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A bstract141

An increasing number of genome-wide association (GWA) studies are now using the higher resolution142

1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G143

imputation will lead to the discovery of additional associated loci when compared to HapMap imputation.144

In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we145

compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using146

both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same147

91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were148

associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation149

was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based150

on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead151

to further independent tests that should be corrected for. When using a stricter Bonferroni correction for152

the 1000G GWA study (P-value < 2.5×10-8), the number of loci significant only using HapMap153

imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In154

conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation,155

although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was156

used. More generally, our results provide insights that are applicable to the implementation of other dense157

reference panels that are under development.158

159
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Introdu ction160

Most genome-wide association (GWA) studies to date have used their genotyped single nucleotide161

polymorphisms (SNPs) to impute about 2.5 million SNPs detected in the Phase 2 version of the HapMap162

Project (HapMap) [1-13], including mostly common SNPs with a minor allele frequency (MAF) of over163

5%. HapMap imputation enabled the interrogation of most common SNPs possible, even while meta-164

analyzing studies that used different genotyping arrays with low overlap [1]. However, low-frequency and165

rare variants are not well covered in the HapMap panel [14]. In addition, genetic variants other than166

SNPs, such as small insertion/deletions (indels) and large structural variants, are not included in HapMap-167

based imputed projects, and may be possible sources of missing explained heritability.168

In contrast, the more recently released Phase 1 version 3 of the 1000 Genomes Project (1000G) is169

based on a larger set of individuals [15], and comprises nearly 40 million variants, including 1.4 million170

indels. 1000G allows the interrogation of most common and low-frequency variants (MAF > 1%), and171

rare variants (MAF < 1%) that were previously not covered [16]. In general, improving reference panels172

can lead to the identification of additional significant loci both through the addition of new variants and173

the improved imputation of known variants. 1000G imputation may thus have several advantages, but174

given that the denser 1000G imputation comes at the cost of an increased computational and analytical175

burden, it is important to estimate the observed benefits in practice. Furthermore, such empirical data is176

needed to make informed decisions in the future on the use of newer reference panels such as UK10K,177

and the Haplotype Reference Consortium [17, 18]. While several GWA studies using 1000G imputation178

have been published or are in progress, their sample size differs from the previous GWA studies using179

HapMap imputation, making comparison difficult. Therefore, with the aim of evaluating the benefits of180

using 1000G imputation in GWA studies compared to HapMap imputation, we carried out meta-analyses181

of GWA studies of circulating fibrinogen concentration (a quantitative trait), using both HapMap and182

1000G imputed data on the same set of 91,953 individuals.183
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184

Resu lts185

Baseline characteristics of the participants for each of the included studies are shown in S1 Table, and186

genomic inflation factors are shown separately for the HapMap and 1000G GWA studies in S2 Table.187

The HapMap GWA study included 2,749,429 SNPs, and the 1000G GWA study included 10,883,314188

variants. Summary statistics for all variants in the HapMap and 1000G GWA studies are available via the189

dbGAP CHARGE Summary Results site [19]. Using a genome-wide significance threshold of 5×10-8, a190

total of 1,210 SNPs across 30 loci were associated with circulating fibrinogen concentration in the191

HapMap imputed GWA study compared with 4,096 variants across 35 loci in the 1000G imputed GWA192

study (S1 Fig and S2 Fig). These loci are described in further detail in S3 Table. Of these loci, six were193

associated only in the 1000G GWA study and one was associated only in the HapMap GWA study, while194

29 were overlapping (Fig 1A). The HapMap and 1000G lead variants of non-overlapping loci are195

described in Table 1, and leads variants of overlapping loci are described in Table 2. Among significant196

loci, the correlation coefficient across cohorts of the beta coefficients, P-values, and imputation quality197

scores of HapMap and 1000G lead variants were 0.925, 0.998, and 0.435 respectively (S3 Fig).198

Fig1.V enn diagram of the nu mberof locisignificantu singH apM ap(leftcircle)and 1000G (right199

circle)impu tation in A )the main analysis,B )the sensitivityanalysis applyingasignificance200

threshold of 2.5×10-8 to the 1000G GW A analysis,C )the sensitivityanalysis withou tu singgenomic201

controlcorrections,and D )the sensitivityanalysis exclu dingstu dies thatu sed differentimpu tation202

software,analysis software,orcovariates in the H apM apand 1000G GW A analyses.203

N on-overlappingloci204

The lead variants for the seven non-overlapping loci always differed between the HapMap and 1000G205

GWA studies, and all P-value differences were greater than one order of magnitude (for example: from206

5×10-8 to 5×10-9 or less). Differences between HapMap and 1000G imputation for the seven non-207

overlapping loci are summarized in Fig 2.208
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Fig2.S u mmaryof the differences between H apM apand 1000G impu tation forthe seven non-209

overlappingloci.210

211

Regional plots of the six loci significant only in the 1000G GWA study are shown in Fig 3. For212

four of these six loci, the correlation r2 between allelic dosages of the most associated variants imputed213

using HapMap and 1000G was less than 0.8 (S4 Table). None of the 1000G lead variants among these214

four loci were included in the HapMap GWA study, and neither were any good proxies (S5 Table).215

Fig3.Regionalplots of non-overlappinglocithatwere more significantlyassociated withfibrinogen216

in the 1000G GW A stu dy,inclu dingvariants from boththe H apM ap(red)and 1000G (green)217

GW A stu dies.218

219

A regional plot of the 6p21.3 locus, which was significant only in the HapMap GWA study, is220

shown in Fig 4. The most significant P-value at the locus was 8.5×10-9 in the HapMap GWA study221

compared to 7.9×10-6 in the 1000G GWA study. The correlation r2 between imputed dosages of the222

HapMap and 1000G lead variants was low (0.07). The HapMap lead SNP was included in the 1000G223

GWA study under a different name, rs114339898, but the imputation quality was only sufficient for224

inclusion in seven of the studies (S5 Table).225

Fig4.Regionalplotof 6p21.3,anon-overlappinglocu s thatwas more significantlyassociated with226

fibrinogen in the H apM apGW A stu dy,inclu dingvariants from boththe H apM ap(red)and 1000G227

(green)GW A stu dies.228

229

O verlappingloci230

Regional plots of the 29 overlapping loci are shown in S4 Table. The lead variants of eight of the 29231

overlapping loci were the same for the HapMap and 1000G GWA studies. P-value differences between232

the HapMap and 1000G GWA studies were often small: they were smaller than or equal to one order of233

magnitude for 22 loci. P-values differed by more than one order of magnitude for seven loci. Five of these234
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loci were more significant in the 1000G GWA study (2q37.3, 4q31.3, 10q21.3, 12q24.12, and 21q22.2),235

while two of these loci were more significant in the HapMap GWA study (5q31.1 and 8q24.3).236

Among the five overlapping loci with lower P-values in the 1000G GWA study, the correlation r2237

between imputed dosages of lead variants from HapMap and 1000G was higher than 0.8 for 4 loci, but238

was 0.68 for the 12q24.12 locus (S4 Table). There was no good proxy of the 1000G lead variant at the239

12q24.12 locus included in the HapMap GWA study.240

The 5q31.1 and 8q24.3 loci had lower P-values in the HapMap GWA study. The correlation r2241

between imputed dosages from HapMap and 1000G was almost perfect for 5q31.1, but was 0.75 for242

8q24.3. The HapMap lead variant of the 8q24.3 locus was also included in the 1000G GWA study. These243

differences between HapMap and 1000G imputation for the 29 overlapping loci are summarized in Fig 5.244

Fig5.S u mmaryof the differences between H apM apand 1000G impu tation forthe 29 overlapping245

loci.246

247

S ensitivityanalyses248

Because more independent variants are included in the 1000G GWA study [20, 21] , using the249

conventional genome-wide significance threshold of 5×10-8 may result in an increased type I error rate.250

When we used a more stringent genome-wide significance threshold of 2.5×10-8for the 1000G GWA251

study as suggested by Huang et al. [20], there were 4 loci significant only in the HapMap GWA study, 5252

loci significant only in the 1000G GWA study, and 26 overlapping loci (Fig 1B). Three loci that were253

significant using both HapMap and 1000G imputation thus became non-significant when the stricter254

significance threshold was applied to the 1000G results.255

Genomic inflation factors to correct for genomic control were calculated separately for the256

HapMap and 1000G analyses of each study. Thus, differences in the genomic inflation factors could257

explain some of the differences between the HapMap and 1000G results. When we repeated the HapMap258
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and 1000G GWA study without applying genomic control corrections, 2 loci were associated only with259

circulating fibrinogen concentration in the HapMap GWA study, 6 were only associated in the 1000G260

GWA study, and 30 were associated in both GWA studies (Fig 1C and S6 Table).261

For practical reasons, not all of the studies used the same imputation software, analysis software,262

or covariates for the HapMap and 1000G analyses. Specifically, fewer studies used principal components263

in the HapMap GWA study. When we restricted the analysis to those studies that used the same264

imputation software, analysis software, and covariates in the HapMap and 1000G GWA studies (S7 Table265

and S8 Table), 3 loci were associated only in the 1000G GWA study, and 6 were associated in both the266

HapMap and the 1000G GWA studies (Fig 1D and S9 Table). No loci were associated only in the267

HapMap GWA study.268

269

D iscu ssion270

In our fibrinogen GWA study of 91,953 individuals, using 1000G instead of HapMap imputation led to271

the identification of six additional fibrinogen loci, suggesting an improvement in the detection of272

associated signals. Nevertheless, there was also one locus that was only identified when using HapMap273

imputation, and the advantage of 1000G imputation was attenuated when using a more stringent274

Bonferroni correction for the 1000G GWA study. The inclusion of indels in the 1000G GWA study did275

not lead to the identification of any new loci. Only one locus in our 1000G GWA study was led by an276

indel, and it was in strong linkage disequilibrium with a SNP present in HapMap.277

While this is the first study of the impact of HapMap and 1000G imputation on genome-wide278

associations using exactly the same individuals in a large-scale consortium setting, four previous studies279

have addressed this question on a smaller scale. In the Wellcome Trust Case Control Consortium,280

consisting of 2000 for seven diseases (bipolar disorder, coronary artery disease, Crohn's disease,281

hypertension, rheumatoid arthritis, type 1 and 2 diabetes) and 3000 shared controls, Huang et al. re-282
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analyzed GWA studies of these seven diseases with 1000G imputation, and found two novel loci: one for283

type 1 diabetes and one for type 2 diabetes [20]. A more conservative genome-wide significance threshold284

of 2.5×10-8 was used in the 1000G GWA studies, while the MAF inclusion threshold was the same at 1%.285

The second study was a 1000G imputed GWA study of around 2000 cases of venous thrombosis and286

2400 controls [22]. Using a conservative P-value threshold of 7.4×10-9, but no MAF threshold, Germain287

et al. identified an uncommon variant at a novel locus that was not identified in the HapMap GWA study288

[22]. Third, the National Cancer Institute Breast and Prostate Cancer Cohort Consortium found no new289

loci by applying 1000G imputation to their existing dataset of 2800 cases and 4500 controls [23, 24]. The290

conventional genome-wide significance threshold of 5×10-8 was used, but no MAF threshold was used.291

Fourthly, Wood et al. compared HapMap and 1000G imputation for a total of 93 quantitative traits in292

1210 individuals from the InCHIANTI study [25]. Using a significance threshold of 5×10-8 for both the293

HapMap and 1000G GWA studies, they found 20 overlapping associations, 13 associations that were294

only significant using 1000G imputation, and one association that was only significant using HapMap295

imputation. For the association significant only in HapMap, the P-value difference between HapMap and296

1000G lead variants was less than one order of magnitude. When the authors lowered their significance297

threshold to 5×10-11 to reflect the number of tests being done in analyzing multiple traits, 9 associations298

remained significant based on HapMap imputation and 11 associations remained significant based on299

1000G imputation.300

All four of these comparison studies used an earlier 1000 genomes reference panel. The present301

study adds to the literature as it is based on the widely implemented Phase 1 Version 3 of 1000G.302

Crucially, the large sample size allowed us to examine differences at many non-overlapping and303

overlapping loci, and improved the generalizability of our results, as ongoing GWA studies are often304

conducted in large consortia.305

Two further studies with different approaches also provide insights. First, Springelkamp et al.306

found a novel locus using 1000G imputation even though the sample size was smaller than the previous307
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HapMap GWA study [26, 27]. The same genome-wide significance (5×10-8) and MAF (1%) thresholds308

were used. The lowest P-value at the locus was 1.9×10-8. Because different individuals were included in309

these GWA studies, the difference between HapMap and 1000G may partially be explained by sampling310

variability. Second, Shin et al. identified 299 SNP-metabolite associations based on HapMap imputation,311

and reexamined the associated loci using 1000G imputation in the same individuals [28]. They found that312

HapMap and 1000G imputation yielded similar P-values and variance explained for all but one loci. For313

that locus, the 1000G imputation based association was considerably stronger: the explained variance314

increased from 10% to 16%, and the P-value decreased from 8.8×10-113 to 7.7×10-244. Although Shin et al.315

did not compare loci identified using HapMap and 1000G, their results do support our finding that large316

differences in association strengths are possible, albeit not at every locus. All these studies, along with the317

current study, suggest that additional signals not previously identified in HapMap GWA studies can be318

found using the 1000G GWA study, with the same sample size.319

In the current study we demonstrate that, although 1000G imputation was overall more effective320

at identifying associated loci, HapMap imputation may outperform 1000G imputation for specific loci.321

The 6p21.3 locus, corresponding to the major histocompatibility complex (MHC), was significant in the322

HapMap GWA study but not in the 1000G GWA study. The MHC locus is highly polymorphic and hosts323

many repetitive sequences, rendering it difficult to genotype and sequence [29-31]. The HapMap324

reference panel was based largely on the genotyping of variants that were known at that time, whereas the325

1000G reference panel is based entirely on low-coverage sequencing. This may explain the rather large326

discrepancy between HapMap and 1000G at this locus.327

Differences in associations when GWA studies are based on different participants can be328

explained by sampling variability, even with the same sample size. Hence, by using exactly the same329

participants in the HapMap and 1000G comparisons in the present project, we rule out both statistical330

power and sampling variability as possible explanations for differences between the HapMap and 1000G331

GWA studies. Several real differences between the HapMap and 1000G reference panels may underlie332
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the net benefit of 1000G imputation. The HapMap reference panel was largely based on genotypes of333

known variants, whereas the 1000G reference panel was primarily based on low-pass whole genome334

sequencing, enhancing the inclusion of novel variants. Additionally, most studies used only a small335

number of European-ancestry participants for HapMap imputation, whereas they used a larger number of336

participants of all available ancestries for 1000G imputation, introducing further haplotypes into the337

imputation process.338

Nevertheless, some analytical differences between the HapMap and 1000G analyses were not339

controlled for in our main analysis and therefore remain as potential alternative explanations. First,340

genomic control corrections were applied to the results of each of the studies before meta-analysis,341

separately for the HapMap and 1000G GWA studies. As a result, for any given study, there could be342

differences between the correction applied to the HapMap GWA analysis and to the 1000G GWA343

analysis. As these differences do not appear to differ systematically between the HapMap and 1000G344

GWA analyses in our study, the genomic control corrections are unlikely to explain our results. The345

results from our sensitivity analysis were concordant with this interpretation: when no genomic control346

corrections were applied there were 6 loci only significant in the 1000G GWA study compared to 2 loci347

only significant in the HapMap GWA study.348

The second difference between the HapMap and 1000G GWA studies that may explain our349

findings is that in the 1000G GWA study more studies were adjusted for ancestry-informative principal350

components. This difference reflects common practice, as population stratification is suspected to have a351

stronger influence on variants with lower MAF, and 1000G includes more of these [32]. However, the352

adjustments are applied to variants across the spectrum of minor allele frequencies, which may have353

influenced our results.354

Thirdly, some studies used different software for HapMap and 1000G imputation (S1 Table). The355

imputation quality metrics used by IMPUTE and MACH differ, and this has traditionally been dealt with356
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by applying different imputation quality thresholds: > 0.3 for MACH and > 0.4 for IMPUTE [5, 33]. In357

studies that used different imputation software for the HapMap and 1000G GWA studies, the filtering of358

variants can therefore differ. There may, additionally, be real differences in imputation quality. Finally,359

some studies used different analysis software (S3 Table). When we restricted our analysis to only those360

studies that used the same covariates, analysis software, and imputation software for the HapMap and361

1000G GWA studies, 3 loci were only significant in the 1000G GWA study, while all loci significant in362

the HapMap GWA study were also significant in the 1000G GWA study. This suggests that differences in363

imputation software, analysis software, and covariates do not fully explain the observed difference364

between the HapMap and 1000G GWA studies, and that there are real differences resulting from choice365

of reference panel.366

1000G GWA studies include more independent statistical tests than HapMap GWA studies [20,367

21]. Thus, while a P-value threshold of 5×10-8, correcting for 1 million independent tests, maintains the368

type I error rate at 5% for HapMap GWA studies, this may not be the case for 1000G GWA studies.369

Using 1000G pilot data, Huang et al. estimated that 2 million independent tests were being done, and thus370

suggested a P-value threshold of 2.5×10-8 [20]. In our study we used a P-value threshold of 5×10-8 for371

both the HapMap and 1000G GWA studies, in accordance with the majority of published 1000G GWA372

studies [26, 34-37]. When we used the threshold of 2.5×10-8 in the 1000G imputed GWA study, the373

difference between the HapMap and 1000G GWA studies became smaller. Thus, while we expect374

applying 1000G imputation may lead to novel findings using the conventional genome-wide significance375

threshold, this expectation may not be met when using stricter, and perhaps more appropriate thresholds.376

In other words, using the traditional significance threshold for 1000G may increase the type 1 error rate,377

which may account for some additional significant loci detected in 1000G GWA studies.378

In this study we only examined variants with a MAF of greater than 1%. This restriction was379

common practice for HapMap GWA studies, but given the improved coverage of rare variants in 1000G,380

this may not remain the case for 1000G GWA studies. Different MAF thresholds have been used in381
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published 1000G GWA studies, although many have used 1% [20, 22, 23, 26, 27, 34-40]. Therefore, an382

advantage of 1000G not illustrated by this study may be the identification of rare variants, at new loci or383

as secondary signals at known loci. The advantage of 1000G imputation will then in part depend on the384

importance and impact of rare variants in the trait being studied, as well as the distribution of these385

variants. Rare and uncommon variants are often clustered in genes with previously associated common386

variants, limiting the new biology revealed through their identification [41, 42]. This appears to be the387

case for fibrinogen concentration as well [43, 44].388

In conclusion, we show that the reference panel used in GWA studies can have an impact on the389

identification of common variants, although our results do not support the expectation that 1000G390

imputation always outperforms HapMap imputation, as we found one locus that appeared to be better391

covered in HapMap. This suggests that GWA studies will continue to be more successful as newer392

reference panels such as the Haplotype Reference Consortium are adopted. Nevertheless, our results also393

suggest that the benefits of 1000G are considerably reduced when the additional independent tests394

introduced by 1000G imputation are corrected for. Given that the bulk of the new information provided395

by 1000G imputation relates to low-frequency variants, we expect the penalty increased multiple testing396

burden to become less relevant in future studies as the power to examine these low-frequency variants397

increases with larger sample sizes and enhanced imputation quality. Imputation using the Haplotype398

Reference Consortium reference panel improves the imputation quality of low-frequency variants when399

compared to 1000G, and future reference panels based on the wealth of whole-genome sequencing data400

currently being generates by efforts such as TOPMed are likely to continue this trend [45].401

402

M ethods403

P opu lation404
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The sample for both the HapMap and 1000G GWA studies consists of 22 studies including the same405

91,953 European-ancestry participants. The sample is largely a subset of the sample used in our previous406

work, and when possible the same analyses were used in this project [44, 46]. However, to ensure that407

only the same individuals were used, one or both of the analyses was rerun using only overlapping408

individuals when necessary. All studies were approved by appropriate research ethics committees and all409

respondents signed informed consent prior to participation. The ARIC study was approved by the410

University of Mississippi Medical Center IRB, Wake Forest University Health Sciences IRB, University411

of Minnesota IRB, and John Hopkins University IRB. The B58C study was approved by the South East412

England Multi-Centre Research Ethics Committee and the London & South East Committee of the413

National Research Ethics Service. The BMES was approved by the University of Sydney and the Western414

Sydney Area Health Service Human Research Ethics Committees. The CHS was approved by the Wake415

Forest University Health Sciences IRB, University of California, Davis IRB, John Hopkins University416

IRB, and University of Pittsburgh IRB, and University of Washington IRB. The FHS was approved by417

the Bostin University IRB. The GHS was approved by the Ethics Committee of the Landesärztekammer418

Rheinland-Pfalz (State Chamber of Physicians of Rhineland-Palatinate, Germany). The GOYA-Male419

study was approved by the regional scientific ethics committee of Copenhagen, Denmark, and the Danish420

data protection board. The HCS was approved by the University of Newcastle and Hunter New421

England Human Research Ethics Committee. The InCHIANTI study was approved by the Italian National422

Institute of Research and Care of Aging Institutional Review and Medstar Research Institute (Baltimore,423

MD). The LBC1921 study was approved by the Lothian Research Ethics Committee and the Scotland A424

Research Ethics Committee. The LBC1936 study was approved by the Multi-Centre Research Ethics425

Committee for Scotland and the Lothian Research Ethics Committee and the Scotland A Research Ethics426

Committee. The LURIC study was approved by the Ethics Committee at the Ärztekammer Rheinland-427

Pfalz. The NTR study was approved by the Medical Ethical Committee of the VU University Medical428

Center Amsterdam, and the Central Committee on Research Involving Human Subjects of the VU429

University Medical Center Amsterdam. The PROCARDIS study was approved by the Ethics Committee430
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of the Karolinska Institutet. The PROSPER-PHASE study was approved by the Greater Glasgow431

Community/Primary Care Local Research Ethics Committee, Dumfries and Galloway Health Board Local432

Research Ethics Committee, Argyll and Clyde Health Board Local Research Ethics Committee,433

Lanarkshire Research Ethics Committee, Research Ethics Committee of the Cork Teaching Hospitals, and434

the Medical Ethical Committee of the Leiden University Medical Center. The RS was approved by the435

Medical Ethics Committee of the Erasmus MC and the Dutch Ministry of Health, Welfare and Sport. The436

SardiNIA study was approved by the Ethics Committee at Azienda Sanitaria Locale (ASL) n°1 of Sassari,437

Sardinia, Italy. The SHIP was approved by the Medical Ethics Committee of the University of438

Greifswald. The TwinsUK study was approved by the NRES Committee London-Westminster (formerly439

St Thomas' Ethics Committee). The WGHS was approved by Brigham and Women’s Hostpital IRB.440

441

Genotypingand Impu tation442

Genotyping and pre-imputation quality control methods for each study are shown in S7 Table. Studies443

imputed dosages of genetic variants using reference panels from the 1000 genomes project with MACH444

[47, 48] or IMPUTE [49]. Studies imputed variant dosages using Phase 2 reference panels from the445

HapMap project with MACH [47, 48], IMPUTE [49], or BIMBAM [50]. We excluded variants with446

MACH imputation quality < 0.3, IMPUTE/BIMBAM imputation quality < 0.4, or MAF < 0.01 from each447

study.448

449

Fibrinogen measu rement450

Fibrinogen concentration was measured in citrated or EDTA plasma samples using a variety of methods451

including the Clauss method, immunonephelometric methods, immunoturbidimetric methods, and other452

functional methods. Fibrinogen concentration was measured in g/L and natural log transformed. Details453

about the fibrinogen measurement are shown in S10 Table.454

455
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Genome-wide association analysis456

All analyses were adjusted for age and sex, and study specific covariates such as center or case/control457

status. In family studies, linear mixed models were used to account for family structure. Some studies458

adjusted the analysis for principle components to account for population structure and cryptic relatedness.459

Some studies used a different number of principle components in the HapMap and 1000G analyses. The460

adjustments and analysis software used by each study are shown in S8 Table. We applied a genomic461

control correction to the results of each of the studies before meta-analysis to remove any remaining462

genomic inflation. The genomic inflation factor used in this correction was calculated separately in the463

HapMap and 1000G analyses for each study. We meta-analyzed the results using an inverse-variance464

model with fixed effects implemented in METAL [51]. Loci were defined as the 500 Kb area on either465

side of lead variants (the variant with the smallest P-value). Build 36 positions of HapMap SNPs were466

converted to build 37 using the UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver).467

Variants were annotated to genes using ANNOVAR version 2013Mar07. At the meta-analysis level, the468

imputation quality of each variant was defined as the sample-size weighted mean imputation quality469

across the studies, not including studies where the variant was filtered out.470

471

C omparison of H apM apand 1000G472

When a locus was significant in both the HapMap and 1000G GWA studies we defined it as an473

overlapping locus. When a locus was significant in only one of the two analyses we defined it as a non-474

overlapping locus. To compare the strength of association in the HapMap and 1000G GWA studies, we475

identified loci with P-value differences of 1 order of magnitude or greater (for example: from 5×10-8476

compared to 5×10-9 or less).477

For each significant locus we used two approaches to assess the relationship between lead478

variants from HapMap and 1000G. First, we determined whether or not the more significant of the two479

lead variants or a good proxy (linkage disequilibrium r2 > 0.8) was included in the analysis of the other480



22

reference panel. If so, we examined its association in the other reference panel. Thus, if a locus was more481

significant in the 1000G GWA study, we checked whether the 1000G lead variant or a proxy was482

included in the HapMap GWA study. Second, we examined the correlation R2 between HapMap and483

1000G lead variants in the form of imputed genotype dosages. This was performed for 5966 individuals484

from the Rotterdam Study (see study description in S1 Text) [52].485

486

S ensitivityanalysis487

First, we compared the results of the HapMap and 1000G GWA studies when applying a stricter488

Bonferroni-corrected P-value threshold of 2.5×10-8 to the 1000G GWA study. This threshold was489

suggested by Huang et al. to keep the type 1 error rate at 5% when using 1000G data [20]. Second, we490

repeated the analysis without using genomic control corrections. Third, we repeated the analysis in 34,098491

participants using only the 10 studies that used the same imputation and analysis software as well as the492

same covariates for the HapMap and 1000G GWA studies.493

494
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Table 1.N on-overlappinglocithatwere significantin eitherthe H apM apor1000G GW A stu dies.

H apM ap 1000G

L ocu s L ead V ariant B eta P -valu e M A F Impu tation

Q u ality

L ead V ariant B eta P -valu e M A F Impu tation

Q u ality

Significant in 1000G

1q42.13 rs10489615 0.0052 8.3×10-07 0.38 0.97 rs10864726 0.0059 1.1×10-08 0.40 0.96

3q21.1 rs16834024 0.0173 1.4×10-07 0.03 0.79 rs1976714 0.0064 7.5×10-09 0.35 0.89

4p16.3 rs2699429 0.0060 1.3×10-07 0.43 0.87 rs59950280 0.0080 2.5×10-11 0.34 0.80

7p15.3 rs1029738 0.0057 3.2×10-07 0.30 1.00 rs61542988 0.0065 3.1×10-08 0.25 0.98

8p23.1 rs7004769 0.0062 1.4×10-06 0.20 1.00 rs7012814 0.0061 8.0×10-09 0.47 0.91

11q12.2 rs7935829 0.0056 5.6×10-08 0.40 0.99 rs11230201 0.0060 3.0×10-09 0.41 0.99

Significant in HapMap

6p21.3 rs12528797 0.0095 8.5×10-09 0.11 0.98 rs116134220 0.0082 7.9×10-06 0.49 0.89

Further detail about these loci and the lead variants is provided in S3 Table.

Abbreviations: HapMap refers to the GWA study using imputation based on the HapMap project. 1000G refers to the GWA study using

imputation based on the 1000 Genomes Project. Variants were coded according to the fibrinogen increasing allele. MAF refers to minor allele

frequency.
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Table 2.O verlappinglocithatwere significantin boththe H apM apand 1000G GW A stu dies.

H apM ap 1000G

L ocu s L ead V ariant B eta P -valu e M A F Impu tation

Q u ality

L ead V ariant B eta P -valu e M A F Impu tation

Q u ality

1p31.3 rs4655582 0.0069 4.8×10-11 0.38 0.98 rs2376015 0.0075 5.1×10-12 0.35 0.91

1q21.3 rs8192284 0.0115 8.9×10-29 0.40 0.97 rs61812598 0.0114 1.8×10-28 0.39 0.99

1q44 rs12239046 0.0103 9.7×10-21 0.38 0.99 rs12239046 0.0102 9.8×10-22 0.38 0.99

2q12 rs1558643 0.0066 5.8×10-10 0.40 0.99 rs1558643 0.0063 6.0×10-10 0.40 0.98

2q13 rs6734238 0.0106 1.7×10-23 0.41 0.99 rs6734238 0.0106 3.7×10-24 0.41 1.00

2q34 rs715 0.0092 9.1×10-14 0.32 0.92 rs715 0.0082 1.7×10-13 0.32 0.89

2q37.3 rs1476698 0.0075 4.2×10-12 0.36 1.00 rs59104589 0.0081 2.4×10-14 0.34 0.98

3q22.2 rs548288 0.0113 6.6×10-21 0.24 0.99 rs150213942 0.0117 3.1×10-21 0.23 0.95

4q31.3 rs2227401 0.0311 4.7×10-134 0.21 0.95 rs72681211 0.0313 1.3×10-142 0.20 0.99

5q31.1 rs1012793 0.0208 4.4×10-60 0.21 0.98 rs1012793 0.0207 1.0×10-58 0.20 0.98

7p21.1 rs10950690 0.0071 9.9×10-12 0.48 0.94 rs12699921 0.0071 1.3×10-12 0.47 0.98

7q14.2 rs2710804 0.0061 9.3×10-09 0.38 0.98 rs2710804 0.0057 4.3×10-08 0.38 0.99

7q36.1 rs13226190 0.008 2.2×10-10 0.21 0.99 rs13234724 0.0076 1.6×10-09 0.21 0.99

8q24.3 rs7464572 0.0066 2.4×10-09 0.40 0.98 rs11136252 0.0056 4.6×10-08 0.42 0.96

9q22.2 rs7873907 0.006 5.4×10-09 0.50 0.96 rs3138493 0.006 3.5×10-09 0.48 0.98

10q21.3 rs10761756 0.0093 5.4×10-20 0.48 1.00 rs7916868 0.0097 1.2×10-21 0.49 0.97

11p12 rs7937127 0.0083 2.3×10-10 0.18 0.99 rs7934094 0.0081 2.9×10-10 0.22 0.90

12q13.12 rs1521516 0.0072 3.0×10-11 0.36 1.00 12:51042486 0.0073 4.9×10-12 0.36 0.98

12q24.12 rs3184504 0.0066 1.1×10-10 0.49 0.97 rs4766897 0.009 3.8×10-12 0.34 0.64

14q24.1 rs194741 0.0092 8.3×10-14 0.25 0.95 rs194714 0.0086 3.7×10-13 0.25 0.97

15q15.1 rs1703755 0.0088 1.8×10-09 0.14 0.96 rs8026198 0.009 5.9×10-10 0.15 0.93

15q21.2 rs12915052 0.0069 2.4×10-10 0.31 1.00 rs11630054 0.0067 3.3×10-10 0.34 0.99

16q12.2 rs12598049 0.0074 3.0×10-11 0.32 0.99 rs6499550 0.007 8.2×10-11 0.32 0.98

16q22.2 rs11864453 0.0057 4.6×10-08 0.40 0.99 rs1035560 0.0058 1.2×10-08 0.40 0.99

17q21.2 rs7224737 0.0073 2.2×10-09 0.23 0.99 rs7224737 0.0068 5.2×10-09 0.24 1.00
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17q25.1 rs10512597 0.0078 2.2×10-08 0.18 0.94 rs35489971 0.0077 1.6×10-08 0.18 0.94

20q13.12 rs1800961 0.0183 6.8×10-09 0.03 0.95 rs1800961 0.0178 1.7×10-09 0.03 0.99

21q22.2 rs4817986 0.0091 1.9×10-14 0.28 0.95 rs9808651 0.0093 5.4×10-16 0.28 0.94

22q13.33 rs6010044 0.0074 2.5×10-08 0.20 0.89 rs75347843 0.0082 4.3×10-08 0.19 0.76

Further detail about these loci and the lead variants is provided in S3 Table.

Abbreviations: HapMap refers to the GWA study using imputation based on the HapMap project. 1000G refers to the GWA study using

imputation based on the 1000 Genomes Project. Variants were coded according to the fibrinogen increasing allele. MAF refers to minor allele

frequency.
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Figure 1

Figure 2
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Figure 3

Figure 4
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Figure 5


