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Placental DNA methylation at term reflects
maternal serum levels of INHA and FN1,
but not PAPPA, early in pregnancy
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Abstract

Background: Early detection of pregnancies at risk of complications, such as intrauterine growth restriction (IUGR)
and preeclampsia (PE), is critical for improved monitoring and preventative treatment to optimize health outcomes.
We predict that levels of placental-derived proteins circulating in maternal blood reflect placental gene expression,
which is associated with placental DNA methylation (DNAm) profiles. As such, placental DNAm profiling may be useful
to distinguish pregnancies at risk of developing complications and correlation between DNAm and protein levels in
maternal blood may give further evidence for a protein’s use as a biomarker. However, few studies investigate all clinical
parameters that may influence DNAm and/or protein expression, which can significantly affect the relationship between
these measures.

Results: Candidate genes were chosen based on i) reported alterations of protein levels in maternal blood
and ii) observed changes in placental DNAm (Δβ > 0.05 and False Discovery Rate (FDR) <0.05) in pregnancies
complicated by PE/IUGR. Fibronectin (FN1) enhancer DNAm and placental gene expression were inversely
correlated (r = −0.88 p < 0.01). The same trend was observed between promoter DNAm and gene expression for
INHBA and PAPPA, though not significant. INHBA and FN1 DNAm was associated with gestational–age corrected birth
weight, while INHA levels were associated with fetal: placental weight ratio and FN1 level was associated with maternal
body mass index (BMI).
DNAm at the INHBA promoter in the term placenta was negatively correlated with second trimester maternal serum
levels (r = −0.50 p = 0.01) and DNAm at the FN1 enhancer was negatively associated with third trimester maternal
serum levels (r = −0.38, p = 0.009). However, a similar correlation was not found for PAPPA.

Conclusions: These results show that establishing a correlation between altered DNAm in the term placenta and
altered maternal serum levels of the corresponding protein, is affected by a number of factors. Nonetheless, the
correlation between placental DNAm of INHBA/FN1 and maternal serum INHA/FN1 levels indicate that DNAm may
be a useful tool to identify novel biomarkers for adverse pregnancy outcomes in some cases.
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Background
Placental insufficiency is the inability of the placenta to
provide an adequate supply of nutrients to the growing
fetus. This can lead to a number of pregnancy complica-
tions including intrauterine growth restriction (IUGR) [1]
and preeclampsia (PE), a maternal hypertensive disorder,
which manifests as maternal hypertension and proteinuria
after 20 weeks (wks) gestation [2]. Early diagnosis of PE
and IUGR before clinical signs of disease can improve
management and outcomes of affected pregnancies.
Placental-derived proteins may be released into the mater-
nal circulation where they can be quantified and used to
assess placental function during pregnancy [3–6]. Such
protein markers have been investigated for the prediction
of PE and/or IUGR with varying success [7–9]. Nicolaides
et al. (2013) reported a detection rate of 95 % for early-
onset PE (EOPE, diagnosis <34 wks) using decreased levels
of maternal serum markers, pregnancy associated plasma
protein A (PAPPA) and placental growth factor (PlGF), in
combination with maternal factors [7]. However, these
measures might not be generalizable, as the etiology and
confounding environmental factors vary between popula-
tions [8]. Moreover, the ability to predict women at risk of
late-onset PE (LOPE, diagnosis >34 wks) and IUGR is
limited using these markers.
Differential gene expression between placentas from PE

and/or IUGR pregnancies [9–12] may be utilized to iden-
tify additional biomarkers to distinguish women at high
risk of these complications early in gestation. DNA methy-
lation (DNAm) is associated with gene expression, but is
more robust to variation in technical conditions and less
subject to short-term biological change [13]. We previ-
ously reported numerous changes in DNAm in placentas
from pregnancies complicated by EOPE [14]. Alterations
of placental DNAm were noted in genes for which the
expression of the encoded protein is altered in maternal
blood in PE and/or IUGR pregnancies (e.g.: PAPPA, sENG,
PAPPA2) [14]. Furthermore we found that sites of altered
DNAm in PE frequently reflected changes in gene expres-
sion. While proteins produced in the placenta can be
released into maternal circulation, their levels in maternal
serum may be affected by many additional factors includ-
ing size of the placenta, the cell type expressing the protein,
and how such proteins are transported and metabolized.
The purpose of the present study was to delineate the rela-
tionship between changes we observed in DNAm at term
and maternal protein levels in early pregnancy. We
selected three genes for which there was evidence for both
altered maternal protein levels and altered DNAm in PE;
we then evaluated 1) the relationship between placental
DNAm and gene expression; 2) the role of variables that
might confound measurement of DNAm, mRNA or pro-
tein levels including gestational age, fetal sex, placental effi-
ciency (fetal: placental weight ratio), fetal birth weight,

placental breadth: width ratio and maternal body mass
index (BMI); and 3) whether placental DNAm at term
reflected protein levels in maternal blood during gestation
after correcting for these variables.

Results and discussion
Candidate site selection and characteristics
To isolate loci for which altered DNAm might reflect
maternal serum levels early in pregnancy, we chose
candidate genes that not only had sites showing altered
DNAm in EOPE, but also encode for proteins previously
reported to show altered maternal serum protein levels
in pregnancies that subsequently developed PE and/or
IUGR. Previous studies have shown upregulation of both
PAPPA and INBHA in the placentas of pregnancies
complicated by PE and IUGR [12, 14–16]. In addition,
several studies have reported DNAm alterations in
placentas from pregnancies complicated by PE and/or
IUGR [14, 17, 18]. FN1 [19] was selected due to the
large magnitude of change in DNAm between EOPE
and control placentas (Δβ = −0.24, FDR < 0.05) (see
methods). INHBA (Δβ = −0.16, FDR < 0.05) and PAPPA
(Δβ = −0.074, FDR < 0.05) were selected because they
additionally encode for proteins for which first (PAPPA)
or second trimester (INHA) maternal serum measures
were available from clinical prenatal serum screening
testing. We also focused on DNAm alterations in gene
regulatory elements. The CpGs of interest for INHBA
and PAPPA were 76 base pairs (bp) and 163 bp up-
stream of the transcriptional start sites, respectively. In
relation to FN1, the CpG site was ~100 kb upstream of
the transcriptional start site, within an enhancer region.
Although these sites were selected based on a significant

association with EOPE, we also wanted to know if these
changes were conserved in other clinical groups (Fig. 1). In
addition to hypomethylation of these sites in EOPE, the
LOPE + IUGR group was hypomethylated for the INHBA
(promoter) (Δβ = −0.18, p < 0.001) (Fig. 1a) and the FN1
upstream enhancer (Δβ = −0.25, p < 0.01) (Fig. 1c). While
reduced methylation at the PAPPA promoter was only
found in EOPE (Fig. 1b). As differences in DNAm were
only found in the EOPE and LOPE + IUGR groups, as po-
tential biomarkers, these candidate genes would presum-
ably only be useful in identifying this subset of pregnancies
[20]. Markers useful to detect LOPE or normotensive
IUGR may be more challenging to identify due to their
weak association with placental pathology.

Is DNAm at candidate sites inversely correlated with gene
expression?
To confirm that the DNAm change resulted in a change
in gene expression, we assessed the relationship between
placental DNAm (measured by Illumina 450 k array)
and gene expression at these three candidate sites. FN1
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showed an inverse correlation between DNAm of an up-
stream enhancer and gene expression at term (r = −0.88,
p < 0.0001). INHBA and PAPPA, showed a non-significant
trend with increasing DNAm being associated with de-
creased gene expression in the placenta (Fig. 2). This
phenomenon may be due to alterations in cell

composition between pathogenic and healthy placen-
tas related to the pathology of PE/IUGR [14]. For all
candidate genes, there was an observable divide be-
tween the controls and EOPE cases, where cases had
decreased DNAm corresponding to increased gene
expression in the placenta.

What clinical factors are associated with DNAm at
candidate sites?
To better understand what factors might affect the meas-
urement of DNAm and therefore the relationship with
protein expression levels in maternal blood, we also evalu-
ated several potential confounding factors including gesta-
tional age at delivery [21], fetal sex [22, 23], fetal birth
weight [24], placental dimensions and maternal BMI. Bi-
sulfite pyrosequencing was used to extend our assess-
ment of DNAm at the candidate sites into a larger
cohort of controls for which clinical serum measure-
ments (INHBA N = 36, PAPPA N = 33) or serum sam-
ples for assaying FN1 (N = 76) were available.
Birth-weight standard deviation (SD) was associated

with DNAm at the INHBA promoter (p = 0.05) and the
upstream enhancer of FN1 (p = 0.02). Gestational age
was only associated with FN1 DNAm (p = 0.03). None of
the clinical factors assessed was associated with DNAm
at the PAPPA site (Table 1). The observation that birth
weight (SD) was associated with INHBA DNAm, without
an association with gestational age, emphasizes the im-
portance of including both gestational age and birth
weight when considering the relationship between
DNAm and other variables.

What clinical factors are associated with protein
concentration in maternal blood?
We also assessed the same clinical parameters for associ-
ation to protein concentration in maternal blood (Table 2).
Gestational age at blood draw was only assessed as a
covariate for FN1 as clinical values for INHA and PAPPA
were given in multiples of the median (MoM), which was
already corrected for GA at blood draw. Placental effi-
ciency (fetal: placental weight-ratio, at birth) was associ-
ated with increased second trimester INHA levels in
maternal blood. FN1 level was not associated with mater-
nal BMI in the controls for which we had this information
(N = 37), though it was significant when evaluating all
clinical groups together (EOPE, LOPE, IUGR, Controls)
(N = 75). It was therefore included in subsequent analyses.
None of the assessed factors were associated with PAPPA
maternal blood levels during pregnancy (Table 3).

What is the relationship between DNAm and maternal
serum levels?
DNAm in the promoter of INHBA correlated with sec-
ond trimester protein levels in maternal blood (r = −0.50,

Fig. 1 DNAm distribution at INHBA, PAPPA, and FN1 across all clinical
groups. The DNAm distribution (β values ± SD) at each site across clinical
groups for a INHBA, b PAPPA, and c FN1. EOPE = early-onset PE (N= 20),
LOPE = late-onset PE (N= 11), IUGR = Intrauterine growth restriction
(N = 12), Control (N = 37). *p< 0.05
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Fig. 2 Correlation between placental DNAm and gene expression at term in control samples and between placental DNAm and maternal blood protein
levels during gestation in control samples. The correlation between DNAm at a regulatory element and gene expression (log2) in eight early-onset PE
and eight control placentae in a INHBA b PAPPA and c FN1 † All gene expression graphs were produced from data published in Blair et al. (2013). The
relationship between d INHBA (N= 36) promoter DNAm in the term placenta and second trimester INHA levels in maternal blood, plotted as residuals
corrected for fetal birth weight (SD) and fetal: placental ratio, e PAPPA (N= 34) promoter DNAm in the term placenta and first trimester PAPPA levels in
maternal blood, and f FN1(N= 76) enhancer DNAm in the term placenta and second/third trimester FN1 levels in maternal blood, plotted as residuals
corrected for fetal birth weight (SD), gestational age, and maternal body mass index (BMI). MoM=multiple of the median
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p = 0.01) while modeling for both fetal birth weight (SD)
and fetal: placental weight ratio (Fig. 2d). Additionally,
DNAm in an upstream enhancer of FN1 correlated with
third trimester protein levels in maternal blood (r = −0.38,
p = 0.009) while adjusting for birth weight (SD), gesta-
tional age, and maternal BMI (Fig. 2f). This supported our
prediction that DNAm changes observed in the placenta
could explain some of the previous reports of altered
INHA and FN1 levels in maternal blood in PE. It is
remarkable that these serum measurements from the
second and third trimesters of pregnancy reflected DNAm
at term. This implies that this DNAm change may be an
early alteration in PE. In contrast, a similar result was not
observed for PAPPA/PAPPA (Fig. 2e).
We had predicted that protein levels in maternal blood

would reflect placental DNAm and gene expression.
While this may be true in some instances (e.g. INHA,
FN1), in other cases establishing a relationship may be

challenging (e.g. PAPPA). Establishing such a relation-
ship may be complicated by several factors. Protein level
depends not only on the level of gene expression, but
also on the total number of cells expressing that protein,
the number of mRNA transcripts being translated into
protein in those cells, and the rate and mode of release of
the protein into maternal blood. These factors may be
influenced by the underlying pathology (i.e. more protein
may be released with increased apoptosis) and placental
size; which, in turn may be associated with fetal weight
and/or fetal: placental weight ratio. Other factors such as
expression of the same protein from maternal tissues, and
the metabolism of proteins by the placenta, reducing the
amount of protein being secreted into the maternal circu-
lation may have a substantial influence of the total protein
concentration in maternal blood (Fig. 3). PAPPA has been
found to be expressed from other maternal sources (e.g.
ovary, some epithelial and endometrial cells, and breast)

Table 1 Univariate linear analysis results (DNAm vs. Clinical parameters) in controls. Reported in correlation coefficient (r) values

Gene N= Fetal
Sex

GA at
Delivery

Birth Weight
(SD)

Fetal: Placental
Weight

Placental Maternal BMI

Length: Breadth (Number of samples BMI was available)

INHBA 36 0.53 0.055 0.29* 0.08 0.01 0.35 (N = 18)

PAPPA 34 0.18 0.17 0.24 0.00 0.26 0.25 (N = 21)

FN1 76 0.12 0.22* 0.23* 0.10 0.23 0.30 (N = 75, all samples)

0.12 (N = 37,control only)

GA gestational age
*p < 0.05

Table 2 Samples used for pyrosequencing and to assess maternal FN1 protein levels

Control EOPE LOPE + IUGR LOPE IUGR

INHA N= 36 - - - -

Mean GA at blood draw (weeks ± SD) 14–20wks - - - -

Mean GA at delivery (weeks ± SD) 39.3 (±1.3) - - - -

Mean BW (grams ± SD) 3480.3 (±483.4) - - - -

Mean MA (years ± SD) 33.5 (±4.4) - - - -

Sex (Female/N, %) 18/36, 50 % - - - -

PAPPA N= 33 - - - -

Mean GA at blood draw(weeks ± SD) 11–13wks - - - -

Mean GA at delivery (weeks ± SD) 39.6 (±1.4) - - - -

Mean BW (grams ± SD) 3428.9 (±355.9) - - - -

Mean MA (years ± SD) 34.2 (±4.6) - - - -

Sex (Female/N, %) 18/34, 53 % - - - -

FN1 N= 76 13 6 10 9

Mean GA at blood draw(weeks ± SD) 31.6 (±6.1) 32.3 (±3.2) 35.9 (±1.3) 37.4 (±2.4) 33.5 (±4.5)

Mean GA at delivery (weeks ± SD) 39.1 (±2.9) 33.1 (±3.2) 36.1 (±1.1) 38.4 (±1.9) 35.2 (±4.5)

Mean BW (grams ± SD) 3465.3 (±398.94) 1663 (±710) 1921 (±402) 3187 (±683) 1932 (±746)

Mean MA (years ± SD) 33.5 (±3.6) 33.4 (±6.4) 32.4 (±5.3) 35.5 (5.5) 33.5 (±3.5)

Sex (Female/N, %) a36/74, 49 % 6/13,46 % 3/6, 50 % 6/10, 60 % 6/9,66 %
aSex not available on 2 samples
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besides the placenta, and it is possible be that these
sources mask any relationship between placental derived
protein and DNAm in the placenta [25–28]. It is also
important in the case of PAPPA to note that maternal pro-
tein levels were measured in the first trimester and
additional variation may arise over gestation affecting
correlation with placental DNAm at term.

Are there any differences in protein levels between case
and control placentas?
To confirm a previous report of altered maternal FN1 in
association with PE and/or IUGR [19], FN1 levels were
measured in maternal blood samples from pregnancies
which subsequently developed EOPE, LOPE + IUGR,
LOPE without IUGR, or normotensive IUGR, in addition

Table 3 Univariate linear analysis results (Protein Levels vs. Clinical parameters) in controls. Reported in correlation coefficient (r)
values

Protein N= Fetal Sex GA at Delivery GA at Blood Drawa Birth Weight (SD) Fetal Weight:
Placental Weight

Placental
Length:Breadth

Maternal BMI (Number of
samples BMI was available)

INHA 36 0.20 0.00 NA 0.12 0.44* 0.30 0.34 (N = 18)

PAPPA 34 0.11 0.20 NA 0.26 0.08 0.00 0.05 (N = 21)

FN1 76 0.05 0.10 0.16 0.11 0.13 0.063 0.25* (N = 75, all samples)

0.10 (N = 37, control only

GA gestational age
*p < 0.05
aOnly measured for FN1 as INHA and PAPPA levels were obtained from maternal serum screening program and already corrected for gestational age at
blood draw

Fig. 3 Processes that may influence the relationship between DNAm, gene expression and protein expression. Outlines reasons why we may not
see a correlation between placental DNAm and gene expression or between placental gene expression and circulating levels of placental-specific
proteins in maternal blood
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to our control cohort (Table 2). Similar to the alterations
in DNAm, changes in FN1 levels were found to be signifi-
cantly different from controls only in the EOPE group
(Mann U Whitney test), although there was a trend of
increased FN1 levels between LOPE + IUGR and controls
(p = 0.08) (Fig. 4). Our results were in concordance to
Auer et al. (2010) who also reported increased levels of
maternal FN1 in pregnancies complicated by EOPE and
LOPE + IUGR. We did not confirm their observation of a
decrease of FN1 in pregnancies complicated by IUGR;
however, we may have been under-powered to observe
this small difference. Furthermore, although we observe a
difference in EOPE and LOPE + IUGR compared to con-
trols, the range of FN1 levels completely overlap between
the groups, hindering FN1 to be an adequate biomarker
used alone.

Conclusion
This study provides a link between changes in placental
DNAm at term and protein biomarkers present in the
mother’s circulation earlier in pregnancy. It emphasizes
the many confounding factors that may influence this
relationship, explaining why this linkage may not be ob-
served for all loci. We chose three genomic sites with
significantly altered DNAm in term placenta associated
with PE and that were associated with genes for which
the protein product is altered in PE/IGUR. Despite this,
for only two of the three loci (INHA and FN1) did we
find a correlation between placental DNAm and second
and third trimester maternal serum protein expression
in control samples. Nonetheless, this does suggest that
other DNAm marks may be associated with early differ-
ences in gene expression. Furthermore, with the advent
of techniques to quantify placental nucleic acids in ma-
ternal serum [29], DNAm changes may be more directly

linked to measurable miRNA and RNA in maternal blood.
Factors such as placental surface area and mechanisms for
release into maternal blood, will also affect serum levels of
placental nucleic acids [30]. Future studies measuring pro-
tein levels directly in placental tissue, correlating with ma-
ternal levels and investigating the factors affecting rate of
release are needed to help translate findings measured in
the term placenta into maternal biomarkers of pregnancy
outcomes in early gestation.

Methods
Sample information
Ethics approval was obtained from both the University
of British Columbia and BC Women’s and Children’s
Hospital ethics committees in Vancouver, BC, Canada
(H04-70488). Placental samples were obtained with con-
sent via recruitment through the Medical Genetics and
Obstetrics and Gynecology departments. Case informa-
tion such as: maternal age, maternal BMI, mode of deliv-
ery, gestational age at delivery, fetal sex, birth weight,
gestational age at blood draw, results on any molecular
testing, and placental dimensions were recorded.
Preeclampsia (PE) was defined according to Society of

Obstetricians and Gynecologists of Canada (SOGC) cri-
teria as one of i) hypertension (BP > 140/90 mm Hg) and
proteinuria (>300 g/day) arising after 20 weeks gestation
[2]; ii) HELLP syndrome without hypertension or protein-
uria [31]; or iii) eclamptic seizure without previous hyper-
tension or proteinuria [32]. EOPE was defined by a
diagnosis of PE prior to 34 weeks gestation, and LOPE
was defined as a diagnosis after 34 weeks gestation [33].
Intrauterine growth restriction (IUGR) was also defined
following SOGC criteria [34] as birth weight < 3rd per-
centile accounting for fetal sex and gestational age, or
birth weight < 10th percentile with additional clinical find-
ings indicative of poor growth such as: absent or reversed
end diastolic velocity on Doppler ultrasound, or oligohy-
dramnios. Criteria for exclusion were chronic/pre-existing
maternal hypertension, gestational diabetes, multi-fetal
pregnancies, and fetal chromosomal abnormalities. Con-
trols were selected based on absence of any criteria listed
above and a placenta with no observable pathology.
Whole chorionic villi were sampled from four sites, each

from distinct cotelydons of the placenta [13]. Sampling
from infarcts or other abnormal regions of the placenta
was avoided. DNA was extracted from each sampled site
and pooled together in equal proportions. DNA was
assessed for quality on the Nanodrop 1000 spectropho-
tometer (ThermoScientific, Wilmington, DE, USA). Three
hundred nanograms of each DNA sample was bisulfite
converted for subsequent analyses. Additionally, RNA
extracted from the placental villi with RNeasy kit (Qiagen,
Heiden, Germany) and was stored in RNAlater at−80 °C.

Fig. 4 FN1 protein levels in maternal blood during gestation across all
clinical groups. FN1 levels (Median with interquartile range) in maternal
blood are increased in EOPE compared with controls, with a increasing
trend in LOPE + IUGR compared to controls. EOPE = early-onset PE
(N = 20), LOPE = late-onset PE (N = 11), IUGR = Intrauterine growth
restriction (N = 12), Control (N = 37). **p < 0.05, *p < 0.1
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RNA quality was assessed on a Bioanalyzer 2100 (Agilent,
Santa Clara, USA).
While we used a total of 171 placentas for our studies,

not all placentas were used in all studies as we were lim-
ited by samples run on the 450 K array (N = 66); samples
run on the Illumina expression array (N = 16), maternal
serum screening results (first trimester N = 34, second
trimester N = 36), or maternal serum samples for FN1
testing (N = 114). Additional file 1: Table S1 outlines a
list of all samples and which analyses they were used in.

Gene expression analysis
Gene expression was measured with the HT-12v4 Ex-
pression BeadChip (Illumina, Inc.) as per Blair et al.
(2013) protocol, comparing eight EOPE and eight con-
trols [14] (Additional file 2: Table S2).

DNA methylation analysis
Illumina infinium HumanMethylation450 BeadChip array
To compare the DNAm differences between clinical
groups for each of our candidate genes twenty EOPE, 11
LOPE, 8 LOPE + IUGR, 10 IUGR, and 37 control cases
were run on the Illumina Infinium HumanMethylation450
BeadChip (450 k) array, which interrogates >480,000 CpG
sites in >20,000 genes [35]. Some of these samples were
previously analyzed in the study reported by Blair et al.
(2013). To compare the association between DNAm and
protein levels in maternal blood, 122 placental DNA sam-
ples (750 ng) bisulfite converted using the EZ DNA Methy-
lation kit (Zymo Research, Irvine, USA). Hybridization of
samples to the array was completed as per the manufac-
turer’s protocol. The microarray chips were scanned by the
HiScan 2000 or iScan (Illumina). Data was normalized and
analyzed as per Blair et al. (2010) methods [14].

Bisulfite pyrosequencing
Candidate CpGs determined from the 450 k array data in
Blair et al. (2013) were followed up with bisulfite pyrose-
quencing in control cohorts for each candidate gene
(Table 4). To compare the association between DNAm
and protein levels in maternal blood, 122 placental DNA
samples (750 ng) were bisulfite converted using the EZ
DNA methylation-Gold kit (Zymo Research Corp, Irvine,
CA, USA) as per manufacturer’s protocol. Bisulfite con-
verted DNA was PCR amplified prior to pyrosequencing.
PCR reactions consisted of 20 ng of bisulfite converted
DNA, 1x PCR buffer (with MgCl2) (Qiagen Ltd.), 0.18U

DNA polymerase (HotStarTaq, Qiagen Ltd.),0.2 mM dNTP
(Invitrogen, Carlsbed, CA),0.4uM forward and reverse
primers (Integrated DNA Technologies, Coralville,IA) for
INHABA,PAPPA, and FN1. PCR conditions were 95 °C
(15 min), [95 °C (30s), 55 °C (30s), 72 °C (30s)]x40 cycles,
72 °C (10 min). Pyrosequencing assays for the candidate
genes were designed in PSQ Assay Design software
(Biotage, Upsalsa, Sweden) and run on a Qiagen Pyromark
Q96 MD (Qiagen) (Additional file 3: Table S3).

Candidate DNAm selection
CpG sites chosen to investigate in the present study
were selected on i) a significant change in placental
DNAm, defined as a false discovery rate (FDR) < 0.05 a
Δ β > 0.05 (i.e. at least 5 percentage points difference in
DNAm), a cut-off that enriches for changes in DNAm
that would likely have biological impact [36], in placen-
tas associated with PE and ii) genes encoding for pro-
teins reported to show altered levels in maternal blood
in pregnancies complicated by PE and/or IUGR. In
addition to meeting these criteria, INHBA and PAPPA
were chosen as we had maternal serum measures avail-
able on INHA and PAPPA from the maternal serum-
screening program. We chose FN1 since the difference
in DNAm between EOPE and controls was Δβ = 0.24.
We also took into account where the DNAm alteration
was in the genome, taking interest in alterations in gene
regulatory elements (Table 4).

Maternal blood protein measurements
Measurements of Pregnancy associated plasma protein A
(PAPPA) and Inhibin alpha (INHA) were obtained from
clinical maternal serum screening data for 36 and 33
women, respectively, and are measured in multiples of the
median (MoM). Additionally, blood was drawn in EDTA
tubes during the second trimester for a subset of 158
women (Table 2). Plasma was obtained via centrifugation
at 3000 rpm for 10 min 4 °C. Plasma Fibronectin (FN1)
was measured using a FN1 ELISA kit (eBioscience, San
Diego, CA, USA). FN1 measurements were run in dupli-
cate and absorbance was measured at 450 nm. A 5 param-
eter asymmetrical logistic curve was generated from the
standard data points which ranged from 0.31-20.0 ng/mL.
Samples were diluted as per manufacturer’s protocol; sam-
ples which FN1 concentration was over the standard curve
were diluted to 1 in 80,000, and 4 samples which remained
were further diluted to 1 in 100,000.

Table 4 Candidate CpG sites chosen for follow-up

Gene Site Genomic Region Distance to TSS (bp) EOPE (Change in Beta value from control group)

INHBA cg11079619 Active Promoter 76 0.434 (−0.162)

PAPPA cg08189448 Active Promoter −163 0.326 (−0.074)

FN1 cg12436772 Intergenic/Upstream enhancer −101593 0.465 (−0.240)
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Statistical analysis
DNAm at the two CpGs in the PAPPA pyrosequencing
assay were correlated (r = 0.85, p < 0.001, Spearman’s cor-
relation) and the measurements for these two sites were
thus averaged (Additional file 4: Figure S1).
Potential covariates which may be associated with either

DNAm or protein concentration in maternal blood were
assessed for each candidate site. Univariate linear regres-
sion analyses were performed, investigating gestational age
at delivery, fetal sex, fetal birth weight (SD), fetal: placental
weight ratio, placental length: breadth ratio, maternal BMI,
and when appropriate, gestational age at blood draw. As
absolute fetal birth weight is confounded by gestational age
at delivery, fetal birth weight was measured as a standard
deviation relative to the mean for that gestational age.
PAPPA and INHA protein levels were expressed in MoM
to correct for gestational age a blood draw.
Correlations were performed when testing any associ-

ation between placental gene expression at term and
placental DNAm at term. Spearman’s correlations were
performed between protein concentration and DNAm in
sites where there were no covariate factors. For sites with
covariate factors, which needed to be modeled for, partial
correlations were performed. Non-parametric t-tests were
performed to determine if DNAm in the EOPE, LOPE +
IUGR, LOPE, and IUGR placentas were significantly
different from controls. Statistics were calculated using
SPSS v19.0 statistical package.
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