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Abstract 

Nicotine addiction is considered to be the main preventable cause of death worldwide. While 

growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the 

addictive properties of several abused drugs, the regulation of the oxytocinergic system 

following nicotine administration has so far received little attention. Here, we examined the 

effects of long-term nicotine or saline administration on the central oxytocinergic system using 

[125I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were 

treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-

days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific 

upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress 

and emotional regulation. These results provide direct evidence for nicotine-induced 

neuroadaptations in the oxytocinergic system, which may be involved in the modulation of 

nicotine-seeking as well as emotional consequence of chronic drug use. 
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Highlights 

 Nicotine administration increases amygdalar oxytocin receptor binding 

 Chronic nicotine does not alter oxytocin receptor binding in the striatum 

 Oxytocin may be a potential target for the treatment of nicotine addiction 



Introduction 

Cigarette smoking is considered the main preventable cause of death worldwide [1]. While there 

is evidence suggesting that nicotine may exert antidepressant [2-5] and anxiolytic [6] effects, 

chronic nicotine use has been also associated with severe depression symptoms [7-9] and 

anxiety, which persist following abstinence [10,11]. This negative affective state following 

nicotine cessation might contribute to relapse [12]. Although there are currently numerous 

therapeutic agents and cognitive behavioural interventions for smoking cessation that are 

considered  beneficial for the treatment of nicotine addiction, none of these therapeutic strategies 

has been shown to effectively prevent relapse to nicotine-seeking following abstinence [13]. In 

fact, among the 40% of smokers undergoing smoking-cessation interventions, only a small 

percentage of 4% achieve a long-term abstinence for 6 to 12 months [14]. Therefore, 

development of an optimal treatment for the effective treatment and prevention of nicotine 

use and relapse following abstinence requires further understanding of the mechanisms 

contributing to nicotine long-term abuse, which might be associated with the emergence of 

emotional impairment during withdrawal. 

Emerging evidence indicates the involvement of the oxytocinergic system in drug addiction 

processes [15-17]. In particular, chronic administration of addictive substances including cocaine 

[18,19], methamphetamine [20], opioids [21] and alcohol [22] have been shown to induce 

marked alterations in the oxytocin (OT) system in the brain, which might be involved in the 

modulation of the emotional consequences of chronic drug use. Indeed, recent evidence supports 

an association between oxytocinergic deficiency and the negative emotional consequences of 

drug addiction, including depression, anxiety and social deficits [21]. OT-producing neurons 

located in the hypothalamus also project to several brain regions involved in drug-seeking 



behaviour as well as emotional regulation, including the septum and amygdala, where oxytocin 

receptors (OTR) are expressed [23].Few previous studies also demonstrated a role for OT in the 

modulation of nicotine addiction processes. In particular, acute intravenous administration of 

nicotine has been shown to decrease OT content in the pituitary of rats [24], and systemic 

administration of OT abolished physical somatic symptoms of nicotine withdrawal in rats [25]. 

Overall, although these studies clearly support the involvement of OT in nicotine addiction, the 

effects of chronic nicotine administration on the central oxytocinergic system remains largely 

unknown. 

Based on the evidence implicating the OT neuropeptidergic system in addictive-related 

behaviours, we hypothesized that chronic nicotine administration might also induce alterations in 

the central oxytocinergic system. This is the first study to investigate the effects of chronic 

nicotine treatment on oxytocin receptor binding with the use of autoradiographic binding.  

  



Materials and Methods 

Animals and chronic nicotine administration paradigm 

Male C57BL/6J mice (seven-week old, Charles River Laboratories, Kingston, UK), were 

individually housed in a temperature-controlled environment with a 12:12-hour light/dark cycle 

(lights on at 06:00).  Food and water were available ad libitum. Mice were given seven days to 

acclimatize to their new environment and were handled daily by the experimenter. Mice were 

treated with a nicotine administration paradigm as described previously [26]. Briefly, saline or 

nicotine hydrogen salt (7.8 mg/kg/day; Sigma-Aldrich, UK) were administered via osmotic mini-

pumps (ALZET®2002 model, Charles River, UK). For minipump implantation, mice were 

anaesthetised using an isoflurane/oxygen vapour mixture (3.5%–4.5%; Isoflo, Abbott 

Laboratories Ltd, UK). A single incision along the midline of the back of each animal was made 

and osmotic mini-pumps were placed in parallel position to the spine. The flow operator was 

pointing away from the incision site. Nicotine was delivered for a period of 14 days at the daily 

dose of 7.8 mg/kg (free-base weight), at a rate of 0.5 μl per hour. This dose has been shown to 

induce blood nicotine levels comparable to the values measured in human smokers [26]. 

All animal care and experimental procedures complied with protocols approved by the 

University of Surrey Animal Welfare and Ethical Review Body and by the UK Home Office 

under Animals (Scientific Procedures) Act 1986. Mice were randomly assigned to two different 

drug-administration groups; control saline-treated group and chronic nicotine-treated group.  

  



OTR autoradiography 

OTR binding was carried out on sections from 14-day saline- and nicotine-treated mice as 

previously described [20].  Total binding was determined by incubating sections with 50 pM 

125I-ornithine vasotocin (OVTA) for 1 hour in an incubation buffer medium containing 50mM 

Tris-HCl, 10mM MgCl2, 1mM ethylenediaminetetraacetic acid (EDTA), 0.1 % w/v bovine 

serum albumin, and 0.05 % w/v bacitracin (Sigma-Aldrich, Poole, UK, pH 7.4 at room 

temperature). Adjacent sections were incubated with [125I]-OVTA (50 pM) in the presence of 

50μM unlabelled (Thr4,Gly7)-oxytocin (Bachem, Germany), to determine non-specific binding 

(NSB). Slides were apposed to Kodak MR-1 films (Sigma-Aldrich, UK) in Hypercassettes with 

autoradiographic [14C] microscales of known radioactive concentration (GE Healthcare 

Life Sciences, Amersham, U.K.) for 3 days. Films were developed in a 50% Kodak D19 

developer solution (Sigma-Aldrich, Poole, UK) and analyzed using MCID image analyzer 

(Image Research, Ontario, Canada).  

Statistical Analysis 

All values were expressed as mean ± SEM. For the analysis of regional OTR binding, two-way 

ANOVA was performed for factors ‘treatment (saline/nicotine)’ and ‘brain region’ at different 

bregma levels. Bonferroni post-hoc test was used when ANOVA reached significance (i.e., 

p<0.05). All statistical analyses were performed using Statistica 8.0 (Statsoft Inc., France). 

  



Results 

High levels of OTR binding (0.97-1.15 fmol/mg tissue) were observed within the olfactory 

nuclei, medium binding levels (0.28-0.68 fmol/mg tissue) were identified within the mediolateral 

septum, ventral limb of the diagonal band of Broca, amygdala and hypothalamus, while low 

levels of binding (0.07-0.17 fmol/mg tissue) were observed in striatal regions (i.e., nucleus 

accumbens, caudate putamen and olfactory tubercle) as well as the thalamus (Figure 1A-E).  

Olfactory nuclei: Two-way ANOVA showed a significant effect of ‘brain region’ 

(F[2,24] = 7.37, p < 0.01), but no ‘treatment’ (F[1,24] = 0.30, p > 0.05) or ‘treatment’ x ‘brain 

region’ interaction  effect (F[2,24] = 0.01, p > 0.05).  

Striatum: Two-way ANOVA revealed a significant effect of ‘brain region’ 

(F[2,24] = 4.48, p < 0.05), but no ‘treatment’ (F[1,24] = 0.26, p > 0.05) or ‘treatment’ x ‘brain 

region’ interaction effect (F[2,24] = 0.06, p > 0.05). 

Septum: Two-way ANOVA revealed a significant effect of ‘brain region’ 

(F[2,24] = 10.06, p < 0.001), but no ‘treatment’ (F[1,24] = 0.64, p > 0.05) or ‘treatment’ x ‘brain 

region’ interaction  effect (F[2,24] = 0.09, p > 0.05).  

Forebrain: Two-way ANOVA revealed a significant effect of ‘brain region’ 

(F[3,27] = 53.50, p < 0.001) and ‘treatment’ x ‘brain region’ interaction effect 

(F[3,27] = 3.40, p < 0.05). Bonferroni’s post-hoc comparison test showed a significant, 46% 

increase of OTR binding in the amygdala following nicotine treatment (p<0.01). No effects of 

nicotine administration on the OTR binding were observed in the hippocampus, thalamus, or 

hypothalamus (p>0.05). 

 



Discussion 

The present study demonstrated, for the first time, a region-specific alteration of the OTR 

binding in the brain of mice treated with a chronic nicotine administration paradigm. This up-

regulation of the OTR was specifically localized in the amygdala, a region involved in stress and 

emotional regulation [27,28]. Therefore, this oxytocinergic system alteration may be involved in 

the modulation of long-term behavioural adaptations induced by chronic nicotine exposure. 

Expression and distribution of the OTR observed in the current study is in line with previous 

published data in mice [e.g. 20,29]. Although alterations of the endogenous oxytocin system 

have been previously demonstrated following acute or chronic alcohol [30], cocaine [18,19,31], 

methamphetamine [20], 3,4-methylenedioxymethamphetamine (MDMA) [32] and morphine 

[21,33,34] administration in the brain of rodents, this is the first study to report central 

oxytocinergic neuroadaptations following chronic nicotine administration.  The up-regulation of 

OTR binding in the amygdala observed in the present study, is in line with studies investigating 

the effects of chronic opioid, cocaine and methamphetamine administration on the central 

oxytocinergic system [19,20,35], indicating a possible common mechanism of action of several 

drugs of abuse through the modulation of the amygdalar OTR. 

The role of this nicotine-induced increase in OTR binding is yet to be determined. However, 

given the involvement of the amygdala in a number of facets of emotional regulation [27] and 

social cognition [36], we can postulate that the alterations observed in this study might reflect 

neuroadaptations of the OT system in response to emotional and cognitive impairments induced 

by chronic nicotine. Indeed, chronic nicotine administration has been shown to induce emotional 

deficits, including depression and anxiety [10]. This hypothesis is further supported by findings 



demonstrating that the anxiolytic, antidepressant and stress-relieving properties of OT to be at 

least partly modulated by the amygdala [37]. 

Nicotine administration has been also shown to exert cognition-enhancing effects [38]. Since 

oxytocin is also considered as a key mediator of social cognition in humans [39] and this effect 

has been postulated to specifically involve the OT system in the Amy [40], the OTR up-

regulation observed here might also be associated with a possible nicotine regulation of 

cognition through an OTR-dependent mechanism. However, this hypothesis needs to be further 

investigated. 

Importantly, alterations of OTR in the amygdala have been previously associated with a hypo-

oxytocinergic tone in the brain. In particular, chronic morphine administration and withdrawal 

induced a marked decrease in the hypothalamic OT levels, concomitant with a rebound increase 

of the OTR in the amygdala [21]. Considering these findings and since an increase in OT peptide 

levels or administration of an OTR agonist induces rapid OTR desensitization, clathrin-

dependent internalisation and subsequent downregulation of the receptors [41], we can speculate 

that the up-regulation of OTR in the amygdala is a rebound consequence of a possible reduction 

of OT levels in the brain following chronic nicotine administration. Indeed, there is evidence for 

a reduced oxytocinergic tone following nicotine administration, as acute nicotine was shown to 

diminish OT levels in the pituitary of rats [24]. 

In conclusion, this is the first study to demonstrate direct brain region-specific alterations in the 

amygdalar OTR following nicotine administration in mice. This study suggests the alterations of 

OTR as one possible mechanism underlying behavioural and neurochemical alterations observed 

in nicotine addiction. 
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Figure Legend 

Figure 1: Oxytocin receptor (OTR) binding in the brain of mice following long-term nicotine 

administration. C57BL/6J mice were treated for fourteen days with either saline or nicotine via 

osmotic minipumps. (A) Representative autoradiograms of 50 pM [125I]-ornithine vasotocin 

analogue binding to OTR in coronal brain sections at the level of the olfactory nuclei (row 1), 

striatum (row 2), septum (row 3) and forebrain (row 4). Binding levels are represented using a 

pseudo-colour interpretation of black and white film images in fmol/mg of tissue equivalent. 

Quantitative OTR binding levels at the level of (B) olfactory nuclei, (C) striatum, (D) septum 

and (E) forebrain, where OTRs are expressed. Data are expressed as mean ± SEM (n=4-6 per 

treatment group). **p<0.01 vs saline control. Abbreviations: Acb, nucleus accumbens; Amy, 

amygdala; AOL, anterior olfactory nucleus-lateral; AOM, anterior olfactory nucleus-medial; 

AOV, anterior olfactory nucleus-ventral; CPu, caudate putamen; Hip, hippocampus; Hyp, 

hypothalamus; LS, lateral septum; MS, medial septum; Th, thalamus; Tu, olfactory tubercle; 

VDB, vertical limb of diagonal band of Broca. 
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