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Abstract

An increasing number of genome-wide association (GWA) studies are now using the higher resolution
1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G
imputation will lead to the discovery of additional associated loci when compared to HapMap imputation.
In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we
compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using
both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same
91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were
associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation
was not significant using 1000G imputation. The genome-wide significance threshold of 5x10®is based
on the number of independent statistical tests using HapM ap imputation, and 1000G imputation may lead
to further independent tests that should be corrected for. When using a stricter Bonferroni correction for
the 1000G GWA study (P-value < 2.5x10%®), the number of loci significant only using HapMap
imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In
conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation,
although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was
used. More generally, our results provide insights that are applicable to the implementation of other dense

reference panelsthat are under devel opment.
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I ntroduction

Most genome-wide association (GWA) studies to date have used their genotyped single nucleotide
polymorphisms (SNPs) to impute about 2.5 million SNPs detected in the Phase 2 version of the HapMap
Project (HapMap) [1-13], including mostly common SNPs with aminor allele frequency (MAF) of over
5%. HapM ap imputation enabled the interrogation of most common SNPs possible, even while meta-
anayzing studies that used different genotyping arrays with low overlap [1]. However, low-frequency and
rare variants are not well covered in the HapMap panel [14]. In addition, genetic variants other than
SNPs, such as small insertion/deletions (indels) and large structural variants, are not included in HapMap-

based imputed projects, and may be possible sources of missing explained heritability.

In contrast, the more recently released Phase 1 version 3 of the 1000 Genomes Project (1000G) is
based on alarger set of individuals[15], and comprises nearly 40 million variants, including 1.4 million
indels. 1000G alows the interrogation of most common and low-frequency variants (MAF > 1%), and
rare variants (MAF < 1%) that were previously not covered [16]. In general, improving reference panels
can lead to the identification of additional significant loci both through the addition of new variants and
the improved imputation of known variants. 1000G imputation may thus have severa advantages, but
given that the denser 1000G imputation comes at the cost of an increased computational and analytical
burden, it isimportant to estimate the observed benefitsin practice. Furthermore, such empirica datais
needed to make informed decisions in the future on the use of newer reference panels such as UK 10K,
and the Haplotype Reference Consortium [17, 18]. While several GWA studies using 1000G imputation
have been published or arein progress, their sample size differs from the previous GWA studies using
HapM ap imputation, making comparison difficult. Therefore, with the aim of evaluating the benefits of
using 1000G imputation in GWA studies compared to HapMap imputation, we carried out meta-analyses
of GWA studies of circulating fibrinogen concentration (a quantitative trait), using both HapMap and

1000G imputed data on the same set of 91,953 individuals.



184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202
203

204

205

206

207

208

Results

Baseline characteristics of the participants for each of the included studies are shown in S1 Table, and
genomic inflation factors are shown separately for the HapMap and 1000G GWA studiesin S2 Table.
The HapMap GWA study included 2,749,429 SNPs, and the 1000G GWA study included 10,883,314
variants. Summary statistics for all variantsin the HapMap and 1000G GWA studies are available viathe
dbGAP CHARGE Summary Results site[19]. Using a genome-wide significance threshold of 5x10%, a
total of 1,210 SNPs across 30 loci were associated with circul ating fibrinogen concentration in the
HapMap imputed GWA study compared with 4,096 variants across 35 loci in the 1000G imputed GWA
study (S1 Fig and S2 Fig). These loci are described in further detail in S3 Table. Of theseloci, six were
associated only in the 1000G GWA study and one was associated only in the HapMap GWA study, while
29 were overlapping (Fig 1A). The HapMap and 1000G lead variants of non-overlapping loci are
described in Table 1, and leads variants of overlapping loci are described in Table 2. Among significant
loci, the correlation coefficient across cohorts of the beta coefficients, P-values, and imputation quality
scores of HapMap and 1000G lead variants were 0.925, 0.998, and 0.435 respectively (S3 Fig).

Fig 1. Venn diagram of the number of loci significant using HapM ap (left circle) and 1000G (right
circle) imputation in A) the main analysis, B) the sensitivity analysis applying a significance
threshold of 2.5x10°® to the 1000G GWA analysis, C) the sensitivity analysis without using genomic

control corrections, and D) the sensitivity analysis excluding studies that used different imputation
softwar e, analysis software, or covariatesin the HapMap and 1000G GWA analyses.

Non-overlapping loci

The lead variants for the seven non-overlapping loci aways differed between the HapMap and 1000G
GWA studies, and all P-value differences were greater than one order of magnitude (for example: from
5x10°® to 5x10° or less). Differences between HapMap and 1000G imputation for the seven non-

overlapping loci are summarized in Fig 2.
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Fig 2. Summary of the differences between HapM ap and 1000G imputation for the seven non-
overlapping loci.

Regiona plots of the six loci significant only in the 1000G GWA study are shown in Fig 3. For
four of these six loci, the correlation r? between allelic dosages of the most associated variants imputed
using HapMap and 1000G was less than 0.8 ($4 Table). None of the 1000G lead variants among these
four loci were included in the HapMap GWA study, and neither were any good proxies (S5 Table).

Fig 3. Regional plotsof non-overlapping loci that were more significantly associated with fibrinogen

in the 1000G GWA study, including variants from both the HapM ap (red) and 1000G (green)
GWA studies.

A regiond plot of the 6p21.3 locus, which was significant only in the HapMap GWA study, is
shown in Fig 4. The most significant P-value at the locus was 8.5x10° in the HapMap GWA study
compared to 7.9x10° in the 1000G GWA study. The correlation r? between imputed dosages of the
HapMap and 1000G lead variants was low (0.07). The HapMap lead SNP was included in the 1000G
GWA study under a different name, rs114339898, but the imputation quality was only sufficient for
inclusion in seven of the studies (S5 Table).

Fig 4. Regional plot of 6p21.3, a non-overlapping locus that was more significantly associated with

fibrinogen in the HapMap GWA study, including variants from both the HapMap (red) and 1000G
(green) GWA studies.

Overlapping loci

Regional plots of the 29 overlapping loci are shown in $4 Table. The lead variants of eight of the 29
overlapping loci were the same for the HapMap and 1000G GWA studies. P-value differences between
the HapMap and 1000G GWA studies were often small: they were smaller than or equal to one order of

magnitude for 22 loci. P-values differed by more than one order of magnitude for seven loci. Five of these
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loci were more significant in the 1000G GWA study (2937.3, 4g31.3, 10g21.3, 12g24.12, and 21g22.2),

while two of these loci were more significant in the HapMap GWA study (5931.1 and 8g24.3).

Among the five overlapping loci with lower P-values in the 1000G GWA study, the correlation r?
between imputed dosages of lead variants from HapMap and 1000G was higher than 0.8 for 4 loci, but
was 0.68 for the 12924.12 locus ($4 Table). There was no good proxy of the 1000G lead variant at the

124g24.12 locus included in the HapMap GWA studly.

The 5931.1 and 8924.3 loci had lower P-valuesin the HapMap GWA study. The correlation r?
between imputed dosages from HapMap and 1000G was almost perfect for 5931.1, but was 0.75 for
8024.3. The HapMap lead variant of the 8924.3 locus was also included in the 1000G GWA study. These

differences between HapMap and 1000G imputation for the 29 overlapping loci are summarized in Fig 5.

Fig 5. Summary of the differences between HapM ap and 1000G imputation for the 29 overlapping
loci.

Sensitivity analyses

Because more independent variants are included in the 1000G GWA study [20, 21] , using the
conventional genome-wide significance threshold of 5x10® may result in an increased type | error rate.
When we used a more stringent genome-wide significance threshold of 2.5x10%for the 1000G GWA
study as suggested by Huang et al. [20], there were 4 loci significant only in the HapMap GWA study, 5
loci significant only in the 1000G GWA study, and 26 overlapping loci (Fig 1B). Threeloci that were
significant using both HapMap and 1000G imputation thus became non-significant when the stricter

significance threshold was applied to the 1000G results.

Genomic inflation factors to correct for genomic control were calculated separately for the
HapMap and 1000G analyses of each study. Thus, differencesin the genomic inflation factors could

explain some of the differences between the HapMap and 1000G results. When we repeated the HapM ap
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and 1000G GWA study without applying genomic control corrections, 2 loci were associated only with
circulating fibrinogen concentration in the HapMap GWA study, 6 were only associated in the 1000G

GWA study, and 30 were associated in both GWA studies (Fig 1C and S6 Table).

For practical reasons, not all of the studies used the same imputation software, analysis software,
or covariates for the HapMap and 1000G analyses. Specifically, fewer studies used principal components
in the HapMap GWA study. When we restricted the analysis to those studies that used the same
imputation software, analysis software, and covariates in the HagpMap and 1000G GWA studies (S7 Table
and S8 Table), 3loci were associated only in the 1000G GWA study, and 6 were associated in both the
HapMap and the 1000G GWA studies (Fig 1D and SO Table). No loci were associated only in the

HapMap GWA study.

Discussion

In our fibrinogen GWA study of 91,953 individuals, using 1000G instead of HapMap imputation led to
the identification of six additional fibrinogen loci, suggesting an improvement in the detection of
associated signals. Neverthel ess, there was a so one locus that was only identified when using HapMap
imputation, and the advantage of 1000G imputation was attenuated when using a more stringent
Bonferroni correction for the 1000G GWA study. The inclusion of indelsin the 1000G GWA study did
not lead to the identification of any new loci. Only onelocus in our 1000G GWA study was led by an

indel, and it wasin strong linkage disequilibrium with a SNP present in HapMap.

Whilethisisthefirst study of the impact of HapMap and 1000G imputation on genome-wide
associations using exactly the same individuals in alarge-scal e consortium setting, four previous studies
have addressed this question on a smaller scale. In the Wellcome Trust Case Control Consortium,
consisting of 2000 for seven diseases (bipolar disorder, coronary artery disease, Crohn's disease,

hypertension, rheumatoid arthritis, type 1 and 2 diabetes) and 3000 shared controls, Huang et . re-
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analyzed GWA studies of these seven diseases with 1000G imputation, and found two novel loci: one for
type 1 diabetes and one for type 2 diabetes[20]. A more conservative genome-wide significance threshold
of 2.5x10°® was used in the 1000G GWA studies, while the MAF inclusion threshold was the same at 1%.
The second study was a 1000G imputed GWA study of around 2000 cases of venous thrombosis and
2400 controls [22]. Using a conservative P-value threshold of 7.4x10°°, but no MAF threshold, Germain
et a. identified an uncommon variant at a novel locus that was not identified in the HapMap GWA study
[22]. Third, the National Cancer Institute Breast and Prostate Cancer Cohort Consortium found no new
loci by applying 1000G imputation to their existing dataset of 2800 cases and 4500 controls [23, 24]. The
conventional genome-wide significance threshold of 5x10® was used, but no MAF threshold was used.
Fourthly, Wood et a. compared HapMap and 1000G imputation for atotal of 93 quantitative traitsin
1210 individuals from the INCHIANTI study [25]. Using a significance threshold of 5x10° for both the
HapMap and 1000G GWA studies, they found 20 overlapping associations, 13 associations that were
only significant using 1000G imputation, and one association that was only significant using HapM ap
imputation. For the association significant only in HapMap, the P-value difference between HapMap and
1000G lead variants was less than one order of magnitude. When the authors lowered their significance
threshold to 5x10™ to reflect the number of tests being done in analyzing multiple traits, 9 associations
remained significant based on HapM ap imputation and 11 associations remained significant based on

1000G imputation.

All four of these comparison studies used an earlier 1000 genomes reference panel. The present
study addsto the literature asit is based on the widely implemented Phase 1 Version 3 of 1000G.
Crucialy, the large sample size allowed us to examine differences at many non-overlapping and
overlapping loci, and improved the generalizability of our results, as ongoing GWA studies are often

conducted in large consortia.

Two further studies with different approaches also provide insights. First, Springelkamp et a.

found a novel locus using 1000G imputation even though the sample size was smaller than the previous
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HapMap GWA study [26, 27]. The same genome-wide significance (5x10°®) and MAF (1%) thresholds
were used. The lowest P-value at the locus was 1.9x10°®, Because different individuals were included in
these GWA studies, the difference between HapMap and 1000G may partialy be explained by sampling
variability. Second, Shin et al. identified 299 SNP-metabolite associations based on HapMap imputation,
and reexamined the associated loci using 1000G imputation in the same individuals [28]. They found that
HapMap and 1000G imputation yielded similar P-values and variance explained for al but one loci. For
that locus, the 1000G imputation based association was considerably stronger: the explained variance
increased from 10% to 16%, and the P-value decreased from 8.8x10™3 to 7.7x102*. Although Shin et al.
did not compare loci identified using HapMap and 1000G, their results do support our finding that large
differences in association strengths are possible, albeit not a every locus. All these studies, along with the
current study, suggest that additional signals not previously identified in HapMap GWA studies can be

found using the 1000G GWA study, with the same sample size.

In the current study we demonstrate that, although 1000G imputation was overall more effective
at identifying associated loci, HapMap imputation may outperform 1000G imputation for specific loci.
The 6p21.3 locus, corresponding to the major histocompatibility complex (MHC), was significant in the
HapMap GWA study but not in the 1000G GWA study. The MHC locusis highly polymorphic and hosts
many repetitive sequences, rendering it difficult to genotype and sequence [29-31]. The HapMap
reference panel was based largely on the genotyping of variants that were known at that time, whereas the
1000G reference pand is based entirely on low-coverage sequencing. This may explain the rather large

discrepancy between HapMap and 1000G at this locus.

Differences in associations when GWA studies are based on different participants can be
explained by sampling variability, even with the same sample size. Hence, by using exactly the same
participantsin the HapMap and 1000G comparisons in the present project, we rule out both statistical
power and sampling variability as possible explanations for differences between the HapMap and 1000G

GWA studies. Several real differences between the HapMap and 1000G reference panels may underlie
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the net benefit of 1000G imputation. The HapMap reference panel was largely based on genotypes of
known variants, whereas the 1000G reference pand was primarily based on low-pass whole genome
sequencing, enhancing the inclusion of novel variants. Additionally, most studies used only a small
number of European-ancestry participants for HapMap imputation, whereas they used a larger number of
participants of all available ancestries for 1000G imputation, introducing further haplotypes into the

imputation process.

Nevertheless, some anaytical differences between the HapM ap and 1000G anal yses were not
controlled for in our main analysis and therefore remain as potential alternative explanations. First,
genomic control corrections were applied to the results of each of the studies before meta-analysis,
separately for the HapMap and 1000G GWA studies. As aresult, for any given study, there could be
differences between the correction applied to the HapMap GWA anaysis and to the 1000G GWA
analysis. Asthese differences do not appear to differ systematically between the HapMap and 1000G
GWA analyses in our study, the genomic control corrections are unlikely to explain our results. The
results from our sensitivity analysis were concordant with this interpretation: when no genomic control
corrections were applied there were 6 loci only significant in the 1000G GWA study compared to 2 loci

only significant in the HapMap GWA studly.

The second difference between the HapMap and 1000G GWA studies that may explain our
findingsisthat in the 1000G GWA study more studies were adjusted for ancestry-informative principal
components. This difference reflects common practice, as population stratification is suspected to have a
stronger influence on variants with lower MAF, and 1000G includes more of these [32]. However, the
adjustments are applied to variants across the spectrum of minor allele frequencies, which may have

influenced our results.

Thirdly, some studies used different software for HapMap and 1000G imputation (S1 Table). The

imputation quality metrics used by IMPUTE and MACH differ, and this has traditionally been dealt with
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by applying different imputation quality thresholds. > 0.3 for MACH and > 0.4 for IMPUTE[5, 33]. In
studies that used different imputation software for the HapMap and 1000G GWA studies, the filtering of
variants can therefore differ. There may, additionally, be red differencesin imputation quality. Finaly,
some studies used different analysis software (S3 Table). When we restricted our analysis to only those
studies that used the same covariates, anaysis software, and imputation software for the HapMap and
1000G GWA studies, 3 loci were only significant in the 1000G GWA study, while all loci significant in
the HapMap GWA study were a so significant in the 1000G GWA study. This suggests that differencesin
imputation software, analysis software, and covariates do not fully explain the observed difference
between the HapMap and 1000G GWA studies, and that there are rea differences resulting from choice

of reference panel.

1000G GWA studies include more independent statistical tests than HapMap GWA studies [ 20,
21]. Thus, while a P-value threshold of 5x10°®, correcting for 1 million independent tests, maintains the
type | error rate at 5% for HapMap GWA studies, this may not be the case for 1000G GWA studies.
Using 1000G pilot data, Huang et al. estimated that 2 million independent tests were being done, and thus
suggested a P-val ue threshold of 2.5x10® [20]. In our study we used a P-value threshold of 5x10°® for
both the HapMap and 1000G GWA studies, in accordance with the mgjority of published 1000G GWA
studies [26, 34-37]. When we used the threshold of 2.5x10® in the 1000G imputed GWA study, the
difference between the HapMap and 1000G GWA studies became smaller. Thus, while we expect
applying 1000G imputation may lead to novel findings using the conventional genome-wide significance
threshold, this expectation may not be met when using stricter, and perhaps more appropriate thresholds.
In other words, using the traditional significance threshold for 1000G may increase the type 1 error rate,

which may account for some additional significant loci detected in 1000G GWA studies.

In this study we only examined variants with a MAF of greater than 1%. This restriction was
common practice for HapMap GWA studies, but given the improved coverage of rare variantsin 1000G,

this may not remain the case for 1000G GWA studies. Different MAF thresholds have been used in
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published 1000G GWA studies, although many have used 1% [ 20, 22, 23, 26, 27, 34-40]. Therefore, an
advantage of 1000G not illustrated by this study may be the identification of rare variants, at new loci or
as secondary signals at known loci. The advantage of 1000G imputation will then in part depend on the
importance and impact of rare variants in the trait being studied, as well as the distribution of these
variants. Rare and uncommon variants are often clustered in genes with previoudy associated common
variants, limiting the new biology revealed through their identification [41, 42]. This appearsto be the

case for fibrinogen concentration as well [43, 44].

In conclusion, we show that the reference panel used in GWA studies can have an impact on the
identification of common variants, although our results do not support the expectation that 1000G
imputation always outperforms HapMap imputation, as we found one locus that appeared to be better
covered in HapMap. This suggests that GWA studies will continue to be more successful as newer
reference panels such as the Hapl otype Reference Consortium are adopted. Nevertheless, our results also
suggest that the benefits of 1000G are considerably reduced when the additional independent tests
introduced by 1000G imputation are corrected for. Given that the bulk of the new information provided
by 1000G imputation relates to low-frequency variants, we expect the penalty increased multiple testing
burden to become less relevant in future studies as the power to examine these low-frequency variants
increases with larger sample sizes and enhanced imputation quality. Imputation using the Haplotype
Reference Consortium reference panel improves the imputation quality of low-frequency variants when
compared to 1000G, and future reference panels based on the wealth of whole-genome sequencing data

currently being generates by efforts such as TOPMed are likely to continue thistrend [45].

M ethods

Population
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The sample for both the HapMap and 1000G GWA studies consists of 22 studies including the same
91,953 European-ancestry participants. The sampleislargely a subset of the sample used in our previous
work, and when possibl e the same analyses were used in this project [44, 46]. However, to ensure that
only the same individuals were used, one or both of the analyses was rerun using only overlapping
individuals when necessary. All studies were approved by appropriate research ethics committees and all
respondents signed informed consent prior to participation. The ARIC study was approved by the
University of Mississippi Medical Center IRB, Wake Forest University Hedth Sciences IRB, University
of Minnesota IRB, and John Hopkins University IRB. The B58C study was approved by the South East
England Multi-Centre Research Ethics Committee and the London & South East Committee of the
National Research Ethics Service. The BMES was approved by the University of Sydney and the Western
Sydney Area Health Service Human Research Ethics Committees. The CHS was approved by the Wake
Forest University Health Sciences IRB, University of California, Davis IRB, John Hopkins University
IRB, and University of Pittsburgh IRB, and University of Washington IRB. The FHS was approved by
the Bostin University IRB. The GHS was approved by the Ethics Committee of the Landesérztekammer
Rheinland-Pfalz (State Chamber of Physicians of Rhineland-Palatinate, Germany). The GOY A-Male
study was approved by the regional scientific ethics committee of Copenhagen, Denmark, and the Danish
data protection board. The HCS was approved by the University of Newcastle and Hunter New

England Human Research Ethics Committee. The INCHIANTI study was approved by the Italian National
Institute of Research and Care of Aging Institutional Review and Medstar Research Institute (Baltimore,
MD). The LBC1921 study was approved by the Lothian Research Ethics Committee and the Scotland A
Research Ethics Committee. The LBC1936 study was approved by the Multi-Centre Research Ethics
Committee for Scotland and the Lothian Research Ethics Committee and the Scotland A Research Ethics
Committee. The LURIC study was approved by the Ethics Committee at the Arztekammer Rheinland-
Pfalz. The NTR study was approved by the Medical Ethical Committee of the VU University Medical
Center Amsterdam, and the Central Committee on Research Involving Human Subjects of the VU
University Medical Center Amsterdam. The PROCARDIS study was approved by the Ethics Committee
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of the Karolinska Institutet. The PROSPER-PHA SE study was approved by the Greater Glasgow
Community/Primary Care Local Research Ethics Committee, Dumfries and Galloway Health Board Local
Research Ethics Committee, Argyll and Clyde Health Board Local Research Ethics Committee,
Lanarkshire Research Ethics Committee, Research Ethics Committee of the Cork Teaching Hospitals, and
the Medical Ethical Committee of the Leiden University Medical Center. The RS was approved by the
Medica Ethics Committee of the Erasmus MC and the Dutch Ministry of Health, Welfare and Sport. The
SardiNIA study was approved by the Ethics Committee at Azienda Sanitaria Locale (ASL) n°1 of Sassari,
Sardinia, Italy. The SHIP was approved by the Medical Ethics Committee of the University of
Greifswald. The TwinsUK study was approved by the NRES Committee London-Westminster (formerly

St Thomas' Ethics Committee). The WGHS was approved by Brigham and Women' s Hostpita IRB.

Genotyping and | mputation

Genotyping and pre-imputation quality control methods for each study are shown in S7 Table. Studies
imputed dosages of genetic variants using reference panels from the 1000 genomes project with MACH
[47, 48] or IMPUTE [49]. Studiesimputed variant dosages using Phase 2 reference panels from the
HapMap project with MACH [47, 48], IMPUTE [49], or BIMBAM [50]. We excluded variants with
MACH imputation quality < 0.3, IMPUTE/BIMBAM imputation qudity < 0.4, or MAF < 0.01 from each

study.

Fibrinogen measurement

Fibrinogen concentration was measured in citrated or EDTA plasma samples using a variety of methods
including the Clauss method, immunonephel ometric methods, immunoturbidimetric methods, and other
functional methods. Fibrinogen concentration was measured in g/L and natural log transformed. Details

about the fibrinogen measurement are shown in S10 Table.
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Genome-wide association analysis

All analyses were adjusted for age and sex, and study specific covariates such as center or case/control
status. In family studies, linear mixed model s were used to account for family structure. Some studies
adjusted the analysis for principle components to account for population structure and cryptic relatedness.
Some studies used a different number of principle components in the HapMap and 1000G analyses. The
adjustments and analysis software used by each study are shown in S8 Table. We applied a genomic
control correction to the results of each of the studies before meta-analysis to remove any remaining
genomic inflation. The genomic inflation factor used in this correction was calculated separately in the
HapMap and 1000G analyses for each study. We meta-anal yzed the results using an inverse-variance
model with fixed effects implemented in METAL [51]. Loci were defined as the 500 Kb area on either
side of lead variants (the variant with the smallest P-value). Build 36 positions of HapMap SNPs were
converted to build 37 using the UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver).
Variants were annotated to genes using ANNOVAR version 2013MarQ7. At the meta-analysis level, the
imputation quality of each variant was defined as the sample-size weighted mean imputation quality

across the studies, not including studies where the variant was filtered out.

Comparison of HapM ap and 1000G
When alocus was significant in both the HapMap and 1000G GWA studies we defined it asan
overlapping locus. When alocus was significant in only one of the two analyses we defined it asanon-
overlapping locus. To compare the strength of association in the HapMap and 1000G GWA studies, we
identified loci with P-value differences of 1 order of magnitude or greater (for example: from 5x10°®
compared to 5x10°° or less).

For each significant locus we used two approaches to assess the relationship between lead
variants from HapMap and 1000G. First, we determined whether or not the more significant of the two

lead variants or a good proxy (linkage disequilibrium r? > 0.8) wasincluded in the analysis of the other
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reference pandl. If so, we examined its association in the other reference panel. Thus, if alocus was more
significant in the 1000G GWA study, we checked whether the 1000G lead variant or a proxy was
included in the HapMap GWA study. Second, we examined the correlation R? between HapMap and
1000G lead variants in the form of imputed genotype dosages. This was performed for 5966 individuals

from the Rotterdam Study (see study description in S1 Text) [52].

Sensitivity analysis

First, we compared the results of the HapMap and 1000G GWA studies when applying a stricter
Bonferroni-corrected P-value threshold of 2.5x10® to the 1000G GWA study. This threshold was
suggested by Huang et al. to keep the type 1 error rate at 5% when using 1000G data [20]. Second, we
repeated the analysis without using genomic control corrections. Third, we repeated the anaysisin 34,098
participants using only the 10 studies that used the same imputation and analysis software as well asthe

same covariates for the HapMap and 1000G GWA studies.
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Table 1. Non-overlapping loci that were significant in either the HapMap or 1000G GWA studies.

HapMap 1000G

L ocus Lead Variant Beta P-value MAF Imputation Lead Variant Beta P-value MAF Imputation
Quality Quality

Sgnificant in 1000G
1g42.13 rs10489615 0.0052 8.3x10%7 0.38 0.97 rs10864726 0.0059 1.1x10% 040 0.96
3021.1  rsl6834024 0.0173 1.4x10% 003 0.79 rs1976714 0.0064 7.5x10%° 035 0.89
4p16.3  rs2699429 0.0060 1.3x10%7 043 0.87 rs59950280 0.0080 2.5x10! 034 0.80
7p153  rs1029738 0.0057 3.2x10% 030 1.00 rs61542988 0.0065 3.1x10% 025 0.98
8p23.1  rs7004769 0.0062 1.4x10% 020 1.00 rs7012814 0.0061 8.0x10%° 047 091
11g12.2 rs7935829 0.0056 5.6x10%® 040 0.99 rs11230201 0.0060 3.0x10%° 041 099
Sgnificant in HapMap
6p21.3  rs12528797 0.0095 8.5x10® 0.11 0.98 rsl16134220 0.0082 7.9x10% 049 0.89

Further detail about these loci and the lead variantsis provided in S3 Table.

Abbreviations. HapMap refers to the GWA study using imputation based on the HapMap project. 1000G refers to the GWA study using
imputation based on the 1000 Genomes Project. Variants were coded according to the fibrinogen increasing allele. MAF refersto minor alele

frequency.



Table 2. Overlapping loci that wer e significant in both the HapMap and 1000G GWA studies.

HapMap 1000G
L ocus Lead Variant Beta P-value MAF Imputation Lead Variant Beta P-value MAF Imputation
Quality Quality
1p31.3 rs4655582 0.0069 4.8x101* 038 098 rs2376015 0.0075 5.1x10%2 035 0091
1g21.3 rs8192284 0.0115 89x10® 040 097 rs61812598 0.0114 1.8x10%2 039 0.99
1g44 rs12239046 0.0103 9.7x10%* 038 0.99 rs12239046 0.0102 9.8x10%2 038 0.99
2q12 rs1558643 0.0066 5.8x10° 040 0.99 rs1558643 0.0063 6.0x10° 040 0.8
2g13 rs6734238 0.0106 1.7x10% 041 099 rs6734238 0.0106 3.7x10% 041 1.00
2g34 rs715 0.0092 9.1x10%* 032 092 rs715 0.0082 1.7x10%¥ 032 0.89
2q37.3 rs1476698 0.0075 4.2x10% 036 1.00 rs59104589 0.0081 24x10% 034 098
3022.2 rs548288 0.0113 6.6x10%* 024 099 rsl50213942  0.0117 3.1x10% 023 0.95
4931.3 rs2227401 0.0311 4.7x10* 021 095 rs72681211 0.0313 1.3x10* 020 0.99
5031.1 rs1012793 0.0208 4.4x10%° 021 098 rs1012793 0.0207 1.0x10%® 020 098
7p21.1 rs10950690 0.0071 9.9x10%? 048 094 rs12699921 0.0071 1.3x10%2 047 098
7914.2 rs2710804 0.0061 9.3x10° 038 098 rs2710804 0.0057 4.3x10%® 038 0.99
7936.1 rs13226190 0.008 22x10° 021 099 rs13234724 0.0076 1.6x10® 021 0.99
8024.3 rs7464572 0.0066 2.4x10%° 040 0.98 rs11136252 0.0056 4.6x10%® 042 096
9g22.2 rs7873907 0.006 54x10%° 050 096 rs3138493 0.006 35x10%° 048 098
10g21.3  rs10761756 0.0093 54x10%° 048 1.00 rs7916868 0.0097 1.2x10%* 049 097
11p12 rs7937127 0.0083 2.3x10%° 018 099 rs7934094 0.0081 29x10 022 090
12g13.12 rs1521516 0.0072 3.0x10" 036 1.00 12:51042486  0.0073 4.9x10? 036 0.98
12q24.12  rs3184504 0.0066 1.1x10%° 049 097 rs4766897 0.009 38x10? 034 064
14q24.1  rs194741 0.0092 83x10%* 025 095 rs194714 0.0086 3.7x10% 025 097
15g15.1  rs1703755 0.0088 1.8x10® 014 096 rs8026198 0.009 59x10° 015 093
15q21.2  rs12915052 0.0069 2.4x10° 031 1.00 rs11630054 0.0067 3.3x10° 034 0.99
16g12.2  rs12598049 0.0074 3.0x10" 032 099 rs6499550 0.007 82x101* 032 098
16g22.2  rs11864453 0.0057 4.6x10% 040 0.99 rs1035560 0.0058 1.2x10% 040 0.99
17q21.2  rs7224737 0.0073 22x10® 023 0.99 rs7224737 0.0068 5.2x10® 024 1.00
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17925.1  rs10512597 0.0078 2.2x10% 018 0.94 rs35489971 0.0077 1.6x10%® 018 094

20013.12  rs1800961 0.0183 6.8x10%° 003 095 rs1800961 00178 1.7x10%® 003 0.99
210222  rs4817986 0.0091 19x10“ 028 095 rs9808651 0.0093 54x10% 028 094
22013.33  rs6010044 0.0074 25x10%® 020 0.89 rs75347843 0.0082 4.3x10%® 019 0.76

Further detail about these loci and the lead variantsis provided in S3 Table.

Abbreviations. HapMap refers to the GWA study using imputation based on the HapMap project. 1000G refers to the GWA study using
imputation based on the 1000 Genomes Project. Variants were coded according to the fibrinogen increasing allele. MAF refersto minor alele

frequency.
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Figure 3

Figure 4
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Figure5
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