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 520 

ABSTRACT 521 

 522 

Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, 523 

potentially impacting the overall trait variance when investigating the genetic contribution to obesity-524 

related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% 525 

European descent) to identify loci influencing BMI and central adiposity, measured as waist 526 

circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci 527 

with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show 528 

consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci 529 

in an independent study sample. These loci highlight novel biological functions, including response to 530 

oxidative stress, addictive behavior, and regulatory functions emphasizing the importance of accounting 531 

for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic 532 

susceptibility to overall adiposity and body fat distribution. 533 

 534 

  535 



25 
 

INTRODUCTION 536 

 537 

Recent genome-wide association studies (GWAS) have described loci implicated in obesity, body mass 538 

index (BMI), and central adiposity. Yet most studies have ignored environmental exposures with possibly 539 

large impacts on the trait variance1, 2. Variants that exert genetic effects on obesity through interactions 540 

with environmental exposures often remain undiscovered due to heterogeneous main effects and 541 

stringent significance thresholds. Thus, studies may miss genetic variants that have effects in subgroups 542 

of the population, such as smokers3.  543 

 544 

It is often noted that currently-smoking individuals display lower weight/BMI and higher waist 545 

circumference (WC) as compared to nonsmokers4, 5, 6, 7, 8. Smokers also have the smallest fluctuations in 546 

weight over approximately 20 years compared to those who have never smoked or have stopped 547 

smoking 9, 10. Also, heavy smokers (>20 cigarettes per day [CPD]) and those that have smoked for more 548 

than 20 years are at greater risk for obesity than non-smokers or light to moderate smokers (<20 CPD)11, 549 

12. Men and women gain weight rapidly after smoking cessation, suggesting that many people 550 

intentionally smoke for weight management13. It remains unclear why smoking cessation leads to weight 551 

gain or why long-term smokers maintain weight throughout adulthood, although studies suggest that 552 

tobacco use suppresses appetite14, 15 or alternatively, smoking may result in an increased metabolic 553 

rate14, 15. Identifying genes that influence adiposity and interact with smoking may help us clarify 554 

pathways through which smoking influences weight and central adiposity15. 555 

 556 

A comprehensive study that evaluates smoking in conjunction with genetic contributions is warranted. 557 

Using GWAS data from the Genetic Investigation of Anthropometric Traits (GIANT) Consortium, we 558 

identified 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction 559 
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(GxSMK) on obesity, assessed by BMI, and central obesity independent of overall body size, assessed by 560 

WC adjusted for BMI (WCadjBMI) and waist-to-hip ratio adjusted for BMI (WHRadjBMI). By accounting 561 

for smoking status, we focus both on genetic variants observed through their main effects and GxSMK 562 

effects to increase our understanding of their action on adiposity-related traits. These loci highlight 563 

novel biological functions, including response to oxidative stress, addictive behavior, and regulatory 564 

functions emphasizing the importance of accounting for environment in genetic analyses. Our results 565 

suggest that smoking may alter the genetic susceptibility to overall adiposity and body fat distribution. 566 

 567 

RESULTS 568 

GWAS discovery overview 569 

We meta-analyzed study-specific association results from 57 Hapmap-imputed GWAS and 22 studies 570 

with Metabochip, including up to 241,258 (87% European descent) individuals (51,080 current smokers 571 

and 190,178 nonsmokers) while accounting for current smoking (SMK) (Methods, Supplementary Fig. 1, 572 

Supplementary Tables 1-4). For primary analyses, we conducted meta-analyses across ancestries and 573 

sexes. For secondary analyses, we conducted meta-analyses in European-descent studies alone and sex-574 

specific meta-analyses (Tables 1-4, Supplementary Data 1-6).  We considered four analytical approaches 575 

to evaluate the effects of smoking on genetic associations with adiposity traits (Figure 1, Methods).  576 

Approach 1 (SNPadjSMK) examined genetic associations after adjusting for SMK. Approach 2 (SNPjoint) 577 

considered the joint impact of main effects adjusted for SMK + interaction effects16. Approach 3 focused 578 

on interaction effects (SNPint); Approach 4 followed up loci from Approach 1 for interaction effects 579 

(SNPscreen). Results from Approaches 1-3 were considered genome-wide significant (GWS) with a P-580 

value<5x10-8 while Approach 4 used Bonferroni adjustment after screening. Lead variants >500 kb from 581 

previous associations with BMI, WCadjBMI, and WHRadjBMI were considered novel. All association 582 
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results are reported with effect estimates oriented on the trait increasing allele in the current smoking 583 

stratum. 584 

 585 

Across the three adiposity traits, we identified 23 novel associated genetic loci (6 for BMI, 11 for 586 

WCadjBMI, 6 for WHRadjBMI) and nine having significant GxSMK interaction effects (2 for BMI, 2 for 587 

WCadjBMI, 5 for WHRadjBMI) (Figure 1, Tables 1-4, Supplementary Data 1-6). We provide a 588 

comprehensive comparison with previously-identified loci1, 2 by trait in supplementary material 589 

(Supplementary Data 7, Supplementary Note 1). 590 

 591 

Accounting for Smoking Status  592 

 593 

For primary meta-analyses of BMI (combined ancestries and sexes), 58 loci reached GWS in Approach 1 594 

(SNPadjSMK) (Supplementary Data 1, Supplementary Fig. 2-3), including two novel loci near SOX11, and 595 

SRRM1P2 (Table 1). Three more BMI loci were identified using Approach 2 (SNPjoint), including a novel 596 

locus near CCDC93 (Supplementary Fig. 4-5). For WCadjBMI, 62 loci reached GWS for Approach 1 597 

(SNPadjSMK) and two more for Approach 2 (SNPjoint), including eight novel loci near KIF1B, HDLBP, 598 

DOCK3, ADAMTS3, CDK6, GSDMC, TMEM38B, and ARFGEF2 (Table 1, Supplementary Data 2, 599 

Supplementary Fig. 2-5). Lead variants near PSMB10 from Approaches 1 and 2 (rs14178 and rs113090, 600 

respectively) are >500 kb from a previously-identified WCadjBMI-associated variant (rs16957304); 601 

however, after conditioning on the known variant, our signal is attenuated (P=3.02x10-2 and P=5.22x10-602 

3), indicating that this finding is not novel. For WHRadjBMI, 32 loci were identified in Approach 1 603 

(SNPadjSMK), including one novel locus near HLA-C, with no additional loci in Approach 2 (SNPjoint) 604 

(Table 1, Supplementary Data 3, Supplementary Fig. 2-5).  605 

 606 
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We used GCTA17 to identify loci from our primary meta-analyses that harbor multiple independent SNPs 607 

(Methods, Supplementary Tables 5-7). Conditional analyses revealed no secondary signals within 500 608 

kb of our novel lead SNPs. Additionally, we performed conditional association analyses to determine if 609 

our novel variants were independent of previous GWAS loci within 500 kb that are associated with 610 

related traits of interest. All BMI-associated SNPs were independent of previously-identified GWS 611 

associations with anthropometric and obesity-related traits. Seven novel loci for WCadjBMI were near 612 

previous associations with related anthropometric traits. Of these, association signals for rs6743226 613 

near HDLBP, rs10269774 near CDK6, and rs6012558 near ARFGEF2 were attenuated (P>1E-5 and β 614 

decreased by half) after conditioning on at least one nearby height and hip circumference adjusted for 615 

BMI (HIPadjBMI) SNP, but association signals remained independent of other related SNP-trait 616 

associations. For WHRadjBMI, our GWAS signal was attenuated by conditioning on two known height 617 

variants (rs6457374 and rs2247056), but remained significant in other conditional analyses. Given high 618 

correlations among waist, hip, and height, these results are not surprising. 619 

 620 

Several additional loci were identified for Approaches 1 and 2 in secondary meta-analysis (Table 2, 621 

Supplementary Data 1-6, Supplementary Fig. 6). For BMI, 2 novel loci were identified by Approach 1, 622 

including 1 near EPHA3 and 1 near INADL. For WCadjBMI, 2 novel loci were identified near RAI14 and 623 

PRNP. For WHRadjBMI, five novel loci were identified in secondary meta-analyses near BBX, TRBI1, 624 

EHMT2, SMIM2 and EYA4. A comprehensive summary of nearby genes for all novel loci and their 625 

potential biological relevance is available in Supplementary Note 2. 626 

 627 

Figure 3 presents analytical power for Approaches 1 and 2 while Supplementary Table 8 and 628 

Supplementary Fig. 7 present simulation results to evaluate type 1 error (Methods). A heat map cross-629 

tabulates P-values for Approaches 1 and 2 along with Approach 3 examining interaction only 630 
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(Supplementary Fig 8). We demonstrate that the two approaches yield valid type 1 error rates and that 631 

Approach 1 can be more powerful to find associations given zero or negligible quantitative interactions, 632 

whereas Approach 2 is more efficient in finding associations when interaction exists. 633 

 634 

Modification of Genetic Predisposition by Smoking  635 

 636 

Approach 3 directly evaluated GxSMK interaction (SNPint) (Table 3, Supplementary Data 1-6, Figure 2, 637 

Supplementary Fig. 9-10). For primary meta-analysis of BMI, two loci reached GWS including a 638 

previously identified GxSMK interaction locus near CHRNB43, and a novel locus near INPP4B.  Both loci 639 

exhibit GWS effects on BMI in smokers and no effects in nonsmokers. For CHRNB4 (cholinergic nicotine 640 

receptor B4), the variant minor allele (G) exhibits a decreasing effect on BMI in current smokers (βsmk = 641 

- 0.047) but no effect in nonsmokers (βnonsmk = 0.002). Previous studies identified nearby SNPs in high 642 

LD associated with smoking (nonsynonymous, rs16969968 in CHRNA5)3 and arterial calcification 643 

(rs3825807, a missense variant in ADAMTS7)18. Conditioning on these variants attenuated our 644 

interaction effect but did not eliminate it (Supplementary Table 7), suggesting a complex relationship 645 

between smoking, obesity, heart disease, and genetic variants in this region.  Importantly, the CHRNA5-646 

CHRNA3-CHRNB4 gene cluster has been associated with lower BMI in current smokers3, but with higher 647 

BMI in never smokers3, evidence supporting the lack of association in nonsmokers as well as a lack of 648 

previous GWAS findings on 15q25 (Supplementary Data 8)1. The CHRNA5-CHRNA3-CHRNB4 genes 649 

encode the nicotinic acetylcholine receptor (nAChR) subunits α3, α5 and β4, which are expressed in the 650 

central nervous system19. Nicotine has differing effects on the body and brain, causing changes in 651 

metabolism and feeding behaviors20. These findings suggest smoking exposure may modify genetic 652 

effects on 15q24-25 to influence smoking-related diseases, such as obesity, through distinct pathways. 653 

 654 
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In primary meta-analyses of WCadjBMI, one novel GWS locus (near GRIN2A) with opposite effect 655 

directions by smoking status was identified for Approach 3 (SNPint) (Table 3, Supplementary Data 2, 656 

Figure 2, Supplementary Fig. 9-10). The T allele of rs4141488 increases WCadjBMI in current smokers 657 

and decreases it in nonsmokers (βsmk = 0.037, βnonsmk = -0.015). In secondary meta-analysis of 658 

European women-only, we identified an interaction between rs6076699, near PRNP, and SMK on 659 

WCadjBMI (Table 4, Supplementary Data 5, Supplementary Fig. 6), a locus also identified in Approach 2 660 

(SNPjoint) for European women. The major allele, A, has a positive effect on current smokers as 661 

compared to a weaker and negative effect on WC in nonsmokers (βsmk = 0.169, βnonsmk = -0.070), 662 

suggesting why this variant remained undetected in previous GWAS of WCadjBMI (Supplementary Data 663 

8).   664 

 665 

Approach 4 (SNPscreen) (Figure 1, Methods) evaluated GxSMK interactions after screening SNPadjSMK 666 

results (from Approach 1) using Bonferroni-correction (Methods, Tables 3-4, Supplementary Data 1-6). 667 

We identified two SNPs, near LYPLAL1 and RSPO3, with significant interaction; both have previously 668 

published main effects on anthropometric traits. These loci exhibit effects on WHRadjBMI in 669 

nonsmokers, but not in smokers (Figure 2). In secondary meta-analyses, we identified three known loci 670 

with significant GxSMK interaction effects on WHRadjBMI near MAP3K1, HOXC4-HOXC6, and JUND 671 

(Table 4, Supplementary Data 3 and 6). We identified rs1809420, near CHRNA5-CHRNA3-CHRNB4, for 672 

BMI in the men-only, combined-ancestries meta-analysis (Supplementary Data 1). 673 

 674 

Power calculations demonstrate that Approach 4 has increased power to identify SNPs that show (i) an 675 

effect in one stratum (smokers or nonsmokers) and a less pronounced but concordant effect in the 676 

other stratum, or (ii) an effect in the larger nonsmoker stratum and no effect in smokers (Figure 3). In 677 

contrast, Approach 3 has increased power for SNPs that show (i) an effect in the smaller smoker stratum 678 
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and no effect in nonsmokers, or (ii) an opposite effect between smokers and nonsmokers (Figure 3). Our 679 

findings for both approaches agree with these power predictions, supporting usingboth analytical 680 

approaches to identify GxSMK interactions. 681 

 682 

Enrichment of Genetic Effects by Smoking Status  683 

 684 

When examining the smoking specific effects for BMI and WCadjBMI loci in our meta-analyses, no 685 

significant enrichment of genetic effects by smoking status were noted. (Figure 2, Supplementary Fig. 686 

11-12). However, our results for WHRadjBMI were enriched for loci with a stronger effect in nonsmokers 687 

as compared to smokers, with 35 of 45 loci displaying numerically larger effects in nonsmokers 688 

(Pbinomial=1.2x10-4). 689 

 690 

We calculated the variance explained by subsets of SNPs selected on 15 significance thresholds for 691 

Approach 1 from PSNPadjSMK=1x10-8 to PSNPadjSMK=0.1 (Supplementary Table 9, Figure 4). Differences in 692 

variance explained between smokers and nonsmokers were significant (P<0.003=0.05/15, Bonferroni-693 

corrected for 15 thresholds) for BMI at each threshold, with more variance explained in smokers. For 694 

WCadjBMI, the difference was significant for SNP sets beginning with PSNPadjSMK<3.16x10-4, and for 695 

WHRadjBMI at PSNPadjSMK<1x10-6. In contrast to BMI, SNPs from Approach 1 explained a greater 696 

proportion of the variance in nonsmokers for WHRadjBMI. Differences in variance explained were 697 

greatest for BMI (differences ranged from 1.8% - 21% for smokers) and lowest for WHRadjBMI (ranging 698 

from 0.3% to 8.8% for nonsmokers). 699 

 700 

These results suggest that smoking may increase genetic susceptibility to overall adiposity, but 701 

attenuate genetic effects on body fat distribution. This contrast is concordant with phenotypic 702 

observations of higher overall adiposity and lower central adiposity in smokers4, 5, 7, 8, 9. Additionally, 703 
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smoking increases oxidative stress and general inflammation in the body21 and may exacerbate weight 704 

gain22. Many genes implicated in BMI are involved in appetite regulation and feeding behavior1. For 705 

waist traits, our results adjusted for BMI likely highlight distinct pathways through which smoking alters 706 

genetic susceptibility to body fat distribution. Overall, our results indicate that more loci remain to be 707 

discovered as more variance in the trait can be explained as we drop the threshold for significance. 708 

 709 

Functional or Biological Role of Novel Loci 710 

 711 

We conducted thorough searches of the literature and publicly available bioinformatics databases to 712 

understand the functional role of all genes within 500 kb of our lead SNPs. We systematically explored 713 

the potential role of our novel loci in affecting gene expression both with and without accounting for the 714 

influence of smoking behavior (Methods, Supplementary Note 3, Supplementary Tables 10-12).  715 

 716 

We found the majority of novel loci are near strong candidate genes with biological functions similar to 717 

previously identified adiposity-related loci, including regulation of body fat/weight, 718 

angiogenesis/adipogenesis, glucose and lipid homeostasis, general growth and development. 719 

(Supplementary Notes 2 and 3). 720 

 721 

We identified rs17396340 for WCadjBMI (Approaches 1 and 2), an intronic variant in the KIF1B gene. 722 

This variant is associated with expression of KIF1B in whole blood with and without accounting for SMK 723 

(GTeX and Supplementary Tables 10 and 12) and is highly expressed in the brain23. Knockout and 724 

mutant forms of KIF1B in mice resulted in multiple brain abnormalities, including hippocampus 725 

morphology24, a region involved in (food) memory and cognition25. Variant rs17396340 is associated 726 

with expression levels of ARSA in LCL tissue. Human adipocytes express functional ARSA, which turns 727 
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dopamine sulfate into active dopamine. Dopamine regulates appetite through leptin and adiponectin 728 

levels, suggesting a role for ARSA in regulating appetite26. 729 

 730 

Expression of CD47 (CD47 molecule),  near rs670752 for WHRadjBMI (Approach 1, women-only), is 731 

significantly decreased in obese individuals and negatively correlated with BMI, WC, and Hip 732 

circumference27. Conversely, in mouse models, CD47 deficient mice show decreased weight gain on high 733 

fat diets, increased energy expenditure, improved glucose profile, and decreased inflammation28.  734 

 735 

Several novel loci harbor genes involved in unique biological functions and pathways including addictive 736 

behaviors and response to oxidative stress. These potential candidate genes near our association signals 737 

are highly expressed in relevant tissues for regulation of adiposity and smoking behavior (e.g. brain, 738 

adipose tissue, liver, lung, muscle) (Supplementary Note 2, Supplementary Table 10).  739 

 740 

The CHRNA5-CHRNA3-CHRNB4 cluster is involved in the eNOS signaling pathway (Ingenuity 741 

KnowledgeBase, http://www.ingenuity.com) that is key for neutralizing reactive oxygen species 742 

introduced by tobacco smoke and obesity29, 30. Disruption of this pathway has been associated with 743 

dysregulation of adiponectin in adipocytes of obese mice, implicating this pathway in downstream 744 

effects on weight regulation30, 31. This finding is especially important due to the compounded stress 745 

adiposity places on the body as it increases chronic oxidative stress itself31. INPP4B has been implicated 746 

in the regulation of the PI3K/Akt signaling pathway32 that is important for cellular growth and 747 

proliferation, but also eNOS signaling, carbohydrate metabolism, and angiogenesis33. 748 

 749 

GRIN2A, near rs4141488, controls long-term memory and learning through regulation and efficiency of 750 

synaptic transmission34 and has been associated with heroin addiction35. Nicotine increases the 751 

http://www.ingenuity.com/
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expression of GRIN2A in the prefrontal cortex in murine models36. There are no established relationships 752 

between GRIN2A and obesity-related phenotypes in the literature, yet memantine and ketamine, 753 

pharmacological antagonists of GRIN2A activity37, 38, 39, 40, are implicated in treatment for obesity-754 

associated disorders, including binge-eating disorders and morbid obesity (ClinicalTrials.gov identifiers: 755 

NCT00330655, NCT02334059, NCT01997515, NCT01724983). Memantine is under clinical investigation 756 

for treatment of nicotine dependence (ClinicalTrials.gov identifiers: NCT01535040, NCT00136786, 757 

NCT00136747). While our lead SNP is not within a characterized gene, rs4141488 and variants in high LD 758 

(r2>0.7) are within active enhancer regions for several tissues, including liver, fetal leg muscle, smooth 759 

stomach and intestinal muscle, cortex, and several embryonic and pluripotent cell types 760 

(Supplementary Note 2), and therefore may represent an important regulatory region for nearby genes 761 

like GRIN2A. 762 

 763 

In secondary meta-analysis of European women-only, we identified a significant GxSMK interaction for 764 

rs6076699 on WCadjBMI (Table 4, Supplementary Data 4, Supplementary Fig. 6). This SNP is 100kb 765 

upstream of PRNP (prion protein), a signaling transducer involved in multiple biological processes 766 

related to the nervous system, immune system, and other cellular functions (Supplementary Note 2)41. 767 

Alternate forms of the oligomers may form in response to oxidative stress caused by copper exposure42. 768 

Copper is present in cigarette smoke and elevated in the serum of smokers, but is within safe ranges43, 769 

44. Another gene near rs6076699, SLC23A2 (Solute Carrier Family 23 [Ascorbic Acid Transporter], 770 

Member 2), is essential for the uptake and transport of Vitamin C, an important nutrient for DNA and 771 

cellular repair in response to oxidative stress both directly and through supporting the repair of Vitamin 772 

E after exposure to oxidative agents45, 46. SLC23A2 is present in the adrenal glands and murine models 773 

indicate that it plays an important role in regulating dopamine levels47.  This region is associated with 774 

success in smoking cessation and is implicated in addictive behaviors in general48, 49. Our tag SNP is 775 
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located within an active enhancer region (marked by open chromatin marks, DNAse hypersentivity, and 776 

transcription factor binding motifs); this regulatory activity appears tissue specific (sex-specific tissues 777 

and lungs) [HaploReg and UCSC Genome Browser].  778 

 779 

Nicotinamide mononucleotide adenylyltransferease (NMNAT1), upstream of WCadjBMI variant 780 

rs17396340, is responsible for the synthesis of NAD from ATP and NMN50, 51. NAD is necessary for 781 

cellular repair following oxidative stress. Upregulation of NMNAT protects against damage caused by 782 

reactive oxygen species in the brain, specifically the hippocampus52, 53. Also for WCadjBMI, both CDK6, 783 

near SNP rs10269774, and FAM49B, near SNP rs6470765, are targets of the BACH1 transcription factor, 784 

involved in cellular response to oxidative stress and management of the cell cycle54.  785 

 786 

Influence of Novel Loci on Related Traits 787 

 788 

In a look-up in existing GWAS of smoking behaviors (Ever/Never, Current/Not-Current, Smoking 789 

Quantity [SQ])55 (Supplementary Data 8), eight of our 26 SNPs were nominally associated with at least 790 

one smoking trait. After multiple test correction (P<0.05/26=0.0019), only one SNP remains significant: 791 

rs12902602, identified for Approaches 2 (SNPjoint) and 3 (SNPint) for BMI, showed association with SQ 792 

(P=1.45x10-9).  793 

 794 

We conducted a search in the NHGRI-EBI GWAS Catalog56, 57 to determine if any of our newly identified 795 

loci are in high LD with variants associated with related cardiometabolic and behavioral traits or 796 

diseases. Of the seven novel BMI SNPs, only rs12902602 was in high LD (r2>0.7) with SNPs previously 797 

associated with smoking-related traits (e.g. nicotine dependence), lung cancer, and cardiovascular 798 

diseases (e.g. coronary heart disease) (Supplementary Table 13). Of the 12 novel WCadjBMI SNPs, five 799 

were in high LD with previously-reported GWAS variants for mean platelet volume, height, infant length, 800 
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and melanoma. Of the six novel WHRadjBMI SNPs, three were near several previously associated 801 

variants, including cardiometabolic traits (e.g. LDL cholesterol, triglycerides, and measures of renal 802 

function).  803 

 804 

Given high phenotypic correlation between WC and WHR with height, and established shared genetic 805 

associations that overlap our adiposity traits and height1, 2, 58 we expect cross-trait associations between 806 

our novel loci and height. Therefore, we conducted a look-up of all of our novel SNPs to identify 807 

overlapping association signals (Supplementary Data 8). No novel BMI loci were significantly associated 808 

with height (P<0.002[0.05/24] SNPs). However, there are additional variants that may be associated 809 

with height, but not previously reported in GWAS examining height, including 2 for WHRadjBMI near 810 

EYA4 and TRIB1, and 2 for WCadjBMI near KIF1B and HDLBP (P<0.002). 811 

 812 

Lastly, as smoking has a negative (weight decreasing) effect on BMI, it is likely that smoking associated 813 

genetic variants have an effect on BMI in current smokers. Therefore, we expected that smoking 814 

associated SNPs exhibit some interaction with smoking on BMI. We looked up published smoking 815 

behavior SNPs56, 57, 10 variants in 6 loci, in our own results. Two variants reached nominal significance 816 

(P<0.05) for GxSMK interaction on BMI (Supplementary Table 14), but only one reached Bonferroni-817 

corrected significance (P<0.005). No smoking-associated SNPs exhibited GxSMK interaction. Therefore, 818 

we did not see a strong enrichment for low interaction P-values among previously identified smoking 819 

loci. 820 

 821 

Validation of Novel Loci 822 

 823 

We pursued validation of our novel and interaction SNPs in an independent study sample of up to 824 

119,644 European adults from the UK Biobank study (Tables 1-4, Supplementary Table 15, 825 
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Supplementary Fig 9). We found consistent directions of effects in smoking strata (for Approaches 2 and 826 

3) and in SNPadjSMK results (Approach 1) for each locus examined (Supplementary Fig. 13). For BMI, 3 827 

SNPs were not GWS (P>5E-8) following meta-analysis with our GIANT results: rs12629427 near EPAH3 828 

(Approach 1); rs1809420 within a known locus near ADAMTS7 i(Approach 4) remained significant for 829 

interaction, but not for SNPadjSMK; and rs336396 near INPP4B (Approach 3).  For WCadjBMI, 3 SNPs 830 

were not GWS (P>5E-8) following meta-analysis with our results: rs1545348 near RAI14 (Approach 1); 831 

rs4141488 near GRIN2A (Approach 3); and rs6012558 near PRNP (Approach 3). For WHRadjBMI, only 1 832 

SNP from Approach 4 was not significant following meta-analysis with our results: rs12608504 near 833 

JUND remained GWS for SNPadjSMK, but was only nominally significant for interaction (Pint=0.013).  834 

 835 

Challenges in Accounting for Environmental Exposures in GWAS 836 

 837 

A possible limitation of our study may be the definition and harmonization of smoking status. We chose 838 

to stratify on current smoking status without consideration of type of smoking (e.g. cigarette, pipe) for 839 

two reasons. First, focusing on weight alone, former smokers tend to return to their expected weight 840 

quickly following smoking cessation9, 15, 59. Second, this definition allowed us to maximize sample size, as 841 

many participating studies only had current smoking status available.  However, WC and WHR may not 842 

behave in the same manner as weight and BMI with former smokers retaining excess fat around their 843 

waist60. Thus, results may differ with alternative harmonization of smoking exposure.  844 

 845 

Another limitation may be potential bias in our effect estimates when adjusting for a correlated 846 

covariate (e.g. collider bias)61, 62. This phenomenon is of particular concern when the correlation 847 

between the outcome and the covariate is high and when significant genetic associations occur with 848 

both traits in opposite directions. IOur analyses adjusted both WC and WHR for BMI. WHR has a 849 

correlation of 0.49 with BMI, while WC has a correlation of 0.8562. Using previously published results for 850 
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BMI, WCadjBMI and WHRadjBMI, we find three novel loci for WCadjBMI (near DOCK3, ARFGEF2, 851 

TMEM38B) and two for WHRadjBMI (near EHMT2, HLA-C) (Supplementary Data 8) with nominally 852 

significant associations with BMI and opposite directions of effect. At these loci, the genetic effect 853 

estimates should be interpreted with caution. Additionally, we adjusted for SMK in Approach 1 854 

(SNPadjSMK). However binary smoking status, as we used, has a low correlation to BMI, WC, and WHR, 855 

as estimated in the ARIC study’s European descent participants (-0.13, 0.08, and 0.12 respectively) and 856 

in the Framingham Heart Study (-0.05, 0.08, 0.16). Additionally, there are no loci identified in Approach 857 

1 (SNPadjSMK) that are associated with any smoking behavior trait and that exhibit an opposite 858 

direction of effect from that identified in our adiposity traits (Supplementary Data 8). We therefore 859 

preclude potential collider bias and postulate true gain in power through SMK-adjustment at these loci. 860 

 861 

To assess how much additional information is provided by accounting for SMK and GxSMK in GWAS for 862 

obesity traits, we compared genetic risk scores (GRSs) based on various subsets of lead SNP genotypes in 863 

various regression models (Methods). While any GRS was associated with its obesity trait (P<1.6 x 10-7, 864 

Supplementary Table 16), adding SMK and GxSMK terms to the regression model along with novel 865 

variants to the GRSs substantially increased variance explained. For example, variance explained 866 

increased by 38% for BMI (from 1.53% to 2.11%, P=4.3x10-5), by 27% for WCadjBMI (from 2.59% to 867 

3.29%, P=3.9x10-6) and by 168% for WHRadjBMI (from 0.82% to 2.20%, P=3.2x10-11). Therefore, despite 868 

potential limitations, there is much to be gained by accounting for environmental exposures in GWAS 869 

studies. 870 

 871 

 872 

DISCUSSION 873 

 874 



39 
 

To better understand the effects of smoking on genetic susceptibility to obesity, we conducted meta-875 

analyses to uncover genetic variants that may be masked when the environmental influence of smoking 876 

is not considered, and to discover genetic loci that interact with smoking on adiposity-related traits. We 877 

identified 161 loci in total, including 23 novel loci (6 for BMI, 11 for WCadjBMI, and 6 for WHRadjBMI). 878 

While many of our newly identified loci support the hypothesis that smoking may influence weight 879 

fluctuations through appetite regulation, these novel loci also have highlighted new biological processes 880 

and pathways implicated in the pathogenesis of obesity.  881 

  882 

Importantly, we identified nine loci with convincing evidence of GxSMK interaction on obesity-related 883 

traits. We were able to replicate the previous GxSMK interaction with BMI within the CHRNA5-CHRNA3-884 

CHRNB4 gene cluster. One novel BMI-associated locus near INPP4B and two novel WCadjBMI-associated 885 

loci near GRIN2A and PRNP displayed significant GxSMK interaction. We were also able to identify 886 

significant GxSMK interaction for one known BMI-associated locus near ADAMTS7 and for five known 887 

WHRadjBMI-associated loci near LYPLAL1, RSPO3, MAP3K1, HOXC4-HOXC6 and JUND. The majority of 888 

these loci harbor strong candidate genes for adiposity with a possible role for the modulation of effects 889 

through tobacco use.   890 

 891 

We identified 18 new loci in Approach 1 (PSNPadjSMK) by adjusting for current smoking status. Our analyses 892 

did not allow us to determine whether these discoveries are due to different subsets of subjects 893 

included in the analyses compared to previous studies1, 2 or due only to adjusting for current smoking.  894 

Adjustment for current smoking in our analyses, however, did reveal novel associations. Specifically 895 

after accounting for smoking in our analyses, all novel BMI loci exhibit P-values that are at least one 896 

order of magnitude lower than in previous GIANT investigations, despite smaller samples in the current 897 

analysis2.  While sample sizes for both WCadjBMI and WHRadjBMI are comparable with previous GIANT 898 
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investigations, our p-values for variants identified in Approach 1 are at least two orders of magnitude 899 

lower than previous findings. Thus, adjustment for smoking may have indeed revealed new loci. Further, 900 

loci identified in Approach 2, including 9 novel loci, suggest that accounting for interaction improves our 901 

ability to detect these loci even in the presence of only modest evidence of GxSMK interaction.   902 

 903 

There are several challenges in validating genetic associations that account for environmental exposure. 904 

In addition to exposure harmonization and potential bias due to adjustment for smoking exposure, 905 

differences in trait distribution, environmental exposure frequency, ancestry-specific LD patterns and 906 

allele frequency across studies may lead to difficulties in replication, especially for gene-by-environment 907 

studies63, 64. Further, the “winner’s curse”  (inflated discovery effects estimates) requires larger sample 908 

sizes for adequate power in replication studies65. Despite these challenges, we were able to detect 909 

consistent direction of effect in an independent sample for all novel loci. Some results that did not 910 

remain GWS in the GIANT + UKBB meta-analysis had results that were just under the threshold for 911 

significance, suggesting that a larger sample may be needed to confirm these results, and thus the 912 

associations near INPP4B, GRIN2A, RAI14, PRNP, and JUND should be interpreted with caution.  913 

 914 

While we found that effects were not significantly enriched in smokers for BMI, there is a greater 915 

proportion of variance in BMI explained by variants that are significant for Approach 1 (SNPadjSMK), 916 

which may be expected given that there are a greater number of variants with higher effect estimates in 917 

smokers. For WCadjBMI, there was no enrichment for stronger effects in one stratum compared to the 918 

other for our significant loci; however, there was a greater proportion of explained variance in 919 

WCadjBMI for loci identified in Approach 1 (SNPadjSMK) in nonsmokers.  For WHRadjBMI, there were 920 

significantly more loci that exhibit greater effects in nonsmokers, and this pattern was mirrored in the 921 

variance explained analysis. The large difference between effects in smokers and nonsmokers likely 922 
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explains the sub-GWS levels of our loci in previous GIANT investigations2. For example, the T allele of 923 

rs7697556, 81kb from the ADAMTS3 gene, was associated with increased WCadjBMI and exhibits a six-924 

fold greater effect in nonsmokers compared to smokers, although the interaction effect was only 925 

nominal; in previous GWAS this variant was nearly GWS. These differences in effect estimates between 926 

smokers and nonsmokers may help explain inconsistent findings in previous analyses that show central 927 

adiposity increases with increased smoking, but is associated with decreased weight and BMI6, 11, 12.  928 

 929 

Our results support previous findings that implicate genes involved in transcription and gene expression, 930 

appetite regulation, macronutrient metabolism, and glucose homeostasis. Several of our novel loci have 931 

candidate genes within 500 kb of our tag variants that are highly expressed and/or active in brain tissue 932 

(BBX, KIF1B, SOX11, and EPHA3) and, like other obesity-associated genes, may be involved in previously-933 

identified pathways linked to neuronal regulation of appetite (KIF1B, GRIN2A, and SLC23A2), 934 

adipo/angiogenesis (ANGPTL3 and TNF) and glucose, lipid and energy homeostasis (CD47, STK25, STK19, 935 

RAGE, AIF1, LYPLAL1, HDLBP, ANGPTL3, DOCK7, KIF1B, PREX1, and RPS12).  936 

 937 

Many our newly identified loci highlight novel biological functions and pathways where dysregulation 938 

may lead to increased susceptibility to obesity, including response to oxidative stress, addictive 939 

behavior, and newly identified regulatory functions. There is a growing body of evidence that supports 940 

the notion that exposure to oxidative stress leads to increased adiposity, risk of obesity, and poor 941 

cardiometabolic outcomes30, 66, 67. Our results for BMI and WCadjBMI, specifically associations identified 942 

near CHRNA5-CHRNA3-CHRNB4, PRNP, SLC23A2, BACH1, and NMNAT1, highlight new biological 943 

pathways and processes for future examination and may lead to a greater understanding of how 944 

oxidative stress leads to changes in obesity phenotypes and downstream cardiometabolic risk.  945 

 946 
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By considering current smoking, we were able to identify 6 novel loci for BMI, 11 for WCadjBMI, and 6 947 

for WHRadjBMI, and highlight novel biological processes and regulatory functions for genes implicated 948 

in increased obesity risk. Eighteen of these remained significant in our validation with the UK Biobank 949 

sample. We confirmed most established loci in our analyses after adjustment for smoking status in 950 

smaller samples than were needed in previous discovery analyses.  A typical approach in large-scale 951 

GWAS meta-analyses is not to adjust for covariates such as current smoking; our findings highlight the 952 

importance of accounting for environmental exposures in genetic analyses.  953 
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 954 

METHODS 955 

 956 

Study Design Overview 957 

We applied four approaches to identify genetic loci that influence adiposity traits by accounting for 958 

current tobacco smoking status (Figure 1). We defined smokers as those who responded that they were 959 

currently smoking; not current smokers were those that responded “no” to currently smoking. We 960 

evaluated three traits: body mass index (BMI), waist circumference adjusted for BMI (WCadjBMI), and 961 

waist-to-hip ratio adjusted for BMI (WHRadjBMI). Our first two meta-analytical approaches were aimed 962 

at determining whether there are novel genetic variants that affect adiposity traits by adjusting for SMK 963 

(SNPadjSMK), or by jointly accounting for SMK and for interaction with SMK (SNPjoint); while 964 

Approaches 3 and 4 aimed to determine whether there are genetic variants that affect adiposity traits 965 

through interaction with SMK (SNPint and SNPscreen) (Figure 1). Our primary meta-analyses focused on 966 

results from all ancestries, sexes combined. Secondary meta-analyses were performed using the 967 

European-descent populations only, as well as stratified by sex (men-only and women-only) in all 968 

ancestries and in European-descent study populations.    969 

 970 

Cohort Descriptions and Sample Sizes 971 

The GIANT consortium was formed by an international group of researchers interested in understanding 972 

the genetic architecture of anthropometric traits (Supplemental Tables 1-4 for study sample sizes and 973 

descriptive statistics). In total, we included up to 79 studies comprising up to 241,258 individuals for BMI 974 

(51,080 smokers, 190,178 nonsmokers), 208,176 for WCadjBMI (43,226 smokers, 164,950 nonsmokers), 975 

and 189,180 for WHRadjBMI (40,543 smokers, 148,637 nonsmokers) with HapMap II imputed genome-976 

wide chip data (up to 2.8M SNPs in association analyses), and/or with genotyped MetaboChip data 977 
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(~195K SNPs in association analyses)68. In instances where studies submitted both Metabochip and 978 

GWAS data, these were for non-overlapping individuals. Each study’s Institutional Review Board has 979 

approved this research and all study participants have provided written informed consent. 980 

 981 

Phenotype descriptions  982 

Our study highlights three traits of interest: BMI, WCadjBMI and WHRadjBMI. Height and weight, used 983 

to calculate BMI (kg/m2), were measured in all studies; waist and hip circumferences were measured in 984 

the vast majority. For each sex, traits were adjusted using linear regression for age and age2 (as well as 985 

for BMI for WCadjBMI and WHRadjBMI), and (when appropriate) for study site and principal 986 

components to account for ancestry. Family studies used linear mixed effects models to account for 987 

familial relationships and also conducted analyses for men and women combined including sex in the 988 

model. Phenotype residuals were obtained from the adjustment models and were inverse normally 989 

transformed subsequently to facilitate comparability across studies and with previously published 990 

analyses. The trait transformation was conducted separately for smokers and nonsmokers for the SMK-991 

stratified model and using all individuals for the SMK-adjusted model. 992 

 993 

Defining Smokers 994 

The participating studies have varying levels of information on smoking, some with a simple binary 995 

variable and others with repeated, precise data. Since the effects of smoking cessation on adiposity 996 

appear to be immediate9, 10, 59, a binary smoking trait (current smoker vs. not current smoker) is used for 997 

the analyses as most studies can readily derive this variable.  We did not use a variable of ‘ever smoker 998 

vs. never’ as it increases heterogeneity across studies, thus adding noise; also this definition would make 999 

harmonization across studies difficult.  1000 

 1001 
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Genotype Identification and Imputation  1002 

Studies with GWAS array data or Metabochip array data contributed to the results. Each study applied 1003 

study‐specific standard exclusions for sample call rate, gender checks, sample heterogeneity and ethnic 1004 

group outliers (Supplementary Table 2). For most studies (except those that employed directly typed 1005 

MetaboChip genotypes), genome-wide chip data was imputed to the HapMap II reference data set via 1006 

MACH69, IMPUTE70, BimBam71 or Beagle72.  1007 

 1008 

Study Level Analyses  1009 

To obtain study-specific summary statistics used in subsequent meta-analyses, the following linear 1010 

models (or linear mixed effects models for studies with families/related individuals) were run separately 1011 

for men and women and separately for cases and controls for case-control studies using phenotype 1012 

residuals from the models described above. Studies with family data also conducted analyses with these 1013 

models for men and women combined after accounting for dependency among family members as a 1014 

function of their kinship correlations. We assumed an additive genetic model. 1015 

 1016 

SMK-adjusted:   TRAIT = β0 + β1SNP + β2SMK  1017 

SMK-stratified:   TRAIT = β0 + β1SNP (run in current smokers and nonsmokers separately) 1018 

 1019 

The analyses were run using various GWAS software, including MACH2QTL 73, SNPTEST 74, ProbABEL75, 1020 

GenABEL76, Merlin77, PLINK78 or QUICKTEST79. 1021 

 1022 

Quality control of study-specific summary statistics 1023 

The aggregated summary statistics were quality-controlled according to a standardized protocol80. These 1024 

included checks for issues with trait transformations, allele frequencies and strand. Low quality SNPs in 1025 
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each study were excluded for the following criteria: (i) SNPs with low minor allele count (MAC <= 5, MAC 1026 

= MAF * N) and monomorphic SNPs, (ii) genotyped SNPs with low SNP call-rate (< 95%) or low Hardy-1027 

Weinberg equilibrium test P-Value (< 10-6), (iii) imputed SNPs with low imputation quality (MACH-Rsq or 1028 

OEVAR<0.3, or information score <0.4 for SNPTEST/IMPUTE/IMPUTE2, or <0.8 for PLINK). To test for 1029 

issues with relatedness or overlapping samples and to correct for potential population stratification, the 1030 

study-specific standard errors and association P-Values were genomic control (GC) corrected using 1031 

lambda factors81 (Supplementary Fig. 1). GC correction for GWAS data used all SNPs, but GC correction 1032 

for MetaboChip data were restricted to chip QT interval SNPs only as the chip was enriched for 1033 

associations with obesity-related traits. Any study-level GWAS file with a lambda > 1.5 was removed 1034 

from further analyses. While we established this criterion, no study results were removed for this 1035 

reason. 1036 

 1037 

Meta-analyses 1038 

Meta-analyses used study-specific summary statistics for the phenotype associations for each of the 1039 

above models. We used a fixed-effects inverse variance weighted method for the SNP main effect 1040 

analyses. All meta-analyses were run in METAL82. As study results came in two separate batches (Stage 1 1041 

and Stage 2), meta-analyses from the two stages were further meta-analyzed (Stage 1 + Stage 2). A 1042 

second GC correction was applied to all SNPs when combining Stage 1 and Stage 2 meta-analyses in the 1043 

final meta-analysis. First, Hapmap-imputed GWAS data were meta-analyzed together, as were 1044 

Metabochip studies. This step was followed by a combined GWAS + Metabochip meta-analysis. For 1045 

primary analyses, we conducted meta-analyses across ancestries and sexes. For secondary meta-1046 

analyses, we conducted meta-analyses in European-descent studies alone, and sex-specific meta-1047 

analyses. There were two reasons for conducting secondary meta-analyses. First, both WCadjBMI and 1048 

WHRadjBMI have been shown to display sex-specific genetic effects2, 83, 84. Second, by including 1049 
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populations from multiple ancestries in our primary meta-analyses, we may be introducing 1050 

heterogeneity due to differences in effect sizes, allele frequencies, and patterns of linkage 1051 

disequilibrium across ancestries, potentially decreasing power to detect genetic effects. See 1052 

Supplementary Fig. 1 for a summary of the primary meta-analysis study design. The obtained SMK-1053 

stratified summary statistics were later used to calculate summary SNPjoint and SNPint statistics using 1054 

EasyStrata85. Briefly, this software implements a two-sample, large sample test of equal regression 1055 

parameters between smokers and nonsmokers as described by Randall et al83  for SNPint and the two 1056 

degree of freedom test of main and interaction effects for SNPjoint as described by Aschard et al16.  1057 

 1058 

Lead SNP selection 1059 

Before selecting a lead SNP for each locus, SNPs with high heterogeneity I2≥0.75 or a minimum sample 1060 

size below 50% of the maximum N for each strata (e.g. N> max[N Women Smokers]/2) were excluded. 1061 

Lead SNPs that met significance criteria were selected based on distance (+/- 500 kb), and we defined 1062 

the SNP with the lowest P-value as the top SNP for a locus. SNPs that reached genome-wide significance 1063 

(GWS), but had no other SNPs within 500 kb with a P<1E-5 (lonely SNPs), were excluded from the SNP 1064 

selection process. Two variants were excluded from Approach 2 based on this criterion, rs2149656 for 1065 

WCadjBMI and rs2362267 for WHRadjBMI. 1066 

 1067 

Approaches  1068 

Figure 1 outlines the four approaches that we used to identify novel SNPs.  The left side of Figure 1 1069 

focuses on the first hypothesis that examines the effect of SNPs on adiposity traits.  Approach 1 1070 

considered a linear regression model that includes the SNP and SMK, thus adjusting for SMK 1071 

(SNPadjSMK). Summary SNPadjSMK results were obtained from the SMK-adjusted meta-analysis.  1072 

Approach 2 used summary SMK-stratified meta-analysis results as described by Aschard et al.16 to 1073 
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consider the joint hypothesis that a genetic variant has main and/or interaction effects on outcomes as a 1074 

2 degree of freedom test (SNPjoint).  For this approach, the null hypothesis was that there is no main 1075 

and no interaction effect on the outcome.  Thus, rejection of this hypothesis could be due to either a 1076 

main effect or an interaction effect or to both.   1077 

 1078 

The right side of Figure 1 focuses on our second hypothesis, testing for interaction of a variant with SMK 1079 

on adiposity traits as outcomes.  Approach 3 used the SMK-stratified results to directly contrast the 1080 

regression coefficients for a test of interaction (SNPint)83. Approach 4 used a screening strategy to 1081 

evaluate interaction, whereby the SMK-adjusted main effect results (Approach 1) were screened for 1082 

variants significant at the P<5x10-8 level.  These variants were then carried forward for a test of 1083 

interaction, comparing the SMK-stratified specific regression coefficients in the second step 1084 

(SNPscreen).    1085 

 1086 

In Approaches 1-3 variants significant at P<5x10-8 were considered GWS. In Approach 4 (SNPscreen) 1087 

variants for which the p-value of the test of interaction is less than 0.05 divided by the number of 1088 

variants carried forward were considered significant for interaction. We performed analytical power 1089 

computations to demonstrate the usefulness and characteristic of the two interaction Approaches.  1090 

 1091 

LocusZoom Plots 1092 

Regional association plots were generated for novel loci using the program Locuszoom86. For each plot, 1093 

LD was calculated using a multiethnic sample of the 1000 Genomes Phase I reference panels87, including 1094 

EUR, AFR, EAS, and AMR. Previous SNP-trait associations highlighted within the plots include traits of 1095 

interest (e.g. cardiometabolic, addiction, behavior, anthropometrics) found in the NHGRI-EMI GWAS 1096 

Catalog and supplemented with recent GWAS studies from the literature1, 2, 58, 84. 1097 
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 1098 

Conditional Analyses  1099 

To determine if multiple association signals were present within a single locus, we used GCTA17 to 1100 

perform approximate joint conditional analyses on the SNPadjSMK and SMK- stratified data. The 1101 

following criteria were used to select candidate loci for conditional analyses: nearby SNP (+/- 500kb) 1102 

with an R2>0.4 and an association P<1E-5 for any of our primary analyses. GCTA uses associations from 1103 

our meta-analyses and LD estimates from reference data sets containing individual-level genotypic data 1104 

to perform the conditional analyses. To calculate the LD structure, we used two U.S. cohorts, the 1105 

Atherosclerosis Risk in Communities (ARIC) study consisting of 9,713 individuals of European descent 1106 

and 580 individuals of African American descent, and the Framingham Heart Study (FramHS) consisting 1107 

of 8,481 individuals of European ancestry, both studies imputed to HapMap r22. However, because our 1108 

primary analyses were conducted in multiple ancestries, each study supplemented the genetic data 1109 

using HapMap reference populations so that the final reference panel was composed of about 1-3% 1110 

Asians (CHB + JPT) and 4-6% Africans (YRI for the FramHS) for the entire reference sample. We extracted 1111 

each 1 MB region surrounding our candidate SNPs, performed joint approximate conditional analyses, 1112 

and then repeated the steps for the appropriate Approach to identify additional association signals. 1113 

 1114 

Many of the SNPs identified in the current analyses were nearby SNPs previously associated with related 1115 

anthropometric and obesity traits (e.g. height, visceral adipose tissue). For all lead SNPs near a SNP 1116 

previously associated with these traits, GCTA was also used to perform approximate conditional 1117 

analyses on the SNPadjSMK and SMK-stratified data in order to determine if the loci identified here are 1118 

independent of the previously identified SNP-trait associations.   1119 

 1120 

Power and Type I Error 1121 
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In order to illustrate the validity of the approaches with regards to type 1 error, we conducted 1122 

simulations. For two MAF, we assumed standardized stratum-specific outcomes for 50,000 smokers and 1123 

180,000 nonsmokers and generated 10,000 simulated stratum-specific effect sizes under the stratum-1124 

specific null hypotheses of “no stratum-specific effects”. We applied the four approaches to the 1125 

simulated stratum-specific association results and inferred type 1 error of each approach by visually 1126 

examining QQ plots and by calculating type 1 error rates. The type 1 error rates shown reflect the 1127 

proportion of nominally significant simulation results for the respective approach. Analytical power 1128 

calculations to identify effects for various combinations of SMK- and NonSMK-specific effects by the 1129 

Approaches 1-4 again assumed 50,000 smokers and 180,000 nonsmokers. We first assumed three 1130 

different fixed effect estimates in smokers that were small (𝑅𝑆𝑀𝐾
2 =0.01%, similar to the realistic NUDT3 1131 

effect on BMI), medium (𝑅𝑆𝑀𝐾
2 =0.07%, similar to the realistic BDNF effect on BMI) or large (𝑅𝑆𝑀𝐾

2 =0.34%, 1132 

similar to the realistic FTO effect on BMI) genetic effects, and varied the effect in nonsmokers. Second, 1133 

we assumed fixed (small, medium and large) effects in nonsmokers and varied the effect in smokers.  1134 

 1135 

Biological Summaries  1136 

To identify genes that may be implicated in the association between our lead SNPs (Tables 1-3) and BMI, 1137 

WHRadjBMI, and WCadjBMI, and to shed light on the complex relationship between genetic variants, 1138 

SMK and adiposity, we performed in-depth literature searches on nearby candidate genes. Snipper v1.2 1139 

(http://csg.sph.umich.edu/boehnke/snipper/) was used to identify any genes and cis- or trans-eQTLs 1140 

within 500kb of our lead SNPs. All genes identified by Snipper were manually curated and examined for 1141 

evidence of relationship with smoking and/or adiposity. To explore any potential regulatory or function 1142 

role of the association regions, loci were also examined using several bioinformatic tools/databases, 1143 

including HaploReg v4.188, UCSC Genome Browser89 (available at http://genome.ucsc.edu/), GTeX 1144 

Portal90, and RegulomeDB91. 1145 

http://genome.ucsc.edu/
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 1146 

eQTL Analyses 1147 

We used two approaches to systematically explore the role of novel loci in regulating gene expression. 1148 

First, to gain a general overview of the regulatory role of newly identified GWAS regions, we conducted 1149 

an eQTL lookup using >50 eQTL studies92, with specific citations for >100 datasets included in the current 1150 

query for blood cell related eQTL studies  and relevant non-blood cell tissue eQTLs (e.g. adipose and 1151 

brain tissues). Additional eQTL data was integrated from online sources including ScanDB, the Broad 1152 

Institute GTEx Portal, and the Pritchard Lab (eqtl.uchicago.edu). Additional details on the methods, 1153 

including study references can be found in Supplementary Note 3. Only significant cis-eQTLS in high LD 1154 

with our novel lead SNPs (r2>0.9, calculated in the CEU+YRI+CHB+JPT 1000 Genomes reference panel), 1155 

or proxy SNPs, were retained for consideration. 1156 

 1157 

Second, since public databases with eQTL data do not have information available on current smoking 1158 

status, we also conducted a cis-eQTL association analysis using expression results derived from fasting 1159 

peripheral whole blood using the Human Exon 1.0 ST Array (Affymetrix, Inc., Santa Clara, CA). The raw 1160 

expression data were quantile-normalized, log2 transformed, followed by summarization using Robust 1161 

Multi-array Average93 and further adjusted for technical covariates, including the first principal 1162 

component of the expression data, batch effect, the all-probeset-mean residual, blood cell counts, and 1163 

cohort membership. We evaluated all transcripts +/- 1MB around each novel variant in the Framingham 1164 

Heart Study while accounting for current smoking status, using the following four approaches similar to 1165 

those used in our primary analyses of our traits: 1) eQTL adjusted for SMK, 2) eQTL stratified by SMK, 3) 1166 

eQTL x SMK interaction, and 4) joint main + eQTLxSMK interaction). Significance level was evaluated by 1167 

FDR < 5% per eQTL analysis and across all loci identified for that model in the primary meta-analysis. 1168 

Additional details can be found in Supplementary Note 3. 1169 
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 1170 

Variance-explained estimates 1171 

We estimated the phenotypic variance in smokers and nonsmokers explained by the association signals 1172 

using a method previously described by Kutalik et al.94 For each associated region, we selected subsets 1173 

of SNPs within 500 kb of our lead SNPs and based on varying P value thresholds (ranging from 1x10-8 to 1174 

0.1) from Approach 1 (SNPadjSMK model). First, each subset of SNPs was clumped into independent 1175 

regions to identify the lead SNP for each region. The variance explained by each subset of SNPs in the 1176 

SMK and nonSMK strata was estimated by summing the variance explained by the individual lead SNPs.  1177 

 1178 

Smoking Behavior Lookups   1179 

In order to determine if any of the loci identified in the current study are associated with smoking 1180 

behavior, we conducted a look-up of all lead SNPs from novel loci and Approach 3 in existing GWAS of 1181 

smoking behavior3. The analysis consists of phasing study-specific GWAS samples contributing to the 1182 

smoking behavior meta-analysis, imputation, association testing and meta-analysis. To ensure that all 1183 

SNPs of interest were available in the smoking GWAS, the program SHAPEIT295 was used to phase a 1184 

region 500Kb either side of each lead SNP, and imputation was carried out using IMPUTE296 with the 1185 

1000 Genomes Phase 3 dataset as a reference panel. 1186 

 1187 

Each region was analyzed for 3 smoking related phenotypes: (i) Ever vs Never smokers, (ii) Current vs 1188 

Non-current smokers, and (iii) a categorical measure of smoking quantity55. The smoking quantity levels 1189 

were 0 (defined as 1-10 cigarettes per day [CPD]), 1 (11-20 CPD), 2 (21-30 CPD) and 3 (31 or more CPD). 1190 

Each increment represents an increase in smoking quantity of 10 cigarettes per day. There were 10,058 1191 

Never smokers, 13,418 Ever smokers, 11,796 Non-current smokers, 6,966 Current smokers and 11,436 1192 

samples with the SQ phenotypes. SNPMETA55 was used to perform an inverse-variance weighted fixed 1193 
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effects meta-analysis across cohorts at all SNPs in each region, and included a single GC correction. At 1194 

each SNP, only those cohorts that had an imputation info score > 0.5 were included in the meta-analysis. 1195 

 1196 

Main Effects Lookup in Previous GIANT Investigations 1197 

To better understand why our novel variants remained undiscovered in previous investigations that did 1198 

not take SMK into account, we also conducted a lookup of our novel variants in published GWAS results 1199 

examining genetic main effects on BMI, WC, WCadjBMI, WHR, WHRadjBMI, and height1, 2, 58. 1200 

 1201 

GWAS Catalog Lookups 1202 

To further investigate the identified genetic variants in this study and to gain additional insight into their 1203 

functionality and possible effects on related cardiometabolic traits, we searched for previous SNP-trait 1204 

associations nearby our lead SNPs. PLINK was used to find all SNPs within 500 kb of any of our lead SNPs 1205 

and calculate r2 values using a combined ancestry (AMR, AFR, EUR, ASN) 1000 Genomes Phase 1 1206 

reference panel87 to allow for LD calculation for SNPs on the Illumina Metabochip and to best estimate 1207 

LD in our multiethnic GWAS. All SNPs within the specified regions were compared with the NHGRI-EBI 1208 

(National Human Genome Research Institute, European Bioinformatics Institute) GWAS Catalog, version 1209 

1.0 (www.ebi.ac.uk/gwas)56, 57 for overlap, and distances between the two SNPs were calculated using 1210 

STATA v14, for the chromosome and base pair positions based on human genome reference build 19. All 1211 

previous associations within 500 kb and with an R2>0.5 with our lead SNP were retained for further 1212 

interrogation. 1213 

 1214 

Genetic risk score calculation 1215 

We calculated several unweighted genetic risk scores (GRSs) for each individual in the population-based 1216 

KORA-S3 and KORA-S4 studies (total N = 3,457). We compared GRSs limited to previously known lead 1217 
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SNPs (see Supplementary Data 7 for lists of previously known lead SNPs) with GRSs based on previously 1218 

known and novel lead SNPs from the current study (see Tables 1-4 for lists of novel lead SNPs). Risk 1219 

scores were tested for association with the obesity trait using the following linear regression models: 1220 

The unadjusted GRS model (TRAIT = β0 + β1GRS), the adjusted GRS model (TRAIT = β0 + β1GRS + β2SMK) 1221 

and the GRSxSMK interaction model (TRAIT = β0 + β1GRS + β2SMK + β3GRSxSMK).  1222 

 1223 

DATA AVAILABILITY  1224 

Summary statistics of all analyses are available at https://www.broadinstitute.org/collaboration/giant/. 1225 

  1226 
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Figure 1. Summary of study design and results. Approach 1 uses both SNP and SMK in the association 1677 

model. Approaches 2 and 3 use the SMK-stratified meta-analyses. Approach 4 screens loci based on 1678 

Approach 1, then uses SMK-stratified results to identify loci with significant interaction effects 1679 

(Methods). 1680 

 1681 

 1682 

  1683 
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Figure 2. Forest plot for novel and GxSMK loci stratified by smoking status. Estimated effect estimates (β ± 95% CI) per risk allele for a) BMI, b) 1684 

WCadjBMI, and c) WHRadjBMI for novel loci from Approaches 1 and 2 (SNPadjSMK and SNPjoint, respectively) and all loci from Approaches 3 1685 

and 4 (SNPint and SNPscreen) identified in the primary meta-analyses. Loci are ordered by greater magnitude of effect in smokers compared to 1686 

nonsmokers and labeled with the nearest gene. For the locus near TMEM38B, rs9409082 was used for effect estimates in this plot. (¥ loci 1687 

identified for Approach 4, *loci identified for Approach 3). 1688 

 1689 

  1690 
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Figure 3. Power comparison across Approaches. Shown is the power to identify adjusted (Approach 1, 1691 

dashed black lines), joint (Approach 2, dotted green lines) and interaction (Approach 3 and 4, solid 1692 

magenta and orange lines) effects for various combinations of SMK- and NonSMK-specific effects and 1693 

assuming   50,000 smokers and 180,000 nonsmokers. For Figures a, c and e, the effect in smokers was 1694 

fixed at a small (𝑅𝑆𝑀𝐾
2 =0.01%, similar to the realistic NUDT3 effect on BMI), medium (𝑅𝑆𝑀𝐾

2 =0.07%, 1695 

similar to the realistic BDNF effect on BMI) or large (𝑅𝑆𝑀𝐾
2 =0.34%, similar to the realistic FTO effect on 1696 

BMI) genetic effect, respectively, and varied in nonsmokers. For Figures b, d and f, the effect in 1697 

nonsmokers was fixed to the small, medium and large BMI effects, respectively, and varied in smokers.  1698 
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Figure 4. Stratum specific estimates of variance explained. Total smoking status-specific explained 1701 

variance (+/- SE) by SNPs meeting varying thresholds of overall association in Approach 1 (SNPadjSMK) 1702 

and the difference between the proportion of variance explained between smokers and nonsmokers for 1703 

these same sets of SNPs in BMI (a,b), WCadjBMI (c,d),  and for WHRadjBMI (e,f). 1704 
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Table 1. Summary of association results for novel loci reaching genome-wide significance in Approach (App) 1 (PSNPadjSMK<5E-8) or Approach 2 1707 

(PSNPjoint <5E-8) for our primary meta-analysis in combined ancestries and combined sexes. 1708 

 1709 

App Marker 
Chr:Pos 
(hg19) 

Nearest 
N EAF 

Alleles SMOKERS NON-SMOKERS Main and Interaction Effects GIANT + UKBB 

Gene E/O β P β P βadj PSNPadjSMK PSNPint PSNPjoint PSNPadjSMK PSNPint PSNPjoint 

BMI                                   

1,2 rs10929925 2:6155557 SOX11 225,067 0.55 C/A 0.019 7.80E-03 0.02 8.40E-08 0.020 1.1E-09 8.2E-01 1.6E-08 1.5E-13 4.5E-01 9.8E-13 

1 rs6794880 3:84451512 SRRM1P2 186,968 0.85 A/G 0.025 2.30E-02 0.027 3.90E-06 0.028 4.3E-08 8.5E-01 1.8E-06 4.9E-09 4.5E-01 9.7E-08 

2 rs13069244 3:180441172 CCDC39 233,776 0.08 A/G 0.061 1.80E-05 0.031 6.60E-05 0.035 1.2E-07 4.6E-02 3.5E-08 6.1E-10 1.1E-02 9.6E-11 

WCadjBMI                                 

1,2 rs17396340 1:10286176 KIF1B 206,485 0.14 A/G 0.016 1.40E-01 0.035 4.70E-10 0.028 3.0E-08 9.8E-02 9.1E-10 1.0E-11 2.9E-02 1.5E-13 

1,2 rs6743226 2:242236972 HDLBP 200,666 0.53 C/T 0.018 1.30E-02 0.023 2.60E-09 0.022 1.2E-10 5.5E-01 5.8E-10 6.7E-12 7.0E-01 2.8E-11 

1 rs4378999 3:51208646 DOCK3 156,566 0.13 T/A 0.035 1.30E-02 0.035 1.30E-06 0.036 4.1E-08 9.7E-01 4.1E-07 7.6E-11 5.3E-01 3.2E-10 

1,2 rs7697556 4:73515313 ADAMTS3 206,017 0.49 T/C 0.004 6.30E-01 0.025 7.30E-11 0.021 5.2E-09 6.7E-03 7.6E-10 5.4E-19 1.9E-02 2.7E-19 

1 rs10269774 7:92253972 CDK6 157,552 0.34 A/G 0.024 6.60E-03 0.023 1.10E-06 0.023 2.9E-08 8.8E-01 1.6E-07 2.9E-10 7.7E-01 2.1E-09 

1 rs6470765 8:130736697 GSDMC 157,450 0.76 A/C 0.032 1.90E-03 0.023 1.70E-05 0.026 4.8E-08 4.3E-01 9.5E-07 2.5E-12 8.9E-01 9.0E-11 

2 rs9408815 9:108890521 
TMEM38B 

156,427 0.75 C/G 0.012 2.30E-01 0.03 4.20E-09 0.026 2.3E-08 8.5E-02 1.7E-08 1.2E-11 3.0E-01 2.8E-11 

1 rs9409082 9:108901049 157,785 0.76 C/T 0.017 8.10E-02 0.029 2.60E-08 0.027 1.5E-08 2.7E-01 4.6E-08 9.5E-12 6.6E-01 6.5E-11 

1 rs6012558 20:47531286 ARFGEF2 208,004 0.41 A/G 0.026 5.40E-04 0.018 6.50E-06 0.020 1.9E-08 3.3E-01 1.3E-07 1.5E-09 7.0E-02 3.0E-09 

WHRadjBMI                                 

1,2 rs1049281 6:31236567 HLA-C 149,285 0.66 C/T 0.022 1.30E-02 0.027 2.00E-08 0.025 2.2E-09 5.6E-01 5.3E-09 1.2E-18 8.3E-01 1.8E-10 

Abbreviations: Chr- chromosome; Pos- position (bp); E/O- effect/other; EAF- effect allele frequency; adj- adjusted for smoking; int- 
interaction; App- Approach. 

   
 1710 

 1711 
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Table 2. Novel loci showing significant association in Approaches 1 (SNPadjSMK), 2 (SNPjoint), 3 (SNPint), and 4 (SNPscreen) for loci identified in 1713 

secondary analysis samples, which were not identified in primary meta-analyses. All estimates are from the stratum specified in the 1714 

Approach:Sample column (E-European-only, A- all ancestries, C- combined sexes, W-women only, M- men only). * This locus was filtered from 1715 

approaches 2-4 due to low sample size in the SMK strata, and only p-values for Approach 1 are considered significant.  1716 

 1717 

Approach: 
Marker Chr:Pos (hg19) 

Nearest 
N EAF 

Alleles SMOKERS NON-SMOKERS Main and Interaction Effects GIANT + UKBB 

Strata Gene E/O β P β P βadj Padj Pint Pjoint PSNPadjSMK PSNPint PSNPjoint 

BMI                  

1:EC rs2481665 1:62594677 INADL 209,453 0.56 T/C 0.015 4.60E-02 0.021 8.90E-08 0.019 3.50E-08 4.00E-01 6.70E-08 3.3E-11 7.8E-01 2.0E-08 

1:AW rs12629427 3:89145340 
EPHA3 

137,961 0.26 C/T 0.025 2.10E-02 0.028 3.60E-07 0.027 4.80E-08 8.00E-01 2.00E-07 7.7E-08 9.1E-01 3.0E-07 

1:EW rs2173039 3:89142175 117,942 0.26 C/G 0.024 3.10E-02 0.032 8.90E-08 0.031 7.30E-09 5.70E-01 6.50E-08 2.4E-09 9.3E-01 2.2E-07 

WCadjBMI                 

1:EM rs1545348 5:34718343 RAI14 77,677 0.73 T/G 0.044 3.10E-04 0.03 1.90E-05 0.034 1.80E-08 3.20E-01 1.70E-07 1.2E-07 1.2E-01 4.8E-07 

2:EW rs6076699 20:4566688 PRNP 76,930 0.97 A/G 0.169 1.40E-05 -0.07 1.20E-04 -0.034 3.50E-02 1.40E-08 4.80E-08 4.2E-02 2.3E-06 3.4E-06 

WHRadjBMI                 

1:AW rs670752 3:107312980 BBX 107,568 0.32 A/G 0.012 5.50E-02 0.009 1.50E-02 0.027 4.90E-08 6.80E-01 7.80E-03 3.1E-10 3.8E-01 9.5E-05 

1:EC rs589428 6:31848220 EHMT2 162,918 0.66 G/T 0.006 1.20E-01 0.011 4.10E-04 0.022 2.80E-08 3.50E-01 7.00E-04 1.1E-17 8.4E-02 1.6E-10 

2:EC rs1856293 6:133480940 EYA4 127,431 0.52 A/C 0.006 5.30E-01 -0.028 9.10E-09 -0.019 6.50E-06 5.40E-04 4.70E-08 9.6E-08 1.3E-02 1.5E-08 

1:AW rs2001945 8:126477978 TRIB1 103,446 0.4 G/C 0.009 1.20E-01 0.013 1.00E-04 0.025 4.70E-08 5.90E-01 1.30E-04 1.1E-09 3.0E-01 1.4E-06 

1:EC rs17065323 13:44627788 SMIM2* 69,968 0.01 T/C 0.154 1.90E-01 -0.23 1.20E-10 -0.181 9.20E-09 1.40E-03 3.90E-10 9.6E-09 3.6E-03 1.3E-09 

Abbreviations: Chr- chromosome, Pos- position (bp), E/O- effect/other, EAF- effect allele frequency, Padj- adjusted for smoking, int- interaction. 
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Table 3. Summary of association results for loci showing significance for interaction with smoking in Approach (App) 3 (SNPint) and/or Approach 1720 

4 (SNPscreen) in our primary meta-analyses of combined ancestries and combined sexes. Ⱡ - known locus. 1721 

 1722 

App Marker Chr:Pos (hg19) 
Nearest 

N EAF 
Alleles SMOKERS NON-SMOKERS Main and Interaction Effects GIANT + UKBB 

Gene E/O β P β P βadj Padj Pint Pjoint PSNPadjSMK PSNPint PSNPjoint 

BMI                 

3 rs336396 4:143062811 INPP4B 169,646 0.18 T/C 0.063 4.8E-08 -0.006 3.4E-01 0.007 2.3E-01 2.1E-08 1.9E-07 7.4E-01 2.7E-06 1.3E-05 

3 rs12902602 Ⱡ 15:78967401 CHRNB4 240,135 0.62 A/G 0.047 1.8E-11 -0.002 5.5E-01 0.009 8.6E-03 4.1E-11 1.1E-10 1.1E-01 6.0E-13 1.6E-12 

WCadjBMI                 

3 rs4141488 16:9629067 GRIN2A 153,892 0.5 T/C 0.037 2.2E-05 -0.015 9.6E-04 -0.003 4.4E-01 2.7E-08 5.0E-07 9.5E-01 1.8E-06 1.1E-05 

WHRadjBMI                 

4 rs765751 Ⱡ 1:219669226 LYPLAL1 189,028 0.64 C/T 0.003 3.9E-01 0.019 3.1E-11 0.029 3.1E-16 7.3E-04 2.1E-10 9.1E-31 1.4E-04 7.8E-22 

4 rs7766106 Ⱡ 6:127455138 RSPO3 188,174 0.48 T/C 0.007 7.9E-02 0.022 2.2E-15 0.037 3.7E-27 9.7E-04 3.8E-15 4.4E-51 1.0E-05 3.4E-34 

Abbreviations: Chr- chromosome; Pos- position (bp); E/O- effect/other; EAF- effect allele frequency; adj- adjusted for smoking; int- 
interaction; App- Approach. 
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Table 4. Summary of association results for loci showing significance for interaction with smoking in Approach 3 (SNPint) and/or Approach 4 1725 

(SNPscreen) in our secondary meta-analyses not identified in primary meta-analyses. All estimates are from the stratum specified in the 1726 

Approach:Sample column (E-European-only, A- all ancestries, C- combined sexes, W-women only, M- men only). Ⱡ - known locus. The R2 between 1727 

the ADAMTS7 (rs1809420) and CHRNB4 variant (rs1290362) in Table 3 is 0.72 (HapMap 2, CEU). Additionally, the PRNP variant (rs6076699) is the same as the 1728 

variant that came up from Approach 2 (Table 2).  1729 

 1730 

Approach: 
Marker Chr:Pos (hg19) 

Nearest 
N EAF 

Alleles SMOKERS NON-SMOKERS Main and Interaction Effects GIANT + UKBB 

Strata Gene E/O β P β P βadj Padj Pint Pjoint PSNPadjSMK PSNPint PSNPjoint 

BMI                                   

4:AM rs1809420 Ⱡ 15:79056769 ADAMTS7 57,081 0.59 T/C 0.074 9.8E-08 0.023 2.0E-03 0.036 4.9E-08 9.4E-04 5.6E-09 9.8E-05 3.3E-05 1.9E-07 

WCadjBMI                                 

3:EW rs6076699 20:4566688 PRNP 76,930 0.97 A/G 0.169 1.4E-05 -0.07 1.2E-04 -0.034 3.5E-02 1.4E-08 4.8E-08 4.2E-02 2.3E-06 3.4E-06 

WHRadjBMI                                 

4:EM rs30000 Ⱡ 5:55803533 
MAP3K1 

71,424 0.27 G/A 0.002 7.8E-01 0.031 3.7E-08 0.04 1.7E-10 1.6E-04 2.7E-07 2.7E-17 3.2E-07 3.8E-15 

4:AM rs459193 Ⱡ 5:55806751 80,852 0.27 A/G 0.004 5.0E-01 0.034 4.1E-10 0.043 2.3E-13 6.8E-05 2.2E-09 3.5E-20 2.5E-07 1.6E-17 

4:AM rs2071449 Ⱡ 12:54428011 HOXC4- 70,868 0.37 A/C 0.003 6.0E-01 0.026 1.0E-06 0.034 9.1E-09 1.1E-03 5.7E-06 2.7E-12 8.0E-04 2.8E-09 

4:EM rs754133 Ⱡ 12:54418920 HOXC6 71,136 0.36 A/G 0.003 6.2E-01 0.026 8.2E-07 0.034 3.0E-09 1.1E-03 4.0E-06 2.1E-12 9.7E-04 4.0E-09 

4:AM rs12608504 Ⱡ 19:18389135 JUND 80,087 0.37 A/G 0.006 2.6E-01 0.025 5.0E-07 0.032 4.7E-09 5.5E-03 1.8E-06 2.9E-11 1.3E-02 1.6E-08 

Abbreviations: E/O- effect/other, EAF- effect allele frequency, SE- standard error; Chr- chromosome; Pos- position (bp); adj- 
adjusted for smoking; int- interaction; App- Approach.     
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