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AIM
When different models for weight and age are used in paediatric pharmacokinetic studies it is difficult to compare parameters
between studies or perform model-based meta-analyses. This study aimed to compare published models with the proposed
standard model (allometric weight0.75 and sigmoidal maturation function).

METHODS
A systematic literature search was undertaken to identify published clearance (CL) reports for gentamicin and midazolam and all
published models for scaling clearance in children. Each model was fitted to the CL values for gentamicin andmidazolam, and the
results compared with the standard model (allometric weight exponent of 0.75, along with a sigmoidal maturation function
estimating the time in weeks of postmenstrual age to reach half themature value and a shape parameter). For comparison, we also
looked at allometric size models with no age effect, the influence of estimating the allometric exponent in the standard model
and, for gentamicin, using a fixed allometric exponent of 0.632 as per a study on glomerular filtration rate maturation. Akaike
information criteria (AIC) and visual predictive checks were used for evaluation.

RESULTS
No model gave an improved AIC in all age groups, but one model for gentamicin and three models for midazolam gave slightly
improved global AIC fits albeit using more parameters: AIC drop (number of parameters), –4.1 (5), –9.2 (4), –10.8 (5) and –10.1
(5), respectively. The 95% confidence interval of estimated CL for all top performing models overlapped.

CONCLUSION
No evidence to reject the standard model was found; given the benefits of standardised parameterisation, its use should therefore
be recommended.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, pro-
vided the original work is properly cited.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• In children, clearance scales approximately with weight0.75 but in neonates and infants, maturation also affects clearance.
• A standardised method for scaling size and postmenstrual age has been proposed but is not always used.
• A systematic comparison of all suggested models is lacking.

WHAT THIS STUDY ADDS
• Several published modelling approaches gave similar fits to the same data, but no model out-performed the standard for
all age groups.

• Standardising scaling to a single method does not compromise model fitting and facilitates information sharing.

Table of Links

LIGANDS

Gentamicin

Midazolam

This Table lists key ligands in this article that are hyperlinked to correspondingentries inhttp://www.guidetopharmacology.org, the commonportal for
data from the IUPHAR/BPS Guide to PHARMACOLOGY [1].

Introduction
Smaller people need smaller absolute doses. Since the 1950s
paediatricians have recognised that drug clearance (CL), and
usually therefore dose requirements (which depend on drug
exposure, i.e. area under the curve [AUC]), scales with body
surface area rather than body weight [2]. Body surface area
can be approximated by raising weight to a power of 0.67,
and the approach of relating a biological parameter with
weight raised to some power is typically known as allometric
scaling. The fact that CL scales in this way means that chil-
dren will have higher dose requirements on a (linear)
mg kg–1 basis compared to adults (see Figure 1). In 1950,

Crawford et al. [2], and then almost 5 decades later, Holford
[3], highlighted the parallels between weight and CL with
the relationship of weight and basal metabolic rate. Basal
metabolic rate and how it scales with weight has been studied
for over a century and various “correct” values have been de-
rived for the exponent with 0.75 [4] and 0.67 [5] being the
two commonly argued “true” values. A comprehensive re-
view summarising various mathematical descriptions of
these observations, along with discussion on whether
“basal”, “field”, or any other variety of metabolic rate should
be used to infer drug CL scaling was recently provided by
Mahmood [6].

Rather than focusing on cross-species studies of metabolic
rate however, when considering drug CL paediatric pharma-
cologists will be more interested in how eliminating organ
function scales with size, and how drug CL scaled with size
in previous studies. Rhodin et al. [7] found that in children
and adults, glomerular filtration scales with weight raised to
a power of 0.63, and of course paediatric nephrologists scale
their reports of glomerular filtration rate by body surface area
[8, 9]. Concerning hepatic CL, Johnson et al. [10] found liver
volume (and therefore hepatic blood flow [11]) scales with
weight raised to a power of 0.78. We can see from this that bi-
ological processes concerned with CL scale with weight raised
to a power of 0.63–0.78 in children.

Whilst allometric scaling for size with an exponent of
around 0.63–0.78 is widely accepted to be a useful approach
to describe or predict CL in children [6, 12], it often does
not perform as well in neonates and infants due to the matu-
ration of drug eliminating processes. Two main approaches
have been developed over recent years to account for this.
The first is to use allometric weight scaling with a single fixed
or estimated exponent with CL further multiplied by a
maturation factor to adjust for age. This maturation factor is
usually a logistic function of age which asymptotes towards
1 with increasing age. The second method is to use/estimate
an allometric exponent which changes with either weight
or age, for example with a sigmoidal function [13]. For both

Figure 1
Illustration of the fractional change in clearance compared with
using an allometric weight exponent of 0.63–0.78
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of these approaches a wide variety of maturation functions or
functions to vary the allometric exponent have been used.

A popular method for scaling for size and maturation is to
fix the allometric weight exponent to 0.75, and to use a sig-
moidal maturation function driven by postmenstrual age
(PMA) (gestational plus postnatal age) such that CL scales in
the following manner:

CL ¼ CLT ·
WT
70

� �0:75

·
PMAHill

PMAHill
50 þ PMAHill ; (1)

where CL is drug CL in an individual, CLT is the typical CL for
a 70 kg adult, WT is body weight, PMA50 is the PMA (usually
in weeks) for CL to reach 50% mature, and Hill is the shape
parameter. The rationale behind using PMA rather is that
preterm neonates may have lower CL in early life due to im-
maturity of organ function and drug metabolising enzyme
expression. This model has been proposed as a standard
method for modelling CL in children [12], and its advantages
are threefold: firstly the allometric exponent is fixed to a
value within the accepted range of plausible values, thereby
adding biological prior knowledge to the model without re-
quiring the addition of a parameter. Secondly, the maturation
parameters are easy to communicate: PMA50 gives the age at
which CL is half-way to being explained solely by weight,
and the Hill coefficient describes the steepness of the matura-
tion curve. Thirdly this model is flexible enough to describe
slow and rapid (step-like) maturation and anything in
between.

This study aimed to seek evidence to reject the model pre-
sented in Equation (1). Our hypothesis was that no published
model gives superior fit to this model across all age groups.
We sought to test this by systematically reviewing the litera-
ture to identify models for maturation and/or size, and com-
paring their fit to the CL of two typical drugs, gentamicin
(cleared almost exclusively by glomerular filtration) and mid-
azolam (cleared almost exclusively by hepatic metabolism).

Methods

Gentamicin and midazolam CL data collection
The Medline database was searched using PubMed in (search
last updated March 2016) to identify clinical pharmacoki-
netic (PK) studies where the CL of intravenously adminis-
tered gentamicin and midazolam was reported. The
keywords for the search strategy were: pharmacokinetics,
midazolam, and gentamicin, and the filter “humans” was ap-
plied. The reference lists of the identified publications were
also manually searched.

For each CL value the corresponding ages and weights
were extracted from the reports. Since it is known that CL
changes rapidly in the first weeks and months of life [7, 14],
we did not include CL estimates where a wide age range of
subjects (i.e. age a few days or weeks up to >10 years) were
analysed together, with only a mean CL estimate provided
for the whole group. Only gentamicin CL values that
corresponded to age up to 50 years were kept in the dataset
to avoid including adult values affected by declining renal
function in older subjects. When only weight or age range

was reported, the middle of the range was taken as the mean
value of the demographic data. In neonatal studies, if only
birth weight was reported, this was assumed as current body
weight. A gestational age (GA) of 40 weeks was assigned for
children and adults that did not have GA reported. Where
only age was reported, typical weight for age was calculated
using a published model [15]. We did not include studies
where a disease was known to affect the CL of midazolam or
gentamicin.

Systematic search for models used to scale CL
A systematic literature review was undertaken (last updated
in March 2016) using MEDLINE via PubMed, and, addition-
ally, we emailed the NMUsers discussion group (a global dis-
cussion forum for users of NONMEM software) [16], to
identify models for size and maturation. Search keywords
were: allometry, allometric, scaling, pharmacokinetic, and
pharmacokinetics. All models were compared to the pro-
posed model (Equation (1)) with a fixed allometric exponent
of 0.75 and a sigmoidal maturation function [12]. For com-
parison, we also tested the parsimonious model of a single
weight effect with either estimated allometric exponent or
the allometric exponent fixed to 0.75 or 0.67.

Comparison of models for size and maturation
All models were normalized to 70 kg to facilitate parameter
comparison. All parameters that were estimated in the origi-
nal study were also estimated during the model comparison.
We also tested the performance of a simple allometric model
with either a single fixed (to 0.75 or 0.67) or estimated expo-
nent. Fitting was performed using NONMEMversion 7.3 [17].
Since CL is usually assumed to follow a log-normal distribu-
tion, an exponential residual error model was used.

The Akaike information criteria (AIC), which was given by
–2LL + 2p (where –2LL is –2 times the log likelihood reported
as the objective function values in NONMEM and p the
number of estimated parameters) was calculated for each
model to the overall data and split by age as follows: neonates
(0–28 days), infants (1–23.9 months), children (2–11.9 years),
adolescents (12–18 years) and adults (>18 years). For each age
group, the –2LL value for that age group only was used. The
difference in AIC between the tested model and the proposed
standard model was calculated, with a better performing
model being defined as one in which the AIC was lower than
the standard. We defined a better-performing model as one
for which the AIC was lower than the standard model in all
age groups. Visual predictive checks were created using R ver-
sion 3.1.0 [18]. For the five best models (lowest AIC values)
the typical CL and 95% confidence interval were generated
by simulation of 1000 parameter combinations using the
standard errors from the NONMEM covariance step for a typ-
ical neonate, infant, child and adolescent.

Results
In total, 38 [19–56] and 44 [57–100] publications that in-
cluded reported CL values were identified for gentamicin
and midazolam, respectively. These papers reported a total
of 66 and 57 CL values for gentamicin and midazolam,
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respectively. Four studies including a wide range of neonates,
infants and children with only a mean CL estimate provided
for the whole group were excluded [101–104]. Similarly, four
gentamicin studies including wide adult age ranges (e.g. 16–
96 years) were excluded [105–108]. Of the remaining data, a
further 10 gentamicin CL values in subjects aged over 50 years
were excluded [46, 47, 51–55]. Eight studies [39, 41, 42, 46,
47, 72, 79, 89] did not report subjects’ weights, so these were
inferred from age as described above. The data used for
modelling are presented in Supplementary materials
Tables S1 and S2.

The models identified in the literature search that sought
to account for changing age and weight relationships in neo-
nates and infants could be split into two main categories:
those that, in common with the standard model, add an age
function to a fixed or estimated weight function to account
for maturation in neonates/infants; and those that use an al-
lometric weight exponent which changes by either age or
weight. This change can be fixed predetermined steps or a
continuous function. Model structure and estimated parame-
ters are given in Table 1.

Change in AIC from the standard model are presented in
Table 2, and a visual predictive check of observed CL values
with model predictions given in Figures 2 and 3. The model
comparisons showed that models with a sigmoidal-type rela-
tionship for neonatal and infant maturation fitted best and
that there was very little difference in the fit of these models
to the observed CL values (Figures 2 and 3). No model gave
consistently better results than model 1 in all age groups
based on AIC (Table 2). In Table 3 the CL values and their un-
certainty for each age group from the five best models are
presented.

Discussion
We have compared the fit of all the major types of published
models for size and age scaling of CL in children to two
datasets, and have found that no model gave a superior fit
in all age groups to the proposed standard model. Several re-
cent studies have compared the performance of a single or
limited range of models for predicting CL in a limited range
of drugs [6, 12, 109, 110]. None of these studies has systemat-
ically compared all published models, so their relative merits
are not apparent, although an impressive number of drugs
has been used (44 in the case of Holford et al. [12]).
Prediction of paediatric PK, be it with scaled adult models
or physiologically based PK, is useful for study design, but
ultimately paediatric PK data need to be collected in order
to make dosing decisions. For data fitting, models need to
be parsimonious (not estimate too many parameters) in or-
der that parameters are estimated with a reasonable degree
of precision, yet flexible enough to describe observed
trends. Since weight raised to a fixed power of 0.75 with a
sigmoidal PMA maturation function has been shown to
give good predictions for a large range of compounds [12],
we have therefore sought to challenge this model by direct
comparison of its ability to fit the same data as all previous
published models. No published model was able to out-
perform the standard model for fitting.

Our result has implications for both new drug develop-
ment and the study of unlicensed and off-label medicine
use, which remains commonplace [111–114]. Patient recruit-
ment to paediatric PK studies remains a challenge in both
these settings, and if the same modelling approach was taken
for scaling size and age in all studies, this would allow infor-
mation to be shared across compounds with similar modes
of elimination, and facilitate model-based meta-analyses. A
body of biological prior information on values for PMA50

and Hill would be generated which would have a number of
uses: (i) allowing the analysts of small datasets to fix size
and maturation models based on literature from the same or
similar compounds to search for other potential covariates
of interest; (ii) giving journal reviewers and regulators the op-
portunity to compare estimated parameters with those ex-
pected from previous studies on similar compounds; (iii)
facilitating the inclusion of in vitro information on matura-
tion of drug eliminating enzymes [115]; and (iv) allowing
the combination of studies without requiring the sharing of
raw data using model-based meta-analysis.

Unsurprisingly, the models that did not account for age or
allow the allometric exponent to change with age or weight
(Models 2, 3 and 4 in Table 1) performed poorly, confirming
the need to account for both. Also, those models with linear
or exponential maturation, which tended to have been devel-
oped in neonates (Models 5, 6, 7 and 8), did not fit well sug-
gesting the need for the sigmoidal-type shape that the Hill
coefficient gives. Importantly, should the true maturation
shape be exponential or linear over the entire human age
range, the sigmoidal model has the flexibility to fit these by
allowing the Hill coefficient to be 1 and the PMA50 parameter
to be very large. Similarly, if maturation is complete in early
gestation, the model also has the possibility to account for
this with a low estimate of PMA50.

Although no single model gave a reduced AIC in all age
groups, Model 18 (and in the case of midazolam only, Models
17 and 9 also) gave slightly better overall fits. Both Models 17
and 18 had five estimated parameters, whereas Model 9 had
four estimated parameters, compared with the three esti-
mated parameters of the standardmodel. The price of this im-
proved fit was an increase in standard errors and indeed
Table 3 shows that for Model 18 it was not possible to con-
struct 95% confidence intervals (CIs) since the uncertainty
on θ4 meant it could take negative values. We did see a trend
towards models having superior fit in infants but worse fit in
neonates. Themain reasons for this are that either models did
not account for maturation, or that postnatal age (PNA)
rather than PMA was used and hence gestation was not
accounted for, worsening the neonatal fit. Since no
model had a globally improved AIC in addition to improved
AIC in each age group, we found no evidence to reject the
standard model.

Whilst the 95% CI for all the CL estimates in Table 3 over-
lapped each other, and hence they do not significantly differ,
dosing recommendations are usually based on the typical
model prediction, and so different doses would have been
recommended based on these top five models. To take
midazolam as an example of where CLmay be used to directly
infer dosing, Ince et al. [116] reported that the lower end of
the target concentration for sedation with midazolam was
250 μg l–1. Multiplying this by the CL values in Table 3 we
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have predicted dose ranges of: 24–44, 144–195, 140–165 and
112–120 μg kg–1 h–1 for the typical neonate, infant, child and
adolescent in the example (note that doses are scaled by kg as
this is standard practice in paediatric intensive care).
Typically for midazolam, neonatal dose rates are titrated to
the nearest 25 μg kg–1 h–1, whereas in older children titrations
are in 50 μg kg–1 h–1. From this it can be seen that all but the
neonatal group, the models would all have predicted the
same typical dose when scaled to the nearest 50 μg kg–1 h–1.
Even in the neonatal group, if we exclude Models 18
and 12 because 95% CI could not be constructed, and
Model 11 since the neonatal CL value could take negative
values, we are left with a much tighter range of predicted
doses (32–44 μg kg–1 h–1).

In the neonatal group, the models with lower AIC than
Model 1 were Model 9b for gentamicin and Model 9 for mid-
azolam (Table 2). Both these models were variations on
Model 1, in that Model 9b used an allometric exponent of
0.632 (tested for gentamicin since this was the estimated
exponent for GFR maturation by Rhodin et al. [7]), and
Model 9 estimated the allometric exponent, and so in the
age group where there is potential uncertainty in the midazo-
lam recommended dose rate (see above), the standard model
fits best. A contributing factor to the standard model
performing well in neonates is the use of PMA rather than

weight alone, or PNA. The reason to use PMA rather than
PNA ought to be apparent, in that by using PNA, a baby
born prematurely would be treated in exactly the same way
as a term baby despite the fact eliminating organ function
and enzyme expression will be less developed. Similarly,
allowing the allometric exponent to change with weight
gives identical treatment to babies of the same weight regard-
less of their gestational age. There will almost certainly be ad-
ditional increases in CL in the first few days of life in addition
to those predicted by gestation, and in situations where rich
neonatal data with a range of PNA and PMA are available, it
may be possible to identify this effect separately [117]. De-
spite the obvious rationale for using of PMA, several pub-
lished models did not take this approach.

A possible limitation of this work is that despite systemat-
ically comparing all models, these were only tested on two
datasets, and we also used some model-based predictions of
CL. To address this we would argue that the standard model
has already been evaluated on data from 44 drugs [12], and
so to discriminate between models required comparison on
the same data. Gentamicin andmidazolamwere chosen as they
each accounted for an example renal and hepatic CL
respectively, and there were sufficient intravenous data avail-
able in the literature to cover the whole age range. Whilst we
would have preferred individual noncompartmental AUC(0–∞)

Table 2
Numerical results showing the change in Akaike information criteria (AIC) between the tested models and the standard model

No.

Gentamicin Midazolam

AIC
AIC
Neonates

AIC
Infants

AIC
Children

AIC
Adolescents

AIC
Adults AIC

AIC
Neonates

AIC
Infants

AIC
Children

AIC
Adolescents

AIC
Adults

1 0 0 0 0 0 0 0 0 0 0 0 0

2 31.8 6.9 –6.0 10.2 –3.8 16.5 73.8 53.2 –3.7 4.4 –1.5 13.4

3 147.1 111.5 –7.3 18.4 3.5 5.0 72.9 57.4 –7.1 0.4 –3.2 9.4

4 170.5 131.9 –6.2 17.2 4.4 7.2 76.8 63.4 –7.7 –0.8 –3.0 9.0

5 33.8 8.9 –4.0 12.2 –1.8 18.5 75.8 55.2 –1.7 6.4 0.5 15.4

6 33.7 8.6 –3.9 11.6 –1.8 19.3 75.8 55.2 –1.7 6.4 0.5 15.4

7 97.9 36.0 3.4 18.5 –1.4 33.3 74.9 59.4 –5.1 2.4 –1.2 11.4

8 129.9 78.5 –5.3 31.0 0.7 17.0 74.9 59.4 –5.1 2.4 –1.2 11.4

9 1.9 2.1 2.3 1.9 2.3 1.3 –9.2 –1.8 0.2 1.3 3.0 –3.9

9b 3.8 –4.4 4.4 –3.3 –3.5 –5.4 – – – – – –

10 4.1 –0.6 4.2 0.4 –0.2 0.4 15.6 9.0 3.3 1.1 –0.1 2.3

11 16.7 18.2 –3.4 1.5 0.2 0.2 6.1 7.6 –2.0 0.0 0.1 0.3

12 18.7 19.7 –1.5 3.8 1.9 2.7 0.6 5.0 –1.7 1.9 2.3 1.2

13 0.8 3.2 –11.4 –1.7 –5.9 0.6 43.3 11.9 7.7 3.1 –4.7 9.3

14 18.2 3.1 –3.2 1.8 –6.1 6.7 49.3 5.8 19.9 –1.1 –4.8 13.6

15 33.2 9.2 –3.5 13.9 –1.9 15.5 73.7 52.1 –0.1 7.4 0.2 14.1

16 6.7 8.3 –6.3 4.3 –0.6 1.0 20.6 23.3 –2.9 1.4 –0.3 –1.0

17 0.4 9.4 –1.6 4.5 3.9 0.1 –10.8 1.5 –1.7 1.9 5.3 –1.8

18 –4.1 3.8 –0.4 3.4 4.1 1.1 –10.1 0.7 –0.3 1.5 5.4 –1.4

AIC is Akaike information criterion (values are relative to AIC values for Model 1, negative values indicate a better fit than Model 1).
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estimates to infer CL from, these are simply not available in all
age groups, particularly neonates. Hence we did also use
model based CL estimates in narrow age and weight ranges,
and consider this should not unduly bias our results since all
models were tested on the same data. We also did not only in-
clude data from healthy subjects, which are anyhow
unavailable for paediatric subjects due to ethical reasons.
However, we only included data from studies where a disease
did not have a known effect on CL (for example, neonates
on extracorporeal membrane oxygenation were shown to
have similar midazolam CL to nonextracorporeal membrane
oxygenation neonates [63]), and also some data from critically
ill subjects (such as neonates receiving midazolam [62], who
were also shown to have similar CL (for an infant of the same
weight) to noncritically ill neonates [59]).

Whether to estimate an allometric exponent from PK data
was recently explored by McLeay et al. [118] in an extensive
meta-analysis. They found an average allometric exponent
on CL of 56 drugs to be 0.65 (precision of this estimate was
not reported but a histogram of the estimated values shows
a 95% CI of approximately 0.1–1.2). This highlights the fact
that a size-related allometric exponent can be difficult to

identify, and indeed Model 9, which was the standard model
with estimated allometric exponent, did not give a superior
overall fit. Our results support the argument that fixing the
allometric exponent, thereby adding biological prior infor-
mation on the effect of body size a priori, will allow delinea-
tion of size from other important covariates without adding
an uncertain parameter and thereby potentially destabilising
parameter estimation. The importance of minimising the
number of estimated parameters is highlighted by Model 18
for which 95% CI of dosing predictions could not be con-
structed due to the uncertainty in parameter estimates. Inter-
estingly, Model 13, with only one estimated parameter and
cut-off ages to decrease the allometric exponent with increas-
ing age (effectively fixing both the size and maturation parts
of the model), performed well for gentamicin, but less well
for midazolam, although it did give similar CL values to the
standard model in older subjects. From a point of view of
model parsimony, this model may be relatively attractive,
but the poor fit for midazolam in neonates and infants sug-
gests that fixed cut-offs in the maturation applied to all drugs
may not be appropriate. However, the performance of Model
9b for gentamicin, which used fixed allometric and

Postmenstrual age (years)

C
L 

(l 
h-1

)
1

1

Model 1 Model 2 Model 3 Model 4 Model 5

1

1

Model 6 Model 7 Model 8 Model 9 Model 9b

1

1

Model 10 Model 11 Model 12 Model 13 Model 14

Model 15 Model 16 Model 17

0.

10

0.

10

0.

10

0.1

1

10

1 3 10 30 1 3 10 30 1 3 10 30 1 3 10 30

Model 18

Figure 2
Gentamicin visual predictive checks for eachmodel. Grey open circles are the observed clearance values, the blue solid line is the median simulated
model prediction, the dotted blue lines are the 2.5th and 97.5th percentiles of the simulated model predictions. Log–log scale used to aid visual-
isation of the neonatal period
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Table 3
Parameter estimates (95% confidence interval) for the four models with lowest global AIC for a 1-day-old term neonate weighing 3.5 kg, a 1-year-
old infant weighing 9 kg, a 5-year-old child weighing 18 kg and a 12-year old-adolescent weighing 39 kg

Models in order of overall AIC Typical CL (95%CI) l h–1

Neonate Infant Child Adolescent

Gentamicin Model 18 0.16a 1.03a 2.42a 4.15a

Model 1 0.24 (0.17,0.32) 1.21 (0.96,1.44) 2.15 (1.76,2.55) 3.85 (3.13 4.59)

Model 17 0.25 (0.05,1.52) 1.00 (0.30,3.00) 2.36 (1.07,4.83) 4.25 (2.82,6.44)

Model 13 0.18 (0.16,0.21) 0.86 (0.73,0.98) 1.97 (1.68,2.25) 4.28 (3.65,4.88)

Model 9 0.23 (0.04,1.54) 1.27 (0.35,4.50) 2.16 (0.93,5.03) 3.84 (2.47,6.00)

Model 9b 0.34 (0.25,0.45) 1.54 (1.22,1.86) 2.53 (2.06,2.99) 4.12 (3.38,4.92)

Midazolam Model 17 0.46 (0.19,1.10) 6.48 (2.49,16.7) 11.6 (5.56,24.1) 18.3 (13.6,24.4)

Model 18 0.44a 7.02a 10.9a 18.0a

Model 9 0.51 (0.11,2.12) 6.07 (2.25,16.5) 11.9 (6.56 20.7) 18.7 (14.4,25.0)

Model 1 0.62 (0.38,0.92) 5.20 (4.49,5.73) 9.88 (9.22,10.6) 17.6 (16.4,19.0)

Model 12 0.35a 5.84a 9.82a 17.5a

Model 11 0.34 (�0.44,1.12) 5.42 (3.74 5.99) 9.78 (9.00,10.5) 17.5 (16.2,18.7)
a95% confidence interval cannot be constructed because uncertainty on a parameter raised to some power means possible values are less than zero
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maturation parameters from a previous study on GFR matura-
tion [7], shows that using biological prior information based
on the mechanism of CL may be a useful approach.

In conclusion, a systematic comparison was undertaken
of all publishedmodels for scaling CL in children, which were
tested against the proposed standard model using a fixed allo-
metric weight exponent of 0.75 and an estimated sigmoidal
maturation function based on PMA with parameters of 50%
mature value and Hill coefficient. We found no evidence to
suggest any significant improvement in model fit can be
achieved over use of this standard parametrisation. For the
two model drugs, midazolam and gentamicin, maturation
clearly followed a sigmoidal-type pattern, so linear or expo-
nential age-functions should not be used. Standardising
model parameterisation to this single approach will benefit
the paediatric PK community by facilitating parameter value
interpretation and model sharing across studies of the same
drug and between compounds.
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