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Abstract 9 

MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and 10 

autoimmune diseases. MHC-I proteins present antigenic peptides and are recognised by receptors on 11 

Natural Killer cells and Cytotoxic T lymphocytes, thus enabling the immune system to detect self-12 

antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, 13 

however, extends beyond receptors on cytotoxic leukocytes. Members of the Leukocyte Ig-like 14 

receptor (LILR) family are expressed on monocytic cells and can recognise both classical and non-15 

classical MHC-I alleles. Despite their relatively broad specificity when compared to the T Cell 16 

Receptor or Killer Ig-like Receptors, variations in the strength of LILR binding between different 17 

MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that 18 

LILR recognition may mediate MHC-I disease association in a manner that does not depend on a 19 

binary discrimination of self/non-self by cytotoxic cells.  Instead, the effects of LILR activity 20 

following engagement by MHC-I may represent a “degrees of self” model, whereby strength of 21 

binding to different alleles determines the degree of influence exerted by these receptors on immune 22 

cell functions.  LILR are expressed by myelomonocytic cells and lymphocytes, extending their 23 

influence across antigen presenting cell subsets including dendritic cells, macrophages and B cells. 24 

They have been identified as important players in the response to infection, inflammatory diseases 25 

and cancer, with recent literature to indicate that MHC-I recognition by these receptors and 26 

consequent allelic effects could extend an influence beyond the immune system. 27 

  28 
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1 Introduction 30 

MHC class I (MHC-I) proteins are characterised by a high level of polymorphism, with thousands of 31 

allelelic variants identified to date (1). Such extensive variation indicates powerful selection pressure 32 

to maintain a wide range of alleles. Disease associations for individual MHC-I alleles are well-33 

documented.   The most striking is that of HLA-B27, which is present in >90% of patients with 34 

ankylosing spondylitis  (2). MHC-I polymorphisms have also been shown to be associated with the 35 

outcome of viral infections, including the control of HIV infection (3), clearance of HCV infection 36 

(4,5) and protection from dengue hemorrhagic fever following secondary infection with this virus 37 

(6).  38 

Proposed mechanisms to explain classical MHC-I disease associations have focussed on the 39 

functional role(s) of these proteins. The best characterised of these roles is MHC presentation of short 40 

antigenic peptides for recognition by the T cell receptor (TCR) on cytotoxic T cells (CTL).  Thus, 41 

many studies have examined the nature of the peptides presented by disease-associated alleles and of 42 

T cell responses restricted by these alleles (7, 8). For example, a number of studies have examined 43 

the peptide specificities of HLA-B27 subtypes (9). In the context of HIV infection, a dominant HLA-44 

B27 restricted viral peptide is thought to play a key role in the association of this allele with control 45 

of infection. Immune escape from the response against the dominant peptide results in a decrease in 46 

HIV-1 replication (10). 47 

In humans, classical MHC-I are also recognised by members of the Killer Ig-like Receptor (KIR) 48 

family, which are encoded in the Leukocyte receptor complex (LRC) on chromosome 19. KIR 49 

demonstrate allele (and in some cases peptide) specificity (11), albeit at a lower level of precision for 50 

individual peptide/MHC complexes than that shown by classical T cell receptors.  KIR are expressed 51 

on natural killer (NK) cells and T cells where they inhibit the ability of these cytotoxic cells to lyse 52 

target cells that express self MHC-I alleles.  As knowledge regarding their biology and MHC 53 

specificities has grown, KIR have been studied alongside MHC-I in conditions such as 54 

spondyloarthropathy, HIV and HCV infection (5,12,13). There is considerable variation in KIR 55 

haplotypes, such that any individual may not carry the relevant MHC ligand for every KIR receptor 56 

that they express and vice versa. A number of studies suggest that particular combinations of KIR 57 

and HLA alleles, believed to result in functional receptor/ligand interactions are associated with 58 

protection from progression to AIDS following HIV infection (14).   59 

A lesser-studied family of proteins encoded within the LRC are also capable of recognising MHC 60 

class I.  These Leukocyte Ig-like receptors (LILR) do not appear to be involved in the cytolytic 61 

removal of targets bearing non-self MHC-I protein complexes (15). Instead they are predominantly 62 

expressed on cells of the myelomonocytic lineage and some of them show a broad specificity 63 

encompassing both classical and non-classical MHC-I (16). The observation that LILR vary in the 64 

strength of their binding to individual MHC-I alleles, however, raised the possibility that these innate 65 

immune receptors may contribute in some manner towards MHC-I disease associations (17).  In 66 

support of this theory, a recent study of a large cohort of HIV-1 infected patients demonstrated that 67 

the overall binding strength of LILRB2 for the MHC-I haplotypes expressed by these individuals was 68 

positively associated with the level of viraemia (18).  69 

2 Leukocyte Ig-Like Receptors (LILR):  70 
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The various members of the LILR family are broadly categorised as inhibitory (LILRB) or activating 71 

(LILRA), according to the presence or absence of tyrosine-based signalling motifs in their 72 

cytoplasmic tail. In some cases, putative activating receptors have been shown to elicit inhibitory 73 

effects and vice versa for inhibitory receptors (19). Receptor engagement results in intracellular 74 

phosphorylation of the tyrosine-based motifs within the receptors themselves (LILRB), or on 75 

associated adaptor molecules (LILRA) (19). Downstream signaling events can be mediated by 76 

phosphatases such as SHP-1, SHP-2 and SHIP (20, 21) and vary according to the receptor and/or 77 

cellular context. For example, SHP-2 may mediate production of IL-6 via the NF-kB pathway 78 

following LILRB2 engagement on dendritic cells (22) or inhibition of the mTOR pathway following 79 

LILRB1 engagement on T lymphocytes (23).  80 

There are multiple similarities between KIR and LILR in terms of Ig-domain based structure, gene 81 

location within the leukocyte receptor complex and ability to recognise MHC-I (15).  Unlike their 82 

NK receptor counterparts, however, LILR orthologues (known as PIR) are found in rodents, where 83 

they demonstrate similar ligand binding, expression and functional profiles (24,25). This may 84 

indicate a higher degree of evolutionary conservation for LILR than for KIR, with bovine 85 

orthologues also identified (26) and similar proteins documented in chickens and fish (27,28). Within 86 

the murine system there is a single inhibitory receptor, PIR-B and multiple activating receptors (PIR-87 

A). PIR are involved in the regulation of lymphocyte, antigen presenting cell and granulocyte 88 

functions (29) and their study has enabled the identification of functions for both these receptors and 89 

their human counterparts such as the regulation of synaptic plasticity (30) and platelet activation by 90 

PIR-B and LILRB2 (31).  91 

Figure 1 shows the known expression profiles of LILR on leukocyte subsets according to current 92 

literature. The known expression profiles for LILR are not exhaustive; expression of individual 93 

members of the family has been documented for macrophages, B-cells, NK cells and other non-94 

immune cells (32-40). These receptors are therefore likely to have far-reaching effects on a range of 95 

immunological functions. Immune cells which have yet to be characterised in full for LILR 96 

expression include Invariant Natural Killer (iNKT), Gamma-Delta (γδ), Regulatory (Treg) and T 97 

helper 17 (Th17) T-cells, B-cell subsets, as well as the various APC subsets and granulocytes.  98 

LILR activity can result in the upregulation or downregulation of both innate and adaptive functions 99 

with a range of effects on different cell types.  For example, LILR and PIR have been shown to 100 

inhibit TLR-mediated functions of antigen presenting cells such as inflammatory cytokine secretion 101 

(38, 41-43). Inhibitory LILR have been shown to inhibit the upregulation of co-stimulatory proteins 102 

on antigen presenting cells (36, 44-46), thus favouring regulatory T cell responses (47-50). On 103 

lymphocytes, inhibitory LILR have been shown to inhibit T and B cell receptor signaling and 104 

downregulate antibody and cytokine production (51-53). Activating LILR have been shown to 105 

mediate monocyte activation and secretion of inflammatory cytokines (54) and on basophils to 106 

trigger release of histamine (55).       107 

 108 

 109 

3 MHC recognition by LILR:  110 

Following the initial identification of LILRB1 as a receptor for self and viral MHC-I (56), structural 111 

studies predicted that several other members of the family would also recognise MHC-I (57). 112 

Members of the family were allocated into two groups on this basis, with Group 1 containing 113 
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receptors predicted to bind MHC-I and Group 2 containing receptors that were not predicted to bind 114 

MHC-I (57). It was confirmed subsequently that the Group 1 members LILRA1, LILRA2, LILRA3, 115 

LILRB1 and LILRB2 can engage MHC-I (17, 58). Members of the LILR family vary in their MHC-I 116 

binding preferences.  LILRB2 demonstrates the broadest specificity, with the ability to recognise all 117 

classical and non-classical self MHC-I alleles and forms tested to date. Although LILRB2 binds to 118 

both the α3 & β2m regions of the MHC-I antigen presenting structure, the major portion of its 119 

binding site lies within the highly conserved α3 domain (59). The degree of interaction between this 120 

receptor and the 3 domain is sufficient to allowing LILRB2 to bind open conformers of MHC-I, 121 

which lack β2m. In contrast, the major LILRB1 binding site lies within β2m, thus this receptor can 122 

only associate with 2m-associated MHC-I. Recognition of open MHC-I conformers has also been 123 

observed for LILRA1 and LILRA3, which were shown in one study to have stronger binding to open 124 

confomers than to 2m-associated MHC-I (17).  These findings indicate that alternatively folded 125 

forms of MHC-I may play a functional role in the immune response. It is also important to note that 126 

members of the LILR family may interact in cis with MHC-I on the cell surface, as has been 127 

demonstrated for PIR-B and LILRB1 (60, 61).  128 

Despite their broad specificity, LILRB1 and LILRB2 both show variation in their strength of binding 129 

to different MHC-I alleles (17).  Binding occurs predominantly through the D1-D2 domains of the 130 

receptor (57), but it has been suggested that secondary binding sites in the D3 and D4 domains may 131 

contribute to allelic variations in the strength of LILR binding (62). The potential importance of such 132 

variations was first highlighted by the observation that MHC-I complexes differing by only one 133 

amino acid in the bound peptide showed different affinities for LILRB2, which corresponded with 134 

the extent of LILRB2-mediated modulation of antigen presenting cell phenotype (63). A subsequent 135 

comparison of binding strength for different MHC-I alleles to LILRB1 and LILRB2 identified 136 

distinct preferences (17). LILRB1 has a lower affinity for some HLA-A alleles; those with Ala193 and 137 

Val194 have shown lower binding ability. Ser207 and Gln253 alleles also show weaker binding to 138 

LILRB1, and are in linkage disequilibrium with Ala193 and Val194.   LILRB2 has been shown to bind 139 

most strongly to HLA-A, and weakest to HLA-B alleles, but with greater variability for these alleles 140 

than LILRB1. Its binding is weakest to a subset of alleles including HLA-B27 and HLA-B*5701. 141 

Some of these outliers were MHC-I alleles with known disease associations, leading to the 142 

suggestion that LILR recognition of MHC-I might influence susceptibility to, and outcome of, some 143 

viral infections or autoimmune diseases. 144 

4 LILR, MHC and infection 145 

Viral infection may be regarded as the primary pathology in which MHC-I recognition is essential to 146 

achieve a successful immune response.  MHC-I proteins present fragments of intracellular proteins to 147 

T cells in order to enable the lysis of infected cells, and the peptide binding specificity of particular 148 

MHC-I alleles may thus influence the course of disease. There is evidence to suggest that LILR 149 

expression is induced in response to infection (64) and can be regarded as an indicator of an effective 150 

adaptive immune response (65). Studies are now beginning to highlight the relevance of LILR in 151 

particular infections and the influence of MHC-I recognition in the process. 152 

Distinct LILR expression profiles were found to be associated with dendritic cell dysfunction during 153 

acute HIV-1 infection (66) and with ‘elite’ control of infection (39). As there are well-characterised 154 

associations for different MHC-I alleles with either HIV viral control or progression to AIDS (67) 155 

and given that LILR have been implicated in its disease pathology, this viral infection represented a 156 

suitable model for testing the hypothesis that LILR may mediate MHC-I disease associations. 157 

Support for this theory was provided by studies which demonstrated that MHC-I alleles and 158 
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complexes associated with disease progression were preferential ligands for the inhibitory receptor 159 

LILRB2 whereas those associated with delayed onset of AIDS showed weaker binding to the 160 

receptor (17, 63, 68, 69). It could therefore be hypothesised that weaker affinity for LILRB2 would 161 

result in a lack of inhibition of dendritic cell functions, resulting in a more effective anti-HIV 162 

immune response. One study sought to examine the MHC-I haplotype of HIV-1 patient cohorts in 163 

combination with the strength of their LILR binding in order to assess whether LILR recognition 164 

might influence the course of disease.  An association with LILRB2 but not LILRB1 binding strength 165 

was observed, indicating that the strength of MHC-I recognition correlates with control of viral load 166 

(18).  This study provided the first strong evidence that despite the broad specificity of LILR, the 167 

strength of their binding preference for different MHC-I alleles could represent a novel mechanism 168 

for an MHC-I association during infection.  169 

Binding of MHC-I by ‘Activating’ members of the LILR family may also be relevant in HIV-1 170 

infection. LILRA1 and LILRA3 preferentially bind HLA-C open confomers (17) and HLA-C 171 

variants have been associated with different outcomes of HIV infection. One particular 172 

polymorphism, -35C/T, lies 35kb upstream of the HLA-C locus.  The -35C allele corresponds with 173 

increased HLA-C expression, which in turn is associated with delayed onset of AIDS (70). HLA-C 174 

proteins are more stable in open conformer form than their HLA-A, and –B counterparts and are 175 

upregulated following immune cell activation. It is therefore possible that LILRA1 or LILRA3 176 

recognition of HLA-C might provide a further mechanism for MHC-I disease associations during 177 

HIV infection.  178 

LILR binding preferences for MHC-I alleles may influence the outcome of other viral infections.  179 

Expression of HLA B27 is associated with spontaneous clearance of Hepatitis C virus infection (71), 180 

and by analogy with HIV-1 it could be hypothesised that the low binding preference of LILRB2 for 181 

this allele might influence disease outcome. Another viral infection where LILR may be responsible 182 

for MHC-I associated protective effects is Dengue.   Large case-control studies have identified MHC-183 

I alleles with protective effects in Dengue infection (72). Antibody opsonised Dengue has recently 184 

been shown to co-ligate the inhibitory receptor LILRB1 when engaged by FcR, leading to inhibition 185 

of FcR signaling (73) and indicating that LILRB1 may play a role in antibody dependent Dengue.  186 

Infection with DENV is highly inflammatory and results in a large influx of activated B-cells.  187 

5 Autoimmunity 188 

Individual LILR have been implicated in autoimmunity and their preferences for MHC-I alleles may 189 

be relevant in these conditions. Of the receptors known to recognise MHC-I, LILRA3 has been found 190 

to be associated with a number of inflammatory conditions. Expressed only in a soluble form, 191 

LILRA3 possesses no known signalling capacity of its own, but can bind ligands of cell-associated 192 

LILR. Some individuals do not express LILRA3 due to a large 6.7kbp sequence deletion. The 193 

prevalence of this deletion polymorphism is population-dependent and ranges from 6-84% (74, 75), 194 

with a particularly high relevance in the Japanese population, where a number of non-functional 195 

spliced isoforms have also been identified (76). The deletion has been associated with increased 196 

susceptibility and early onset of Multiple Sclerosis (MS) symptoms in a number of studies (77, 78), 197 

although conflicting data have been observed in other populations (74).  198 

LILRA3 deficiency may also be a risk factor for Sjögrens syndrome (SS), with increased prevalence 199 

of null allele homozygous individuals (79) in certain populations, whilst the functional allele is a 200 

suggested risk factor in others (75). More recent studies have linked LILRA3 to Rheumatoid Arthritis 201 

(RA). In contrast to MS, increased serum levels of functional LILRA3 is a proposed genetic risk 202 
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factor for RA, with serum levels correlating directly with disease severity (80). Of further note is the 203 

prominent expression of LILRA2, A5, B2 and B3 in synovial tissues of RA patients (81) and the 204 

reduction of LILRA2, LILRB2 and LILRB3 in patients responsive to disease-modifying anti-205 

rheumatic drugs (DMARDs) (82). Functional LILRA3 has also been suggested as a risk factor for 206 

Systemic lupus erythematosus (SLE) following a genotyping study in Han Chinese populations, 207 

which also found higher levels of LILRA3 mRNA in SLE patients (75). 208 

 209 

6 Other ligands and functions of LILR 210 

Direct recognition of Dengue virus by LILRB1 highlights the relevance of future studies to 211 

characterise the full range of ligands for these receptors and compare their relative binding strengths.  212 

As described above, LILRB2 is known to be the most promiscuous receptor in the family in terms of 213 

its broad specificity for classical and non-classical MHC-I in folded and unfolded forms. LILRB2 has 214 

also been shown to bind a range of non-MHC ligands including Angiopoietin-like proteins (32) and 215 

NOGO, a myelin component (30). More recently, LILRA3 has also been shown to bind NOGO (83). 216 

These findings extend the relevance of LILR beyond immune responses to situations such as 217 

neurodegeneration, neural plasticity, angiogenesis and other as yet unidentified scenarios where 218 

MHC-I may compete with other ligands for receptor binding (84). In the future, comparative binding 219 

assays may indicate how MHC-I allelic preferences might influence the ability of LILR to bind 220 

alternative ligands. Such investigations could cast light on previous observations regarding the 221 

relevance of MHC-I in neural plasticity and regeneration (85, 86) and associations with non-immune 222 

conditions such as Alzheimer’s disease.   223 

7 Future Directions 224 

Studies on HIV-1 have provided proof of concept that LILR binding preferences for MHC-I alleles 225 

could represent a novel mechanism to explain some of the associations of MHC-I alleles with 226 

autoimmune diseases and the outcome of certain viral infections.  According to this model, the 227 

influence of LILR can vary according to the strength of their binding to MHC-I alleles, representing a 228 

“degrees of self” model.  MHC polymorphisms could, therefore, determine the degree of LILR 229 

signaling and consequent regulation of functions for a range of immune cell subsets as indicated in 230 

Figure 2. However, identification of the underlying mechanisms through which LILR might alter 231 

disease outcomes will require an enhanced understanding of LILR biology. It will be necessary to 232 

obtain a full characterisation of the LILR expression repertoire on immune cell subsets, and identify 233 

the functional effects of LILR on each cell type. For example, in the context of dengue infection, 234 

LILR expression on B cell subsets may also be relevant in viral uptake and/or generation of non-235 

neutralising antibodies. It will also be necessary to characterise LILR expression and function on 236 

non-immune cells. Comparative binding assays between MHC-I alleles and alternative ligands 237 

should then help explain the wide-ranging influence of these proteins.  238 

 239 
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 506 

9 Figure Legends 507 

 508 

Figure 1: LILR expression profile, according to literature.  509 

Blue shaded squares indicate expression according to the literature (32-40); annotation within boxes 510 

indicates expression specifics (for example, observed during in HIV Infection or for a particular cell 511 

phenotype). Green denotes Group 1 LILR, and Red, Group 2 LILR. 512 

 513 

Figure 2: Immunoregulatory Receptor Mechanisms & Functions 514 
A) T-cell mediated non-self killing through non-self MHC-I peptide presentation. 515 

B) NK mediated non-self killing through Missing-self, Non-self and stress/damage-induced lysis 516 

C) LILR mediated regulation of immune cells. LILR may regulate cell phenotype and functions, 517 

in a variety of ways, which have yet to be determined in full.  518 

 519 
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