATGTTTGTTCCCGGGGGGATCCGATCGATC

5 CC93-3 TRD a*

6 OIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPEWENKRIEDIANVNKGFTPSTNNNEYW 7 DNNDKNWLSIAGMNQKYLYKGNKGISKDAAKNYMKVKNDTLIMSFKLTIGKLAIVKAPLYTNEAIC 8 9 HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIIVKLPNEEEQNIIAKFLLEVDK 10 TVNNQLVKTKLLKQRKKGLLQRMFV 11

CC873 TRD e* + CC97 TRD c*

13 14 15 GGTAGCAATGGTAGCCATGCAAAAAAACTGACCGTTAAACTGTGGGGTAAAGGTGTTGTTCCGAAA 16 AAAGAAACGTTTAAAGGCAGCGATAACACCCAGTATTACAAACGTAAAGCAGGTCAGCTGATGTAT 17 GGCAAACTGGATTTTCTGAATTGCGCCTTTGGTATTGTTCCGGATAGCCTGAATAACTATGAAAGC 18 ACCATTGATAGCCCGAGCTTTGATTTCATTAATGGCGATAGCAAATTTCTGCTGGAACGCATTAAA 19 CTGAAAAGCTTCTACAAAAAATTCGGCGATATTGCAAATGGCAGCCGTAAAGCAAAACGTATTAAT 20 CAGGATACCTTTCTGAGCCTGCCGGTTTTTGCACCGAAATATGATGAACAGCTGCGTATTGGTGAA 21 22 TTTTTCAGTAAACTGGATCGTCAAATTGAATTAGAAGAACAGAAGCTGGAACTGCTGCAACAGCAG 23 AAAAAAGGTTATCTGCAGAAAATCTTTAGCCAAGAGCTGCGCTTTAAAGATGAAAACGGTAATGAT 24 25 ATCAACATTAGCAAAAGCGAACTGCTGACCGTTAAACTGCATTGCAAAGGTATTGAAAAAGCCAAC 26 ATTAACCGTGTGCTGAAACTGGGTGCAACCAATTATTACAAACGTTTTGAAGGCCAGTTTATCTAT 27 28 GGCAAACAGAACTTTTTTTAACGGTGCCTTTGATATCGTGCCGAAAAAATTCGATGGTCTGTATAGC 29 AGCAGTGATGTTCCGGCATTTGAAATCAATACCGAGAAAATTGAGCCGAACTACTTCATCAGCTAT 30 ATTAGCCGTCCGAGCTTCTATAAAAGCAAAGAGAAATATAGCACCGGCACCGGTAGCAAACGTATT 31 32 33 34

CC873 TRD e*

PGFEGEWEEKSISSFLKESKIKGSNGSHAKKLTVKLWGKGVVPKKETFKGSDNTQYYKRKAGQLMY GKLDFLNCAFGIVPDSLNNYESTIDSPSFDFINGDSKFLLERIKLKSFYKKFGDIANGSRKAKRIN QDTFLSLPVFAPKYDEQLRIGEFFSKLDRQIELEEQK

CC97 TRD c*

QIELEEQKLELLQQQKKGYLQKIFSQELRFKDENGNDYPEWRFARFKDFMYKPINIRPAINISKSE LLTVKLHCKGIEKANINRVLKLGATNYYKRFEGQFIYGKQNFFNGAFDIVPKKFDGLYSSSDVPAF EINTEKIEPNYFISYISRPSFYKSKEKYSTGTGSKRIHENTVLNFSLHLPCLNEQLKIASFVCFLN RKIELLERKIYLIKKOKOALLOOMFI

CC133-2 from ED133 TRD d*

CAAATTGAATTAGAAGAACAGAAGCTGGAACTGCTGCAACAGCAGAAAAAAGGTTATATGCAGAAA ATCTTCAGCCAAGAGCTGCGCTTTAAAGATGAAAATGGTAACGATTATCCGGAATGGGAAAATGTG ATGCTGCAGAAAGTTCTGAAAGATAAAACCGAAGGTATTAAACGTGGTCCGTTTGGTGGTGCACTG AAAAAAGATATTTTTGTGGAAAGCGGCTATGCCGTTTATGAACAGCGTAATGCCATTTATGATATC AGCAACTTCCGCTACTATATCAACGAGAACAAATACAAAGAGATGCAGAGCTTTAGCGTTCAGCCG AATGATATTATCATGAGCTGTAGCGGCACCATTGGTCGTCTGGCACTGATTCCGCATAACTATACC AAAGGTATTATCAACCAGGCCCTGATTCGTTTCGTACCAATCATAAAATCCGCAGCGAATTCTTT CTGATCTTTATGCGTAGCAATCAGATGCAGCGTAAAATTCTGGAAGCAAATCCGGGTAGCGCAATT ACCAATCTGGTTCCGGTTAAAGAACTGAAACTGATCCCGTTTCCGCTGCCGGTTAAATTTGAACAG GATAAAATCAGCCAGTTCATCCACATTATTAACCGTCGTATTGAACAGAGCGAGAAAAAAATCGAA

CC133-2 from ED133 TRD d*

QIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPEWENVMLQKVLKDKTEGIKRGPFGGAL KKDIFVESGYAVYEQRNAIYDISNFRYYINENKYKEMQSFSVQPNDIIMSCSGTIGRLALIPHNYT KGIINQALIRFRTNHKIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPVKFEQ DKISQFIHIINRRIEQSEKKIESLKNRKQGFLQKLFV

ST80-3 TRD X + TRD f*

CCCGGGTTTGAAGGCGAATGGGAGGAAAAACAGTTTGCCGATTTTACCAAAATTAACCAGGGTCTG CAGATTGCCATTAATGAACGTAAAACCGAATATAGCCCTGAGCTGTATTTCTATATCACCAACGAA TTTCTGCGTCCGAATAGCCAGACCAAATATTTCATTGAAAATCCGCCTCAGAGCGTGATTGCCAAC AAAGAAGATATTCTGATGACCCGCACCGGTAATACCGGCAAAGTTGTTACCAATGTTTTTGGTGCC TTCCACAACAACTTTTTCAAAATCAAATTCGATAAAAACCTGTATGATCGCCTGTTTCTGGTTGAA GTTCTGAACAGCAGCAAAATCCAGAACAAAATTCTGAGCCTGGCAGGTAGCAGCACCATTCCGGAT CTGAATCATAGCGATTTCTATAGCATTAGCAGCAGCTATCCGCTGCTGCGCGAACAGCAAAAAATT GGCAAATTCTTTAGCAAACTGGATCGCCAGATTGAACTGGAAGAACAGAAACTGGAACTGCTGCAA CAGCAGAAAAAAGGCTATATGCAGAAAATCTTTAGCCAAGAGCTGCGCTTTAAAGATGAAAACGGT GAAGATTATCCGGATTGGAAAGAAAAAAACTGGGCGATATTACCGAGCAGAGCATGTATGGTATT GGTGCAAGCGCAACCGTTTTGATAGCAAAAATATCTATATCCGCATCACCGACATCGATGAAAAAA GCAACGACATCCTGTTTGCACGTACCGGTGCAAGTACCGGTAAAAGCTATATTCATAAAGAAGAAGA AAGACATCTACAACTACTACTTTGCGGGTTTTCTGATCAAATTCAAAATTAACGAACAGAACAGTC CGCTGTTCATCTATCAGTTTACCCTGACCAGCAAATTCAACAAATGGGTTAAAGTTATGAGCGTGC GTAGCGGTCAGCCTGGTATTAATAGCGAAGAATATGCAAAACTGCCGCTGGTTCTGCCGAATAAAC TGGAACAACAAAAATCGCGAAATTCCTGGATCGTTTTGATCGTCAGATCGAGCTGGAAAAACAAA AAATTGAAATTCTGCAGCAACAAAAAAAAGGCCTGCTGCAGAGTATGTTTATTCCCGGGGGGATCCG ATCGATC

ST80-3 TRD X

MSNTQKKNVPELRFPGFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEFLRPNSQT KYFIENPPQSVIANKEDILMTRTGNTGKVVTNVFGAFHNNFFKIKFDKNLYDRLFLVEVLNSSKIQ NKILSLAGSSTIPDLNHSDFYSISSSYPLLREQQKIGKFFSKLDR

ST80-3 TRD f*

QIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDS KNIYIRITDIDEKSRKLNYQNLTTPDELNNKYKLKRNDILFARTGASTGKSYIHKEEKDIYNYYFA GFLIKFKINEQNSPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLPLVLPNKLEQQKIAKF LDRFDRQIELEKQKIEILQQQKKGLLQSMFIPGGSHHHHHH

For Peer Review

```
SUPPLEMENTARY INFORMATION FOR TABLE 2.
```
S.SauCD-EGFP

CC30-1 GWAG-5-GAT

This MTase was expressed and purified as a fusion with EGFP.

MSNTQTKNVPELRFPGFEGEWEEKKVGELLEFKNGLNKGKEYFGSGSSIVNFKDVFNNRSLNTNNL TGKVNVNSKELKNYSVEKGDVFFTRTSEVIGEIGYPSVILNDPENTVFSGFVLRGRPKSGIDLINN NFKRYVFFTNSFRKEMITKSSMTTRALTSGSAINKMKVIYPVSAKEQRKIGDFFSKLDRQIELEEQ KLELLQQQKKGYMQKIFSQELRFKDENSEDYPHWENSKIEKYLKERNERSDKGQMLSVTINSGIIK FSELDRKDNSSKDKSNYKVVRKNDIAYNSMRMWQGASGRSNYNGIVSPAYTVLYPTQNTSSLFIGY KFKTHRMIHKFKINSQGLTSDTWNLKYKQLKNINIDIPVLEEQEKIGDFFKKMDILISKQKIKIEI LEKEKQSFLQKMFLGSMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICT TGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFE GDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKHHHHH

1- marker 2- Nickel column eluate 3-14 Fractions from gel filtration column
15- CC5-1 Purified protein marker
Nuclease assay on the plasmid library.

S.SauCD-EGFP CC30-1 GW<u>A</u>G-5-GA<u>T</u>

SMRT did not work for the CC30-1 system when looking for methylation of genomic DNA from *E. coli*.

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
BNNGGTAMH	4	unknown	7.05	780	11058	37.7	88.6	
ANNNNNNNNNN	1	unknown	0.11	1312	1235059	36.0	100.7	
Not Clustered	0		0.19	14583	7880091	36.1	107.4	

Modification QV Histogram By Motif

Modification QV Histogram

S.SauJK-EGFP

CC30-2 GG<u>A</u>-7-<u>T</u>CG

This MTase was a fusion with EGFP.

MSNTQKKNVPELRFPEFEGEWEERKLGDLIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPEKEADILFILSLFRKINWKLYDESTGVPSLSKQTI NKINRLVPTNKEQQKIGEFFSKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPKW EEKKIEDIASQVYGGGTPNTKIKEFWNGDIPWIQSSDVKVNDLILQQCNKFISKNSIELSSAKLIP ANSIAIVTRVGVGKLCLVEFDYATSQDFLSLSSLKYDKLYSLYSLLYTMKKISANLQGTSIKGITK KELLDSIIKIPHNLEEQQKIGDLFYKIDKYISFNKCKIEMLKSLKQGLLKKMFIGSMVSKGEELFT GVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYP DHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKL EYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSAL SKDPNEKRDHMVLLEFVTAAGITLGMDELYKHHHHH

This system could not be expressed so was used for SMRT sequencing only.

SMRT analysis of genomic DNA from E. coli.

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CGANNNNNNTCC	3	m6A	98.7 <mark>6</mark>	1439	1457	89.3	76.9	GGANNNNNNTCG
GGANNNNNNTCG	3	m6A	98.56	1436	1457	91.2	76.8	CGANNNNNNTCC
Not Clustered	0		0.09	8260	9123294	35.7	87.7	

Modification QV Histogram By Motif

Modification QV Histogram

2	S.SauJd*
3	CC133-2 from ED133 GGA-7-TTRG
4	This enzyme was studied using the SMRT assay. There are minor
5	variations in S subunit sequence in CC133-2.
0 7	Recombinant S.SauJd* CC133-2
8	MSNTQKKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVYGTGGYMTSVSEPLSEID
9	AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI
10	NKINRFVPSNKEQQKIGEFFIKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPEW
11	ENVMLQKVLKDKTEGIKRGPFGGALKKDIFVESGYAVYEQRNAIYDISNFRYYINENKYKEMQSFS
12	VQPNDIIMSCSGTIGRLALIPHNYTKGIINQALIRFRTNHKIRSEFFLIFMRSNQMQRKILEANPG
13	SAITNLVPVKELKLIPFPLPVKFEQDKISQFIHIINRRIEQSEKKIESLKNRKQGFLQKLFVPGGS
15	ННННН
16	Wild type S.SauJd*
17	MSNTQKKNVPELRFPGFEGEWEEKKLESIIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSEPLSEID
18	AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI

NKINRFVPTNKEQQKIGKFFSKLDRQIELQEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPEW ENVMLQKVLKDKTEGIKRGPFGGALKKDIFVESGYAVYEQRNAIYDISNFRYYINENKYKEMQSFS VQPNDIIMSCSGTIGRLALIPHNYTKGIINQALIRFRTNHKIRSEFFLIFMRSNQMQRKILEANPG SAITNLVPVKELKLIPFPLPVKFEQDKISQFIHIINRRIEQSEKKIESLKNRKQGFLQKLFV* Reports for Job Dryden_J_delta_MODs BIOSCIENCES

				SMRT Cells	1 Movies 1						
Motif Summary											
Motifs	Modified Position	Туре	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif			
CYAANNNNNNTCC	4	m6A	90.36%	422	467	51.19	30.33				
GGANNNNNNHTRG	з	m6A	47.67%	1114	2337	45.72	32,24				
CYAAYBNNNNNCC	4	m6A	25,68%	169	658	42.89	34.51				
CCBANTNNNNTCC	4	m6A	20.39%	42	206	44.40	32.14	GGANNNNNANTVGG			
GGANNNNNANTVGG	3	m6A	18.45%	38	206	44.76	31.37	CCBANTNNNNTCC			

Modification QVs

S.SauNE

CC398-1 <u>A</u>CC-5-R<u>T</u>GA

The clone obtained contained a single amino acid substitution A50S which did not affect activity. The enzyme was expressed using plasmid pSauNE-XmaI.

S.SauNEXmaI "Expected" sequence

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKIN TFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSA KTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGS HHHHHH*

S.SauNEXmaI "Actual" sequence

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNS**S**ELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKIN TFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSA KTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGS HHHHHH*

1- marker 2- Nickel column eluate 3-14 Fractions from gel filtration column 15- CC5-1 purified protein marker

DISCENCES

S.SauNE CC398-1 <u>A</u>CC-5-R<u>T</u>GA

Reports for Job Ed_1_Dryden_MODs

SMRT Cells: 1 Movies 1 Motif Summary Modified % Motifs # Of Motifs # Of Motifs In Mean Mean Motif Motifs Туре Partner Motif Modification QV Coverage Position Detected Detected Genome ACCNNNNRTGA m6A 99.69% 971 974 89.04 57.17 TCAYNNNNGGT 971 974 TCAYNNNNGGT 3 m6A 99.69% 90.00 57.86 ACCNNNNNRTGA ACCNNNNHRTGGB VCCAYDNNNNGGT 1 m6A 49.07% 291 593 54.17 60.71 ACCNNNNHRTGGB VCCAYDNNNGGT 593 54.62 61.85 4 m6A 45.36% 269 ACCNNNNHRAGA m6A 41.75% 200 479 48.38 61.76 1 HTCARNNNNGGTNV 4 m6A 36.31% 264 727 51.22 62.33 ACCNNNNNYTGAD m6A 34.9% 320 917 49.93 60.88

Modification QVs

SUPPLEMENTARY INFORMATION FOR TABLE 3.

S.SauBE AGG-5-RTGA

This MTase was purified but cut all the plasmids in the nuclease assay. Therefore once the targets for each TRD had been determined from other MTases, we used the ATPase assay to verify the length of the non-specific spacer.

MSNTQKKNVPELRFPGFEGEWEEKKLGDLTDRVIRKNKNLESKKPLTISGQLGLIDQTEYFSKSVS SKNLENYTLIKNGEFAYNKSYSNGYPLGAIKRLTRYDSGVLSSLYICFSIKSEMSKDFMEAYFDST HWYREVSGIAVEGARNHGLLNVSVNDFFTILIKYPSLEEQQKIGKFFSKLDRQIELEEQKLELLQQ QKKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKI NTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYS AKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGG SHHHHHH

1- marker 2- Nickel column eluate 3-14 Fractions from gel filtration column 15- CC398-1 purified protein marker

Oligonucleotides for checking BE target site using ATPase assay.

Underlined refers to methylated bases. 5'-AGG-N-RTGA-3' 3'-TCC-N-YACT -5' N values may be 4-6 i.e., number of base pairs between methylated adenines of 7-9. However, DNA digests show that pUC19 contains the site. This rules out the possibility of N=4 (i.e., no site in pUC19 for N value of 4). Therefore we checked for N5 and N6 only.

Oligonucleotide	
name	DNA sequence (5' to 3')
BE5for	AGATGATGGAATCAATGCAGGTTCCAGTGAGCCCTATACGATATAA
BE5rev	TTATATCGTATAGGGCTCACTGGAACCTGCATTGATTCCATCATCT
BE6for	AGATGATGGAATCAATGCAGGTTCACAGTGAGCCCTATACGATATAA
BE6rev	TTATATCGTATAGGGCTCACTGTGAACCTGCATTGATTCCATCATCT

S.SauBE AGG-5-RTGA N=5 gives the most activity therefore we \mathbf{c} onclude from the ATPase assay that the site for the BE TRD combination is AGG-5-RTGA. N=5 N=6 neg control 0.00 -0.02 Absorbance (340 nm) -0.04 -0.06--0.08-ò

Time (sec)

1- marker
 2- soluble cell extract
 3- Nickel column flow through
 4- Nickel column wash
 5- Nickel column wash
 2 6- Nickel column eluate
 7-14 Fractions from gel filtration column
 15- CC398-1 purified protein marker

Possible site: GGANNNNNNRTGA Note that the background linearisation may be due to the enzyme displaying star activity against a similar site (i.e., a single GGAN7RTGA site is found in pUC19) to the real site (GGAN6RTGA). Repeated digests generate an identical pattern of digestion.

S.SauJE GGA-6-RTGA

SMRT data showed only the N=6 spacer giving modification.

SMRT Cells: 2 Mr	ovies; 2						= Print	🕴 Download 🛛 🖾 Email
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNTCC	3	m6A	31.44	305	970	38.3	17.1	GGANNNNNRTGA
GGANNNNNRTGA	з	m6A	24.43	237	970	38.3	17.5	TCAYNNNNNTCC
Not Clustered	0		0.00	324	9,124,268	34.2	15.8	

S.SauNI <u>A</u>CC-6-<u>T</u>GAR

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKNENGNDYPDWERIKFFDVIDKVIDFRGRTPKKLNMEWSDEGYLALSAVNV KKGYIDFNVEAKYGNLDLYTRWMRGNELYKGQVLFTTEAPMGNVAQVPDNKGYILSQRTIAFNSNE KITDNFLASLLSSENVYNDLLKLCSGATAKGVSQKNLNRLYVTIPHSISEQEEIAEFFRKINQLVE LQKYKIEHTKSQKQVFLQKMFIPGGSHHHHHH

marker 2- soluble cell extract 3- Nickel column flow through 4- Nickel column wash 1
 5- Nickel column wash 2 6- Nickel column eluate 7-14 Fractions from gel filtration column
 15- CC398-1 purified protein marker

Nuclease assay on the plasmid library gave a clear result.

S.SauNK ACC-6-TCG

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPNWEEKKIEDIASQVYGGGTPNTKIKEFWNGDIPWIQSSDVKV NDLILRQCNKFISKNSIELSSAKLIPANSIAIVTRVGVGKLCLVEFDYATSQDFLSLSSLKYDKLY SLYSLLYTMKKISANLQGTSIKGITKKELLDSIIKIPHNLEEQQKIGDLFYKIDKYISFNKCKIEI LKSLKQGLLQKIFIPGGSHHHHH

1- marker 2- soluble cell extract 3- Nickel column flow through
4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
7- Eluate after PD10 desalting 8- CC398-1 purified protein marker
Nuclease assay gave a clear result.

S.SauNL <u>A</u>CC-6-<u>T</u>AAA

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPNWRTIELKNILENIVDNRGKTPDNAPSEKYPLLEVNALGYYR PAYIKVSKFVSENTYNNWFREHLKENDILFSTVGNTGIVSLMDNYKAVIAQNIVGLRVNNNNLPSF IYYMLSYKGNQKKIKRIQMGAVQPSVKVSQFKFIKYLVPIKDEQEKVAKLLIEIDKLVNKQLIKIE LLQQRKKALLKSMFIPGGSHHHHHH

marker 2- soluble cell extract 3- Nickel column flow through 4- Nickel column wash 1
 5- Nickel column wash 2 6- Nickel column eluate 7-14 Fractions from gel filtration column 15- CC398-1 purified protein marker

Nuclease assay gave a clear result. 7E 7E CC389 Uncut CC389 Uncut N N N N N M 10 11 12 13 19 20 M

S.SauNP <u>ACC-5-CCT</u>

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELFQQQ KKGYMQKIFSQELRFKDESGNDYPDWEEKELGEVADRVIRKNKNFESKKPLTISGQLGLIDQTEYF SKSVSSKNLENYTLIKNGEFAYNKSYSNGYPLGAIKRLTRYDSGVLSSLYICFSIKSEMSKDFMEA YFDSTHWYREVSGIAVEGARNHGLLNISVNDFFTILIKYPSLEEQRKIGDFFIKLDRQIELEEQKL ELLQQRKKALLKSMLIPGGSHHHHHH

1- marker, 2- soluble cell extract, 3- Nickel column flow through, 4- Nickel column wash 1, 5-Nickel column wash 2, 6- Nickel column eluate, 7- eluate after conc. and PD10 desalting, 8- Final concentrated protein

Although purified this MTase was only assayed via SMRT.

S.SauNP <u>A</u>CC-5-CC<u>T</u>

	Motifs										
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif			
ACCNNNNNCCT.	1	m6A	91.03	1320	1450	49,8	29.6	AGGNNNNNGGT			
AGGNNNNNGGT	1	m6A	89.79	1302	1450	50.0	29.7	ACCNINNNCCT			
HCCACCNNNNNCCM	4	mбA	17.39	52	299	40.0	34.2				
Not Clustered	0		0.01	737	9114127	34.7	34.2				

Modification QV Histogram By Motif

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCNNNNNCCT	1	m6A	91.03	1320	1450	49.8	29.6	AGGNNNNNGGT
AGGNNNNNGGT	1	m6A	89.79	1302	1450	50.0	29.7	ACONNNNCCT
HCCACCNNNNNCCM	4	m6A	17.39	52	299	40.0	34.2	
Not Clustered	0		0.01	737	9114127	34.7	34.2	

S.SauNQ ACC-5-RTGT

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGEDYSEWEERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGIIDY VDDFIFDGNYLLIGEDGANIITRSAPLVYLVNGKFWVNNHAHILSPLNGNIQYLYQVAELVNYEKY NTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLSKLDRQIDLEEQKLELLQQRKKALLKSMFVP GGSHHHHHH

1- marker 2- soluble cell extract 3- Nickel column flow through
4- Nickel column wash 5- Nickel column eluate 6- eluate after conc. and PD10 desalting
7- Final concentrated protein
DNA cleavage assay and SMRT assay agreed.

S.SauNQ <u>A</u>CC-5-R<u>T</u>GT

				Motifs				
Motif	Modified Position	Modification Typ e	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACAYNNNNGGT	3	mбA	99.85	654	665	83.5	56.3	ACCNNNNRTGT
ACCNNNNNRTGT	1	mбA	99.85	654	655	80.7	55.5	ACAYNNNNGGT
ACCNNNNRAGTH	1	m6A	55.56	215	387	54.3	56.5	
BNACCNNNNNRGGTH	3	m6A	23.74	118	497	45.8	57.6	
DACAGNNNNNGGTNR	4	mбA	21.65	50	231	42.8	55.5	
HACCNNNNNDAGTG	2	m6A	21.03	41	195	44.8	57.9	
YNACCVNNNNCTGT	3	mбA	20.52	47	229	42.9	57.7	
Not Clustered	0		0.03	3095	9114477	35.3	62.5	

	Motifs											
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif				
ACAYNNNNNGGT	3	m6A	99.85	654	655	83.5	56.3	ACCNNNNRTGT				
ACONNNNRTGT	1	mßA	99.85	654	665	80.7	55.5	ACAYNNNNGGT				
ACCNNNNRAGTH	1	m6A	55.56	215	387	54.3	56.5					
BNACCNNNNNRGGTH	3	mBA	23.74	118	497	45.8	57.6					
DACAGNINNINGGTNR	4	m6A	21.65	50	231	42.8	55.5					
HACCNNNNNDAGTG	2	m6A	21.03	41	195	44.8	57.9					
YNACCVNNNNCTGT	3	m6A	20.52	47	229	42.9	57.7					
Not Clustered	0		0.03	3095	9114477	35.3	62.5					

S.SauNS <u>A</u>CC-6-<u>T</u>GC

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPDWTNERLGEVTTVTMGQSPKSVNYTDNSNDTVLIQGNADIEN GLINPRIYTREVTKLIQKDEIILTVRAPVGKLAMAQINACIGRGVCSIKGDKFLYYFLEWFATQNK WIRFSQGSTFESISGNDIRNIHIKIPVEDERTKIIKLLNSLDVLNSKTDLKIQNLKQRKQSLLQKI FVPGGSHHHHHH

1- marker 2- soluble cell extract

3- Nickel column flow through 4- Nickel column wash

5- Nickel column eluate 6- eluate after conc. and PD10 desalting

7- final protein after concentration

Although purified this MTase was only assayed via SMRT.

Motifs

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACONNNNNTGC	1	m6A	100.00	2938	2938	118.8	81.7	GCANNNNNGGT
GCANNNNNGGT	3	m6A	99.90	2935	2938	120.7	83.9	ACCNNNNNTGC
ACCNNNNHHTMCD	1	m6A	57.03	925	1622	71.1	83.7	HGKADDNNNNGGT
HGKADDNNNNGGT	4	m/6A	48.83	792	1622	68.8	86.4	ACCNNNNHHTMCD
YNACONNNHNVGC	3	m6A	46.49	1925	4141	57.7	84.6	
CCACCNNNNNTGG	3	m6A	39.15	74	189	55.7	85.9	
TNCCANDNNNNGGTNR	5	m6A	31.60	73	231	53.5	82.5	
YNACONNNGHMGC	3	m6A	31.35	195	622	53.2	87.4	
YRNACCNNNNHNVGC	4	mбA	28.65	465	1623	48.9	86.3	
ACCNNNNHHTMCC	1	m6A	27.58	131	475	58.1	84.3	
Not Clustered	0		0.09	8284	9100925	38.6	92.5	

COACCIVINININTOG

THECANDINNINGGTIN

VNACCNNNNGHMGC

YRNACCHINNHHIVGO

ACCNINNIHHTMCC

Not Clustered

mia

misa

mŝā

m5A

39.15

31.60

31.35

28.65

27.55

0.09

55.7

53.5

\$3.2

48.9

58,1

38.6

85.9

42.5

87.6

66.3

64.3

92.5

S.SauNU ACC-5-RTC

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKDNSKGYPVYDAVQEIG KDSNYDIEESYISILKDGAGVGRLNLRPGKSSVIGTMGYIQSNNVDIEFLYYRMKVVDFKKYIIGS TIPHLYFKDYSKETLYIPSSIQEQAKIGMFISNLDKLIENKNLKLNCLKQLKQGLLQSMFIPGGSH HHHHH

1- marker 2- soluble cell extract
 3- Nickel column flow through 4- Nickel column wash
 5- Nickel column eluate 6- eluate after PD10 desalting

7- final protein after concentration

DNA cleavage assay worked despite there being one site in pUC19 but this site was subject to dam methylation and therefore not cut.

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCNNNNRTC	1	m6A	81.87	3162	3862	70.1	41.5	GAYNNNNGGT
GAYNNNNGGT	2	m6A	75.14	2902	3862	70.8	41.9	ACCNNNNRTC
YNACCNNNNHRAC	3	mБA	37.48	820	2188	64.9	43.3	
HRNACCNNNNHGAC	4	m6A	26.22	140	534	63.7	43.0	
HYACONNNIGRAC	3	m6A	19.23	50	260	63.3	44.4	
YRNACCRNNNNAAC	4	m6A	17.15	59	344	63.7	45.8	
HCCACCNNNNNYTC	4	m6A	16.81	39	232	61.9	45.9	
Not Clustered	0		0.00	229	9106044	58.3	48.5	

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCINNNNRTC	1	m6A	81.87	3162	3862	70.1	41.5	GAYNNNNGGT
GAYNNNNGGT	z	m6A	75.14	2902	3862	70.8	41.9	ACONNNNRTC
YNACONNNHRAC	3	m6A	37.48	820	2166	64.9	43.3	
HRNACCINNINHGAC	4	m6A	26.22	140	534	63.7	43.0	
HYACONNNIGRAC	3	тбA	19.23	50	260	63.3	44.4	
YRNACCRNNNNAAC	4	mбA	17.15	59	344	63.7	45.8	
HOCACONNNNYTC	4	m6A	16.81	39	232	61.9	45.9	
Not Clustered	0		0.00	229	9106044	58.3	46.5	

S.SauNW <u>A</u>CC-6-<u>T</u>TYG

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNKESDIGWLRISDV TNQNGKIYHLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKPVMNFVKTGVHDGFLIFLKPKFNLFF MYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPSNHEQEKVGQFFNRNEKLIELQQEKIMYI KRCKQVLLQKMFIPGGSHHHHHH

1- marker 2- soluble cell extract

3- Nickel column flow through 4- Nickel column wash

- 5- Nickel column eluate 6- eluate after PD10 desalting
- 7- final protein after concentration

S.SauNW <u>A</u>CC-6-<u>T</u>TYG

	Motifs											
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif				
ACCNNNNNNTTYG	1	тбА	99.86	1461	1463	80.7	49.6	CRAANNNNNGGT				
CRAANNNNNGGT	4	m6A	99.59	1457	1463	74.7	48.6	ACONNNNNTTYG				
YNACONNNNNTSOG	3	m6A	39.52	313	792	52.0	52.7	CGSANNNNNGGTNR				
CGSANNNNNGGTNR	4	mбA	35.23	279	792	50.1	52.3	YNACONNNNNTSOG				
ACCNNNNBRTYG	1	m6A	28.16	680	2415	49.3	51.3					
Not Clustered	0		0.08	6917	9110401	37.6	55.8					

Modification QV Histogram By Motif

				Mours				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCNNNNNTTYG	1	mi6A	99.86	1461	1463	80.7	49.6	CRAANNNNNGGT
CRAANNNNNGGT	4	m6A	99.59	1457	1463	74.7	48.6	ACONNNNNTTYG
YNACONNNNNTSCG	3	m6A	39.52	313	792	52.0	52.7	CGSANNNNNGGTNR
CGSANNNNNGGTNR	4	mGA	35.23	279	792	50.1	52.3	YNACONNNNNTSOG
ACCNNNNNBRTYG	1	m6A	28.16	680	2415	49.3	51.3	
Not Clustered	0		80.0	6917	9110401	37.6	55.8	

S.SauNY <u>A</u>CC-6-<u>T</u>AG

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPDWEKKKLKEIACVYTGNTPSKKENIYWNKGEYVWVTPTDINN SKNIYESENKLTQEGYKKARQLPENTLLVTCIASIGKNAILRKQGSCNQQINAVVPFENINIDYLY YISDSLSTFMKSIAGKTATQIVNKNTFENLEIYLAPFEEQNKIADLISSLEELIEKQASKLIKMKS RKOGMLOIMFIPGGSHHHHHH

1	2	3	4	5	6
_			- 14		-
					-
					-
					-

1- soluble cell extract 2- Nickel column flow through

3- Nickel column wash 1 4- Nickel column wash 2 5- Nickel column eluate

6- final protein after PD10 desalting and concentration of eluate

DNA cleavage assay.

S.SauNY <u>A</u>CC-6-<u>T</u>AG

	Motifs										
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif			
ACONNNNNTAG	1	m6A	75.92	539	710	43.3	24.7	CTANNNNNGGT			
CTANNNNNGGT	3	mбA	72.39	514	710	42.9	24.7	ACCNNNNNTAG			
BNACCNINNNTAAG	3	mßA	34.00	68	200	39.3	25.0				
CCACCNNNNNMAGND	3	тібА	23.68	85	359	38.3	26.1				
Not Clustered	0		0.01	622	9115347	34.4	27.6				

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCNNNNNTAG	1	m6A	75.92	539	710	43.3	24.7	CTANNNNNGGT
CTANNNNNGGT	3	тбА	72.39	514	710	42.9	24.7	ACONNNNNTAG
BNACONNNNTAAG	3	mбA	34.00	68	200	39.3	25.0	
CCACCNNNNNMAGND	3	m6A	23.68	85	359	38.3	26.1	
Not Clustered	0		0.01	622	9115347	34.4	27.6	

S.SauNa* ACC-6-TTC

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCNNNNNNTTC	1	m6A	85.91	2567	2968	46.4	26.2	GAANNNNNGGT
GAANNNNNNGGT	3	m6A	78.11	2334	2968	44.7	26.2	ACCNNNNNTTC
RGAANNNNNGGVGD	4	m6A	16.09	107	665	37.1	27.8	
Not Clustered	0		0.01	1034	9110685	35.6	31.8	

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPEWENKRIEDIANVNKGFTPSTNNNEYWDNNDKNWLSIAGMNQ KYLYKGNKGISKDAAKNYMKVKNDTLIMSFKLTIGKLAIVKAPLYTNEAICHFIWKVNKINTEFIY YYLNSLNISTFGVQAVKGVTLNNDSINSIIVKLPNEEEQNIIAKFLLEVDKTVNNQLVKTKLLKQR KKGLLQRMFVPGGSHHHHH

Modification QV Histogram By Motif

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
ACCNNNNNTTC	1	m6A	85.91	2567	2988	46.4	26.2	GAANNNNNGGT
GAANNNNNGGT	3	m6A.	78.11	2334	2988	44.7	26.2	ACONNNNNTTO
RGAANNNNNGGVGD	4	m6A	16.09	107	685	37.1	27.8	
Not Clustered	0	2453655	0.01	1034	9110685	35.6	31.8	

S.SauNc* ACC-6-RTC

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYLQKIFSQELRFKDENGNDYPEWRFARFKDFMYKPINIRPAINISKSELLTVKLHCKGIEKAN INRVLKLGATNYYKRFEGQFIYGKQNFFNGAFDIVPKKFDGLYSSSDVPAFEINTEKIEPNYFISY ISRPSFYKSKEKYSTGTGSKRIHENTVLNFSLHLPCLNEQLKIASFVCFLNRKIELLERKIYLIKK QKQALLQQMFIPGGSHHHHHH

- 1- marker 2- soluble cell extract
- 3- Nickel column flow through 4- Nickel column wash 1
- 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after PD10 desalting
- 8- final protein after concentration

Although purified, this MTase was only assayed by SMRT.

	Motifs										
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif			
ACCNNNNNRTC	1	m6A	90.98	4680	5144	48.9	27.4	GAYNNNNNGGT			
GAYNNNNNGGT	2	mGA	90.18	4639	5144	50.0	27.8	ACCNNNNNRTC			
HACCVNNNNCTCD	2	m6A	16.64	117	703	40.7	30.2				
HGAGNNNNYGGTD	3	mбA	16.60	86	518	41.5	29.5				
HACCVNNNHNRMC	2	mбA	14.94	936	6265	40.2	29.1				
Not Clustered	0		0.01	1163	9099552	35.6	31.2				

S.SauNc* <u>A</u>CC-6-R<u>T</u>C

Modification QV Histogram By Motif

	MOURS											
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs in Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif				
ACCNNNNNRTC	1	ABm	90.98	4680	5144	48.9	27.4	GAYNNNNNGGT				
GAYNNNNNGGT	2	mGA	80.18	4639	5144	50.0	27.8	ACCNNNNNRTC				
HACCVININNICTED	2	Aihm	16.64	117	703	40.7	30.2					
HGAGNNNNNYGGTD	3	meA	16.60	86	518	41.5	29.5					
HACCVNNNHNRMC	2	HIGA	14.54	936	6285	40.2	29.1					
Not Chustwood	0		0.01	1163	9009552	35.6	31,2					

S.SauNd* <u>A</u>CC-6-<u>T</u>TRG

MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDYFDKEIS NIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNIDLNFIEFYFKSS KWYRFMALNGDSGARADRFSIKDRTFMEMPLHIPCMDEQIKIGQFFSKLDRQIELEEQKLELLQQQ KKGYMQKIFSQELRFKDENGNDYPEWENVMLQKVLKDKTEGIKRGPFGGALKKDIFVESGYAVYEQ RNAIYDISNFRYYINENKYKEMQSFSVQPNDIIMSCSGTIGRLALIPHNYTKGIINQALIRFRTNH KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPVKFEQDKISQFIHIINRRIE QSEKKIESLKNRKQGFLQKLFVPGGSHHHHHH

1- marker 2- soluble cell extract 3- Nickel column flow through

4- Nickel column wash 5- Nickel column eluate

6- eluate after conc. and PD10 desalting

7- final protein after concentration 8- NP purified protein marker

E5 E5 N5 Mtase Uncut NN Y NYN Ν N Y γ Ν γ Ν N N N N 9 10 11 12 13 14 16 17 18 19 20 M M

Site determined to be $\underline{ACC-6-TTRG}$ or ACC-6-YTRG. Note that the underlined site was determined by SMRT and is accepted since if Y is a cytosine, then it can't be methylated.

S.SauNd* <u>A</u>CC-6-<u>T</u>TRG

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CYAANNNNNGGT	4	m6A.	89.98	557	619	50.0	29.9	
ACCNNNNNHTRG	1	m6A	67.06	2013	3002	47.5	31.0	
YHACCNNNNNGTGG	3	m6A.	30.03	88	293	40.5	34.0	
CYYANNNNNGGTDR	4	mбA	20.24	102	504	42.0	32.9	
HNHACCNNNNNTRRG	4	m6A	17.94	127	708	41.5	32.6	
Not Clustered	0		0.02	1435	9112200	35.8	37.4	

Modification QV Histogram By Motif

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CYAANNNNNGGT	4	m6A	89.98	567	619	50.0	29.9	
ACCNNNNNNHTRG	1	mбA	67.06	2013	3002	47.5	31.0	
YHACONNNNNGTGG	3	mбA	30.03	88	293	40.5	34.0	
CYYANNNNNGGTDR	4	m6A	20.24	102	504	42.0	32.9	
HNHACONNNNNTRRG	4	m6A	17.94	127	708	41.5	32.6	
Not Clustered	0	and a construction	0.02	1435	9112200	35.8	37.4	

S.SauRE GARA-6-RTGA

MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNSSKYISE EAFEKEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYFLKNLILSSSIQN ELWRKTLHVAFPKKINKNEIGKIKINYPKKQEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQ KIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTFSYEG EAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTSVDS VRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGSHHHHHH

1- soluble cell extract, 2- Nickel column flow through, 3-Nickel column wash 1, 4- Nickel column wash 2, 5- Nickel column eluate, 6- Final protein after PD10 desalting and concentration

Although purified, this MTase was only used in SMRT.

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNTYTC	з	m6A	91.88	792	862	104.6	62.5	GARANNNNNRTGA
GARANNNNNNRTGA	4	m6A	79.58	686	862	96.7	61.7	TCAYNNNNNTYTC
CCACDNNNNTYTC	3	m6A	15.87	30	189	90.4	65.5	
TCAGNNTNNNTNTCNB	3	m6A	15.03	29	193	91.0	67.7	
Not Clustered	0		0.00	129	9115220	85.4	67.9	

Motifs

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNTYTC	3	m6A.	91.88	792	862	104.6	62.5	GARANNNNNRTGA
GARANNNNNRTGA	4	m6A	79.58	686	862	96.7	61.7	TCAYNNNNNTYTC
CCACONNNNTYTC	3	m6A	15.87	30	189	90.4	65.5	
TCAGNNTNNNTNTCNB	3	m6A.	15.03	29	193	91.0	67.7	
Not Clustered	0		0.00	129	9115220	85.4	67.9	

Modification QV Histogram By Motif

S.SauTE CAAG-5-RTGA

MSNTQKKNVPELRFPGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDLNNSKVTH SKEKITEYAMKSLKLKLVPKNSVLIAMYGGFNQIGRTGLLKIDATINQAISALLMNHETNPEFIQA FLNYQVKGWKRYAASSRKDPNITKKDIEQFKVPYVSINEQQKIGEFFSKIDHQIELEEQKLELLQQ QKKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKI NTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYS AKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGG SHHHHHH

1- soluble cell extract 2- Nickel column flow through
3-Nickel column wash 1 4- Nickel column wash 2
5- Nickel column eluate 6- eluate after concentrating and PD10 step
7- Final concentrated protein
This MTase did not purify well and was only analysed by SMRT

sequencing. The degeneracy in the target determined by SMRT sequencing can be removed using results from other systems.

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs in Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CAAGNNNNNRTGR	3	m6A	80.15	214	267	63.8	42.7	
YCABNNNNNCTTG	3	тбА	55.08	260	472	65.1	43.1	
HTCAYNNNNCMTG	4	m6A.	47.41	238	502	51.7	44.4	
TCAYNNDNNCTVG	3	m6A	31.07	119	383	51.0	44.3	
CNAGNNNNRVTGA	3	m6A	28.62	170	594	59.5	43.6	
TCAYTNNNNDTTG	3	m6A	16.89	38	225	45.4	44.3	
Not Clustered	0		0.04	3962	9114883	35.8	50.6	

				mouro				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CAAGNNNNNRTGR	3	m6A	80.15	214	267	63.8	42.7	
YCABNNNNNCTTG	3	m6A	55.08	260	472	65.1	43.1	
HTCAYNNNNCMTG	4	m6A	47.41	238	502	51.7	44.4	
TCAYNNDNNCTVG	3	m6A	31.07	119	383	51.0	44.3	
CNAGNNNRVTGA	3	m6A	28.62	170	504	59.5	43.6	
TCAYTNNNNDTTG	3	mõA	16 89	38	225	45.4	44.3	
Not Clustered	0		0.04	3962	9114883	35.8	50.6	

S.SauVE CNGA-6-RTGA

MSNTQKKNVPELRFPGFEGEWEEKELRELRNPKDKYSYTGGPFGSDLKKSDYTTDGIQIIQLQNIG DGYFYNSNKVFTSNEKAEVLKSCNVFPGDIVIAKMADPIARAAIVPDNNIGKYLMASDGIRLSVDT VHFNTKFVLECINRKSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTTLKEQQKIGQFFSKLDRQIE LEEQKLELLQQQKKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYD FYVRSPIVYKINTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFS QNFLKETKKYSAKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKK SLLQKMFIPGGSHHHHH

1- marker, 2- soluble cell extract, 3- Nickel column flow through, 4- Nickel column wash, 5- Nickel column eluate, 6- eluate after conc. and PD10 desalting, 7- Final protein after concentration Although the MTase was purified, it was only analysed via SMRT sequencing.

Motifs									
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif	
TCAYNNNNNTCNG	3	m6A	99.34	1354	1363	73.0	43.2	CNGANNNNNRTGA	
CNGANNNNNRTGA	4	m6A	96.09	1337	1363	71.4	43.4	TCAYNNNNNTCNG	
TCAGENNNNMTCNG	3	m6A	41.58	79	190	53.7	43.2		
VCCAYNNNNVTCNG	4	m6A	33.12	211	637	50.8	44.7	CNGABNNNNRTGGB	
CNGABNNNNRTGGB	4	m6A	29.98	191	637	50.2	45.8	VCCAYNNNNVTCNG	
CNGAYNDNNNCTGA	4	m6A	31.90	74	232	53,0	44.9		
HTCAYTNNNNNMONG	4	m6A	23.31	131	562	44.6	45.5		
Not Clustered	0		0.05	4345	9112342	35.9	49.9		
S.SauVE CNGA-6-RTGA

Modification QV Histogram By Motif

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNTCNG	3	m6A	99.34	1354	1363	73.0	43.2	CNGANNNNNRTGA
CNGANNNNNRTGA	4	m6A	98.09	1337	1363	71.4	43.4	TCAYNNNNNTCNG
TCAGENNNNMTCNG	3	m6A	41.58	79	190	53.7	43.2	1921-0722MD-08209.0-
VCCAYNNNNVTCNG	4	m6A	33.12	211	637	50.8	44.7	CNGABNNNNRTGGB
CNGABNNNNNRTGGB	4	m6A	29.98	191	637	50.2	45.8	VCCAYNNNNVTCNG
CNGAYNDNNNCTGA	4	m6A	31.90	74	232	53.0	44.9	Constraint Sector (
HTCAYTNNNNNMCNG	4	m6A	23.31	131	562	44.6	45.5	
Not Clustered	0	10-00-1	0.05	4345	9112342	35.9	49.9	

Motifs

S.SauXE TCT<u>A</u>-6-R<u>T</u>GA

MSNTQKKNVPELRFPGFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEFLRPNSQT KYFIENPPQSVIANKEDILMTRTGNTGKVVTNVFGAFHNNFFKIKFDKNLYDRLFLVEVLNSSKIQ NKILSLAGSSTIPDLNHSDFYSISSSYPLLREQQKIGKFFSKLDRQIELEEQKLELLQQQKKGYMQ KIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTFSYEG EAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTSVDS VRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGSHHHHHH

1- soluble cell extract 2- Nickel column flow through

3- Nickel column wash 4- Nickel column eluate

5- eluate after conc. and PD10 desalting

6- final protein after concentration

7- CC398-1 purified protein marker

DNA cleavage assay.

S.SauXE TCTA-6-RTGA

The degeneracy in the target determined by SMRT sequencing can be resolved by reference to targets from other systems.

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
YCABNNNNNTAGA	3	m6A	68.77	196	285	121.6	104.1	TCTANNNNNVTGR
TCTANNNNNVTGR	4	m6A	68.07	194	285	120.0	106.6	YCABNNNNNTAGA
DNNTCAYNNNNNTAGY	6	m6A	44.57	82	184	79.3	103.0	
RCTANNNNNRTGA	4	m6A	40.41	99	245	71.8	104.1	
HTCAHNNNNNTVGA	4	тбА	32.43	156	481	103.9	104.2	
HTCAYNNNNNNAGA	4	m6A	32.07	211	658	67.2	107.8	
Not Clustered	0		0.12	10813	9115188	38.1	115.4	

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification	Mean Motif Coverage	Partner Motif
YCABNNNNNNTAGA	3	mißA	68.77	196	285	121.6	104.1	TCTANNNNN/TGR
TCTANNNNNN/TGR	4	m6A	68.07	194	285	120.0	106.6	YCABNNNNNTAGA
DNNTCAYNNNNNTAGY	6	m6A	44.57	82	164	79.3	103.0	101010010000000000000000000000000000000
RCTANNNNNRTGA	4	m6A	40.41	99	245	71.8	104.1	
HTCAHNNNNNTVGA	4	m6A	32.43	156	481	103.9	104.2	
HTCAYNNNNNNNAGA	4	m6A	32.07	211	658	67.2	107.8	
Not Clustered	D	2-7 V 1 K	0.12	10813	9115188	38.1	115.4	

S.SauZE GAC-5-RTGA

MSNTQKKNVPELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTGRLIKIYNS KEFSSQKNKFNPQNVLYGKLRPYLNKYYFTKKSGVCSSEIWVLKSTKEDKLLNLFLYYFIQTKRYS DVASKSAGSKMPRADWGLIENIRVYFPELCEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQK IFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTFSYEGE AILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTSVDSV RKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGSHHHHHH*

1- marker 2- soluble cell extract 3- Nickel column flow through

4- Nickel column wash
5- Nickel column eluate
6- eluate after conc. step and PD10 desalting
7- final concentrated protein
8- CC398-1 purified protein marker

DNA cleavage assay showed cutting of all plasmids so the ATPase assay was used given that we knew the individual TRD specificities.

Oligonucleotide	
name	DNA sequence (5' to 3')
ZE5for	AGATGATGGAATCAATGCGACTTCCAGTGAGCCCTATACGATATAA
ZE5rev	TTATATCGTATAGGGCTCACTGGAAGTCGCATTGATTCCATCATCT
ZE6for	AGATGATGGAATCAATGCGACTTCCATGTGAGCCCTATACGATATAA
ZE6rev	TTATATCGTATAGGGCTCACATGGAAGTCGCATTGATTCCATCATCT
ZE7for	AGATGATGGAATCAATGCGACTTCACATGTGAGCCCTATACGATATAA
ZE7rev	TTATATCGTATAGGGCTCACATGTGAAGTCGCATTGATTCCATCATCT

S.SauZS GAC-6-TGC

MSNTQKKNVPELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTGRLIKIYNS KEFSSQKNKFNPQNVLYGKLRPYLNKYYFTKKSGVCSSEIWVLKSTKEDKLLNLFLYYFIQTKRYS DVASKSAGSKMPRADWGLIENIRVYFPELCEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQK IFSQELRFKDENGNDYPDWTNERLGEVTTVTMGQSPKSVNYTDNSNDTVLIQGNADIENGLINPRI YTREVTKLIQKDEIILTVRAPVGKLAMAQINACIGRGVCSIKGDKFLYYFLEWFATQNKWIRFSQG STFESISGNDIRNIHIKIPVEDERTKIIKLLNSLDVLNSKTDLKIQNLKQRKQSLLQKIFVPGGSH HHHHH*

1- marker 2- soluble cell extract 3- Nickel column flow through

- 4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after PD10 desalting 8- final protein after concentration

9- NQ purified protein marker

The DNA cleavage assay showed cutting of all plasmids so the ATPase assay was used since we knew the TRD specificities.

Oligonucleotide	
name	DNA sequence (5' to 3')
ZS6for	AGATGATGGAATCAATGCGACTTCCATTGCGCCCTATACGATATAA
ZS6rev	TTATATCGTATAGGGCGCAATGGAAGTCGCATTGATTCCATCATCT
ZS7for	AGATGATGGAATCAATGCGACTTCACATTGCGCCCTATACGATATAA
ZS7rev	TTATATCGTATAGGGCGCAATGTGAAGTCGCATTGATTCCATCATCT

S.Saub*E GGHA-6-RTGA

MSNTQKKNVPELRFPGFEGEWEEKKLEDTLEFIKDGTHGTHENVNNGPWLLSAKNIKNNKIIISSD DRKISESDYKKIYKNYKLEKGDLLLTIVGTIGRAAIVKNPNNIAFQRSVAILKTKATYDVGFIFQL FQTKYFKNLLLRKQVVSAQPGLYLGDIRKIKISITNIIEEQRKIGIFFSKLDRQIELEEQKLELLQ QQKKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYK INTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKY SAKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPG GSHHHHHH

1- soluble cell extract, 2- Nickel column flow through, 3- Nickel column wash, 4- Nickel column eluate, 5- eluate after conc. step and PD10 desalting, 6- Final concentrated protein

Although this MTase was purified, it was only used in the SMRT sequencing assay.

				mours				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNTDCC	3	miGA	77.39	989	1278	44.6	24.6	GGHANNNNNRTGA
GGHANNNNNRTGA	4	m6A	67.68	865	1278	43.2	24.7	TCAYNNNNNTDCC
TCAGNDNNNNTDCC	3	mбA	21.57	110	510	41.0	25.2	
Not Clustered	0		0.01	928	9114260	36.7	27.3	

Motifs

S.Saub*E GGH<u>A</u>-6-R<u>T</u>GA

Modification QV Histogram By Motif

_				Motifs	(
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNTDCC	3	A8m	77.39	969	1278	44.6	24.6	GGHANNNNNRTGA
GGHANNNNNRTGA	4	m6A	67.68	865	1278	43.2	24.7	TCAYNNNNNTDCC
TCAGNONNNNTDOC	3	m6A	21.57	110	510	41.0	25.2	
Not Clustered	0		0.01	928	9114260	36.7	27.3	

S.Saue*E GAG-6-RTGA

MSNTQKKNVPELRFPGFEGEWEEKSISSFLKESKIKGSNGSHAKKLTVKLWGKGVVPKKETFKGSD NTQYYKRKAGQLMYGKLDFLNCAFGIVPDSLNNYESTIDSPSFDFINGDSKFLLERIKLKSFYKKF GDIANGSRKAKRINQDTFLSLPVFAPKYDEQLRIGEFFSKLDRQIELEEQKLELLQQQKKGYMQKI FSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTFSYEGEA ILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTSVDSVR KDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGSHHHHHH

1- soluble cell extract, 2- Nickel column flow through, 3- Nickel column eluate, 4- eluate after PD10 desalting, 5- Final concentrated protein, 6- RE purified protein as marker

S.Saue*E GAG-6-RTGA

	-	

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNCTC	3	m6A	88.60	762	860	49.4	28.5	GAGNNNNNRTGA
GAGNNNNNRTGA	2	m6A	87.33	751	860	50.0	28.2	TCAYNNNNNCTC
GAGNDNNNNGTGGB	2	m6A	20.22	37	183	40.9	29.5	
DNNGAGNDNNNNGAGA	5	m6A	18.56	36	194	39.8	32.7	
Not Clustered	0		0.01	914	9115229	34.6	36.3	

				Motirs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNCTC	3	m6A	88.60	762	860	49.4	28.5	GAGNNNNNRTGA
GAGNNNNNRTGA	2	тюĄ	87.33	751	860	50.0	28.2	TCAYNNNNNCTC
GAGNONNNNGTGGB	2	m6A	20.22	37	183	40.9	29.5	10-1111 BELLET BORDE
DNNGAGNDNNNNGAGA	5	m6A	18:56	36	194	39.8	32.7	
Not Clustered	0		0.01	914	9115229	34.6	36.3	

For Peer Review

```
SUPPLEMENTARY INFORMATION FOR TABLE 4.
```

S.SauAc* CCAY-6-RTC

The Ac* TRD combination is found in CC97-1. The MTase was not purified but instead used to methylate the genome of E. coli ER2796 for SMRT analysis. The target is CCAYNNNNNRTC. There are a few minor amino acid differences in the S.SauAc* between members of CC97.

CC97-1

CC97

Recombinant S.SauAc*

MSNTQKKNVPELRFPGFEGEWEEKKLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNIRNGKLNLNDLVYISKDIDDEM KNSRTYYGDVLLNITGASIGRTAINSIVEIHANLNQHVCIIRLKKEYYYNFFGQYLLSRKGKRKIFLAQSGGSREGLNFK EIANLKIFTPTIFEEQQKIGEFISKLDRQIELEEQKLELLQQQKKGYLQKIFSQELRFKDENGNDYPEWRFARFKDFMYK PINIRPAINISKSELLTVKLHCKGIEKANINRVLKLGATNYYKRFEGQFIYGKQNFFNGAFDIVPKKFDGLYSSSDVPAF EINTEKIEPNYFISYISRPSFYKSKEKYSTGTGSKRIHENTVLNFSLHLPCLNEQLKIASFVCFLNRKIELLERKIYLIK KQKQALLQQMFIPGGSHHHHHH

Wild Type S.SauAc*

MSNTQKKNVPELRFPGFEGEWEEKQLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNIRNGKLNLNDLVYISKDIDDEM KNSRTYYGDVLLNITGASIGRTAINSIVETHANLNQHVCIIRLKKEYYYIFFGQYLLSRKGKRKIFLAQSGGSREGLNFK EIANLKIFTPTIFEEQQKIGKFFSKLDRQIELEEQKLELLQQQKKGYLQKIFSQELRFKDENGNDYPEWRFARFKDFMYK PINIRPAINISKSELLTVKLHCKGIEKANINRVLKLGATNYYKRFEGQFIYGKQNFFNGAFDIVPKKFDGLYSSSDVPAF EINTEKIEPNYFISYISRPSFYKSKEKYSTGTGSKRIHENTVLNFSLHLPCLNEQLKIASFVCFLNRKIELLERKIYLIK KQKQALLQQMFI*

				SMRT Cells:	1 Movies: 1			
Motif Summary								
Motifs	Modified Position	Туре	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CCAYNNNNNRTC	3	m6A	97.52%	2199	2255	68.95	50.78	GAYNNNNNRTGG
GAYNNNNNRTGG	2	m6A	96.01%	2165	2255	68.50	51.01	CCAYNNNNNRTC

- S.SauBI-EGFP
- CC22-1 <u>A</u>GG-6-<u>T</u>GAR

This MTase was expressed and purified as a fusion with EGFP. Nuclease assays and SMRT analysis gave the same target site.

MSNTQKKNVPELRFPGFEGEWEEKKLGDLTDRVIRKNKNLESKKPLTISGQLGLIDQTEYFSKSVS SKNLENYTLIKNGEFAYNKSYSNGYPLGAIKRLTRYDSGVLSSLYICFSIKSEMSKDFMEAYFDST HWYREVSGIAVEGARNHGLLNVSVNDFFTILIKYPSLEEQQKIGKFFSKLDRQIELEEQKLELLQQ QKKGYMQKIFSQELRFKNENGNDYPDWERIKFFDVIDKVIDFRGRTPKKLNMEWSDEGYLALSAVN VKKGYIDFNVEAKYGNLDLYTRWMRGNELYKGQVLFTTEAPMGNVAQVPDNKGYILSQRTIAFNSN EKITDNFLASLLSSENVYNDLLKLCSGATAKGVSQKNLNRLYVTIPHSISEQEEIAEFFRKINQLV ELQKYKIEHTKSQKQVFLQKMFIGSMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYG KLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNY KTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE DGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK HHHHHH

1- marker 2- Nickel column eluate 3-14 Fractions from gel filtration column 15- CC5-1 Purified protein marker

S.SauBI-EGFP CC22-1 <u>A</u>GG-6-<u>T</u>GAR

DNA cleavage assay

S.SauBI-EGFP

CC22-1	<u>A</u> GG-6- <u>T</u> GAR

Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
YTCANNNNNCCT	4	m6A	99.24	919	926	86.2	56.3	AGGNNNNNNTGAR
AGGNNNNNNTGAR	1	m6A	99.24	919	926	83.9	55.7	YTCANNNNNCCT
Not Clustered	0		0.06	5230	9124356	34.8	61.5	

Modification QV Histogram By Motif

S.SauCE

ST425-1 GW<u>A</u>G-5-R<u>T</u>GA

The recombinant enzyme with TRDs C and E was purified and used in the nuclease assay. There are minor differences in amino acid sequence between members of ST425-1.

Recombinant S.SauCE CC425-1 GWAG-5-RTGA

MSNTQKKNVPELRFPGFEGEWEEKKVGELLEFKNGLNKGKEYFGSGSSIVNFKDVFNNRSINTNNL TGKVNVNSKELKNYSVEKGDVFFTRTSEVIGEIGYPSVILNDPENTVFSGFVLRGRPKSGIDLINN NFKRYVFFTNSFRKEMITKSSMTTRALTSGTAINRMKVIYPVSAKEQKKIGDFFSKLDRQIELEEQ KLELLQQQKKGYMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVR SPIVYKINTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFL KETKKYSAKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQ KMFIPGGSHHHHHH

Wild type S.SauCE

MSNTQTKNVPELRFPGFEGEWEEKQVGELLEFKNGLNKGKEYFGSGSSIVNFKDVFNNRSINTNNL TGKVNVNSKELKNYSVEKGDVFFTRTSEVIGEIGYPSVILNDPENTVFSGFVLRGRPKSGIDLINN NFKRYVFFTNSFRKEMITKSSMTTRALTSGTAINKMKVIYPVSAKEQKKIGDFFSKLDRQIELEEQ KLELLQQQKKGYMQKIFTQELRFKDENGNDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVR SPIVYKINTFSYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFL KETKKYSAKTSVDSVRKDMVANMKVPRPIYIEQEKIGQFIKKVDNKIKIQKQVIELLKQRKKALLQ KMFI*

1- marker 2- soluble cell extract 3- flow through from Nickel column

5- eluate from Nickel column 6-14 Fractions from gel filtration column 15- CC398-1 purified protein marker

BIOSCIENCES

S.SauJP CC51 GGA-6-CCT

This MTase was used in the SMRT analysis of *E. coli* ER2796. There are minor variations in the sequences of the S subunits in CC51.

Recombinant S.SauJP CC51-1

MSNTQKKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI NKINRFVPSNKEQQKIGEFFIKLDRQIELEEQKLELFQQQKKGYMQKIFSQELRFKDESGNDYPDW EEKELGEVADRVIRKNKNFESKKPLTISGQLGLIDQTEYFSKSVSSKNLENYTLIKNGEFAYNKSY SNGYPLGAIKRLTRYDSGVLSSLYICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLN ISVNDFFTILIKYPSLEEQRKIGDFFIKLDRQIELEEQKLELLQQRKKALLKSMLIPGGSHHHHHH

Wild Type S.SauJP

MSNTQTKNVPELRFPGFEGEWEEKKLEDIIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI NKINRFVPTNKEQQKIGKFFSKLDRQIELEEQKLELFQQQKKGYMQKIFSQELRFKDESGNDYPDW EEKELGEVADRVIRKNKNFESKKPLTISGQLGLIDQTEYFSKSVSSKNLENYTLIKNGEFAYNKSY SNGYPLGAIKRLTRYDSGVLSSLYICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLN ISVNDFFTILIKYPSLEEQRKIGDFFIKLDRQIELEEQKLELLQQRKKALLKSMLI

Reports for Job Dryden_J_P_MODs

3				SMRT Cells: 1	Movies: 1			
				Motif Su	mmary			
Motifs	Modified Position	Туре	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
GGANNNNNCCT	3	m6A	98.1%	1340	1366	62.31	39.31	AGGNNNNNNTCC
AGGNNNNNNTCC	1	m6A	97.58%	1333	1365	61.04	39.18	GGANNNNNNCCT
BNAGGANNNNNACCH	3	m6A	46.26%	99	214	47.92	39.46	

S.SauCL-EGFP

CC45-1 GWAG-6-TAAA

Two separate clones of pSauCL-EGFP encode residue 167 as Lysine (K) instead of arginine (R), but this does not affect the specificity as identical sequences are recognised in Trd C from CC30-1.

S.SauCL-EGFP "Expected" sequence

MSNTQKKNVPELRFPGFEGEWEEKKVGELLEFKNGLNKGKEYFGSGSSIVNFKDVFNNRSINTNNL TGKVNVNSKELKNYSVEKGDVFFTRTSEVIGEIGYPSVILNDPENTVFSGFVLRGRPKSGIDLINN NFKRYVFFTNSFRKEMITKSSMTTRALTSGTAIN**R**MKVIYPVSAKEQKKIGDFFSKLDRQIELEEQ KLELLQQQKKGYMQKIFSQELRFKDENGNDYPNWRTIELKNILENIVDNRGKTPDNAPSEKYPLLE VNALGYYRPAYIKVSKFVSENTYNNWFREHLKENDILFSTVGNTGIVSLMDNYKAVIAQNIVGLRV NNNNLPSFIYYMLSYKGNQKKIKRIQMGAVQPSVKVSQFKFIKYLVPIKDEQEKVAKLLIEIDKLV NKQLIKIELLQQRKKALLKSMFIGSMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYG KLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNY KTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE DGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK HHHHH

S.SauCL-EGFP "Actual" sequence

MSNTQKKNVPELRFPGFEGEWEEKKVGELLEFKNGLNKGKEYFGSGSSIVNFKDVFNNRSINTNNL TGKVNVNSKELKNYSVEKGDVFFTRTSEVIGEIGYPSVILNDPENTVFSGFVLRGRPKSGIDLINN NFKRYVFFTNSFRKEMITKSSMTTRALTSGTAIN**K**MKVIYPVSAKEQKKIGDFFSKLDRQIELEEQ KLELLQQQKKGYMQKIFSQELRFKDENGNDYPNWRTIELKNILENIVDNRGKTPDNAPSEKYPLLE VNALGYYRPAYIKVSKFVSENTYNNWFREHLKENDILFSTVGNTGIVSLMDNYKAVIAQNIVGLRV NNNNLPSFIYYMLSYKGNQKKIKRIQMGAVQPSVKVSQFKFIKYLVPIKDEQEKVAKLLIEIDKLV NKQLIKIELLQQRKKALLKSMFIGSMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYG KLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNY KTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE DGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK

1- marker 2- Nickel column eluate 3-14 1 15- CC5-1 purified protein marker

3-14 Fractions from gel filtration column

	Y	Y	N	Y	N	Ν	Ν	Y	N
М	1	2	4	5	6	7	9	10	11

S.SauOE

CC15

Recombinant S.SauOE CC15-1 CAAC-5-RTGA

MSNTQKKNVPELRFPGFEGEWEEKKLGEVGTFTSGGTPLKSKSEYWNGDIPWITTGDIHNIKRENI TNFITEKGLNESSAKLITNEAILIAMYGQGKTRGMSAILNFEATTNQACAIYQTNQNINFVFQYFQ KLYEFLRSLSNEGSQKNLSLSLLKEITLNYPNEQEQKKIGDFFSKLDRQIELEEQKLELLQQQKKG YMQKIFSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTFS YEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTS VDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSLLQKMFIPGGSHHH HHH

Wild Type S.SauOE

MSNKQKKNVPELRFPGFEGEWEEKKLGEVGTFTSGGTPLKSKSEYWNGDIPWITTGDIHNIKRENI TNFITEKGLNESSAKLITNEAILIAMYGQGKTRGMSAILNFEATTNQACAIYQTNQNINFVFQYFQ KLYEFLRSLSNEGSQKNLSLSLLKEITLNYPNEQEQKKIGDFFSKLDRQIELEEQKLELLQQQKKG YMQKIFSQELRFKDENGNDYPEWEETTIKEIAQINXGKKDTKDAITNGSYDFYVRSPIVYKINTFS YEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETKKYSAKTS VDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKALLQKMFI

1- marker 2- soluble cell extract 3- Nickel column flow through
4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
7- eluate after PD10 desalting 8- Final concentrated protein
9- CC398-1 purified protein marker

Although purified, this MTase was only used in SMRT sequencing.

S.SauOE CC15 Recombinant S.SauOE

CC15-1 CAAC-5-RTGA

				Motifs				
Motif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNGTTG	3	m6A	96.67	261	270	63.4	38.3	CAACNNNNRTGA
CAACNNNNNRTGA	3	mбA	92.22	249	270	57.7	36.1	TCAYNNNNGTTG
TCAGNDNNNGTTG	3	m6A	23.86	47	197	48.5	38.3	CAACNNNHNCTGA
CAACNNNHNCTGA	3	mбA	17.77	35	197	49.9	38.6	TCAGNDNNNGTTG
CCAHKNNNNGTTG	3	mбA	16.93	32	189	50.6	40.4	
CAACNNNNHRTGG	3	m6A	16.28	35	215	45.3	38.2	
Not Clustered	0		0.02	2201	9115988	34.9	47.5	

Modification QV Histogram By Motif

				Motifs	j			
Matif	Modified Position	Modification Type	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNGTTG	3	Abm	96.67	261	270	63.4	38.3	CAACNNNNRTGA
CAACNNNNRTGA	3	A3m	92.22	249	270	57.7	36.1	TCAYNNNNGTTG
TCAGNDNNNGTTG	3	m6A	23.86	47	197	48.5	38.3	CAACNNNHNCTGA
CAACNNNHNCTGA	3	ABm	17.77	35	197	49.9	38.6	TCAGNDNNNGTTG
CCAHKNNNNGTTG	з	m6A	16.93	32	189	50.6	40.4	
CAACNNNNHRTGG	3	тбA	16.28	35	215	45.3	38.2	
Not Clustered	0		0.02	2201	9115968	34.9	47.5	

S.SauJQ

CC59

This enzyme was purified and analysed using the ATPase assay as both TRD specificities were known and the DNA cleavage assay showed cutting of all plasmids.

Recombinant S.SauJQ CC59-1

GGA-6-RTGT MSNTQKKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI NKINRFVPSNKEQQKIGEFFIKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYSEW EERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGIIDYVDDFIFDGNYLLIGEDGANIITRSAP LVYLVNGKFWVNNHAHILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLE EQQKIGSFLSKLDRQIDLEEQKLELLQQRKKALLKSMFVPGGSHHHHHH

Wild type S.SauJQ

MSNTQKKNVPELRFPEFEGEWEERKLGDLIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPEKEADILFILSLFRKINWKLYDESTGVPSLSKQTI NKINRLVPTNKEQQKIGEFFSKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYSEW EERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGIIDYVDDFIFDGNYLLIGEDGANIITRSAP LVYLVNGKFWVNNHAHILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLE EQOKIGSFLSKLDROIDLEEOKLELLOORKKALLKSMFV*

1- marker 2- soluble cell extract 3- Nickel column flow through

- 4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after conc. and PD10 desalting
- 8- final concentrated protein 9- XE purified protein marker

JQ6rev

JQ7for

JQ7rev

TTATATCGTATAGGGCACACTGTCAATCCGCATTGATGACATCATCT

AGATGATGTCATCAATGCGGATTAGACAGTGTGCCCTATACGATATAA

TTATATCGTATAGGGCACACTGTCTAATCCGCATTGATGACATCATCT

S.SauRO

CC72

This enzyme was purified and analysed using the ATPase assay as both TRD specificities were known and the DNA cleavage assay showed cutting of all plasmids.

Recombinant S.SauRQ

CC72-1 GARA-6-RTGT MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNSSKYISE EAFEKEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYFLKNLILSSSIQN ELWRKTLHVAFPKKINKNEIGKIKINYPKKQEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQ KIFSQELRFKDENGEDYSEWEERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGIIDYVDDFIF DGNYLLIGEDGANIITRSAPLVYLVNGKFWVNNHAHILSPLNGNIQYLYQVAELVNYEKYNTGTAQ PKLNIQNLKIINVVISTNLEEQQKIGSFLSKLDRQIDLEEQKLELLQQRKKALLKSMFVPGGSHHH

HHH

Wild type S.SauRQ

MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNSSKYISE EAFEKEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYFLKNLILSSSIQN ELWRKTLHVAFPKKINKNEIGKIKINYPKKQEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQ KIFSOELRFKDENGNDYPEWEERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGIIDYVDDFIF DGNYLLIGEDGANIITRSAPLVYLVNGKFWVNNHAHILSPLNGNIQYLYQVAELVNYEKYNTGTAQ PKLNIQNLKIISVVISTNLEEQQKIGSFLSKLDRQIDLEEQKLELLQQRKKALLKSMFV*

1- marker 2- soluble cell extract 3- Nickel column flow through

- 4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after PD10 desalting 8- Final protein after concentration
- 9- NP purified protein as marker

N=6 shows activity.

Oligonucleotide	
name	DNA sequence (5' to 3')
RQ5for	AGATGATGGAATCAATGCGAGATTCCAGTGTGCCCTATACGATATAA
RQ5rev	TTATATCGTATAGGGCACACTGGAATCTCGCATTGATTCCATCATCT
RQ6for	AGATGATGGAATCAATGCGAGATGTCCAGTGTGCCCTATACGATATAA
RQ6rev	TTATATCGTATAGGGCACACTGGACATCTCGCATTGATTCCATCATCT
RQ7for	AGATGATGGAATCAATGCGAGATGTACCAGTGTGCCCTATACGATATAA
RQ7rev	TTATATCGTATAGGGCACACTGGTACATCTCGCATTGATTCCATCATCT

S.SauJS

This second enzyme from CC72 was purified and analysed using the ATPase assay. There are minor variations between S subunit sequences in CC72-2.

CC72

Recombinant S.SauJS CC72-2 GGA-7-TGC

MSNTQKKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI NKINRFVPSNKEQQKIGEFFIKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPDW TNERLGEVTTVTMGQSPKSVNYTDNSNDTVLIQGNADIENGLINPRIYTREVTKLIQKDEIILTVR APVGKLAMAQINACIGRGVCSIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIP VEDERTKIIKLLNSLDVLNSKTDLKIQNLKQRKQSLLQKIFVPGGSHHHHHH

Wild Type S.SauJS

MSNTQKKNVPELRFPEFEGEWEEKQLGNIIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSEPLSEID AVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKQTI NKINRFVPTNKEQQKIGKFFSKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPDW TNERLGEVTTVTMGQSPKSVNYTDNSNDTVLIQGNADIENGLINPRIYTREVTKLIQKDEIILTVR APVGKLAMAQINACIGRGVCSIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIP VEDERTKIIKLLNSLDVLNSKTDLKIQNLKQRKQSLLQKIFV

1- marker 2- soluble cell extract 3- Nickel column flow through

- 4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after PD10 desalting 8- final protein after concentration
- 9- NP purified protein as marker

JS6for
050101
JSGrev
JS7for
JS7rev
0.05 0.00 -0.05 -0.10 -0.15 -0.20 -0.25 -0.20 -0.30 -0.35 -0.35 -0.40

CAAG-5-RTC

S.SauTU CC75 Recombinant S.SauTU CC75-1

MSNTQKKNVPELRFPGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDLNNSKVTH SKEKITEYAMKSLKLKLVPKNSVLIAMYGGFNQIGRTGLLKIDATINQAISALLMNHETNPEFIQA FLNYQVKGWKRYAASSRKDPNITKKDIEQFKVPYVSINEQQKIGEFFSKIDHQIELEEQKLELLQQ QKKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKDNSKGYPVYDAVQEI GKDSNYDIEESYISILKDGAGVGRLNLRPGKSSVIGTMGYIQSNNVDIEFLYYRMKVVDFKKYIIG STIPHLYFKDYSKETLYIPSSIQEQAKIGMFISNLDKLIENKNLKLNCLKQLKQGLLQSMFIPGGS HHHHHH

Wild type S.SauTU

MSNTQTKNVPELRFPGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDLNNSKVTH SKEKITEYAMKSLKLKLVPKNSVLIAMYGGFNQIGRTGLLKIDATINQAISALLMNHETNPEFIQA FLNYQVKGWKRYAASSRKDPNITKKDIEQFKVPYVSINEQQKIGEFFSKIDHQIELEEQKLELLQQ QKKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKDNSKGYPVYDAVQEI GKDSNYDIEESYISILKDGAGVGRLNLRPGKSSVIGTMGYIQSNNVDIEFLYYRMKVVDFKKYIIG STIPHLYFKDYSKETLYIPSSIQEQAKIGMFISNLDKLIENKNLKLNCLKQLKQGLLQSMFI

1- marker 2- soluble cell extract 3- Nickel column flow through 4- Nickel column wash 1 5-Nickel column wash 2 6- Nickel column eluate 7- eluate after conc. and PD10 desalting 8- final protein after concentration

DNA cleavage assay.

- 2 S.SauVW
- ³ cc75

4

5

6

7

Recombinant S.SauVW CC75-2 CNGA-7-TTYG

MSNTQKKNVPELRFPGFEGEWEEKELRELRNPKDKYSYTGGPFGSDLKKSDYTTDGIQIIQLQNIG DGYFYNSNKVFTSNEKAEVLKSCNVFPGDIVIAKMADPIARAAIVPDNNIGKYLMASDGIRLSVDT VHFNTKFVLECINRKSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTTLKEQQKIGQFFSKLDRQIE LEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNK ESDIGWLRISDVTNQNGKIYHLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKPVMNFVKTGVHDGF LIFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPSNHEQEKVGQFFNRNEK LIELQQEKIMYIKRCKQVLLQKMFIPGGSHHHHHH

Wild Type S.SauVW

MSNTGKMNVPELRFPGFEGEWEEKELRELRNPKDKYSYTGGPFGSDLKKSDYTTDGIQIIQLQNIG DGYFYNSNKVFTSNEKAEVLKSCNVFPGDIVIAKMADPIARAAIVPDNNIGKYLMASDGIRLSVDT VHFNTKFVLECINRKSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTTLKEQQKIGQFFSKLDRQIV LEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNK ESDIGWLRISDVTNQNGKIYHLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKPVMNFVKTGVHDGF LIFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPSNHEQEKVGQFFNRNEK LIELQQEKIMYIKRCKQVLLQKMFI*

Reports for Job Dryden_V_W_MODs

SMRT Cells: 1 Movies -1 Motif Summary Modified % Motifs # Of Motifs # Of Motifs In Mean Mean Motif Motifs Type Partner Motif Position Detected Detected Genome Modification OV Coverage m/6A CNGANNNNNNTTYG 99.93% 1442 1443 97.87 66.11 CRAANNNNNNTCNG . CRAANNINNINTENG 4 m6A 99.86% 1441 1443 89.76 83.95 CNGANNNNNNTTYG 38.55 DNNNNNNGCCACNCAD .9 unknown 19.1% 72 377 67.49

DISCENCES

S.SauVW CC75 Recombinant S.SauVW

- S.SauZW
- CC80

CC80-2 Recombinant S.SauZW GAC-6-TTYG

MSNTQKKNVPELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTGRLIKIYNS KEFSSOKNKFNPONVLYGKLRPYLNKYYFTKKSGVCSSEIWVLKSTKEDKLLNLFLYYFIOTKRYS DVASKSAGSKMPRADWGLIENIRVYFPELCEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQK IFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNKESDIGWLRISDVTNQNGKI YHLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKPVMNFVKTGVHDGFLIFLKPKFNLFFMYYWLEY FKDKWSKYGQPGSQVNLNSEIVKSQTLNMPSNHEQEKVGQFFNRNEKLIELQQEKIMYIKRCKQVL LQKMFIPGGSHHHHHH

Wild Type S.SauZW

MSNTQTKNVPELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTGRLIKIYNS KEFSSOKNKFNPONVLYGKLRPYLNKYYFTKKSGVCSSEIWVLKSTKEDKLLNLFLYYFIQTKRYS DVASKSAGSKMPRADWGLIENIRVYFPELCEQQKIGQFFSKLDRQIELEEQKLELLQQQKKGYMQK IFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNKESDIGWLRISDVTNQNGKI YHLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKPVMNFVKTGVHDGFLIFLNPKFNLFFMYYWLEY FKDKWSKYGQPGSQVNLNTEIVKSQTLNMPSNHEQEKVGQFFNRNEKLIELQQEKIMYLKRRKQVL LOKMFI*

2- soluble cell extract 3- Nickel column flow through 1- marker

- 4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after conc. and PD10 desalting
- 8- final protein after concentration 9- CC75-1 purified protein marker

Although purified, this enzyme cut all plasmids in the DNA cleavage assay so the ATPase assay was used as we knew the specificities of the TRDs.

S.SauX	f*
--------	----

ST80

4 Recombinant S.SauXf*

hant S.SauXf* CC80-3 TCT<u>A</u>-6-R<u>T</u>TC

MSNTQKKNVPELRFPGFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEFLRPNSQT KYFIENPPQSVIANKEDILMTRTGNTGKVVTNVFGAFHNNFFKIKFDKNLYDRLFLVEVLNSSKIQ NKILSLAGSSTIPDLNHSDFYSISSSYPLLREQQKIGKFFSKLDRQIELEEQKLELLQQQKKGYMQ KIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDSKNIYIRITDIDEKSRKLNYQN LTTPDELNNKYKLKRNDILFARTGASTGKSYIHKEEKDIYNYYFAGFLIKFKINEQNSPLFIYQFT LTSKFNKWVKVMSVRSGQPGINSEEYAKLPLVLPNKLEQQKIAKFLDRFDRQIELEKQKIEILQQQ KKGLLQSMFIPGGSHHHHHH

Wild Type S.SauXf*

MSNTQKKNVPELRFPEFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEFLRPNSQT KYFIENPPQSVIANKEDILMTRTGNTGKVVTNVFGAFHNNFFKIKFDKNLYDRLFLVEVLNSSKIQ NKILSLAGSSTIPDLNHSDFYSISSSYPLLREQQKIGKFFSKLDRQIELEEQKLELLQQQKKGYMQ KIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDSKNIYIRITDIDEKSRKLNYQN LTTPDELNNKYKLKRNDILFARTGASTGKSYIHKEEKDIYNYYFAGFLIKFKINEQNSPLFIYQFT LTSKFNKWVKVMSVRSGQPGINSEEYAKLPLVLPNKLEQQKIAKFLDRFDRQIELEKQKIEILQQQ KKGLLQSMFI

Reports for Job Dryden_X_zeta_MODs

				SMRT Cells:	1 Movies: 1			
				Motif S	iummary			
Motifs	Modified Position	Туре	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCTANNNNNRTTC	4	m6A	100.0%	92	92	96.27	61.85	GAAYNNNNNTAGA
GAAYNNNNNTAGA	3	m6A	100.0%	92	92	90.82	60.21	TCTANNNNNRTTC

BOSCIENCES

Modification QVs
S.Saue*D

CC873

Recombinant S.Saue*D

CC873-1 G<u>A</u>G-6-GA<u>T</u>

MSNTQKKNVPELRFPGFEGEWEEKSISSFLKESKIKGSNGSHAKKLTVKLWGKGVVPKKETFKGSD NTQYYKRKAGQLMYGKLDFLNCAFGIVPDSLNNYESTIDSPSFDFINGDSKFLLERIKLKSFYKKF GDIANGSRKAKRINQDTFLSLPVFAPKYDEQLRIGEFFSKLDRQIELEEQKLELLQQQKKGYMQKI FSQELRFKDENSEDYPHWENSKIEKYLKERNERSDKGQMLSVTINSGIIKFSELDRKDNSSKDKSN YKVVRKNDIAYNSMRMWQGASGRSNYNGIVSPAYTVLYPTQNTSSLFIGYKFKTHRMIHKFKINSQ GLTSDTWNLKYKQLKNINIDIPVLEEQEKIGDFFKKMDILISKQKIKIEILEKEKQSFLQKMFLPG GSHHHHHH

Wild Type S.Saue*D

MSNTQKKNVPELRFPGFEGEWEEKSISSFLKESKIKGSNGSHAKKLTVKLWGKGVVPKKETFKGSD NTQYYKRKAGQLMYGKLDFLNCAFGIVPDSLNNYESTIDSPSFDFINGDSKFLLERIKLKSFYKKF GDIANGSRKAKRINQDTFLSLPVFAPKYDEQLRIGEFFSKLDRQIELQKQKLELLQQQKKGYMQKI FSQELRFKDENGEDYPHWENSKIEKYLKERNERSDKGQMLSVTINSGIIKFSELDRKDNSSKNKSN YKVVRKNDIAYNSMRMWQGASGKSNYNGIVSPAYTVLYPTQNTSSLFIGYKFKTHRMIHKFKINSQ GLTSDTWNLKYKQLKNINIDIPVLEEQEKIGDFFKKMDILISKQKIKIEILEKEKQSFLQKMFL*

- 1- marker 2- soluble cell extract 3- Nickel column flow through
- 4- Nickel column wash 1 5- Nickel column wash 2 6- Nickel column eluate
- 7- eluate after PD10 desalting and concentration
- 8- Final concentrated protein 9- CC398-1 purified protein marker

	.Saue*D GAG-6-GAT
e*D clearly d the specifici	igests pUC19 so the ATPase assay was used as ties of both TRDs.
Likely site:	$G\underline{A}G-N_{x}-GA\underline{T}$
G <u>A</u> G-4-GA <u>T</u> 2 s	ites in pUC19
G <u>A</u> G-5-GA <u>T</u> 0 s	ites in pUC19
GAG-6-GAT 2 s	ites in pUC19
 G <u>A</u> G-7-GA <u>T</u> 0 s	ites in pUC19
Oligonucleotide name	DNA sequence (5' to 3')
e*D6for	AGATGATGGAATCAATGCGAGTTCCATGATGCCCTATACGATATAA
e*D6rev	TTATATCGTATAGGGCATCATGGAACTCGCATTGATTCCATCATCT
e*D5for	AGATGATGGAATCAATGCGAGTTCCAGATGCCCTATACGATATAA
e*D5rev	TTATATCGTATAGGGCATCTGGAACTCGCATTGATTCCATCATCT
e*D4rev e*D4rev N=6 shows act	AGATGATGGAATCAATGCGAGTTCAGATGCCCTATACGATATAA TTATATCGTATAGGGCATCTGAACTCGCATTGATTCCATCATCT ivity.
<u>e*D4rev</u> <u>e*D4rev</u> N=6 shows act 0.00- -0.05- <u>6</u> -0.10- <u>7</u> -0.15- <u>8</u> -0.20-	AGATGATGGAATCAATGCGAGTTCAGATGCCCTATACGATATAA TTATATCGTATAGGGCATCTGAACTCGCATTGATTCCATCATCT ivity. N=4 N=5 N=6 r neg co
<u>e*D4rev</u> <u>e*D4rev</u> N=6 shows act 0.00 - -0.05 - (m -0.10 - -0.15 - 0.20 - -0.20 - -0.25 -	AGATGATGGAATCAATGCGAGTTCAGATGCCCTATACGATATAA TTATATCGTATAGGGCATCTGAACTCGCATTGATTCCATCATCT ivity.
<u>e*D4rev</u> <u>e*D4rev</u> N=6 shows act 0.00 -0.05 -0.15 -0.20 -0.20 -0.25 -0.30	AGATGATGGAATCAATGCGAGTTCAGATGCCCTATACGATATAA TTATATCGTATAGGGCATCTGAACTCGCATTGATTCCATCATCT ivity.

B Print

BIOSCIENCES

Print

BIOSCIENCES"

× Close

SMRT results for S. aureus strains LGA251 and NCTC13435

LGA251

😰 SMRT® Portal

Reports for Job Dryden_LGA_Mods

Motif Summary								
Motifs	Modified Position	Туре	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
TCAYNNNNNCTWC	3	m6A	100.0%	391	391	352.92	251.20	GWAGNNNNNRTGA
GWAGNNNNNRTGA	3	m6A	100.0%	391	391	349.86	243.53	TCAYNNNNNCTWC
GTANNNNNCTTC	3	m6A	99.59%	245	246	349.71	251.31	GAAGNNNNNTAC
GAAGNNNNNTAC	3	m6A	99.59%	245	246	349.91	237.85	GTANNNNNCTTC
BTTGGTAVY	2	unknown	26.29%	127	483	38.52	249.23	

NCTC13435

SMRT® Portal

Reports for Job Dryden_NTCT_Mods

-				SMRT Cells: 2	Movies: 2			
Motif Summary								
Motifs	Modified Position	Туре	% Motifs Detected	# Of Motifs Detected	# Of Motifs In Genome	Mean Modification QV	Mean Motif Coverage	Partner Motif
CRAANNNNNGTC	4	m6A	100.0%	422	422	275.90	212.58	GACNNNNNNTTYG
GACNNNNNNTTYG	2	m6A	100.0%	422	422	315.18	220.50	CRAANNNNNGTC
GAAYNNNNNNTAGA	3	m6A	100.0%	260	260	307.05	214.54	TCTANNNNNRTTC
TCTANNNNNRTTC	4	m6A	100.0%	260	260	318.07	218.98	GAAYNNNNNTAGA
GGATG	3	m6A	100.0%	2818	2818	327.54	220.52	CATCC
CATCC	2	m6A	100.0%	2818	2818	324.65	220.07	GGATG
DNNNNNNASNGGATG	9	m6A	26.07%	67	257	141.42	225.84	

SUPPLEMENTARY INFORMATION FOR TABLES 5 AND 6.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

SUPPLEMENTARY INFORMATION FOR TABLES 5 AND 6.

By combining all TRD 1 with all TRD 2 amino acid sequences and searching sequence databases, we found that some of our "artificial hybrids" described in Table 3 were actually present in real strains of *S. aureus*. We present several examples below.

S.SauAU

A plasmid expressing S.SauAU with the M subunit was prepared but not analysed further. The S.SauAU sequence matches that of the S subunit of the Type I RM system in S. schweitzeri FSA084. >S.SauAU MSNTQKKNVPELRFPGFEGEWEEKKLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNIRNGKLNL NDLVYISKDIDDEMKNSRTYYGDVLLNITGASIGRTAINSIVEIHANLNQHVCIIRLKKEYYYNFF GQYLLSRKGKRKIFLAQSGGSREGLNFKEIANLKIFTPTIFEEQQKIGEFISKLDRQIELEEQKLE LLQQQKKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKDNSKGYPVYDA VQEIGKDSNYDIEESYISILKDGAGVGRLNLRPGKSSVIGTMGYIQSNNVDIEFLYYRMKVVDFKK

YIIGSTIPHLYFKDYSKETLYIPSSIQEQAKIGMFISNLDKLIENKNLKLNCLKQLKQGLLQSMFI PGGSHHHHHH

S. schweitzeri FSA084

CLUSTAL O(1.2.1) multiple sequence alignment

1	FSA084 S.SauAU	<pre>msn-tqkkvpelrfpgfegeweekklgevttkigsgktpkggsenytnkgipflrsqnir MSNTQKKNVPELRFPGFEGEWEEKKLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNIR *** :*:*******************************</pre>
I	FSA084 S.SauAU	ngklnlndlvyiskdiddemknsrtyygdvllnitgasigrtainsivethanlnqhvci NGKLNLNDLVYISKDIDDEMKNSRTYYGDVLLNITGASIGRTAINSIVEIHANLNQHVCI ************************************
1	FSA084 S.SauAU	<pre>irlkkeyyynffeqyllsrkgkrkiflaqsggsreglnfkeianlkiftstifeeqqkvg IRLKKEYYYNFFGQYLLSRKGKRKIFLAQSGGSREGLNFKEIANLKIFTPTIFEEQQKIG ************************************</pre>
I	FSA084 S.SauAU	kffskldrqieleeqklellqqqkkgymqkifsqelrfkdengneypewkvtsiqdvtky EFISKLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKY :*:**********************************
1	FSA084 S.SauAU	tsskkssnqyadkidskgypvydavreigkdsnydieesyisilkdgagvgrlnlrpeks TSSKKSSNQYADKDNSKGYPVYDAVQEIGKDSNYDIEESYISILKDGAGVGRLNLRPGKS ************************************
1	FSA084 S.SauAU	<pre>svigtmgylqannidleflyyrmkivdfkkyiigstiphlyfkdysketiyipssiqeqa SVIGTMGYIQSNNVDIEFLYYRMKVVDFKKYIIGSTIPHLYFKDYSKETLYIPSSIQEQA *******:*:*:**:**********************</pre>
]	FSA084 S.SauAU	kigkfisnldkmienktrklnclkqlkqgllqgmfi KIGMFISNLDKLIENKNLKLNCLKQLKQGLLQSMFIPGGSHHHHHH *** ******:****. ****************

HsdS sequer	nces from strain 21262.
>EHO91218 1	This has TRD R + f*
MSNTOKKNVPE	LRFPGFEGEWEEKKLGEVAKIYDGTHOTPKYTNEGIKFLSVENIKTLNS
SKYISEEAFER	XEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYF
LKNLILSSSIC)NELWRKTLHVAFPKKINKNEIGKIKINYPKKOEOOKIGOFFSKLDROIE
LEEOKLELLOC	OKKGYMOKIFSOELRFKDENGEDYPDWKEKKLGDITEOSMYGIGASATR
FDSKNIYIRIT	DIDEKSRKLNYONLTTPDELNNKYKLKRNDILFARTGASTGKSYIHKEE
KDIYNYYFAGE	TLIKFEIDEQNNPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLP
LVLPNKLEQQF	KIAEFLDRFDQQIELEKQKIEILQQQKKGLLQSMFI
>EH092010 1	This has TRD J + E
MSNTQKKNVPE	LRFPGFEGEWEEKKLEDIIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSE
PLSEIDAVGIO	GRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDE
STGVPSLSKQI	INKINRFVPTNKEQQKIGKFFSKLDRQIELEEQKIELLQQQKKGYIQKI
FSQELRFKDEN	IGDDYPEWEETTIQEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTF
SYEGEAILTVO	GDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETK
KYSAKTSVDSV	/RKDMVANMKVPRPIYIEQEKIGQFIKKVDNKIKIQKQVIELLKQRKKAL
LQKMFI	
CLUSTAL O(1	2.1) multiple sequence alignment
ЕНО91218	${\tt msntqkknvpelrfpgfegeweekklgevakiydgthqtpkytnegikflsveniktl}$
S.SauJE	MSNTQKKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVY
ЕНО92010	msntqkknvpelrfpgfegeweekklediikvnsgkdykhldkgdipvy

ЕНО91218	skyiseeafekefkirpefgdilmtrigdigtpnivssnekfayyvslallktknl
S.SauJE	GGYMTSVSEPLSEIDAVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKET
ЕНО92010	ggymtsvseplseidavgigrkgtinkpylleapfwtvdtlfyctpkket
	· * • • • • • • • • • • • • • • • • • •
EH091218	yflknlilsssiqnelwrktlhvafpkkinkneigkikinypkkqeqqkigqffskld
S.SauJE	LFILSLFRKINWKVYDESTGVPSLSKQTINKINRFVPSNKEQQKIGEFFIKLL
EH092010	lfilslfrkinwkvydestgvpslskqtinkinrivptnkeqqkigkfisklo
	* : * : : * : : : : * * * * * * * * * *
EU001010	بن ما معمد الما المعمد المعتسمة بن في معمد المعلم المعالم معمد معالية مع المعالية مع المعالية مع معالية مع
EHU91210	
5.5au0E EU002010	ieleeghtellggghkguigkifagelrfkdengddureweettigeiggintgkhdt
611092010	
ЕНО91218	atrfdskniviritdideksrklnvanlttndelnnkvklkrndilfartaastaksv
S Saute	ATTNGSYDFYVRSPTV-YKTNTFSYEGEATTTVCDCVCVCKVF
EH092010	aitnasydfyyrspiy-ykintfsyegeailtyddygygkyf
	* * <u>··</u> * · * * * * * * * * * * * * * * * * *
ЕНО91218	keekdiynyyfagflikfeideannolfiyaftltskfnkwykymsyrsaanainsee
S.SauJE	VNGKFDYHORVYKIS-DFKNYYGLLIFYYFSONFLKETKKYSAKTSVDSVRKDM
EH092010	vngkfdyharvykis-dfknyvalllfyvfsanflketkkysaktsydsyrkdm
ЕНО91218	klplvlpnkleggkiaefldrfdagielekgkieilgagkkallgsmfi
S.SauJE	NMKVPRPIYIEOKKIGOFIKRVDNKTKIOKOVIELLKORKKSLLOKMFIPGGSHHHH
EHO92010	nmkvprpiviegekiggtikkvdnkikigkgviellkarkkallakmti

sequence from this strain.

S.SauJE GG<u>A</u>-6-R<u>T</u>GA Sub species 21262, a member of ST49

CLUSTAL O(1.2.1) multiple sequence alignment TRD R and TRD f* against EHO91218, the second HsdS in this strain.

CC80-3 EHO91218 CC72-1	msntqkknvpelrfpgfegeweekklgevakiydgthqtpkytnegikflsveniktlns MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNS
CC80-3 EHO91218 CC72-1	skyiseeafekefkirpefgdilmtrigdigtpnivssnekfayyvslallktknlnsyf SKYISEEAFEKEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYF
CC80-3 EHO91218 CC72-1	
CC80-3 EHO91218 CC72-1	QELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATR leeqklellqqqkkgymqkifsqelrfkdengedypdwkekklgditeqsmygigasatr LEEQKLELLQQQKKGYMQKIFS
CC80-3 EHO91218 CC72-1	FDSKNIYIRITDIDEKSRKLNYQNLTTPDELNNKYKLKRNDILFARTGASTGKSYIHKEE fdskniyiritdideksrklnyqnlttpdelnnkyklkrndilfartgastgksyihkee
CC80-3 EHO91218 CC72-1	KDIYNYYFAGFLIKFKINEQNSPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLP kdiynyyfagflikfeideqnnplfiyqftltskfnkwvkvmsvrsgqpginseeyaklp
CC80-3 EHO91218 CC72-1	LVLPNKLEQQKIAKFLDRFDRQIELEKQKIEILQQQKKGLLQSMFI lvlpnkleqqkiaefldrfdqqielekqkieilqqqkkgllqsmfi

S.SauJE GG<u>A</u>-6-R<u>T</u>GA

S.SauJE against ST49 strain "Tager 104"

The ST49 Tager genome has the same TRD combinations as the ST49 strain 21262.

PATRIC db

>fig|1381115.3.peg.1063|VBIStaAur301678 1063| Type I restriction-modification system, specificity subunit S (EC 3.1.21.3) [Staphylococcus aureus subsp. aureus Tager 104 | 1381115.3] This is TRD R+f* MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNS SKYISEEAFEKEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTKNLNSYF LKNLILSSSIQNELWRKTLHVAFPKKINKNEIGKIKINYPKKQEQQKIGQFFSKLDRQIE LEEQKLELLQQQKKGYMQKIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATR FDSKNIYIRITDIDEKSRKLNYQNLTTPDELNNKYKLKRNDILFARTGASTGKSYIHKEE KDIYNYYFAGFLIKFEIDEQNNPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLP LVLPNKLEQQKIAEFLDRFDQQIELEKQKIEILQQQKKGLLQSMFI >fig|1381115.3.peg.2628|VBIStaAur301678 2628| Type I restriction-modification system, specificity subunit S (EC 3.1.21.3) [Staphylococcus aureus subsp. aureus Tager 104 | 1381115.3] This is TRD J+E MSNTOKKNVPELRFPGFEGEWEEKKLEDIIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSE PLSEIDAVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDE STGVPSLSKQTINKINRFVPTNKEQQKIGKFFSKLDRQIELEEQKIELLQQQKKGYIQKI FSQELRFKDENGDDYPEWEETTIQEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTF SYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETK KYSAKTSVDSVRKDMVANMKVPRPIYIEQEKIGQFIKKVDNKIKIQKQVIELLKQRKKAL LOKMFI

S.SauJE against ST49 Tager 104

GGA - 6 - RTGA

CLUSTAL O(1.2.1) multiple sequence alignment

S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	MSNTQKKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVYGTGGYMTSVSE MSNTQKKNVPELRFPGFEGEWEEKKLEDIIKVNSGKDYKHLDKGDIPVYGTGGYMTSVSE ***********************************
S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	PLSEIDAVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDE PLSEIDAVGIGRKGTINKPYLLEAPFWTVDTLFYCTPKKETDILFILSLFRKINWKVYDE *******
S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	STGVPSLSKQTINKINRFVPSNKEQQKIGEFFIKLDRQIELEEQKLELLQQQKKGYMQKI STGVPSLSKQTINKINRFVPTNKEQQKIGKFFSKLDRQIELEEQKIELLQQQKKGYIQKI ***********************************
S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	FSQELRFKDENGKDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTF FSQELRFKDENGDDYPEWEETTIQEIAQINTGKKDTKDAITNGSYDFYVRSPIVYKINTF *************
S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	SYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETK SYEGEAILTVGDGVGVGKVFHYVNGKFDYHQRVYKISDFKNYYGLLLFYYFSQNFLKETK
S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	KYSAKTSVDSVRKDMIANMKVPRPIYIEQKKIGQFIKRVDNKTKIQKQVIELLKQRKKSL KYSAKTSVDSVRKDMVANMKVPRPIYIEQEKIGQFIKKVDNKIKIQKQVIELLKQRKKAL
S.SauJE fig 1381115.3.peg.2628 VBIStaAur301678_2628	LQKMFIPGGSHHHHHH LQKMFI

S.SauNQ ACC-5-RTGT

1 2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24 25

26

35

36

37 38

39

40

41

42

43

44

45

46

47

48

This TRD pair was found in strains KPL1845 (ST96) and 21343(ST88). Subspecies 21343 contains SauNQ and a novel TRD (NOVEL 1) paired with TRD K.

>EHQ67679 THIS IS TRD NOVEL 1 + TRD K

MSNTQKKNVPELRFPGFEGEWEEKKLGEVATFAKGKLGAKKDVSQNGVPVILYGELYTKY GAIVSKIFSKTDIPENKLKMAKKNDVLIPSSGETAIDIATASCIYLNKGVAVGGDINILT PQKQDGRFISLSINGINKNELSKYAQGKTVVHLYNNDIKNLKIAFPSEFEEQVRIGNFFS KLDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPKWEEKKIEDIASQVYGG GTPNTKIKEFWNGDIPWIQSSDVKVNDLILQQCNKFISKNSIELSSAKLIPANSIAIVTR VGVGKLCLVEFDYATSQDFLSLSSLKYDKLYSLYSLLYTMKKISANLQGTSIKGITKKEL LDSIIKIPHNLEEQQKIGDLFYKIDKYISFNKCKIEILKSLKQGLLKKMFI

>EHQ71248 THIS IS TRD N+Q ACC-5-RTGT

MSNTQTKNVPELKFPEFEGEWEEKKLGEFAGKVTKKNVDKKYIETLTNSAELGIISQKDY FDKEISNIDNIKKYYVVEENDFVYNPRISNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNI DLNFIEFYFKSSKWYRFMALNGDSGARADRFSIKNRTFMEMPLHIPCMDEQIKIGQFFSK LDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPEWEERRFADIFKFHNKLR KPIKENLRVKGSYPYYGATGIIDYVDDFIFDGNYLLIGEDGANIITRSAPLVYLVNGKFW VNNHAHILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIISVVISTNLEEQQK IGSFLSKLDRQIDLEEQKLELLQQRKKALLKSMFV

SPECIES KPL1845 CONTAINS THREE Saul S SUBUNITS. >ETD06224 THIS IS TRD N+Q ACC-5-RTGT

27 MSNTQTKNVPELKFPEFEGEWEEKKLGEFAGKVTKKNVDKKYIETLTNSAELGIISQKDY
 28 FDKEISNIDNIKKYYVVEENDFVYNPRISNYAPFGPVNRNKLGKKGVMSPLYTVFKIQNI
 29 DLNFIEFYFKSSKWYRFMALNGDSGARADRFSIKNRTFMEMPLHIPCMDEQIKIGQFFSK
 30 LDRQIELEEQKLELLQQQKKGYMQKIFSQELRFKDENGNDYPEWEERRFADIFKFHNKLR
 31 KPIKENLRVKGSYPYYGATGIIDYVDDFIFDGNYLLIGEDGANIITRSAPLVYLVNGKFW
 32 VNNHAHILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIISVVISTNLEEQQK
 33 IGSFLSKLDRQIDLEEQKLELLQQRKKALLKSMFV

34 >ETD11204 THIS HAS TWO NOVEL TRDS, NOVEL 2 + NOVEL 3.

MTEQINTPELRFPEFKNEWSYDLVSDVVTNKSKKFDPKKEEAKKDIELDSIEQNTGRLLD TYISNDFTSQKNKFNKGNVLYSKLRPYLNKYYYATIDGVCSSEIWVLNTLNKDVLANKFL YYFIQTNRFSSVTNKSAGSKMPRADWELVKNIRLYKGSIEEQEKIGYFFSKLDRQIELEE KKLELLEQQKKGYMQKIFAQELRFKDENGNDYPDWVTKKLGDIGKVAMNKRIYKNETTEN GEIPFYKIGNFGKNADTFITREKFDEYKEKYPYPNVGDILISASGSIGRTIEYTGEDAYY QDSNIVWLNHNDEVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPTVEEQYKM ANFLSKLDKIIDIQIEKIELLKQRKQGLLQKMFV

>ETD09130 THIS HAS A NOVEL TRD (NOVEL 4) PAIRED WITH TRD f* 1MSNTQKKNVPELRFPEFEGEWKDVKFVSIFQEVSNKTSDLAKYPLFSLTVEKGITPKTER 61YKRDFLVKKSDNFKIVEPRDIVYNPMNVTLGAIDLSKYNYDIALSGYYHVMKIINSFNPD 121FISNFLKTEKMIIHYKKIATGSLMEKQRVHFSEFKNIIKKFPTNKEQQKIGDFFSKLDRQ 181IELQVQKLELLQQQKKGYMQKIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASA 241TRFDSKNIYIRITDIDEKSRKLNYQNLTTPDELNNKYKLKRNDILFARTGASTGKSYIHK 301EEKDIYNYYFAGFLIKFEIDEQNNPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAK 361LPLVLPNKLEQQKIAEFLDRFDQQIELEKQKIEILQQQKKGLLQSMFI

- 49 50 51 52 53
- 53 54
- 55 56
- 57
- 58 59
- 60

C GWAG 206

M_CAG_203

X_TCTA_192

B_AGG_199 A_CCAY_203

e*_GAG_190

V_CNGA_210

b* GGHA 200

Consensus_ss:

DDOMATS A		TTO AMINO ACID SECUENCES WITH SECONDARY	
STRUCTURE	PREDICTIONS	S.	
"e" means	beta strano	d and "h" means alpha helix in the consensu	ıs
secondary	structure.	-	
PROMALS alignmer	nt of all first TRDs		
Conservation:		999876797999999798898665 5 5	
NOVEL_4_189_	1	MTEQINTPELRFPEFKNEWSYDLVSDVVTNKSKKFDPKKEEAKKDIELDSIEQNTG	56
Z_GAC_191_ NOVEL2_194	1	MSNTQTKNVPELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTG MSNTOKKNVPELRFPEFEGEWKDVKFVSIFOEVSNKTSDLAKYPLFSLTVEKGITPKT	58 58
NOVEL1 199	1	MSNTQKKNVFELRFPGFEGEWEEKKLGEVATFAKGKLGAKKDVSQNGVPVILYGELYTKYG	61
r_gara_192	1	MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENIKTLNS	60
J_GGA_172	1	MSNTQKKNVPELRFPEFEGEWEERKLGDLIKVNSGKDYKHLDKGDIPVYGTGGYMTS	57
0 CAAC 195	1	MSNIQKNVPELRFPGFEGEWEEKKLGEVGTFTSGGTPLKSKSEYWNGDIPWITTGDIHNIKR	63
T_CAAG_199	1	MSNTQTKNVPELRFPGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDLNNSKV	64
C_GWAG_206	1	MSNTQTKNVPELRFPGFEGEWEEKQVGELLEFKNGLNKGKEYFGSGSSIVNFKDVFNNRS	60
M_CAG_203	1	MSNTQTKNVPELRFPGFEGEWEEKKLEDLGLFQKSYSFSRAKEGNGKTKHIHYGDIHSKFK	61 64
B AGG 199	1	MSNTOKKNVPELRFPGFEGEWEEKOLGDLTDRVIRKNKNLESKKPLTISGOLGLIDOTEYFSKSV	65
A_CCAY_203	1	MSNTQKKNVPELRFPGFEGEWEEKQLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNIRNGKL	64
e*_GAG_190	1	MSNTQKKNVPELRFPGFEGEWEEKSISSFLKESKIKGSNGSHAKKLTVKLWGKGVVPKKET	61
V_CNGA_210 b* CGHA 200	1	MSNTGKMNVPELRFPGFEGEWEEKELRELRNPKDKYSYTGGPFGSDLKKSDYTTDGIQIIQLQNIGDGYF MSNTOKKNADFI FFFFFFFFKKKFFNT FFTKDCTHCTHFNVNNCDWIISAKNIKNNKT	/0 61
Consensus ss:	±	99999999999999999999999999999999999999	01
—			
Conservation:	F 7		110
NOVEL_4_189_ Z GAC 191	59	RLIKIYISNDFTSQKNKFNRGNVLISKLRPYLNKYYFTKKSGVCSSEIWVLNTLNK-D	115
NOVEL2_194	59	ERYKRDFLVKKSDNFKIVEPRDIVYNPMNVTLGAIDLSKYNYDIALSGYYHVMKIIN	115
NOVEL1_199	62	AIVSKIFS-KTDIPENKLKMAKKNDVLIPSSGETAIDIATASCIYLNKGVAVGGDINILTPQ	122
R_GARA_192	61	SKYIS-EEAFEKEFKIRPEFGDILMTRIGDIGTPNIVSSNEKFAYYVSLALLKTK	114 00
N ACC 198	58 66	SNIDNIKKYYVVEENDFVYNPRMSNYAPFGPVNRNKLGKKGVMSPLYTVFKIO	118
O_CAAC_195	64	ENITNFIT-EKGLNESSAKLITNEAILIAMYGQGK-TRGMSAILNFEATTNQACAIYQT	120
T_CAAG_199	65	THSKEKIT-EYAMKSLKLKLVPKNSVLIAMYGGFN-QIGRTGLLKIDATINQAISALLMNH	123
C_GWAG_206 M_CAG_203	62	INTNNLTGRV-NVNSKELKNISVERGDVFFTRTSEVIGEIGIPSVILNDP-ENTVFSGFVLRGRPRSGID TVLDSD-GNT-PNITEKAVFELIOKGDIVFADASEDYSDLGKAVMIDFEP-NSLISGLHTHLFRPIN	128
X TCTA 192	65	QTKYFFGAFHNNFFKIKFDKN	115
B_AGG_199	66	SSKDLENYTLIKNGEFAYNKSYSNGYPLGAIKRLTRYDSGVLSSLYICFSIKS	118
A_CCAY_203 e* GAG 190	65 62	NLNDLV-YIS-KDIDDEMKNSRTYYGDVLLNITGASIGRTAINSIVE-THANLNQHVCIIRLKK	125 112
V CNGA 210	71	YNSNKV-FTS-NEKAEVLKSCNVFPGDIVIAKMADPIARAAIVPDNNIGKYLMASDGIRLSVDTV	133
b*_GGHA_200_	62	IISSDDRKISESDYKKIYKNYKLEKGDLLLTIVGTIGRAAIVKNPNNIAFQRSVAILKTKA	122
Consensus_ss:		e ee eeeee eeeee eeee	
Conservation:		9 5 5 99 799 999989898	
NOVEL_4_189_	114	VLANKFLYYFIQTNRFSS-VTNKSAGSKMPRADWELVKNIRLYKGS-IEEQEKIGYFFSKLDRQIE	177
Z_GAC_191_	116	KLLNLFLYYFIQTKRYSD-VASKSAGSKMPRADWGLIENIRVYFPE-LCEQQKIGQFFSKLDRQIE	179
NOVEL2_194 NOVEL1_199	116 123	SENFUEISNELKTERMIIHIKKIATGS-LMEKQRVHESEEKNIIKKEPT-NKEQQKIGDEFSKLDRQIE	⊥82 187
R GARA 192	115	NLNSYFLKNLILSSSIQNELWRKTLHVAFPKKINKNEIGKIKINYPK-KQEQQKIGQFFSKLDRQIE	180
J_GGA_172	100	EADILFILSLFRKINWKLYDESTGVPSLSKQTINKINRLVPT-NKEQQKIGEFFSKLDRQIE	160
N_ACC_198	119	NIDLNFIEFYFKSSKWYRFMALNGDSGA-RADRFSIKDRTFMEMPLHIPC-MDEQIKIGQFFSKLDRQIE	186 182
T CAAG 199	121	TYPEFIOAFLNYO-VKGWKRYAASSRKDPNITKKDIEOFKVPYVS-INEOOKIGEFFSKIDHOIF	187
C_GWAG_206	129	LINNNFKRYVFFTNSFRKEMITKSSMTTRALTSGTAINKMKVIYPVSAKEQKKIGDFFSKLDRQIE	194
M_CAG_203	126	NAISNFLIFYTKTLSYKKFIRQQGTGISVLGISKKSLLNLNVLIPRSELEQQKIGQFFSKLDRQIE	191
X_TCTA_192 B_ACC_199	116	LYDRLFLVEVLNSSKIQNKILSLAGSSTIPDLNHSDFYSISSSYPL-LREQQKIGKFFSKLDRQIE	180
A CCAY 203	12.6	ENGRUTHEATTUSTEWIREVOGIAVEGARNEGLEVVSVNDFFTILIRIFS-LEEQQRIGRFFSRLDRQIE	191 ¹
e*_GAG_190	113	NGDSKFLLERIKLKSFYKKFGDIANGSRKAKRINQDTFLSLPVFAPK-YDEQLRIGEFFSKLDRQIE	178
V_CNGA_210	134	HFNTKFVLECINRKSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTT-LKEQQKIGQFFSKLDRQIV	198
b*_GGHA_200_	123	TYDVGFIFQLFQTKYFKNLLLRKQVVSAQPGLYLGDIRKIKISITNIIEEQRKIGIFFSKLDRQIE	188
consensus_ss:		nunnun nunnunnun nunn ee nunnunnunhhhhhhh	
Conservation:		977899999899	
NOVEL_4_189_	178	LEEKKLELLEQQ 189	
Z_GAC_191_ NOVEL 2 104	180	LEEQKLELLQQQ 191	
NOVEL1 199	188	TEEOKLETTOOO 188	
R_GARA_192	181	LEEQKLELLQQQ 192	
J_GGA_172	161	LEEQKLELLQQQ 172	
N_ACC_198 0_CAAC_195	187	LEEQKLELLOOO 195	
T CAAG 199	188	LEEOKLELLOOO 199	

195 LEEQKLELLQQQ

192 LEEQKLELLQQQ

192 LEEQKLELLQQQ

199 LEEQKLELLQQQ

LEEQKLELLQQQ

LEEOKLELLOOO

LQKQKLELLQQQ

LEEQKLELLQQQ

hhhhhhhhh

Nucleic Acids Research

2	PROMALS alignm	ent o	f all second TRDs.	
3	Conservation:	1	998979999799999989696797 9 5	6.2
4	NOVEL3_205	1	KKGYMQKIFAQELRFKDENGNDYPDWVTKKLGDIGKVAMNKRIYKNETTENGEIPFYKIGNFG	63 65
4	d* CYAA 220	1	KKGYMOKIFSOELRFKDENGNDIIDWINEKLGEVIIVINGGINSVN IIDNSNDIVELGONADIE	70
5	a*_GAA_208	1	KKGYMQKIFSQELRFKDENGNDYPEWENKRIEDIANVNKGFTPSTNNNEYWDNNDKNWLSIAGMN	65
6	E_TCAY_194	1	KKGYMQKIFSQELRFKDENGNDYPEWEETTIKEIAQINXGKKDTKDAITNGSYDFYVRSPIV	62
7	W_CRAA_211	1	KKGYMQKIFSQELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNKESDIGWLRISDVT	67
8	Q_ACAY_197 G_ACA_196	1	KKGYMQKIFSQELKFKDENGEDYSEWEEKKFADIFKFHNKLKKFIKENLKVKGSYPYYGATGII	64 64
0	f* GAAY 224	1	KKGYMQKIFSQELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDSKNIYIRITDID	62
9	L_TTTA_213	1	KKGYMQKIFSQELRFKDENGNDYPNWRTIELKNILENIVDNRGKTPDNAPSEKYPLLEVNALG	63
10	Y_CTA_209	1	KKGYMQKIFSQELRFKDENGNDYPDWEKKKLKEIACVYTGNTPSKKENIYWNKGEYVWVTPTDIN	65
11	U_GAY_193	1	KKGYMQKIFSQELRFKDENGEDYPDWEVTTIQNITKYTSSKKSSNQYADKDNSKGYPVYDAVQEI	65
12	I_IICA_220 K_CGA_212	1	KKGYMOKIFSOELRFKDENGNDYPKWEEKKIEDIASOVYGGGTPNTKIKEFWNGDIPWIOSSDVK	65
12	D ATC 204	1	KKGYMQKIFSQELRFKDENGEDYPHWENSKIEKYLKERNERSDKGQMLSVTINSGI	56
13	c*_GAY_209	1	KKGYLQKIFSQELRFKDENGNDYPEWRFARFKDFMYKPINIRPAINISKSELLTVKLHC	59
14	P_AGG_214	1	KKGYMQKIFSQELRFKDESGNDYPDWEEKELGEVADRVIRKNKNFESKKPLTISGQLGLIDQTEYF	66
15	F_TTAA_216 H_TAC_206	1	KKGYMQKIFSQELKFKDEEGNYYKGWNKKOLKDULEFSNKRTINEFNFDGNYKVISIGSYS	62 57
16	Consensus ss:	-	hhhhhh eeeeeheeee eeeee	57
17	—			
10	Conservation:		5 7	
10	NOVEL3_205	64	KNADTFITREKFDEYKEKYPYPNVGD-ILISASGSIGRTIEYTGEDA-YYQDSNIV	117
19	d* CYAA 220	71	YDISNFRYY-INENKYKEMOSFSVOPND-IIMSCSGTIGRLALIPH-NYTK-GIINOALI	126
20	a* GAA 208	66	QKYLY-KGN-KGISKDAAKNYMKVKNDT-LIMSFKLTIGKLAIVKAPLYTNEAIC	117
21	E_TCAY_194	63	YKGVGKVFHYVNGKFDYHQRVY	102
22	W_CRAA_211	68	NQNGKIYHLEQKLSIEGQEKTRVLVTTH-LLLSIAASIGKPVMNFVKTGVHDGFL	121
23	Q_ACA1_197 G_ACA_196	65	DIVFUVIFNNEERLIJGEDGAK-WGOFETSSFIANGOYWVNNHAH	108
23	f* GAAY 224	63	EKSRKLNYQ-NLTTPDELNNKYKLKRND-ILFARTGASTGKSYIHKEEKDIYNYYFAGFLI	121
24	l_TTTA_213	64	YYRPAYIKV-SKFVS-ENTYNNWFREHLKEND-ILFSTVGNTGIVSLMDNYKAVIAQNIV	120
25	Y_CTA_209	66	NSKNIYESE-NKLTQEGYKKARQLPENT-LLVTCIASIGKNAILRKQGSCNQQIN	118
26	U_GAY_193 T_YTCA_220	66 68	GKPMGNUACUPDNKCSSVIGTMG	126
27	K CGA 212	66	VNDLILQQCNKFISKNSIELSSAKLIPANS-IAIVTRVGVGKLCLVEFDYATSQDFL	121
28	D_ATC_204	57	IKFSELDRKDNSSKNKSNYKVVRKND-IAYNSMRMWQGASGKSNYNGIVSPAYT	109
20	c*_GAY_209	60	KGIEK-ANI-NRVLKLGATNYYKRFEGQ-FIYGKQNFFNGAFDIVPKKFDG-LYSSSDVP	115
29	P_AGG_214 E_TTAA_216	67	SKSVSSKNLENYTLIKNGE-FAYNKSYSNGYPLGAIKRLTRYDSGVLSSLYI	123
		00		120
30	H TAC 206	58	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP	115
30 31	H_TAC_206 Consensus_ss:	58	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP	115
30 31 32	H_TAC_206 Consensus_ss:	58	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeee eeee eeee ee	115
30 31 32 33	H_TAC_206 Consensus_ss: Conservation: NOVEL3 205	58	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ce ccccc ccc ccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKKLYNKNILNTKIELPT-VEEOYKMANFLS	115 176
30 31 32 33 34	H_TAC_206 Consensus_ss: Conservation: NOVEL3_205 S_GCA_200	58 118 113	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eccee ecce ecce ecc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKKLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN	115 176 171
30 31 32 33 34 25	H_TAC_206 Consensus_ss: Conservation: NOVEL3_205 S_GCA_200 d*_CTAA_220	58 118 113 127	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc ccc ccc ccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH	115 176 171 191
30 31 32 33 34 35	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 F_TCAD_104	58 118 113 127 118	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc ccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKKLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEEQNIAKFLL VIDDEX-UVYCLI HEVEFSVL-	115 176 171 191 179
30 31 32 33 34 35 36	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W CRAA_211	58 118 113 127 118 103 122	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc ccc ccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEEQNIIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKGSOVNLNSEIVKSOTLNMPS-NHEOEKVGOFFN	115 176 171 191 179 165 182
30 31 32 33 34 35 36 37	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197	58 118 113 127 118 103 122 109	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc ccc ccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEEQNIIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK IFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPS-NHEQEKVGQFFN ILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLS	115 176 171 191 179 165 182 168
30 31 32 33 34 35 36 37 38	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196	58 118 113 127 118 103 122 109 109	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc cccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEQNIIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK IFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPS-NHEQEKVGQFFN ILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLS VVKSNDHNLFFMNYYLNFKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSALLK	115 176 171 191 179 165 182 168 167
30 31 32 33 34 35 36 37 38 39	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213	58 118 113 127 118 103 122 109 109 122 121	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc cccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQVKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEQNIIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK IFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPS-NHEQEKVGQFFN ILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLS VVKSNDHNLFFMYYULFYKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSALLK KFKINE-QNSELFIYQFTLTSKFNKWVKMSVRSGQPGINSEEYAKLFLVLPN-KLEQQKIAKFLD	115 176 171 191 179 165 182 168 167 185
30 31 32 33 34 35 36 37 38 39 40	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209	58 118 113 127 118 103 122 109 109 122 121 119	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc cccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKKLYNKNILNTKIELPT-VEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEQNIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK ILSPLNGNIQYLYQVAELNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQCKIGSFLS VVKSNDHNLFFMYYULFYKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSALLK KFKINE-QSSLFIYQFTLTSKFNKWVKMSVRSGQPGINSESYAKLFLVLPN-KLEQQKIAKFLD GLRVNN-NNLPSFIYYMLSYKGQKKIKRIQMGAVQPSVKVSQFKKYLVPN-KLEQQKKAKLLI AVVPFE-NINLPSIYYMLSYKGNQKKIKRIQMGTATOUNKNTFENLEIYLAP-FEEONKIADLIS	115 176 171 191 179 165 182 168 167 185 184 180
30 31 32 33 34 35 36 37 38 39 40	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193	58 118 113 127 118 103 122 109 109 122 121 119 105	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEQNIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK ILSPLNGNIQYLYQVAELNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQCKIGSFLS VVKSNDHNLFFMYYHLEYFKDKWSKYGQPSGQVLINSEIVKSQTLNMPS-NHEQEKVGQFFN ILSPL-NGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQCKIGSFLS VVKSNDHNLFFMNYYLNFKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSALLK KFKINE-QNSPLFIYQFTLTSKFNKWVKMSVRSGQPGINSEYAKLPLVLPN-KLEQCKIAKFLD GLRVNN-NNLPSFIYYMLSYKGNQKKIKRIQMGAVQPSVKVSQFKFNYLVPI-KDEQEKVALLI AVVPFE-NINIDYLYYISDSL-STFMKSIAGKTATQUNKNTFENELIYLAP-FEEQNKIADLIS YIQSNNVDIEFLYYRMKVVDFKKYIIGSTIPHLYFKDYSKETLYIPSSIQEQAKIGMFIS	115 176 171 191 179 165 182 168 167 185 184 180 164
30 31 32 33 34 35 36 37 38 39 40 41	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220	58 118 113 127 118 103 122 109 109 122 121 119 105 127	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc cccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKRLYNKNILNTKIELPT-VEEQVKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEQNIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK IFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPS-NHEQEKVGQFFN ILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLS VVKSNDHNLFFMNYYLNFKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSALLK KFKINE-QNSPLFIYQFTLTSKFNKWVKMSVRSGPGINSEYAKLPLVLPN-KLEQQKIAKFLD GLRVNN-NNLPSFIYYMLSYKGNQKKIKRIQMGATQVNVKNTFENLEIYLAP-FEEQNKIALIIS YIQSNNVDIEFLYYRMKVVDFKKYIGSTIPHLYFKDYSKETLYIPSSIQEQAKIGMFIS AFNSNE-KITDNFLASLSSENVYNDLKKCSGATAGVNMUTTENLEIYLAP-FEEQNKIADLIS	115 176 171 199 165 182 168 167 185 184 180 164 190
30 31 32 33 34 35 36 37 38 39 40 41 42	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204	58 118 113 127 118 103 122 109 109 122 121 119 105 127 122	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc cccc 6 5 7 98 76 7 WLNHND-EVINKYLKYFYKIVKWSGIEGTTIKKLYNKNILNTKIELPT-VEQYKMANFLS SIKGDKFLYYFLEWFATQNKWIRFSQGSTFESISGNDIRNIHIKIPV-EDERTKIIKLLN RFRTNH-KIRSEFFLIFMRSNQMQRKILEANPGSAITNLVPVKELKLIPFPLPV-KFEQDKISQFIH HFIWKVNKINTEFIYYYLNSLNISTFGVQAVKGVTLNNDSINSIVKLPN-EEQNIAKFLL KISDFK-NYYGLLFYYFSQN-FLKETKKYSAKTSVDSVRKDMIANMKVPRPI-YIEQKKIGQFIK ILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLS VVKSNDHNLFFMYYHLEYFKDKWSKYGQPSGQVLINSEIVKSQTLNMPS-NHEQEKVGQFFN ILSPL-NGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGSFLS VVKSNDHNLFFMNYYLNFKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSALLK KFKINE-QNSPLFIYQFTLTSKFNKWVKMSVRSGQPGINSEYAKLPLVLPN-KLEQQKIAKFLD GLRVNN-NNLPSFIYYMLSYKGNQKKIKRIQMGTATQIVNKNTFENLEIYLAP-FEEQNKIALIIS YIQSNNVDIEFLYYRMKVVDFKKYIIGSTIPHLYFKDYSKETLYIPSSIQEQAKIGMFIS AFNSNE-KITDNFLASLLSSENVYNDLKKLSQCTSICKITKKELLDSIIKIPHNLEEQQKIGDFFY	115 176 171 191 179 165 182 165 184 185 184 180 164 191 183
30 31 32 33 34 35 36 37 38 39 40 41 42 43	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CCA_212 D_ATC_204 c*_GAY_209	58 118 113 127 118 103 122 109 109 122 121 119 105 127 122 110 116	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc CCCCC cccc cccc	115 176 171 191 179 165 182 167 185 184 180 164 193 175 180
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214	58 118 113 127 118 103 122 109 109 122 121 119 105 127 122 110 116 118	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP @@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	115 176 171 191 179 165 182 168 167 185 184 180 164 191 183 175 180 185
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CCGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 C*_TAA_216	58 118 113 127 118 103 122 109 109 122 121 119 105 127 122 110 116 118 124	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee ecccc cccc cccc cccc cccc CCCCC cccc cccc	115 176 171 191 165 182 168 167 185 184 180 164 191 183 175 180 185 187
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206	58 118 113 127 109 122 121 119 105 127 122 110 116 118 124 116	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeeee eeee eeee eeee eeee eeee eee	115 176 171 191 165 182 165 184 185 184 191 183 175 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_96 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: Conservation:	58 118 113 127 109 109 102 121 119 105 127 122 110 116 118 124 116	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeeee eeee eeee eeee eeee eeee eee	115 176 171 191 179 165 182 168 184 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205	58 118 113 127 109 109 102 121 119 105 127 122 110 116 118 124 116 177	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeeee eeee eeee eeee eeee eeee eee	115 176 171 191 179 165 182 168 185 184 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Consersus_5s: Conservation: NOVEL3_205 S_GCA_200	58 118 113 127 118 103 122 109 109 122 121 119 105 127 122 110 116 124 116 177 172 109	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeeee eeee eeee eeee eeee eeee eee	115 176 171 191 179 165 182 168 185 184 185 184 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 190	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeeee eeee eeee eeee eeee eeee eee	115 176 171 191 179 165 182 168 185 184 185 184 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194	58 118 113 127 118 103 122 109 122 121 119 105 127 122 110 116 177 172 192 180 166	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeee eeee eeee eeee eeee eeee eeee	115 176 171 191 179 165 182 168 185 184 185 184 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 W_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211	58 118 113 127 109 109 102 121 119 105 127 122 110 116 177 172 192 180 166 183	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP ee eeee eeee eeee eeee eeee eeee eeee	115 176 171 191 179 165 182 168 185 184 185 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 C_ACAY_197	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 166 183 169 160	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMTDV-GIISKYYP CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	115 176 171 191 179 165 182 168 185 184 185 184 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	H_TA_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CCAA_210 e_TCAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_CAAY_224	<pre>58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 166 183 169 168 186</pre>	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	115 176 171 191 179 165 182 168 185 184 185 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	H_TA_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213	<pre>58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 166 183 169 168 186 185</pre>	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDGGIFKFNLNLMIDV-GIISKYYP 00000000000000000000000000000000000	115 176 171 191 179 165 182 168 187 185 184 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 e_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_229	<pre>58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 168 186 185 181</pre>	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDGGIFKFNLNLMIDV-GIISKYYP 00000000000000000000000000000000000	115 176 171 191 179 165 182 168 187 180 167 185 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 Y_CTA_209 U_GAY_193	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 128 124 116 177 172 192 180 168 183 169 168 185 181 165 165 165 165 165 165 165 16	LILQSDYTKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	115 176 171 191 179 165 182 168 167 185 184 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 546 47 48 49 50 51 52 53 54 55 56	H_TA_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 U_GAY_193 I_YTCA_220 U_GAY_193 I_YTCA_220 U_GAY_193 I_YTCA_220	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 128 124 116 177 172 192 180 168 183 169 168 185 181 165 194	LILQSDYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	115 176 171 191 179 165 182 168 187 185 184 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 546 47 48 49 50 51 52 53 54 55 56 57	H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 c*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_204 K_CGA_212 D_ATC_204	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 168 185 185 185 185 185 185 192 185 185 185 185 192	LILQSDYKKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP C C C C C C C C C C C C C C C C C C C	115 176 171 191 165 182 168 167 185 184 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 546 47 48 49 50 51 52 53 54 55 56 57 58	H_TA_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_197 G_ACA_196 f*_GAY_123 I_TTCA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_209 U_GAY_209 P_AG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACA_196 f*_GAY_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_204 C*_GAY_209 U_GAY_193 I_YTCA_204 C*_GAY_209 U_GAY_193 I_YTCA_204 C*_GAY_209	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 168 185 168 185 185 185 185 185 185 185 18	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP C C C C C C C C C C C C C C C C C C C	115 176 171 191 165 182 168 167 185 184 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 57 58	H_TA_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAĀ_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_197 G_ACA_196 f*_GAAY_209 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_224 L_TTTA_213 Y_CTA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 U_GAY_193 I_YTCA_209 U_GAY_107 D_ATC_204 C*_GAY_209 P_AGG_214	<pre>58 118 113 127 118 103 122 109 109 122 121 119 105 127 122 110 116 118 124 116 177 172 192 180 166 183 169 168 186 185 181 165 192 184 176 181 186</pre>	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP CCCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCCC	115 176 171 191 165 182 168 167 185 184 180 164 191 183 175 180 185 187 177
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 57 58 59	H_TA_206 Conservation: NOVEL3_205 S_GCA_200 d*_CAA_208 E_TCAY_194 W_CRAA_211 Q_ACAY_197 G_ACA_196 f*_GAAY_197 G_ACA_196 f*_GAY_123 I_TTCA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_209 U_GAY_193 I_YTCA_209 U_GAY_107 CAG_214 F_TTAA_216 H_TAC_206 Conservation: NOVEL3_205 S_GCA_200 d*_CYAA_220 a*_GAA_208 E_TCAY_194 W_CRAA_211 Q_ACA_196 f*_GAAY_209 E_TCAY_197 G_ACA_196 f*_GAAY_202 a*_GAA_208 E_TCAY_197 G_ACA_211 Q_ACAY_197 G_ACA_211 Q_ACAY_197 G_ACA_211 Q_ACAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 U_GAY_193 I_YTCA_220 K_CGA_212 D_ATC_204 C*_GAY_209 P_AGG_214 F_TTAA_216 H_TAC_206	58 118 113 127 118 103 122 109 102 121 119 105 127 122 110 116 118 124 116 177 172 192 180 168 185 165 192 181 165 192 181 185 181 185 181 185 181 185 181 185 181 185 185	LILQSDYYKDRKTFAESNIGYFILPKNH-ITYRSRSDDGIFKFNLNLMIDV-GIISKYYP C C C C C C C C C C C C C C C C C C C	115 176 171 191 165 182 168 167 185 184 180 164 191 183 175 180 185 187 177

PROMALS alignment of all TRDs.

3	Conservation:		799997576 6 85 5	
4	CC80-3 f*	1	QELRFKDENGEDYPDWKEKKLGDITEQSMYGIGASATRFDSKNIYIRITDI	51
-	CC45-1L	1	QELRFKDENGNDYPNWRTIELKNILENIVDNRGKTPDNAPSEKYPLLEVNAL	52
5	CC97 c*	1	QELRFKDENGNDYPEWRFARFKDFMYKPINIRPAINISKSELLTVKLHCK-GI	52
6	CC22-1I	1	QELRFKNENGNDYPDWERIKFFDVIDKVIDFRGRTPKKLNMEWSDEGYLALSAVNV	56
7	CC873D	1	QELRFKDENGEDYPHWENSKIEKYLKERNERSDKGQMLSVTINSGIIKFSEL	52
, ,	CC5-1D	1	QELRFKDENGEDYPDWENSKIEKYLKERNERSDKGQMLSVTINSGIIKFSEL	52
8	CC30-1D	1	QELRFKDENSEDYPHWENSKIEKYLKERNERSDKGQMLSVTINSGIIKFSEL	52
9	CC122 2fromED122 dt	1	QELKFKDEEGNYYKGWNKKQLKDVLEFSNKKTINENEYPVLTSSKQ	46
10	CC72-29	1		54
10	CC93-3 a*	1	OELRFKDENGNDYPEWENKRIEDIANVNKGFTPSTNNNEYWDNNDKNWISIAGM	54
11	CC93-2K	1	OELRFKDENGNDYPKWEEKKIEDIASOVYGGGTPNTKIKEFWNGDIPWIOSSDV	54
12	CC30-2K	1	QELRFKDENGNDYPNWEEKKIEDIASQVYGGGTPNTKIKEFWNGDIPWIQSSDV	54
13	CC80-2W	1	QELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNKESDIGWLRISDV	56
15	CC75-2W	1	QELRFKDENGNDYPDWEEKQLGELSQIVRGASPRPIKDPKWFNKESDIGWLRISDV	56
14	CC59Q	1	QELRFKDENGEDYSEWEERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGI	53
15	CC72-1Q	1	QELRFKDENGNDYPEWEERRFADIFKFHNKLRKPIKENLRVKGSYPYYGATGI	53
16	CC1-2G	1	QELRFKDENGEEYPEWENKFIKDIFIFENNRRKPITSSLREKGLYPYYGATGI	53
10	ST425-1E	1	QELRFKDENGNDYPEWEETTIKEIAQINTGKKDTKDAITNGSYDFYVRSPI	51
17	CC132 771F	1	QELKFKDENGNDYPEWEETTIKEIAQINXGKKDTKDAITNGSYDFYVRSPI	51
18	CC398-1F	1		51
10	CC80-1Y	1	OELBEKDENGNDYPDWEKKKI.KEIACVYTGNTPSKKENIYWNKGEYVWVTPTDI	54
19	CC75-1U	1	OELRFKDENGEDYPDWEVTTIONITKYTSSKKSSNOYADKDNSKGYPVYDAVOE	54
20	CC1-1F	1	KKGYMQKIFSQELRFKDEEGKDYPDWKSKSIQEIFENKGGTALETEFNFDGNYKVISIGSY	61
21	CC873 e*	1	-MSNTQKKNVPELRFPGFEGEWEEKSISSFLKESKIKGSNGSHAKKLTVKLWGKGVV	56
22	CC80-2Z	1	-MSNTQTKNVPELRFPGFEGEYSLDIFGNLATNKSEKFNPQNENASIDIELDCIEQNTG	58
22	CC80-3XS.Sau118190RF2227P	1	-MSNTQKKNVPELRFPEFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEF	59
23	CC80-1X	1	-MSNTQKKNVPELRFPGFEGEWEEKQFADFTKINQGLQIAINERKTEYSPELYFYITNEF	59
24	CC75-1T	1	-MSNTQTKNVPELRFPGFEGEWEEKELGEIFQIISGSTPLKSNKEFYENGNINWVKTTDL	59
25	ST130-11	1	-MSNTQKKNVPELRFPGFEGEWEEKKLGEIFQIISGSTPLKSNKKFYENGNINWVKTTDL	59
25	CC133 771-1etrain323204ed	1		56
26	CC133-2fromED133J	1	-MSNTOKKNVPELREPGEEGEWEEKKLESIIKVNSGKDYKHI.DKGDIPVYGTGGY	54
27	CC72-2J	1	-MSNTOKKNVPELRFPEFEGEWEEKOLGNIIKVNSGKDYKHLDKGDIPVYGTGGY	54
20	CC51TRD1J	1	-MSNTQTKNVPELRFPGFEGEWEEKKLEDIIKVNSGKDYKHLDKGDIPVYGTGGY	54
20	CC30-2strainMRSA252HsdSJ	1	-MSNTQTKNVPELRFPGFEGEWEEKKLGDLIKVNSGKDYKHLEKGDIPVYGTGGY	54
29	CC59-1J	1	-MSNTQKKNVPELRFPEFEGEWEERKLGDLIKVNSGKDYKHLDKGDIPVYGTGGY	54
30	CC72-1R	1	-MSNTQKKNVPELRFPGFEGEWEEKKLGEVAKIYDGTHQTPKYTNEGIKFLSVENI	55
21	CC15TRD10	1	-MSNKQKKNVPELRFPGFEGEWEEKKLGEVGTFTSGGTPLKSKSEYWNGDIPWITTGDI	58
31	CC398-Istrain398HsdSN	1	-MSNTQKKNVPELRFPGFEGEWEEKKLGEFAGKVTQKNVDKKYIETLTNSAELGIISQKDY	60
32	CC30_1straipMPSA252HedSC	1		55
33	CC45-1strain3067HsdSC	1	-MSNTQTKNVFELKFFGFEGEWEEKKVGELLEFKNGLNKGKEVFGSGSSTVNFKDV	55
24	CC97A	1	-MSNTOKKNVPELRFPGFEGEWEEKOLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSONI	59
34	CC1-2strainMW2HsdSA	1	-MSNTQTKNVPELRFPGFEGEWEEKKLGNLTTKIGSGKTPKGGSENYTNKGIPFLRSQNI	59
35	CC1-1strainMW2HsdSA	1	-MSNTQKKNVPELRFPGFEGEWEEKKLGDLTTKIGSGKTPKGGSENYTNKGIPFLRSQNI	59
36	CC5-2strainN315HsdSA	1	-MSNTQTKNVPELRFPGFEGEWEEKKLGNLTTKIGSGKTPKGGSENYTNKGIPFLRSQNI	59
27	CC75-2V	1	-MSNTGKMNVPELRFPGFEGEWEEKELRELRNPKDKYSYTGGPFGSDLKKSDYTTDGIQIIQLQNI	65
31	CC22-1strain5096HsdSB	1	-MSNTQKKNVPELRFPGFEGEWEEKKLGDLTDRVIRKNKNLESKKPLTISGQLGLIDQTEY	60
38	CC51TRD2P	1	CELRFKDESGNDYPDWEEKELGEVADRVIRKNKNFESKKPLTISGQLGLIDQTEY	55
39	CC93-2 b*	⊥ 1	-MONTQARNVPELKFFGFEGEWEEKQLGDLTDKVIKKNKNLESKKPLTISGQLGLIDQTEY	60 5.6
10	Consensus ss.	Ŧ	-monionionerence	20
40				

1				
2	Conservation:		5 5	
2	CC80-3 f*	52	DEKSRKLN-YQNLTTPDELNNKYKLKRNDILFARTGASTGKS-YIHKEEKDIYNYYFAGFL	110
3	CC45-1L	53	GYYRPAYI-KVSKFVSE-NTYNNWFREHLKENDILFSTVGNTGIV-SLMDNYKAVIAQNI	109
4	CC97 c*	53 E	KANINRVCLKLGATNYYKRFEGQFIYGKQNFFNGAF-DIVPKKFDGLYSSSDV 1	04
5	CC22-1I	57	KKGYIDFNVEAKYGNLD-LYTRWMRGNELYKGQVLFTTEAPMGNV-AQVPDNKGYILSQRT	115
5	CC873D	53	DRKDNGAS-GKSNYNGIVSPAY	98
6	CC5-ID	53	DRKDNGAS-GKSNYNGIVSPAY	98
7	CCSU-ID	23	DRADNGAS-GRSNINGIVSPAI	98
Q	CC133-2fromED133 d*	47	GLILQSDIIKDKKI-FAESNIGIFILPKNHIIIKSKSDDGIFKFNLNLMIDVGIISKII	115
0	CC72-28	55	ENGLGKL-AMAOINACIGRGV	101
9	CC93-3 a*	55	NOKYLYKGNKGISKDAAKNYMKVKNDTLIMSFKLTIGKL-AIVKAPLYTNEAI	106
10	CC93-2K	55	KVNDLILQ-QCNKFISK-NSIELSSAKLIPANSIAIVTRVGVGKL-CLVEFDYATSQDF	110
11	CC30-2K	55	KVNDLILR-QCNKFISK-NSIELSSAKLIPANSIAIVTRVGVGKL-CLVEFDYATSQDF	110
11	CC80-2W	57	TNQNGKIY-HLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKP-VMNFVKTGVHDGF	110
12	CC75-2W	57	TNQNGKIY-HLEQKLSIEGQEKTRVLVTTHLLLSIAASIGKP-VMNFVKTGVHDGF	110
13	CC59Q	54	IDYVKFWVNNHA	97
11	CC72-1Q	54	IDYVKFWVNNHA	97
14	CC1-2G	54	IDYVKDYLFNNEERLLIGEDGA-KWGQFETSS-FIANGQYWVNNHA	97
15	ST425-IE CC15EDD2E	52	VYKIGKV-FHYVNGKFDYHQRV	91
16	CC133 771F	52	VIKIGKV-FHIVNGKFDINQKV	91
47	CC398-1E	52	VIKI NIFSIEGEAILIVGDGVGV GKV FHIVN GKFDINGKV	91
17	CC80-1Y	55	NNSKNIYESENKLTOEGYKKABOLPENTLLVTCIASIGKN-AILRKOGSCNOOT	107
18	CC75-1U	55	IGKGRL-NLRPGKSSVIGTM	93
10	CC1-1F	62	SINSTYNDQNIRVNKNKKTEKYILSKGDLAMVLNDKTKDGKIIGRS-IFIDKDNQYIYNQRT	122
10	CC873 e*	57	PKKETFCAF-GIVPDSLNNYESTID	105
20	CC80-2Z	59	RLIKIYNSKEFSSQKNKFNPQNVLYGKLRPYLNKY-YFTKKSGVCSSEI	106
21	CC80-3XS.Sau118190RF2227P	60	LRPNSQTKY-FIENPPQSVIANKEDILMTRTGNTGKV-VTNVFGAFHNNFF	108
22	CC80-1X	60	LRPNSQTKY-FIENPPQSVIANKEDILMTRTGNTGKV-VTNVFGAFHNNFF	108
22	CC75-1T	60	NNSKVTHSKEKITE-YAMKSLKLKLVPKNSVLIAMYGGFNQIGRT-GLLKIDATINQAI	116
23	ST130-11 CC02 2M	6U 57	NNSKVTHSKEKITE-YAMNSLKLKLVPKNSVLIAMYGGFNQIGRT-GLLKIDATINQAI	110
24	CC133 771-1strain32320Hsd	57	HSKEKTVLDSDGNIP-NIIEKAVFELIQKGDIVFADASEDISDLGKA-VMIDEEPNSLISGLHI	118
25	CC133=2fromED133J	55	MTSNKP-YLLEAPFWTVDTL	92
20	CC72-2J	55	MTSNKP-YLLEAPFWTVDTL	92
26	CC51TRD1J	55	MTSNKP-YLLEAPFWTVDTL	92
27	CC30-2strainMRSA252HsdSJ	55	MTSNKP-YLLEAPFWTVDTL	92
28	CC59-1J	55	MTSNKP-YLLEAPFWTVDTL	92
20	CC72-1R	56	KTLNSSKYISE-EAFEKEFKIRPEFGDILMTRIGDIGTP-NIVSSNEKFAYYVSL	108
29	CC15TRD10	59	HNIKRENITNFITE-KGLNESSAKLITNEAILIAMYGQGKTRGMS-AILNFEATTNQAC	115
30	CC398-Istrain398HsdSN	61	FDKEISNIDNIKKYYVVEENDFVYNPRMSNYAPFGPV-NRNKLGKKGVMSPLY	110
31	ST425-IC CC30-letrainMPSA252Wed9C	56		110
00	CC45-1strain3067HsdSC	56	FNNRSINT-NNLTGKVN-VNSKELKNYSVEKGDVFFTRISEVIGEIGYP-SVILNDPENTVFSGFV	118
32	CC97A	60	RNGKLNLNDLVYISK-DIDDEMKNSRTYYGDVLLNITGASIGRT-AINSIVETHANLNOHV	118
33	CC1-2strainMW2HsdSA	60	RNGKLNLNDLVYISK-DIDDEMKNSRTYYGDVLLNITGASIGRT-AINSIVETHANLNQHV	118
3/	CC1-1strainMW2HsdSA	60	RNGKLNLNDLVYISK-DIDDEMKNSRTYYGDVLLNITGASIGRT-AINSIVEIHANLNQHV	118
0-	CC5-2strainN315HsdSA	60	RNGKLNLNDLVYISK-DIDDEMKNSRTYYGDVLLNITGASIGRT-AINSIVETHANLNQHV	118
35	CC75-2V	66	GDGYFYNSNKVFTSN-EKAEVLKSCNVFPGDIVIAKMADPIARA-AIVPDN-NIGKYLMASDG	125
36	CC22-1strain5096HsdSB	61	FSKSVSSKNLENYTLIKNGEFAYNKSYSNGYPLGAI-KRLTRYDSGVLSSLY	111
37	CC51TRD2P	56	FSKSVSSKNLENYTLIKNGEFAYNKSYSNGYPLGAI-KRLTRYDSGVLSSLY	106
00	CC02 2 bt	61 57	FSKSVSSKNLENYTLIKNGEFAYNKSYSNGYPLGAI-KRLTRYDSGVLSSLY	115
38	Consensus ss.	57	VININTITIS-SUPERTURNITURITURITURITURITURITURITURITURITURITUR	TT3
39				

1				
2	Conservation:		7 6 98 775	
2	CC80-3 f*	111	IKFKINEQNSPLFIYQFTLTSKFNKWVKVMSVRSGQPGINSEEYAKLPLVLPN-KLEQQKIAK	172
3	CC45-1L	110	VGLRVNNNNLPSFIYYMLSYKGNQKKIKRIQMGAVQPSVKVSQFKFIKYLVPI-KDEQEKVAK	171
4	CC97 c*	105	PAFEINTEKIEPNYFISYISRPSFYKSKEKYSTGTGSKRIHENTVLNFSLHLPC-LNEQLKIAS	167
5	CC22-1I	116	IAFNSNEKITDNFLASLLSSENVYNDLLKLCSGATAKGVSQKNLNRLYVTIPHSISEQEEIAE	178
5	CC873D	99	TVLYPTQNTSSLFIGYKFKTHRMIHKFKINSQGLTSDTWNLKYKQLKNINIDIPV-LEEQEKIGD	162
6	CC5-1D	99	TVLYPTQNTSSLFIGYKFKTHRMIHKFKINSQGLTSDTWNLKYKQLKNINIDIPV-LEEQEKIGD	162
7	CC30-1D	99	TVLYPTQNTSSLFIGYKFKTHRMIHKFKINSQGLTSDTWNLKYKQLKNINIDIPV-LEEQEKIGD	162
0	CC122 2fromED122 dt	116	PVFKGIDANQYYLTLHLNYQ-LKKEYIKYATGTSQLVLSQKDLQNIKTKLPS-YEEQQKIGD	170
0	CC135=2110IIIED135 d."	102	CSIKCDKEIVYEIEWEBTONKWIDESOCSTERSISCNDIDNIHIKIDV-FORDEDTKIIK	158
9	CC93-3 a*	102	CHETWKVNKINTEFTYYYINSINISTEGVOAVKGVTINNDSINSIIVKIPN-EEEONIIAK	166
10	CC93-2K	111	LSLSSLKYDKLYSLYSLLYTMKKISANLOGTSIKGITKKELLDSIIKIPHNLEEOOKIGD	170
44	CC30-2K	111	LSLSSLKYDKLYSLYSLLYTMKKISANLQGTSIKGITKKELLDSIIKIPHNLEEQQKIGD	170
11	CC80-2W	111	LIFLNPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNTEIVKSQTLNMPS-NHEQEKVGQ	169
12	CC75-2W	111	LIFLKPKFNLFFMYYWLEYFKDKWSKYGQPGSQVNLNSEIVKSQTLNMPS-NHEQEKVGQ	169
13	CC59Q	98	HILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIINVVISTNLEEQQKIGS	155
10	CC72-1Q	98	HILSPLNGNIQYLYQVAELVNYEKYNTGTAQPKLNIQNLKIISVVISX	145
14	CC1-2G	98	HVVKSNDHNLFFMNYYLNFKELRAFVTGNAPAKLTHANLCNINLKIPC-LTEQDKVSA	154
15	ST425-1E	92	YKISDFKNYYGLLLFYYFSQ-NFLKETKKYSAKTSVDSVRKDMVANMKVPRPI-YIEQEKIGQ	152
16	CCISTRDZE	92	IKISDFKNIIGLLLFIIFSQ-NFLKETKKISAKTSVDSVRKDMIANMKVPRPI-IIEQKKIGQ	152
10	CC135_//IE CC398_1F	92		152
17	CC80-1X	108	NAVVPFENINIDYLYYISDSLSTFMKSIAGKTATOIVNKNTFENLEIYLAP-FEEONKIAD	167
18	CC75-1U	94	GYTOSNNVDIEFLYYRMKVVDFKKYIIGSTIPHLYFKDYSKETLYIPSSIOEOAKIGM	151
10	CC1-1F	123	ERLIPFAENDNKFLWFLMNTDLIRNKIKGMMOGATOVYINYSSIKLISIOLPL-LEEQOKIRG	184
19	CC873 e*	106	SPSFDFINGDSKFLLERIKLKSFYKKFGDIANGSRKAKRINQDTFLSLPVFAPK-YDEQLRIGE	168
20	CC80-2Z	107	WVLKSTKE-DKLLNLFLYYFIQTKRYS-DVASKSAGSKMPRADWGLIENIRVYFPE-LCEQQKIGQ	169
21	CC80-3XS.Sau118190RF2227P	109	KIKFDKNLYDRLFLVEVLNSSKIQNKILSLAGSSTIPDLNHSDFYSISSSYPL-LREQQKIGK	170
22	CC80-1X	109	KIKFDKNLYDRLFLVEVLNSSKIQNKILSLAGSSTIPDLNHSDFYSISSSYPL-LREQQKIGK	170
22	CC75-1T	117	SALLMNHETNPEFIQAFLNYQV-KGWKRYAASSRKDPNITKKDIEQFKVPYVS-INEQQKIGE	177
23	ST130-1T	117	SALLMNHETNPEFIQAYLNYQV-KGWKRYAASSRKDPNITKKDIEQFKVPYVS-INEQQKIGE	177
24	CC122 771 1 at main 22220 Upd	119	HLFRPLNNAISNFLIFYTKTLSYKKFIRQQGTGISVLGISKKSLLNLNVLIPRSELEQQKIGQ	101
25	CC133_2fromED133 I	03 TT3		150
25	CC72-2.I	93	FYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKOTINKINRFVFI-NKEQQKIGK	150
26	CC51TRD1J	93	FYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKOTINKINRFVPT-NKEQOKIGK	150
27	CC30-2strainMRSA252HsdSJ	93	FYCTPKKETDILFILSLFRKINWKVYDESTGVPSLSKOTINKINRFVPS-NKEOOKIGE	150
20	CC59-1J	93	FYCTPEKEADILFILSLFRKINWKLYDESTGVPSLSKQTINKINRLVPT-NKEQQKIGE	150
20	CC72-1R	109	ALLKTKNLNSYFLKNLILSSSIQNELWRKTLHVAFPKKINKNEIGKIKINYPK-KQEQQKIGQ	170
29	CC15TRD10	116	AIYQTNQNINFVFQYFQKLYEFLRSLSNEGSQKNLSLSLLKEITLNYPN-EQEQKKIGD	173
30	CC398-1strain398HsdSN	113	TVFKIQNIDLNFIEFYFKSSKWYRFMALNGD-SGARADRFSIKDRTFMEMPLHIPC-MDEQIKIGQ	176
21	ST425-1C	119	LRGRPKSGIDLINNNFKRYVFFTNSFRKEMITKSSMTTRALTSGTAINKMKVIYPVSAKEQKKIGD	184
31	CC3U-IstrainMRSA252HsdSC	119	LRGRPKSGIDLINNNFKRYVFFTNSFRKEMITKSSMTTRALTSGSAINKMKVIYPVSAKEQRKIGD	184
32	CC45-ISURAINSU0/HSdSC	119		101
33	CC1-2strainMW2HsdSA	119	CITRLKKETTTTFFGQTLLSRKGKRKTFLAQSGGSREGLNFKETANLKTFTFTTFEEQQKTGK	181
24	CC1-1strainMW2HsdSA	119	CITRLKK ===EYYYNFFGOYLLSRKGKRKIFLAO====SGGSREGLNFKEIANLKIFTPTIFEEOOKIGE	181
34	CC5-2strainN315HsdSA	119	CIIRLKKEYYYNFFGOYLLSRKGKRKIFLAOSGGSREGLNFKEIANLKIFTPTIFEEOOKIGO	181
35	CC75-2V	126	IRLSVDTVHFNTKFVLECINRKSFRKKVEDNSSGSTRMRIGLSTLGSLTLKTTT-LKEQQKIGQ	188
36	CC22-1strain5096HsdSB	112	ICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLNVSVNDFFTILIKYPS-LEEQQKIGK	177
27	CC51TRD2P	107	ICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLNISVNDFFTILIKYPS-LEEQRKIGD	172
31	CC5-1strainN315HsdSB	112	ICFSIKSEMSKDFMEAYFDSTHWYREVSGIAVEGARNHGLLNVSVNDFFTILIKYPS-LEEQQKIGK	177
38	CC93-2 b*	116	AILKTKATYDVGFIFQLFQTKYFKNLLLRKQVVSAQPGLYLGDIRKIKISITNIIEEQRKIGI	178
39	consensus_ss:		eeeee naannaan aannaannaa naann ee hhhhhhhhh	

For Peer Review

1				
2	Conservation:		75 6 5 76 66 597 568568	
3	CC80-3 f*	173	FLDRFDRQIELEKQKIEILQQQKKGLLQSMFI	204
5	CC45-1L	172	LLIEIDKLVNKQLIKIELLQQRKKALLKSMFI	203
4		170	FVCFLNRKIELLERKIYLIKKQKQALLQQMFI	210
5	CC873D	163	LEKKNDITISKOKIKIEITEKEKOSEIOKMEI	194
6	CC5-1D	163	FFKKMDILISKOKMKIEILEKEKOSFLOKMFI	194
0	CC30-1D	163	FFKKMDILISKOKIKIEILEKEKOSFLOKMFI	194
7	СС5-2Н	165	FFSEIDRLVEKOSSKVGRLKVRKKELLOKMFV	196
8	CC133-2fromED133 d*	179	FIHIINRRIEQSEKKIESLKNRKQGFLQKLFV	210
0	CC72-2S	159	LLNSLDVLNSKTDLKIQNLKQRKQSLLQKIFV	190
9	CC93-3 a*	167	FLLEVDKTVNNQLVKTKLLKQRKKGLLQRMFV	198
10	CC93-2K	171	LFYKIDKYISFNKCKIEMLKSLKQGLLKKMFI	202
11	CC30-2K	171	LFYKIDKYISFNKCKIEILKSLKQGLLQKIFI	202
10	CC80-2W	170	FFNRNEKLIELQQEKIMYLKRRKQVLLQKMFI	201
12	CC 75-2W	1 7 0	FFNRNEKLIELQQEKIMYIKRCKQVLLQKMFI	201
13	CC72_10	120	FLSKLDRQIDLEEQKLELLQQRKKALLKSMFV	18/
14	CC1-2G	155	TT'RSTDNKMNNOMNRTETT'REBKKETTOKMET	186
45	ST425-1E	153	FIKKVDNKIKIOKOVIELLKORKKALLOKMFI	184
15	CC15TRD2E	153	FIKRVDNKTKIOKOVIELLKORKKALLOKMFI	184
16	CC133 771E	153	FIKKVDNKIKIQKQVIELLKQRKKALLQKMFI	184
17	CC398-1E	153	FIKRVDNKTKIQKQVIELLKQRKKSLLQKMFI	184
10	CC80-1Y	168	LISSLEELIEKQASKLIKMKSRKQGMLQIMFI	199
18	CC75-1U	152	FISNLDKLIENKNLKLNCLKQLKQGLLQSMFI	183
19	CC1-1F	185	FLEVLSGITTKQLHKIDQLKERKKAFLQKMFI	216
20	CC873 e*	169	FFSKLDRQIELQKQKLELLQQQKKGYMQKIFS	200
20	CC80-22 CC80-22C Com1181000E22227D	171	FFSKLDRQIELEEQKLELLQQQKKGYMQKIFS	201
21	CC80-1X	171	LESKTDBUIETEEOKTETTOOOKKCAWOKIES	202
22	CC75-1T	178	FESKIDHOIELEEOKLELLOOOKKGYMOKIES	202
23	ST130-1T	178	FFSKLDROIELEEOKLELLOOOKK	201
20	CC93-3M	182	FFSKLDRQIELEEQKLELLQQQKKGYMQKIFS	213
24	CC133_771-1strain32320Hsd	182	FFSKLDRQIELEEQKIELLQQQKKGYIQKIFS	213
25	CC133-2fromED133J	151	FFSKLDRQIELQEQKLELLQQQKKGYMQKIFS	182
26	CC72-2J	151	FFSKLDRQIELEEQKLELLQQQKKGYMQKIFS	182
20	CC51TRD1J	151	FFSKLDRQIELEEQKLELFQQQKKGYMQKIFS	182
27	CC30-2strainMRSA252HsdSJ	151	FFIKLDRQIELEEQKLELLQQQKKGYMQKIFS	182
28	CC39-1J	171	FFSKLDRQIELEEQKLELLQQQKKGIMQKIFS	182
29	CC15TRD10	174	LESKTDBUIETEEOKTETTOOOKKCAWOKIES	202
20	CC398-1strain398HsdSN	177	FESKLDROIELEEOKLELLOOOKKGYMOKIES	203
30	ST425-1C	185	FFSKLDROIELEEOKLELLOOOKKGYMOKIFT	216
31	CC30-1strainMRSA252HsdSC	185	FFSKLDRQIELEEQKLELLQQQKKGYMQKIFS	216
32	CC45-1strain3067HsdSC	185	FFSKLDRQIELEEQKLELLQQQKKGYMQKIFS	216
02	CC97A	182	FFSKLDRQIELEEQKLELLQQQKKGYLQKIFS	213
33	CC1-2strainMW2HsdSA	182	FFSKLDRQIELEEQKLELLQQQKKGYMQKIFT	213
34	CC1-1strainMW2HsdSA	182	FISKLDRQIELEEQKLELLQQQKKGYMQKIFS	213
35	CC5-2strainN315HsdSA	182	FFSKLDQQIELEEQKLELLQQQKKCYIQKIFS	213
00	CC22-1strain50964sdSP	170	FFSKLUKQIVLEEQKLELLQQQKKGYMQKIFS	220
36	CC51TRD2P	173	LEIKIDBUIETEEUKTEITUUBKKMIIKOMII LEOVPDVÄTEPEEÄVPEPPÄÄÄVVGIMÄVIL2	209
37	CC5-1strainN315HsdSB	178	FESKLDROIELEEOKLELLOOOKKGYMOKIES	209
38	CC93-2 b*	179	FFSKLDRQIELEEQKLELLOOOKKGYMOKIFS	210
00	Consensus ss:		hhhhhhhhhhhhhhhhhhhhhhhhhhhhh	
39	—			