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Abstract

Large consortia have revealed hundreds of genetic loci associated with anthropometric
traits, one trait at a time. We examined whether genetic variants affect body shape as a
composite phenotype that is represented by a combination of anthropometric traits. We
developed an approach that calculates averaged PCs (AvPCs) representing body shape
derived from six anthropometric traits (body mass index, height, weight, waist and hip
circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are
heritable, and associate with cardiometabolic outcomes. We performed genome-wide
association analyses for each body shape composite phenotype across 65 studies and meta-
analyzed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPCl,
RPS6KA5/C140rf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings
highlight the value of using multiple traits to define complex phenotypes for discovery,

which are not captured by single-trait analyses, and may shed light onto new pathways.
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INTRODUCTION

Large-scale meta-analyses of genome-wide association studies (GWAS) have identified
numerous loci for anthropometric traits, including more than 600 loci for height! and over
160 loci for obesity-related outcomes, predominantly for commonly available traits such as
body mass index (BMI)? and waist-to-hip ratio (WHR)*>, but also for body fat percentage®,
childhood obesity” and extreme and early onset obesity’°. While GWAS-meta-analyses have
successfully revealed new loci, so far, all these studies have focused on one single
anthropometric trait at a time and may not adequately capture differences in body shape
between individuals who are similar in one trait but different in others. For example, two
individuals may have the same BMI, but their WHR and/or height can differ substantially, so
that each has a different body shape, which may translate into differences in disease
risk%*1, Several loci identified from previous single-trait GWAS on BMI, BMI-adjusted WHR
(WHRagiemi) and height are associated with more than one anthropometric trait¥?%2, For
example, the loci near MC4R and near POMC/ADCY3 are each associated with BMI and
height. However, the BMlIl-increasing allele of the near-MC4R locus is associated with
increased height, whereas the BMl-increasing allele of the near-POMC/ADCY3 locus is
associated with reduced height?. Thus, these loci are likely each associated with a more
comprehensive body shape phenotype that is not captured by current GWAS that only
consider anthropometric traits individually.

In recent years, several approaches have been developed to examine whether SNPs
influence multiple correlated traits associated with disease'>!*. However, most approaches
test phenotypes separately and are thus subject to multiple testing penalties that ultimately
reduce the statistical power to detect genotype-phenotype relationships among correlated

traits. One way forward is to apply a dimension reduction method to the traits of interest,
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such as principal component analysis (PCA) that combines multiple correlated traits into a
set of uncorrelated outcomes (PCs)*>'®. This method is very appealing to capture a
composite phenotype, such as body shape. To date, no large-scale GWAS meta-analyses
have been reported that aim to identify genetic loci associated with body shape based on
simultaneous analysis of multiple anthropometric traits using PCA methods.

Therefore, the purpose of our study was twofold. First, we aimed to capture body
shape in its multi-dimensional structure using principal components (PCs) from several
commonly available anthropometric traits. To allow the meta-analysis of summary statistics
across a large number of cohorts, we developed an approach that calculates averaged PCs
(AvPCs) that robustly represent body shape across a wide range of studies. Second, using
this approach, we aimed to identify genetic loci associated with body shape based on the

AvPCs in 65 studies of the GIANT Consortium, including >170,000 individuals.

RESULTS

Defining Composite Phenotypes of Body Shape in a Meta-Analysis Setting

As basis for our analysis of body shape we used six anthropometric traits: BMI, WHR, height,
weight, hip and waist circumference. First, we performed separate PCA in a subset of 20
large population-based studies (up to 82,355 individuals, Supplement Table 1) and
compared the loadings of the anthropometric traits in each PC between studies. Visual
inspection of PCA loadings showed high concordance across studies (Supplementary Fig. 1)
and between men and women. Between-study variation in variance explained by the PCs
was small (Supplementary Fig. 1, Supplementary Table 2). On average, the first four PCs
explained more than 99% percent of the variance (Figure 1, Supplementary Table 2), and

were therefore pursued as body shape outcomes for our gene-discovery effort. Given the
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across-study stability of PCs, we derived average loadings that were calculated as weighted
means of loadings from all 20 population-based studies that were analyzed in this step. We
used these average loadings to calculate average principal components (AvPCs) as targets in
each of the GWAS included in the first and second stage. In other words, the phenotypes
used for genome-wide association were constructed in a consistent way across studies, such
that the summary statistics could be meta-analyzed.

Each AvPC represents a specific composition of the six anthropometric traits and
thus captures a specific aspect of body shape (Figure 1). The first AvPC, which explains on
average 64.4% of the variation in all traits, shows high loadings for all traits, except for
height. The loadings are in the same direction; meaning that the AvPC captures inter-
individual variation in either increased or decreased BMI, weight, WHR, hip and waist
circumference. Therefore, variation in this PC seems to predominantly capture overall
adiposity. The second AvPC, which explains 18.5% of the variation, is characterized by
particularly high but opposite loadings on height and WHR. In other words, AvPC2 captures
variation in a composite phenotype that represents tall individuals with a small WHR, or vice
versa, short individuals with a large WHR. The third AvPC, explaining 13.8% of the variation,
also shows predominantly high loadings on height and WHR but in the same direction, with
an opposite loading of nearly the same size on hip circumference. Given these loadings,
AvPC3 discriminates mainly between tall individuals with a high WHR resulting from a
smaller hip circumference on one extreme and short individuals with low WHR, and a larger
hip circumference on the other extreme. The fourth AvPC explains on average 3% and is
harder to interpret. It displays high loadings on BMI and body weight, and opposite loadings
of a similar size on hip and waist circumference. These could be interpreted as a phenotype

ranging between high BMI and weight, with relatively small hip and waist circumference on
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the one hand and low BMI and weight but large waist and hip circumference on the other
hand.

Consistent with the individual anthropometric traits, the four AvPCs that describe
body shape are also heritable. Using data from four isolate populations (n = 4,000), we
estimated that AvPC2 has the highest heritability (75-80%), consistent with the fact that
height is the main contributing trait to this AvPC with a strong genetic component 1. The
heritability of AvPC1 (35-50%), AvPC3 (50-75%) and AvPC4 (25-50%) were moderately high
and similar to the heritability for individual anthropometric traits!’ (Supplementary Fig. 2).
From a clinical perspective, each of the four AvPCs exhibit known correlations with cardio-
metabolic traits (Supplement Fig. 3), including diastolic blood pressure, systolic blood
pressure, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein

cholesterol, and total triglycerides levels.

Genomic Discovery of Body Shape Composite Phenotypes

We performed a two-staged meta-analysis to identify genetic loci that are associated with
the four AvPCs (Supplementary Table 3, Supplementary Table 4). In the first stage, a meta-
analysis of 43 studies with imputed genome-wide SNP data including more than 133,000
individuals identified SNPs in 385 loci across the four AvPCs (56 loci for AvPC1, 205 for
AvPC2, 89 for AvPC3, and 35 for AvPC4) that showed promising association (p-value < 5x10°
®) for at least one of the four AvPCs (Figure 2, Supplementary Fig. 4). Lead SNPs (and proxies;
see Methods) of each locus were taken forward for validation in a second stage, including
data from more than 39,900 individuals from 22 studies of which 12 studies had genotypes
from the Illumina CardioMetabochip and 10 studies had imputed genome-wide SNP data. In

the combined analyses, consisting of the first and second stage studies, the association of
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207 of the 385 loci reached genome-wide significance (p-value <5x10%) (31 for AvPC1, 124
for AvPC2, 45 for AvPC3, and 7 for AvPC4) (Figure 2, Figure 3, Supplementary Fig. 4,
Supplementary Table 6), of which 16 loci were identified for two AvPCs and one showed
significant association with three AvPCs (Supplementary Fig. 7, Supplementary Table 5)
resulting in a total of 189 loci with association to at least one AvPC. To determine whether
the loci we identified were independent of the loci previously found for BMI, WHRadjBMI
and height, we performed conditional analyses on SNPs reported in previous GIANT-GWAS
publications on BMI, WHRadjBMI, and height'?4>11% A |ocus was considered independent
of reported findings if the p-value in the analyses conditioned on all previously identified
loci remained suggestive (p-value <5x10°®). In total, 183 loci had already been established
for BMI, WHRadjBMI or height (Figure 3, Supplementary Fig. 7), whereas six loci had not
previously been identified for association with conventional anthropometric traits; two for
AvPC1, two for AvPC3 and two for AvPC4 (Table 1, local association plots given in
Supplementary Fig. 5). For these six novel loci, the results of the lead SNPs were checked in
previously performed GWAS meta-analyses on anthropometric and cardio-metabolic traits

(Supplementary Table 7).

Results for AvPC1

For AvPCl, we identified 31 genome-wide significant loci, of which two were novel
(upstream of LEMD2 and CD47). Of the 29 previously established loci, 24 have been
associated with BMI only*®, 3 with height only3, while two loci have been reported for
associations with both BMI and height>!® (Figure 3A). While both novel loci showed some
evidence of association with BMI in the latest GIANT-GWAS (n >339,000; p<7.2x103; Table

1), they did not reach genome-wide significance. The lead SNP (rs943466) 7kb upstream of
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to LEMD?2 has been reported to be associated with expression of LEMD2 in liver (p=1.66x10"
9)2021  Another variant in LEMD2 (rs2296743 at 8kb from our lead SNP rs943466; r?=0.2,
D’=1.0) was previously reported for its promising association (p-value = 8x10°®) with energy
intake at dinner in a small GWAS of 815 Hispanic children?2. The lead SNP (rs7640424) for
the second novel locus was located in an enhancer region 10kb upstream of CD472324, which
encodes a membrane protein that might be involved in signal transduction and membrane
transport?®. No genome-wide significant associations have been reported for the lead SNP
or other SNPs in the CD47 gene before?3-2>, However, a recent study revealed a link to diet-
induced obesity in mice and suggests CD47 as a potential drug-target to combat obesity and

metabolic complications?®27.

Results for AvPC2

For AvPC2, we identified no novel loci. Almost all (n=122) of the 124 loci associated with
AvPC2 had previously been identified for height! (Figure 3B), which is consistent with
AvPC2’s high loadings on height and opposite loadings on WHR. Of these 122 loci, 103 were
reported for association to height only, whereas of the 19 remaining loci, four were
previously associated with height, BMI and WHRadjBMI, two loci were reported for height
and BMI, and 13 loci overlapped with height and WHR. The two AvPC2 loci that did not

associate with height were previously identified for WHRadjBMI*°.

Results for AvPC3
We identified 45 loci that reached genome-wide significance for AvPC3, of which two were
novel. Consistent with the loadings of AvPC3, 43 of the associated loci had been reported

before for height! or WHR**° (Figure 3C). The lead SNP of the first novel locus rs7492628,
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upstream of the genes RPS6KA5 (> 20kb) and C14orf159 (>30kb), failed to reach genome-
wide significance in previous WHRagemi GWAS (p-value =9.3x10%) and was nominally
associated with extreme obesity risk (p-value=7.26x107°)?8. The lead SNP of the other novel
locus, GANAB, rs7949030, showed some evidence of association with WHRagjsmi in the latest
GIANT GWAS (p-value=3.3x10®) and was reported to be an eQTL for several other genes?!:
In monocytes, regulation of MIR3654, EEF1G, EML3, BSCL2, HNRNPUL2-BSCL2, LRRN4CL was
found?®31, BSCL2 is of interest, as it is a known candidate gene for the most severe
lipodystrophy phenotype®?. In blood rs7949030 was found to be an eQTL of HNRNPUL2-
BSCL2, AHNAK, LRRN4CL and INTS53334, while in skin and adipocytes it was found as an eQTL

for EML3303135,

Results for AvPC4

Seven loci were identified for AvPC4, of which five had been previously reported; one for
BMI and height, one for WHR and height, one for height only and two for WHR only!3436
(Figure 3). The lead SNPs of the two novel loci identified with AvPC4 were both intronic, in
ARL15 and ANP32. The allele associated with increased AvPC4 of the lead SNP (rs4865796)
in ARL15 was moderately associated with higher BMI (p-value=1.6x10%), increased
adiponectin levels (p-value=4.2x10® ADIPOGEN3’) and decreased risk of diabetes (p-
value=1.8x10°, DIAGRAM?32). This SNP was associated with fasting insulin (rs4865796,
p=2.1x10% and 2.2x10? after adjustment for BMI?*°). Other nearby SNPs in high LD, have
previously been reported for associations with BMl-adjusted adiponectin levels
(rs6450176/rs4311394, r?=0.087, D’=0.873749), HDL-C levels (rs6450176%*?) and risk of type
2 diabetes (rs702634, r2=1.0 ,D’=1.0%). A duplication in ARL15, tagged by rs16992296) was

previously found to be associated with increased risk of childhood obesity in European and
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African Americans*3. However, this duplication is independent of the association we found
for rs4865796-ARL15 and AvPC4, which is in low LD (r?EUR = 0.065) with the duplication
(represented by rs16992296), located 168kb upstream. The lead SNP (rs7855432) of the
second locus, ANP32B, was moderately associated with height (p-value=5.5x10"°). A SNP in
high LD (rs4743150 r?>= 0.95, D'= 1.0) was reported to be promisingly associated with

coronary heart disease risk (p-value=5x10)*4,

DISCUSSION

We developed a PCA-based approach to capture variation across multiple traits
simultaneously in a uniform way across multiple studies. Resulting AvPCs are a robust cross-
phenotype representation allowing their use in large-scale meta-analyses. We assessed this
approach to capture body shape based on six individual anthropometric traits and identified
six novel loci that were not identified before in much larger GWAS-meta-analyses for BMI,
WHRagiemi and height>24. Our findings suggest that the body shape composite phenotype,
assessed by AvPCs, represents information that is not fully captured by individual
(anthropometric) traits. Application of this method to other related traits, e.g. in immune
disease, different types of cancer, cardiometabolic traits, or other correlated traits might
comparably reveal new loci, and potentially new pathways, that have not been identified in

single-trait GWAS.

The AvPCs are combinations of different anthropometric traits and therefore capture
more complex body shape phenotypes than the single traits. AvPC1, representing overall
adiposity, and AvPC2, representing height with respect to WHR, are the most important

contributors to body shape, explaining on average more than 80% of the variation. More
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specific body shape types were captured by AvPC3 and AvPC4 and were defined by impact
of height and WHR (AvPC3) or BMI, waist and hip (AvPC4). Our initial analyses demonstrated
that the loadings are stable across studies, study designs, and between men and women.
Moreover, we have shown that the AvPCs are heritable traits and correlated with

cardiometabolic traits and risk factors.

To further demonstrate the strength of this approach, we compared total variance
explained of single traits and AvPCs by SNPs previously identified in single-trait GWAS (for
BMI, WHRadjBMI, height®?4 For example, the 97 loci that have been reported for
association in the latest BMI single-trait GWAS (N ~ 340,000) explain 8.7% of the variation in
AVPC1, whereas they explained only 2.68% of the variation in BMI2. These data indicate that
our PC-defined phenotype for overall body size (AvPCl1) captures a more composite
phenotype compared to BMI as a single-trait. Explaining more of the variance with the same
genetic variants as previous single-trait studies in our composite phenotype shows promise

to update and inform existing methods.

So far, typical GWAS have tested for association of genetic variants with
anthropometric traits, one trait at a time. We define ‘body shape’ as a composite of multiple
traits defined by PCs. We first performed PC-analyses in representative population-based
studies and averaged PC loadings across these studies (AvPCs). We subsequently use these
AvPCs to calculate PCs in all participating studies. This approach ensures that PCs are
calculated in a uniform manner across all studies, thus facilitating subsequent meta-

analyses. This approach could be applied to capture genetic variation across related traits
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that is currently not captured by single-traits GWAS (e.g. in the context of autoimmune
disease, blood traits, lipid levels, different cancers, etc.).

Consistent with published anthropometric traits®!*'’, the derived AvPCs are
heritable and correlated with clinically relevant outcomes. We identified additional loci,
despite a much smaller sample size compared to the latest single-trait GWAS analyses for
BMI, height and WHRagemi>*. This suggests that the AvPC method captures phenotype
information that is not captured by single-trait analyses and associated loci may highlight
biological pathways that are not revealed with single-trait associated loci only.

Even though our approach has several advantages, it is not meant to replace single
trait GWAS analyses. A number of loci that were identified in the latest single-trait GWAS
were not identified in our body shape GWAS; i.e. we identified 124 loci (or 14.2%) of the 837
loci recently reported in the GIANT single-trait meta-analyses (Supplementary Figure 6). This
may be due to the fact that these recent single-trait GWAS meta-analyses were at least
twice as large as the current body shape GWAS. However, even when we compare the
number of identified loci in earlier GWAS meta-analyses, which are of similar size as the
current body shape GWAS, we do not identify all previously reported loci for single traits.
Perhaps this is most obvious with height (largely representative of AvPC2), where we only
identified 91 (13.1%) of 697 loci identified for height. This is in part due to the fact that a
conservative definition for linkage disequilibrium was applied (r? > 0.8), lack of power due to
sample size for SNPs of modest effects, or perhaps the AvPCs introduces noise to purely
single traits such as height. Consistent with this finding, we also observe that some single
traits also explain more of the variance of body shape compared to AvPCs. Our comparison
of the variance explained between previous single traits meta-GWAS and our AvPCs support

this evidence for overlapping associated variants. Since AvPC2 represents largely a single

Page 21 of 34



681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700
701

trait, height, with large height loadings we were unable to explain more of the variance. In
fact we explained less of the variance, which is likely due to noise introduced using this
composite AvPCs phenotype. This observation is also evident for variance in body shape
explained by height compared to AvPC3 and AvPC4, but is in contrast to BMI, a complex trait
comprised of multiple anthropometric measurements, which explains less variance in body
shape compared to AvPC3 and AvPCA4. It is important to emphasize our approach is most
informative for complex traits such as BMI that are derived from a series of other traits. We
believe that using PC space to define complex traits is useful for the detection of loci

involved in multiple pathways that might go undetected in a single trait setting.

We have developed a new strategy that applies a PCA approach in a meta-analysis
setting to combine composite phenotypes in a harmonized way across multiple studies. We
successfully applied this approach to anthropometric traits to capture body shape. The
derived combined anthropometric traits (AvPCs) were shown to be heritable and correlated
to cardio-metabolic traits. Large-scale GWAS meta-analyses of the AvPCs identified six new
loci that were not identified by previous single-trait GWAS that were twice as large in
samples size. This PCA approach could maximize gene discovery for other correlated traits,
such as cancers, immune disease, hematologic traits, etc. and may identify genes that point

towards shared physiological pathways.
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METHODS

Study description

In the first stage analyses, 43 studies participated (133,376 individuals) that had HapMap 2
imputed genome-wide data available. A subset of 20 studies with unrelated individuals was
used for calculation of average loadings. Second stage analyses were performed in 10
studies (7,734 individuals) with genome-wide data that became available after the first
stage and 12 studies (32,170 individuals) with Cardio-MetaboChip (by Illumina®) data
(number of included studies and individuals given in Supplementary Table 3). Details on
study phenotypes, genotyping and imputation of each study are given in the Supplement

Tables 8 and 9, respectively.

Ethics statement
All study participants gave written informed consent and ethic committees approved all

studies. The ethic statement of each study is given in the study specific acknowledgements.

Calculation of average Loadings

In 20 independent studies (Supplementary Table 1) with unrelated participants principal
component analyses (PCAs) were performed on six anthropometric traits (BMI, height, hip,
waist, weight and WHR). Each study performed a PCA on the standardized residuals of the
anthropometric traits adjusted for age and gender. The same analyses were done for men
and women separately with residuals adjusted for age only. The result of the PCA in each
study is a set of six principal components (PCs) that are orthogonal linear combinations of
the six anthropometric traits. In other words each PC is a weighted sum of the six
transformed anthropometric traits and independent of the other PCs. The weights of each

trait per PC are called loadings. Each study also calculated the explained variance per PC.
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The loadings and explained variances were comparable for all studies (Supplementary Fig. 1
(1)).

With the intention to create phenotypes that are identically constructed in all
studies, the results of single study PCAs were used to deduce the average loadings. This
approach is reasonable as the loadings of the study specific PCAs were comparable. With
the use of the single study correlation matrices a combined average correlation matrix was
derived (weighted sum divided by number of individuals). This average correlation matrix is
then used as basis for a PCA. The loadings that result from this PCA are called average
loadings (Figure 1(1) and Supplementary Table 2). This was performed for men, women and
all individuals combined, however ultimately we used combined loadings for primary results
reported in the manuscript. Sex specific results are reported in the supplementary material.
The average loadings and explained variance were comparable to the study specific loadings

and explained variances (Supplementary Fig. 1).

Heritability analyses
Heritability of the avPCs was calculated within four population isolates, CROATIA-Vis
(n=909), CROATIA-Korcula (n=842), CROATIA-Split (n=499) and ORCADES (n=866) using the

“polygenic” function of the GenABEL package for R%.

Average principal components as body shape phenotype

The average loadings were used in each study to calculate the AvPCs in a standardized way.
Therefore, the average loadings were distributed together with an R-script (http://www.r-
project.org/) that calculated the AvPCs as linear combination of residuals of the study
phenotypes with the use of the average loadings. This was done for men and women

separately and additionally for combined in studies with relatedness structure. As the first
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four PCs explain on average more than 99% of the variance (Figure 1(2)) we decided to limit

all analyses to these four PCs.

Stage 1 Analyses
GWAS on the first four AvPCs were calculated for men and women separately in studies of
unrelated samples and combined for studies with related samples with an adjustment for
study site when necessary. All studies of the first stage analyses used HapMap 2 imputed
genome-wide data. GWAS results underwent extensive quality control and study-wise
filtering (call rate >95%, p-value (HWE) > 10, imputation quality, minor allele count (MAC)
>3). The meta analyses of GWAS results for the first four AvPCs we combined sex-stratified
results for studies with unrelated individuals and unstratified GWAS results for studies with
relatedness individuals. Meta analyses were performed with METAL* using fixed effects
inverse variance-weighted method. Single study and the meta analysis p-values were
corrected by the genomic control inflation factor A (meta analysis A before correction:
A(PC1)=1.29, A(PC2)=1.407, A(PC3)=1.236, A(PC4)= 1.136). Results were limited to SNPs that
are in HapMap 2 and had results for more than 30,000 individuals. Heterogeneity analysis
was performed with METAL. Each AvPC all SNPs with a promising p-value (p-value < 5x10°)
were identified in combined analyses. To identify promising loci clustering (LD > 0.01,
distance <1000kb) with PLINK%’ based on HapMap 2 genotypes was performed. All leading
SNPs per clump for AvPCs were taken forward to 2nd stage analyses and named promising
SNPs in this manuscript.

Two SNPs that were promising for the first principal component had very low
heterogeneity p-values (rs10847678 (p-value(het) = 8.8x101>?), rs13296358 (p-value(het) =

5.4x10%7)). For both SNPs the effect was driven only by a single study and no other SNP in
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high LD had a promising p-value. Therefore, these two SNPs were removed from further

analyses.

Stage 2 Analyses

As mentioned above for 2nd stage analyses a mixture of studies with genome-wide SNP
data and MetaboChip genotypes was available. Some of the leading SNPs of the 1st stage
analyses were not genotyped on the MetaboChip. To increase the power for all promising
SNPs of each AvPC proxies were defined that were all SNPs close to promising SNPs
(distance <500kb), in high LD (LD > 0.9) and available in more than 70% of the individuals of
the 2nd stage. Results of the 2nd stage analyses underwent the same quality control as 1st
stage results.

Combined Analyses

The combined analyses of all 1st and 2nd stage GWAS was performed with METAL [35] with
inverse variance based method. Results for men and women were combined as described
for the 1st stage meta-analyses. All promising loci for which at least one proxy had a
genome-wide significant p-value in the combined analysis were named genome-wide
significant loci and the best SNP of the combined analyses (largest absolute beta) was

reported as topSNP of this locus.

Novel loci - Conditional Analyses and Look-ups in previous GIANT analyses

Two analyses were performed to distinguish between genome-wide significant body shape
loci that are known from previous GWAS on BMI, height and WHR and novel body shape
loci. Firstly, conditional analyses were performed. We used the 226 reported topSNPs (32
BMI, 180 height, 14 WHR) of published GIANT analyses on BMI, height and WHRY?# to

perform conditional analyses of the 1st stage meta-analyses using GCTA'>*8 | The results of
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this analysis were then analyzed conditioned on 843 topSNPs (97 BMI, 697 height, 49 WHR)
of the published GIANT analyses'>4. To identify the overlap of the results for AvPCs with the
single anthropometric traits, the same conditional analyses were performed for BMI, height
and WHR separately. For calculation of the LD-structure genotype data from KORA F4 was
used. Two topSNPs of the unpublished GIANT results had to be removed before analyses as
they were in high correlation with two other topSNPs. If the body shape topSNPs were
independent loci identified by previous GIANT analyses, the p-value should stay promising
(p-value < 5x10®) in both conditional analyses. Secondly, we checked by look-ups if those
genome-wide significant SNPs that are independent from the previously reported topSNPs
were not genome-wide significant (p-value > 5x10®8) in GIANT analyses®?4,

Genome-wide significant SNPs are named novel SNPs if they fulfill the following conditions:
(1) P-value of conditioned analyses on topSNPs reported by previous GIANT analyses (on
BMI, height, WHR) remained promising (p-value < 5x107).

(2) P-value in previous GIANT analyses (on BMI, height, WHR) was not genome-wide

significant (p-value > 5x10°8).

Pleiotropic effects

For identification of potential pleiotropic effects several look-ups in various large-scale
consortia on different phenotypes were performed, including GIANT, DIAGRAM and MAGIC,
all references are given in the results table of the look-ups (Supplementary Table 7). For
comparison of effect directions the loadings of each AvPC have to be considered. For
example AvPC2 includes height with a positive loading and BMI with a negative loading.
That means an increasing effect on AvPC2 means an increasing effect on height but a

decreasing effect on BMI.
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Further Analyses

PCA, further analyses and plots were generated with R (http://www.r-project.org/) if not
stated otherwise. Apart from the GCTA analyses, which uses LD structure of KORA F4, all LD
analyses were performed in PLINK based on HapMap 2 (CEU) genotypes. For comparison of
findings between loci from different AvPCs two loci are assumed to be identical if the

topSNPs are in high LD (LD > 0.8).

Data availability
Summary statistics of all analyses can be downloaded from:

https://www.broadinstitute.org/collaboration/giant/
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Figure Legends

Figure 1: Loadings and explained variance of AvPCs for body shape. (1a) Loadings of
AcPCs, and (1b) explained variance of AvPCs for body shape.

Figure 2: Manhattan and QQ-plots of association results on AvPCs of body shape. P-values
of the first stage meta-analysis are given in the Manhattan and QQ-plots. All genome-wide
significant loci are highlighted.

Figure 3: Number of loci associated with AvPCs and known from previous GIANT analyses
on BMI, WHR or height. The Venn diagrams specify for each AvPC how many significantly
associated loci (promising p-value in the first stage meta analysis (<5x10°) and genome wide
significant in first and second stage combined analysis (<5x10%)) are known from previous
GIANT analysis on BMI, height or WHR. In the upper right corner of each plot the number of

loci is given that are not known from previous GIANT analyses.
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Figure 1: Loadings and explained variance of AvPCs for body shape.
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Figure 2: Manhattan and QQ-plots of association results on AvPCs of body shape.
P-values of the first stage meta-analysis are given in the Manhattan and QQ-plots. All genome-

wide significant loci are highlighted.
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Figure 3: Number of loci associated with AvPCs and known from previous GIANT analyses on
BMI, WHR or height. The Venn diagrams specify for each AvPC how many significantly
associated loci (promising p-value in the first stage meta analysis (<5x10®) and genome wide
significant in first and second stage combined analysis (<5x10®)) are known from previous
GIANT analysis on BMI, height or WHR. In the upper right corner of each plot the number of loci

is given that are not known from previous GIANT analyses.
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Table 1: Association results for novel loci with avPC of body shape. The association results for the 1st stage, 2nd stage and 1st and 2nd stage
combined analysis is given for all six loci that were genome wide significantly associated (promising p-value in the first stage meta analysis
(<5x10) and genome wide significant in first and second stage combined analysis e (<5x10%)) with one of the avPCs and novel. Moreover, the
p-values of the analysis conditioned on all tophits from the recent GIANT publications on BMI, height and WHR.

eff 1st 2nd stage -
e;:t zt:f: up to 152::12(:“?:“ a:)arI‘:slits:‘:)nne:II p-value of SNPs in p-value of SNPs in
oth 133,376 39,904 up to 173,278 samples GIANT tophits GIANT analysis™* GIANT analysis***
or samples samples
trai next alle EA beta p- beta p- hei heig
t SNP (lead SNP) gene e F*  p-value p-value (sebeta) value N (sebeta) value BMI ght WHR BMI ht WHR
avP C/ 9 5.40E- 0.05 3.18 171 0.05 580 0.00 0.7 2.28
Cl rs7640424 cD4a7 T % 07 0.0015 (0.008) E-09 544 (0.01) E-07 72 4 0.25 E-06 0.28 0.85
avP  rs943466 LEM G/ 76 6.39E- 0.049 347 172 0.049 7.28 2.7 0.0 9.34
Cl1 (rs2281819) D2 A % 07 0.016 (0.009) E-08 174 (0.01) E-07 -04 45 054 E-06 0.75 0.25
avP GAN G/ 38 2.74E- 0.024 558 139 0.025 6.36 0.08 0.8 1.4E 0.04 3.3E
C3  rs7949030 AB A % 08 0.11 (0.004) E-09 195 (0.004) E-09 2 0 -04 054 1 -06
avP RPS6 G/ 39 8.75E- 0.024 190 139 0.024 793 0.06 06 49E 0.00 9.3E
C3  rs7492628 KA5 C % 08 0.13 (0.004) E-08 874 (0.004) E-08 4 2 -05 50 0.58 -08
avP  rs4865796 ARL1 G/ 3» 5.59E- 0.008 225 172 0.008 7.25 5.1E 0.0 1.6E- 0.02
C4 (rs1664781) 5 A % 07 0.011 (0.001) E-08 517 (0.002) €E-07 -05 34 0.40 04 0 0.84
avP ANP3 G/ gg 1.40E- 0.01 4.06 140 0.01 1.78 0.0 5.5E
C4  rs7855432 2B T % 07 0.17 (0.002) E-08 805 (0.002) E-O07 033 46 049 032 -06 0091

* EAF is mean of EAF of all studies in the 1st stage

meta analysis

** all tophits of the GIANT analysis published

before 2014 3¢

*** all tophits of the GIANT analysis unpublished and/or
published after 2014 124
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