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and environmental factors. Genome-wide association stud-
ies (GWAS) have identified over a dozen genetic loci asso-
ciated with migraine. Here, we integrated migraine GWAS 
data with high-resolution spatial gene expression data of 
normal adult brains from the Allen Human Brain Atlas to 
identify specific brain regions and molecular pathways that 
are possibly involved in migraine pathophysiology. To this 
end, we used two complementary methods. In GWAS data 
from 23,285 migraine cases and 95,425 controls, we first 
studied modules of co-expressed genes that were calculated 
based on human brain expression data for enrichment of 
genes that showed association with migraine. Enrichment 
of a migraine GWAS signal was found for five modules 
that suggest involvement in migraine pathophysiology of: 
(i) neurotransmission, protein catabolism and mitochondria 
in the cortex; (ii) transcription regulation in the cortex and 
cerebellum; and (iii) oligodendrocytes and mitochondria 

Abstract Migraine is a common disabling neurovascular 
brain disorder typically characterised by attacks of severe 
headache and associated with autonomic and neurological 
symptoms. Migraine is caused by an interplay of genetic 
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in subcortical areas. Second, we used the high-confidence 
genes from the migraine GWAS as a basis to construct 
local migraine-related co-expression gene networks. Signa-
tures of all brain regions and pathways that were prominent 
in the first method also surfaced in the second method, thus 
providing support that these brain regions and pathways are 
indeed involved in migraine pathophysiology.

Introduction

Migraine is a common neurovascular brain disorder 
characterised by attacks of severe, unilateral headache, 
often accompanied by nausea and phono- and photo-
phobia (Headache Classification Committee 2013). Two 
main migraine types are distinguished based on the pres-
ence or absence of an aura, which consists of transient 
neurologic symptoms including visual and sensory dis-
turbances that can precede attacks in up to one-third of 
patients. Migraine is a complex genetic disorder with an 
estimated heritability of approximately 50 % (Mulder 
et al. 2003) and thought to be caused by an interplay of 
multiple genetic variants, each with a small effect size, 
and environmental factors. Numerous candidate gene 
association studies have been performed for migraine, 
however, their value turned out rather low as none could 
be replicated in a large genome-wide marker dataset of 
thousands of migraine patients and controls (de Vries 
et al. 2015). Genome-wide association studies (GWAS) 
investigating the common forms of migraine have iden-
tified 13 disease susceptibility loci (Anttila et al. 2010, 
2013; Chasman et al. 2011; Freilinger et al. 2012). These 
loci identified genes that are involved in glutamatergic 

neurotransmission (MTDH, LRP1, MEF2D), neuron 
and synapse development (MEF2D, ASTN2, PRDM16, 
FHL5, PHACTR1, TGFBR2 and MMP16), brain vascula-
ture (PHACTR1, TGFBR2, C7orf10), extracellular matrix 
(MMP16, TSPAN2, AJAP1), and pain-sensing (TRPM8). 
These findings support knowledge that came from investi-
gating disease mechanisms in monogenic migraine-related 
disorders including familial hemiplegic migraine (FHM), 
a monogenic subtype of migraine with aura (Ferrari et al. 
2015; Tolner et al. 2015). Notably, transgenic knock-in 
(KI) mouse models that express human pathogenic FHM1 
(van den Maagdenberg et al. 2004, 2010) or FHM2 (Leo 
et al. 2011) mutations revealed increased susceptibility 
for experimentally induced cortical spreading depression 
(CSD), the electrophysiological correlate of the migraine 
aura (Lauritzen 1994), which could be directly linked to 
increased cortical glutamatergic neurotransmission in 
FHM1 KI mice (Tottene et al. 2009). Other monogenic 
disorders in which migraine is prevalent are cerebral auto-
somal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL) and retinal vasculopa-
thy with cerebral leukodystrophy (RVCL) that indicate a 
role for dysfunction of the brain vasculature in migraine 
(Tolner et al. 2015). Migraine genes identified by GWAS 
are primarily identified based on their location near top 
hits, so true causality of (at least some of) them remains 
uncertain, which is not different from other disorders. 
Furthermore, current GWAS top hits explain only a small 
part of the disease heritability, and, therefore, genes iden-
tified in this way reflect only a fraction of the pathways 
conferring genetic disease risk. Hence, pathway analysis 
methods that harvest a larger portion of the GWAS data 
(i.e., not only loci with significant P values) may give 
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more valuable insight into disease genetics, as has been 
tried for other diseases (Atias et al. 2013; Sun 2012).

Commonly used tools to explore disease-associated 
pathways in GWAS data make use of functional enrich-
ments [MAGENTA Gene Set Enrichment Analysis (Segre 
et al. 2010)], protein interactions [DAPPLE (Rossin et al. 
2011)] or text-mining [GRAIL (Raychaudhuri et al. 2009)], 
but did not successfully identify overrepresented molecu-
lar pathways involved in migraine (Anttila et al. 2013). One 
explanation why it may be difficult to confidently identify 
disease pathways from GWAS data is that loci often con-
tain multiple genes, of which only (one or) a subset might 
influence the trait of interest. Moreover, each of these genes 
can be expressed in multiple cell types and may have dif-
ferent functions in each of them. We envisaged that gene 
expression data can be used to preselect genes for func-
tional analysis based on their expression in disease-rele-
vant tissues, thereby increasing the chance of identifying 
disease-relevant genes and pathways. In addition, gene co-
expression analysis can be used to identify genes with simi-
lar expression patterns. Previous studies have shown that 
gene co-expression can infer a wide range of meaningful 
biological information, e.g., shared gene functions, biologi-
cal pathways or cell type-specific expression (Kang et al. 
2011; Hawrylycz et al. 2012; Grange et al. 2014).

Gene co-expression analysis has been applied success-
fully to identify disease mechanisms from GWAS or other 
genomics data for other disorders, including allergic rhi-
nitis and autism spectrum disorder (Ben-David and Shif-
man 2012; Bunyavanich et al. 2014; Parikshak et al. 2013; 
Willsey et al. 2013). Admittedly, these studies benefited 
from having available gene expression data obtained under 
disease-specific conditions (Bunyavanich et al. 2014) or the 
use of causal genetic variants with large effect sizes (Ben-
David and Shifman 2012; Parikshak et al. 2013; Willsey 
et al. 2013). For migraine, no gene expression data from 
disease-conditions are available. Few gene expression 
profiling studies have been carried out for migraine, i.e., 
in whole blood of episodic and chronic migraine patients 
(Hershey et al. 2004) and menstrual migraine patients 

(Hershey et al. 2012), in immortalised cell lines of migraine 
with aura patients (Nagata et al. 2009), and in brain mate-
rial of transgenic KI FHM1 mice (de Vries et al. 2014), but 
no overlapping deregulated genes or pathways have been 
identified. Nor is there a large set of causal genes, except 
for three genes (CACNA1A, ATP1A2 and SCN1A) (De 
Fusco et al. 2003; Dichgans et al. 2005; Ophoff et al. 1996) 
that have been identified for FHM, that can guide gene 
identification efforts in the common forms of migraine. 
Therefore, we focused our analyses on gene expression 
data from the normal human brain.

Here we used two complementary methods to connect 
gene expression data from adult human brain, the most 
relevant tissue for migraine, with GWAS data to identify 
migraine-related pathways. To this end, spatially mapped 
gene expression data of the adult human brain, obtained 
from the Allen Human Brain Atlas (Hawrylycz et al. 
2012), was used to calculate brain-specific co-expression 
levels between genes. We used GWAS data, available 
through the International Headache Genetics Consortium, 
of 23,285 migraine cases and 95,425 population-matched 
controls (Anttila et al. 2013) to calculate gene-based 
associations with migraine. This enabled the inclusion 
of below-threshold association signals that did not reach 
genome-wide significance (P value <5 × 10−8) due to lack 
of power (Gibson 2012; Mooney et al. 2014). For our first 
method, we grouped all genes into co-expression modules 
and studied the enrichment of genes with nominally signif-
icant gene-based associations with migraine in the differ-
ent modules. For our second method, we constructed local 
co-expression networks around ‘high-confidence genes’ 
(i.e., those genes with gene-based P values that survived 
multiple testing correction) that we combined into a local 
migraine-related co-expression gene network. By study-
ing the modules enriched for migraine-associated genes 
(method 1) and the local migraine-related co-expression 
gene networks (method 2), we identified multiple brain 
regions, cell types and pathways overlapping between 
the two methods that are possibly involved in migraine 
pathophysiology.
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Results

Spatial co‑expression network of the adult human brain

To identify brain regions and pathways involved in 
migraine pathophysiology, we performed co-expression 
network analysis using spatial gene expression informa-
tion of the Allen Human Brain Atlas (Hawrylycz et al. 
2012). We focused on the adult human brain transcrip-
tome, since migraine is a brain-related disorder that 
affects mostly the adult population. Microarray data were 
available from six healthy adult human brains; five males 
and one female, aged 24–57 with a mean age of 42 years, 
each dissected into 363–946 samples (3702 in total) from 
well-defined brain regions. We used the gene expression 
data of 29,374 microarray probes that could be mapped 
unambiguously to 19,972 genes. Gene co-expression 
levels were calculated separately for each brain (across 
the samples), and subsequently averaged (per gene) to 
obtain a single spatial co-expression network not affected 
by individual brain differences (see Materials and meth-
ods). Note that these levels, therefore, reflect brain-wide 
spatial co-expression. Differences in expression values 
between the female brain and five male brains were not 
more pronounced than the differences between any of 
the male brains and all other brains (see Supplementary 
Materials and methods; Figure S1), justifying the unbal-
anced gender composition of the Allen Brain Atlas for 
our analyses. In fact a recent publication by Hawrylycz 
et al. (2015) showed that functionally relevant genes 
seem to have a stable expression across the six donors. 
Using hierarchical clustering analysis, we identified 18 
modules in the spatial brain-wide co-expression net-
work, with module sizes varying from 179 to 2007 genes 
(Fig. 1). Each module thus contains genes that have simi-
lar expression patterns across the different brain samples. 
Clustering the gene expression data can be done in vari-
ous ways (see Supplementary Materials and methods). 
The final clustering tree showed strongest enrichment for 
migraine genes. Modules enriched for migraine genes are 
further investigated for these spatial patterns across brain 
regions and for functional enrichments of the migraine 
genes.

Genes associated with migraine

We used summary statistics data from the GWAS meta-
analysis for migraine (Anttila et al. 2013) performed by 
the International Headache Genetics Consortium to calcu-
late gene-based P values for the association with migraine. 
The 2116 genes with nominal gene-based P values below 
0.05 were considered to have a potential link to migraine 
and are therefore referred to as migraine ‘candidate genes’. 

The 14 genome-wide significant genes, with multiple test-
ing corrected gene-based P values below 0.05, are referred 
to as ‘high-confidence genes’. The high-confidence genes 
contained 10 genes located at or near the genome-wide 
significant GWAS loci: ASTN2, C7orf10, FHL5, MEF2D, 
TRPM8, LRP1, STAT6, NAB2, PRDM16 and UFL1 (Ant-
tila et al. 2013). LRP1, STAT6 and NAB2 at chromosome 
12q13 share the same genome-wide significant SNP, and 
the top SNPs for FHL5 and UFL1 at chromosome 6q16 are 
in strong linkage disequilibrium (LD). The remaining high-
confidence genes LEPROTL1, DCLRE1C, SUV39H2, and 
MBOAT4 are located near SNPs that did not reach the level 
of genome-wide significance in the migraine GWAS, and 
gain from a reduced multiple testing burden in our gene-
based analysis compared to a SNP-based analysis. GWAS 
hits MTDH, PHACTR1, TGFBR2, MMP16, TSPAN2 and 
AJAP1 did not reach a multiple testing corrected gene-
based P value below 0.05, possibly due to a larger distance 
between the GWAS locus and the gene, and were therefore 
not designated as high-confidence genes.

Migraine‑associated loci converge into five 
co‑expression modules

We performed an enrichment analysis of the 2116 migraine 
candidate genes in the 18 co-expression modules to identify 
the modules that have the strongest link with migraine. Five 
modules labelled A–E showed enrichment of candidate 
genes in a Fisher exact test (P < 0.05) (Fig. 1; Table S1). 
To verify that the identified enrichments were not the result 
of bias in the Fisher exact test introduced by LD between 
SNPs in the GWAS data and by SNPs assigned to multiple 
genes, we performed a second, LD-corrected Fisher exact 
test. These results confirm the association of modules A–E 
with migraine (Table S1).

Module A showed the highest enrichment of migraine 
candidate genes (enrichment P = 9.44 × 10−4, LD-cor-
rected enrichment P = 5.47 × 10−4) and contains 1556 
genes with high expression in cerebral cortex, very low 
expression in cerebellum, and low expression in hip-
pocampal formation and subcortical cerebrum (Fig. 2). 
Module B (enrichment P = 0.015, LD-corrected enrich-
ment P = 7.18 × 10−3) consists of 1595 genes with high 
expression in cerebellum, low expression in subcortical 
regions and an intermediate expression in cerebral cortex 
(Fig. 2). Module C (enrichment P = 0.02, LD-corrected 
enrichment P = 7.77 × 10−3) contains only 497 genes. 
Genes from module C have an expression pattern similar 
to that of module A with higher expression in hippocampal 
formation and claustrum (Fig. 2). Module D (enrichment 
P = 0.024, LD-corrected enrichment P = 5.82 × 10−3) is 
the largest module with 1984 genes that are preferentially 
expressed in subcortical regions and the white matter, with 
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Fig. 1  Gene expression patterns and cell type enrichments of the 18 
modules in the spatial co-expression network. a Heat map of the clus-
tered gene expression data, with the 3702 concatenated human brain 
samples in columns and the 19,972 genes in rows, ordered according 
to their clustering. The brain samples are ordered based on their loca-
tion in the brain, which is noted above the heat map and illustrated 
with the colour coding from the Allen Brain Institute below the heat 
map. The colour coding is also illustrated in the three coronal brain 
sections below the heat map (for brain region names in the coro-
nal sections, see Figure S3). Low expression is shown as blue, high 

expression is shown as red. The genes are clustered into 18 modules, 
here separated by white rows. b Log-transformed gene-based P val-
ues for the association with migraine are shown for all genes with: 
(1) genes with P values below 0.05 in the colour corresponding to 
modules A–E or in grey for the other modules; (2) migraine candidate 
genes in black; and (3) high-confidence genes circled and named. 
Gene modules A–E are the five modules enriched for candidate genes. 
c the table shows the enrichment of cell type-specific genes in the 18 
modules from white (P value >0.05) to black (P value <10−7)
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Fig. 2  Gene expression maps for modules A–E associated with 
migraine. Average gene expression levels are shown for each mod-
ule from blue (low) to red (high) in the different brain regions repre-
sented in the three coronal brain sections (for brain region names in 
the coronal sections, see Figure S3). Regions that lack gene expression 
information are depicted in grey. The lists on the right show: (1) the 
numbers of genes and migraine candidate genes; (2) the P values for 

the enrichment of migraine candidate genes; and (3) the top 5 enriched 
functions in each module, as identified using the Functional Annota-
tion Clustering tool in DAVID, with their corresponding EASE score. 
The EASE score is the geometric mean of the Benjamini-corrected 
negative log (base 10) P values of its pathways and GO terms, so a 
score below 1.3 corresponds to a Benjamini-corrected P value below 
0.05. Module E has no significant functional enrichments
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low expression in cerebellar and cerebral cortex (Fig. 2). 
Module E (enrichment P = 0.03, LD-corrected enrichment 
P = 0.04) contains only 179 genes with high expression in 
cerebellar cortex, pons and hypothalamus (Fig. 2).

Migraine‑associated modules show enrichment 
of functions involved in neurotransmission, 
mitochondria, gene expression regulation 
and oligodendrocytes

Next, we performed a functional enrichment analysis of 
modules A–E to identify gene functions associated with 
migraine pathophysiology (Fig. 2; Tables S2–S5). We stud-
ied pathways from KEGG, Reactome and PANTHER, and 
gene ontology (GO) terms from PANTHER and the GO 
FAT database using the Functional Annotation Clustering 
tool in DAVID. GO term and pathway groups were consid-
ered significant when the Benjamini-corrected P value was 
below 0.05 (reflected in an EASE score of 1.3 or higher). 
Functions enriched in module A included energy metabo-
lism, protein catabolism and synaptic functions (Table S2). 
Genes in module B showed enrichment of multiple func-
tions, all involved in gene expression regulation (Table S3). 
Module C contains a large set of genes involved in purine 
nucleotide binding, and also showed enrichment for sev-
eral brain developmental and synaptic functions (Table S4). 
Genes in module D showed highest enrichment of func-
tions involving energy supply, apoptosis and myelination 
(Table S5). Module E did not show any significant func-
tional enrichments. Most enriched functions are module-
specific; of modules A–D only module C shares most of its 
enriched functions with other modules (A, L and P) (Figure 
S2).

Enrichment of oligodendrocytic and neuronal genes 
in migraine‑associated modules

Expression patterns in the brain are co-determined by cell 
type composition (Grange et al. 2014; Hawrylycz et al. 
2012). Consequently, we expected to find enrichment 
of cell type-specific genes in the co-expression modules 
(Fig. 1). Notably, modules A and C showed significant 
enrichment of genes specifically expressed in neurons 
(119 genes, P = 8.00 × 10−15; 40 genes P = 3.12 × 10−6, 
respectively), which is in line with the preferential expres-
sion in cerebral cortex of genes in these modules and the 
enrichment for synaptic functions. Module D is signifi-
cantly enriched for oligodendrocyte-specific genes (103 
genes, P = 1.37 × 10−55), and also showed enrichment 
for genes specifically expressed in microglia and endothe-
lial cells. This finding seems well in line with the observed 
high expression in white matter of genes in this module and 
the enrichment of several functions related to myelination. 

Module E is enriched for neuron-specific genes (18 genes, 
P = 1.09 × 10−4). Module B did not show enrichment of 
cell type-specific genes.

Confirmation of the association of modules A–D 
with migraine using a local seed network

The association of modules A–E with migraine may be 
the result of low migraine association signals, and may 
therefore not have a direct link to the genome-wide signifi-
cant GWAS loci, as only module B (LRP1) and module D 
(UFL1) contain a high-confidence gene (Fig. 1). To lever-
age the information in the high-confidence genes, we used 
them as seeds for a local co-expression network. The local 
co-expression network therefore contains only the high-
confidence genes and their co-expression partners (Fig. 3).

The most highly connected high-confidence gene is 
STAT6, which has strong co-expression with genes from 
module A (connections marked in blue in Fig. 3) and two 
genes from module C (connections marked in green), but 
is not part of either of these modules. Genes DCLRE1C 
and LRP1 lie in a sub-network containing genes from 
module B (connections marked in yellow). LEPROTL1 
and UFL1 are directly connected to genes from module D 
(marked in red). SUV39H2 and TRPM8 have no strongly 
co-expressed genes in the Allen Human Brain Atlas and 
remain unconnected. MBOAT4 lies in a disconnected sub-
network. The remaining 6 high-confidence genes are indi-
rectly connected to the genes of modules A–D. The small-
est module of interest, module E, has no genes in the local 
seed network.

Local seed network shows enrichment of functions 
and cell types similar to modules A–D

We performed a functional enrichment analysis in the local 
seed network, thereby focussing on each high-confidence 
gene and its co-expressing partners (Fig. 3; Table S6). 
Briefly, a local network for each high-confidence gene was 
constructed by connecting it to genes with which it has a 
spatial gene co-expression larger than 0.6. The network 
around STAT6, C7orf10 and MBOAT4 showed enrichment 
of functions involved in the synapse and signal transduc-
tion. The network around LEPROTL1 showed enrichment of 
mitochondrial genes. Functions involved in gene expression 
regulation were found in the networks around DCLRE1C, 
LRP1 and UFL1. Other enriched functions were “circadian 
rhythm” (NAB2 network), “apoptosis” (UFL1 network), and 
“protein catabolism” (LEPROTL1 network).

Finally, we investigated the enrichment of brain cell 
type-specific genes in the local seed network (Fig. 3; 
Table S7). The co-expression network around STAT6, that 
shares many genes with module A, is highly enriched for 
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neuron-specific genes (P = 4.37 × 10−32), as is the net-
work around NAB2 (P = 2.50 × 10−4). The sub-network 
connected to UFL1, overlapping with module D, contains 
many oligodendrocyte-specific genes (P = 1.26 × 10−8). 
The sub-networks connected to PRDM16 and to C7orf10 
are enriched for astrocyte-specific genes (P = 3.82 × 10−7 
and 4.34 × 10−10, respectively).

Discussion

We performed a gene-based analysis of migraine GWAS 
data from a large meta-analysis of in total 23,285 migraine 
cases and 95,425 population-matched controls available 
through the International Headache Genetics Consortium 
(Anttila et al. 2013) aimed at identifying brain regions, cell 
types and pathways involved in migraine pathophysiology. 
To this end, we used detailed spatial brain gene expression 
data from 3702 samples of six normal adult human brains 
from the Allen Human Brain Atlas to group genes into co-
expression modules. We identified five modules enriched 
for migraine-associated genes that show involvement in 
cortical neurotransmission, protein catabolism and energy 
supply (Modules A and C); in gene transcription regulation 
in cortex and cerebellum (Module B); and in myelination 
and energy supply in subcortical areas (Module D) (Fig. 4).

The lack of causal variants with large effect sizes for 
common migraine may explain, at least partly, the low 
enrichments of candidate genes in the co-expression mod-
ules. The conversion of the migraine GWAS data to the 
gene-based P values may have caused inaccuracies as we 
may have associated SNPs to genes just because they are 
nearby these genes, although they may not have a func-
tional effect on them; and, similarly, we may not have asso-
ciated SNPs to genes simply because we considered them 

Fig. 3  Gene co-expression network seeded on the 14 high-confi-
dence genes. a The network consists of the high-confidence genes 
and their co-expression partners that are connected if they have a 
co-expression value >0.6. Each gene is shown as a circle and named 
with its gene name, with the size of both corresponding to its gene-
based P value (larger size corresponding to a lower P value). The col-
ours of the circles correspond to those of modules A–E in Fig. 1: blue 
for module A, yellow for module B, green for module C, red for mod-
ule D, purple for module E and grey for all other modules. The edge 
colours are matched to (a mixture of) the colours of the connecting 
genes. b For each high-confidence gene and its co-expressing part-
ners are shown: (1) the number of genes in the local co-expression 
network around the high-confidence gene; (2) the average brain gene 
expression level from blue (low expression) to red (high expression) 
mapped in the three coronal brain sections (for brain region names 
in the coronal sections, see Figure S3); (3) the enrichment of cell 
type-specific genes in the table from white (P value >0.05) to black 
(P value <10−7); and (4) the top five enriched gene functions. Not 
shown are boxes for high-confidence genes TRPM8, SUV39H2 and 
FHL5 because these genes have no or only few co-expressed genes. 
Ne. Neuron, As. astrocyte, Ol. Oligodendrocyte, Mi. microglia, En. 
endothelial cell

Fig. 4  Schematic overview of the migraine-associated modules and 
the trigeminovascular pathway involved in migraine headache. The 
migraine-associated modules A–D, which also overlap with the local 
migraine-related co-expression gene network, point to three distinct 
locations in the brain: the cortex (modules A, B and C), the cerebel-
lum (module B) and the white matter and subcortical regions includ-
ing the thalamus (module D), and multiple gene functions or cell 

types. Several brain regions overlap between the migraine-associated 
modules and the trigeminovascular system that is thought to gener-
ate the migraine headache. This system consists of trigeminal affer-
ents that innervate the blood vessels in the meninges, whose signals 
are transmitted through the trigeminal ganglion (TG), the trigeminal 
nucleus caudalis (TNC), and the thalamus to the cortex where they 
can produce the sensation of pain

◂
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too far away to be functionally involved. To reduce these 
limitations we chose a 15-kb boundary around the genes, 
as it was shown that most SNPs that affect gene expres-
sion are located within this boundary (Pickrell et al. 2010). 
However, currently, no methods are available to calculate 
gene-based P values that can fully surmount these limita-
tions. To increase the reliability of our results, we used the 
largest migraine GWAS dataset currently available (Anttila 
et al. 2013). Furthermore, we used a second method to con-
firm the link between migraine and the brain regions and 
gene functions identified by building a migraine-related 
co-expression gene network around the high-confidence 
migraine genes. Although the enrichment of migraine-asso-
ciated genes in the modules cannot proof that these brain 
regions, cells and pathways are dysfunctional in migraine 
patients, it can provide genetic evidence for processes 
already implicated in migraine, and may indicate new areas 
of interest for migraine research.

Two modules enriched for migraine-associated genes 
contained genes highly expressed in cortex that are largely 
involved in neurotransmission and that are highly enriched 
for neuron-specific genes (Modules A and C). Furthermore, 
module A contains many components of the glutamatergic 
system (GLS, GRIK3, GRIN2A and GRM7). The cell type 
enrichments in the modules were based on gene expression 
data from isolated mouse brain cells (Zhang et al. 2014). 
Similar data from mouse studies have been used previously 
for characterisation of human brain co-expression mod-
ules (Hawrylycz et al. 2015). These results confirm the link 
between cortical neurotransmission and migraine that had 
previously been identified in genetic studies in FHM (Fer-
rari et al. 2015). Several genes (MTDH, LRP1, MEF2D) 
identified by GWAS hits for common migraine could also 
be linked to glutamate signalling (Tolner et al. 2015), 
although these genes are not part of modules A or C.

The enrichment of genes involved in mitochondria 
in modules A and D form the first genetic link between 
mitochondrial function and common migraine. As neu-
rotransmission requires a large amount of energy, it is 
not surprising that mitochondrial deficiencies have been 
implicated in a wide range of neurological disorders, 
including migraine (Sparaco et al. 2006). In migraine 
patients, magnetic resonance spectroscopy studies have 
consistently identified a depletion of brain high-energy 
phosphates, indicative of a disturbed energy metabolism 
(Reyngoudt et al. 2012). Impaired mitochondrial activity 
has also been found in muscle and platelets of migraine 
patients (Reyngoudt et al. 2012; Sangiorgi et al. 1994). 
Also the efficacy of riboflavin and coenzyme Q10, two 
enhancers of mitochondrial function, in migraine prophy-
laxis in two small clinical trials points towards a possible 
causal role for mitochondria in migraine (Sandor et al. 
2005; Schoenen et al. 1998).

Module B shows high expression in cerebellum and 
medium expression in cortex, and is highly enriched for 
genes involved in aspects of gene expression regulation 
(i.e., transcription factors, chromatin remodellers, RNA 
processing). Migraine pathophysiology has already been 
associated with actions of a specific set of transcription 
factors, i.e., female hormone receptors and receptors for 
the stress hormone cortisol (MacGregor 2004; Sauro and 
Becker 2009). Although the stress hormone receptor gene 
NR3C1 is a member of module B, the other stress hormone 
receptor gene NR3C2 and the female hormone receptor 
genes ESR1, ESR2, RXFP1, RXFP2 and PGR are mem-
bers of modules F, N, M, P, R and H, respectively. These 
transcription factors can thus not explain the association of 
module B with migraine. As to the high expression in cer-
ebellum, there are several lines of evidence that indicate a 
role for the cerebellum in migraine. (Subclinical) cerebellar 
abnormalities have been recognised in migraine patients, 
including lack of fine coordination (Sandor et al. 2001) and 
vestibulocerebellar problems (Harno et al. 2003). Further-
more, studies using magnetic resonance imaging (MRI) 
identified cerebellar infarcts (Kruit et al. 2004) and micro-
structural cerebellar abnormalities (Granziera et al. 2013) 
in migraine patients. Cerebellar mechanisms causative of 
migraine are not known, but may possibly include signal-
ling cascades that regulate gene expression as identified in 
module B.

Module D contains genes highly expressed in several 
subcortical brain regions and in the white matter and is 
enriched for gene functions involving myelin formation 
and genes specifically expressed in oligodendrocytes. Oli-
godendrocytes play key roles in the formation of axons and 
neuronal connections (Debanne et al. 2011), and can also 
actively communicate with neurons to regulate their activ-
ity (Butt et al. 2014; Fields 2008; Stys 2011). The genes 
from module D are expressed in multiple brain regions that 
are implicated in the processing of migraine pain signal-
ling: the trigeminovascular pathway (Noseda and Burstein 
2013). This pathway transmits nociceptive signals from 
meninges to thalamus and higher brain areas via several 
brainstem nuclei, including the trigeminal nucleus cau-
dalis (TNC), (Fig. 4). A recent study identified disrupted 
myelin sheets in the trigeminal nerve of migraine patients 
(Guyuron et al. 2014), providing first evidence for dis-
turbed oligodendrocyte functioning in the trigeminovascu-
lar pathway. Furthermore, a high-field MRI study identified 
thalamic microstructural abnormalities in migraine patients 
that could indicate an increase of myelin (Granziera et al. 
2014).

In summary, we performed a gene-based analysis of the 
migraine GWAS data, using detailed spatial gene expres-
sion data to define gene modules with similar expression 
patterns in the normal human brain. Our results showed 
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enrichment of migraine-associated genes in modules 
involved in cortical neurotransmission, mitochondrial and 
oligodendrocyte function that provide further evidence 
that these mechanisms play a causal role in migraine and 
deserve to be investigated in more detail by (functional) 
studies in patients and experimental animal models.

Materials and methods

GWAS dataset

Summary statistics of migraine GWAS data from 23,285 
cases and 95,425 controls from the meta-analysis (Anttila 
et al. 2013) available through the International Genetics 
Headache Consortium were used for this study. The quality 
control of the genotype data was described previously (Ant-
tila et al. 2013). Autosomal SNPs were imputed against the 
HapMap CEU population (release 21–24 depending on the 
cohort). To convert the genomic coordinates of the SNPs 
from human reference genome build 36 to build 37, we 
used CrossMap (http://crossmap.sourceforge.net/) (Zhao 
et al. 2014). A total of 1,853,579 SNPs with high quality 
GWAS data and converted to build 37 were used in the cal-
culation of gene-based P values.

Gene‑based P values

Gene-based P values were calculated from GWAS data 
using the gene-based test GATES (Li et al. 2011) imple-
mented in the whole-genome analysis platform Fast ASso-
ciation Test (FAST) (Chanda et al. 2013). GATES is a 
Simes test extension that integrates SNP P values into a 
gene-based test statistic, based on SNP positions and LD 
information [1000 Genomes data (Phase 1)] by taking the 
top SNP per gene and correcting its P value for the effec-
tive number of independent tests. Gene location informa-
tion based on the GRCh37.p13 build reference sequence 
was obtained from Biomart (version 75: Feb 2014 archive 
site). A flanking region of 15 kb up- and downstream of 
the gene was used to include SNPs located in regulatory 
regions. The size of the flanking region was based on the 
identification that most SNPs that influence the expression 
of a gene are located within 15 kb of the gene (Pickrell 
et al. 2010). Genes with a gene-based P < 0.05 were con-
sidered migraine ‘candidate genes’; genes with a Bonfer-
roni corrected P < 0.05 were considered ‘high-confidence 
genes’.

Spatial gene expression

Spatial gene expression data from six healthy adult human 
brains was obtained from the Allen Human Brain Atlas 

(http://human.brain-map.org/) (Hawrylycz et al. 2012). 
For each brain, RNA had been extracted from 363 to 946 
different brain samples and measured on custom Agi-
lent microarrays containing the 4 × 44 K Agilent Whole 
Human Genome probes as well as an additional 16,000 
custom probes. The expression data was matched to the 
GATES output based on Biomart associations of 4 × 44 K 
Whole Genome microarray probe IDs with genes. If a 
probe was matched to multiple genes, it was excluded from 
the analysis. If multiple probe IDs were associated with the 
same gene, average expression levels were calculated for 
that gene. The spatial expression of a gene for a particular 
brain is thus described by the expression levels of that gene 
across all samples in that brain. Since the number of brain 
samples differs per brain, the spatial gene expression vector 
of a gene differs in length between brains.

Spatial gene co‑expression and hierarchical clustering

Spatial co-expressions between genes were first calcu-
lated for each brain separately. For this, robust bi-weight 
mid-correlations were calculated across all brain samples 
for each of the six donors separately (Langfelder and Hor-
vath 2012). Subsequently, these correlations were averaged 
across the donors to obtain co-expression values that only 
reflect spatial expression patterns and ignore between-brain 
differences. We then performed hierarchical clustering to 
obtain modules of spatially co-expressed genes. The link-
age and distance measures, and the threshold at which the 
tree is cut, were chosen to maximise the enrichment of 
migraine candidate genes (see Supplementary Materials 
and methods for different combinations of linkage and dis-
tance measures). We chose for this independent evaluation 
over traditional cluster evaluation measures [like WGCNA 
(Zhang and Horvath 2005)] as we are interested in finding 
modules (clusters) that are related to migraine genes. Even-
tually, clustering was done with complete linkage, with one 
minus the bi-weight mid-correlation as a distance measure, 
and the tree was cut into 18 clusters.

Enrichment of candidate genes in the modules

Enrichment of migraine-associated genes within a module 
was determined using a Fisher exact test that calculated 
whether the number of migraine candidate genes in a mod-
ule is higher than expected based on the total number of 
genes and migraine candidate genes. Neighbouring genes 
on the genome might have similar expression patterns due 
to local regulatory DNA elements, as well as similar gene-
based P values due to LD between their top SNPs or over-
lapping flanking regions. Therefore, we performed a sec-
ond LD-corrected Fisher exact test in which we included 
only the number of independent genes in the calculation. 

http://crossmap.sourceforge.net/
http://human.brain-map.org/
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As a measure for the number of independent genes in a 
gene set, we took the top SNP of each gene and used the 
Genetic type I Error Calculator (GEC) (Li et al. 2012) to 
calculate the effective number of independent SNPs based 
on LD information from the HapMap project release 23. In 
this way, the LD-corrected Fisher exact test had as input the 
corrected estimates for the number of independent genes 
with gene-based P values below and above 0.05, both in the 
cluster of interest and in the full set of genes. See Supple-
mentary Materials and methods for additional information 
on the enrichment analysis.

Functional annotation

Gene ontology (GO) term and pathway enrichment analy-
sis in the modules was performed with DAVID (version 
6.7; http://david.abcc.ncifcrf.gov/). We used the Functional 
Annotation Clustering tool in DAVID to group significant 
GO terms and pathways based on co-associated genes to 
remove redundant terms (Huang et al. 2007). Pathway infor-
mation from KEGG, Reactome and PANTHER, and GO 
term information (biological processes, molecular func-
tions and cellular components) from PANTHER, and the 
FAT subsets of GO terms was used. GO term and pathway 
groups were considered significant when the EASE score 
was larger than 1.3 (corresponding to a geometric mean 
Benjamini-corrected P value of the clustered GO terms and 
pathways below 0.05). Significant groups were named after 
the most significant term in the group. Comparison of GO 
term and pathway enrichments between modules was per-
formed in ToppCluster, a multiple gene list feature enrich-
ment analyser (Kaimal et al. 2010). In ToppCluster, we per-
formed GO term (biological processes, molecular functions 
and cellular components) and pathway enrichment analyses 
for all modules, which were considered significant when 
Bonferroni-corrected P values were below 0.05. Functional 
enrichments and overlap in enrichments between modules 
were visualised in Cytoscape (version 3.2.1).

Cell type enrichment

For enrichment analysis of cell type-specific genes we made 
use of cell type-specific genes identified in gene expression 
data from isolated mouse brain cells (Zhang et al. 2014). We 
selected the gene expression data from neurons, astrocytes, 
myelinating oligodendrocytes, microglia, and endothelial 
cells. Genes were considered cell type-specific if they had 
more than tenfold higher gene expression [reads per kb 
per million (RPKM)] levels compared to the mean expres-
sion in the other cell types. We obtained 818 neuron-, 380 
astrocyte-, 198 oligodendrocyte-, 692 microglia-, and 546 
endothelial-specific genes for which human orthologs were 
present. Enrichment was determined with Fisher exact tests.

Local modules from seed genes

Local co-expression networks were built from high-con-
fidence genes by adding genes to the network whose co-
expression exceeds a threshold [similar to Willsey et al. 
(2013)]. Genes were only selected if they had co-expres-
sion values higher than 0.6 with a high-confidence gene. 
The threshold was chosen to: (1) maintain only reasonably 
strong links between genes, especially given the fact that 
we use robust bi-weight mid-correlations; and (2) have 
linking genes for most of the seed genes (see Supplemen-
tary Materials and methods for information on how the 
threshold value was selected). Co-expressions were meas-
ured as bi-weight mid-correlations, the same co-expression 
values which were used to determine the genome-wide co-
expression modules, and local modules were defined as all 
genes connected to a single high-confidence gene. If a gene 
is connected to two high-confidence genes, it is part of the 
modules of both genes.

Acknowledgments This research was supported by the Dutch 
Technology Foundation STW, as part of the STW Project 12721: 
“Genes in Space” under the IMAGENE perspective program; the 
Spinoza (2009) Grant to M.D.F.; European Union Seventh Frame-
work Programme Projects EUROHEADPAIN Project [Grant Num-
ber 602633] & Human Brain Project [Grant Number 604102]; the 
Center for Medical Systems Biology (CMSB) established in the 
Netherlands Genomics Initiative/Netherlands Organization for Sci-
entific Research (NGI/NWO) [Project Nr. 050‐060‐409]; and the 
Orion Farmos Research Foundation (to V.A.). The authors grate-
fully acknowledge the Allen Institute for Brain Science.

International Headache Genetics Consortium: Verneri Anttila, Bendik 
S. Winsvold, Tobias Kurth, M. Arfan Ikram, Tobias Freilinger, Jaakko 
Kaprio, Dorret I. Boomsma, Cornelia M. van Duijn, Marjo-Riitta R. 
Järvelin, John-Anker Zwart, Lydia Quaye, David P. Strachan, Chris-
tian Kubisch, Martin Dichgans, George Davey Smith, Kari Stefans-
son, Aarno Palotie

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict 
of interest.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato 
MS, Nyholt DR, Dimas AS, Freilinger T, Muller-Myhsok B, 
Artto V, Inouye M, Alakurtti K, Kaunisto MA, Hamalainen E, 
de Vries B, Stam AH, Weller CM, Heinze A, Heinze-Kuhn K, 
Goebel I, Borck G, Gobel H, Steinberg S, Wolf C, Bjornsson A, 

http://david.abcc.ncifcrf.gov/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


437Hum Genet (2016) 135:425–439 

1 3

Gudmundsson G, Kirchmann M, Hauge A, Werge T, Schoenen J, 
Eriksson JG, Hagen K, Stovner L, Wichmann HE, Meitinger T, 
Alexander M, Moebus S, Schreiber S, Aulchenko YS, Breteler 
MM, Uitterlinden AG, Hofman A, van Duijn CM, Tikka-
Kleemola P, Vepsalainen S, Lucae S, Tozzi F, Muglia P, Barrett J, 
Kaprio J, Farkkila M, Peltonen L, Stefansson K, Zwart JA, Fer-
rari MD, Olesen J, Daly M, Wessman M, van den Maagdenberg 
AM, Dichgans M, Kubisch C, Dermitzakis ET, Frants RR, Palo-
tie A, International Headache Genetics C (2010) Genome-wide 
association study of migraine implicates a common susceptibil-
ity variant on 8q22.1. Nat Genet 42:869–873

Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, 
Kallela M, Malik R, de Vries B, Terwindt G, Medland SE, Todt 
U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimaki 
T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta 
P, Hamalainen E, Schurks M, Rose LM, Buring JE, Ridker PM, 
Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, 
Ring SM, Farkkila M, Artto V, Kaunisto MA, Freilinger T, Sch-
oenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, 
Madden PA, Montgomery GW, Martin NG, Borck G, Gobel H, 
Heinze A, Heinze-Kuhn K, Williams FM, Hartikainen AL, Pouta 
A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hot-
tenga JJ, Vink JM, Heikkila K, Alexander M, Muller-Myhsok B, 
Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson 
JG, Traynor BJ, Trabzuni D, Rossin E, Lage K, Jacobs SB, Gibbs 
JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, van Duijn 
C, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, 
Kubisch C, Ferrari MD, van den Maagdenberg AM, Dichgans 
M, Wessman M, Smith GD, Stefansson K, Daly MJ, Nyholt DR, 
Chasman DI, Palotie A, North American Brain Expression C, 
Consortium UKBE, International Headache Genetics C (2013) 
Genome-wide meta-analysis identifies new susceptibility loci for 
migraine. Nat Genet 45:912–917

Atias N, Istrail S, Sharan R (2013) Pathway-based analysis of 
genomic variation data. Curr Opin Genet Dev 23:622–626

Ben-David E, Shifman S (2012) Networks of neuronal genes affected 
by common and rare variants in autism spectrum disorders. 
PLoS Genet 8:e1002556

Bunyavanich S, Schadt EE, Himes BE, Lasky-Su J, Qiu W, Lazarus 
R, Ziniti JP, Cohain A, Linderman M, Torgerson DG, Eng CS, 
Pino-Yanes M, Padhukasahasram B, Yang JJ, Mathias RA, Beaty 
TH, Li X, Graves P, Romieu I, Navarro Bdel R, Salam MT, Vora 
H, Nicolae DL, Ober C, Martinez FD, Bleecker ER, Meyers DA, 
Gauderman WJ, Gilliland F, Burchard EG, Barnes KC, Williams 
LK, London SJ, Zhang B, Raby BA, Weiss ST (2014) Integrated 
genome-wide association, coexpression network, and expression 
single nucleotide polymorphism analysis identifies novel path-
way in allergic rhinitis. BMC Med Genomics 7:48

Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in 
white matter. Glia 62:1762–1779

Chanda P, Huang H, Arking DE, Bader JS (2013) Fast association 
tests for genes with FAST. PLoS One 8:e68585

Chasman DI, Schurks M, Anttila V, de Vries B, Schminke U, Launer 
LJ, Terwindt GM, van den Maagdenberg AM, Fendrich K, 
Volzke H, Ernst F, Griffiths LR, Buring JE, Kallela M, Freilinger 
T, Kubisch C, Ridker PM, Palotie A, Ferrari MD, Hoffmann W, 
Zee RY, Kurth T (2011) Genome-wide association study reveals 
three susceptibility loci for common migraine in the general pop-
ulation. Nat Genet 43:695–698

De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante 
L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of 
ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated 
with familial hemiplegic migraine type 2. Nat Genet 33:192–196

de Vries B, Anttila V, Freilinger T, Wessman M, Kaunisto MA, Kallela 
M, Artto V, Vijfhuizen LS, Göbel H, Dichgans M, Kubisch C, 
Ferrari MD, Palotie A, Terwindt GM, van den Maagdenberg AM; 

on behalf of the International Headache Genetics Consortium 
(2015) Systematic re-evaluation of genes from candidate gene 
association studies in migraine using a large genome-wide asso-
ciation data set. Cephalalgia (in press). pii: 0333102414566820

de Vries B, Eising E, Broos LA, Koelewijn SC, Todorov B, Frants 
RR, Boer JM, Ferrari MD, Hoen PA, van den Maagdenberg AM 
(2014) RNA expression profiling in brains of familial hemiplegic 
migraine type 1 knock-in mice. Cephalalgia 34:174–182

Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) 
Axon physiology. Physiol Rev 91:555–602

Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux 
B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, 
Pusch M, Strom TM (2005) Mutation in the neuronal voltage-
gated sodium channel SCN1A in familial hemiplegic migraine. 
Lancet 366:371–377

Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagden-
berg AM (2015) Migraine pathophysiology: lessons from mouse 
models and human genetics. Lancet Neurol 14:65–80

Fields RD (2008) Oligodendrocytes changing the rules: action poten-
tials in glia and oligodendrocytes controlling action potentials. 
Neuroscientist 14:540–543

Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt 
GM, Pozo-Rosich P, Winsvold B, Nyholt DR, van Oosterhout 
WP, Artto V, Todt U, Hamalainen E, Fernandez-Morales J, 
Louter MA, Kaunisto MA, Schoenen J, Raitakari O, Lehtimaki 
T, Vila-Pueyo M, Gobel H, Wichmann E, Sintas C, Uitterlinden 
AG, Hofman A, Rivadeneira F, Heinze A, Tronvik E, van Duijn 
CM, Kaprio J, Cormand B, Wessman M, Frants RR, Meitinger 
T, Muller-Myhsok B, Zwart JA, Farkkila M, Macaya A, Ferrari 
MD, Kubisch C, Palotie A, Dichgans M, van den Maagden-
berg AM, International Headache Genetics Consortium (2012) 
Genome-wide association analysis identifies susceptibility loci 
for migraine without aura. Nat Genet 44:777–782

Gibson G (2012) Rare and common variants: twenty arguments. Nat 
Rev Genet 13:135–145

Grange P, Bohland JW, Okaty BW, Sugino K, Bokil H, Nelson SB, 
Ng L, Hawrylycz M, Mitra PP (2014) Cell-type-based model 
explaining coexpression patterns of genes in the brain. Proc Natl 
Acad Sci USA 111:5397–5402

Granziera C, Romascano D, Daducci A, Roche A, Vincent M, Krue-
ger G, Hadjikhani N (2013) Migraineurs without aura show 
microstructural abnormalities in the cerebellum and frontal lobe. 
Cerebellum 12:812–818

Granziera C, Daducci A, Romascano D, Roche A, Helms G, Krueger 
G, Hadjikhani N (2014) Structural abnormalities in the thalamus 
of migraineurs with aura: a multiparametric study at 3 T. Hum 
Brain Mapp 35:1461–1468

Guyuron B, Yohannes E, Miller R, Chim H, Reed D, Chance MR 
(2014) Electron microscopic and proteomic comparison of ter-
minal branches of the trigeminal nerve in patients with and with-
out migraine headaches. Plast Reconstr Surg 134:796e–805e

Harno H, Hirvonen T, Kaunisto MA, Aalto H, Levo H, Isotalo E, 
Kallela M, Kaprio J, Palotie A, Wessman M, Farkkila M (2003) 
Subclinical vestibulocerebellar dysfunction in migraine with and 
without aura. Neurology 61:1748–1752

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, 
Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, 
Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, 
Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley 
RA, Daly BD, Dang C, Datta S, Dee N, Dolbeare TA, Faber V, 
Feng D, Fowler DR, Goldy J, Gregor BW, Haradon Z, Haynor 
DR, Hohmann JG, Horvath S, Howard RE, Jeromin A, Jochim 
JM, Kinnunen M, Lau C, Lazarz ET, Lee C, Lemon TA, Li L, 
Li Y, Morris JA, Overly CC, Parker PD, Parry SE, Reding M, 
Royall JJ, Schulkin J, Sequeira PA, Slaughterbeck CR, Smith 
SC, Sodt AJ, Sunkin SM, Swanson BE, Vawter MP, Williams D, 



438 Hum Genet (2016) 135:425–439

1 3

Wohnoutka P, Zielke HR, Geschwind DH, Hof PR, Smith SM, 
Koch C, Grant SG, Jones AR (2012) An anatomically compre-
hensive atlas of the adult human brain transcriptome. Nature 
489:391–399

Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-
Bongaarts AL, Jegga AG, Aronow BJ, Lee CK, Bernard A, 
Glasser MF, Dierker DL, Menche J, Szafer A, Collman F, 
Grange P, Berman KA, Mihalas S, Yao Z, Stewart L, Barabási 
AL, Schulkin J, Phillips J, Ng L, Dang C, Haynor DR, Jones A, 
Van Essen DC, Koch C, Lein E (2015) Canonical genetic signa-
tures of the adult human brain. Nat Neurosci 18:1832–1844

Headache Classification Committee of the International Headache 
Society (IHS) (2013) The international classification of headache 
disorders, 3rd edition (beta version). Cephalalgia 33:629–808

Hershey AD, Tang Y, Powers SW, Kabbouche MA, Gilbert DL, Glauser 
TA, Sharp FR (2004) Genomic abnormalities in patients with 
migraine and chronic migraine: preliminary blood gene expression 
suggests platelet abnormalities. Headache 44:994–1004

Hershey A, Horn P, Kabbouche M, O’Brien H, Powers S (2012) 
Genomic expression patterns in menstrual-related migraine in 
adolescents. Headache 52:68–79

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, 
Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The 
DAVID Gene Functional Classification Tool: a novel biological 
module-centric algorithm to functionally analyze large gene lists. 
Genome Biol 8:R183

Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) Top-
pCluster: a multiple gene list feature analyzer for comparative 
enrichment clustering and network-based dissection of biologi-
cal systems. Nucleic Acids Res 38:W96–W102

Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, 
Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson 
MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, 
Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, 
Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal tran-
scriptome of the human brain. Nature 478:483–489

Kruit MC, van Buchem MA, Hofman PA, Bakkers JT, Terwindt GM, 
Ferrari MD, Launer LJ (2004) Migraine as a risk factor for sub-
clinical brain lesions. JAMA 291:427–434

Langfelder P, Horvath S (2012) Fast R functions for robust correla-
tions and hierarchical clustering. J Stat Softw 46(i11)

Lauritzen M (1994) Pathophysiology of the migraine aura. The 
spreading depression theory. Brain 117(Pt 1):199–210

Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso 
T, Casari G (2011) Increased susceptibility to cortical spreading 
depression in the mouse model of familial hemiplegic migraine 
type 2. PLoS Genet 7:e1002129

Li MX, Gui HS, Kwan JS, Sham PC (2011) GATES: a rapid and pow-
erful gene-based association test using extended Simes proce-
dure. Am J Hum Genet 88:283–293

Li MX, Yeung JM, Cherny SS, Sham PC (2012) Evaluating the effec-
tive numbers of independent tests and significant p-value thresh-
olds in commercial genotyping arrays and public imputation ref-
erence datasets. Hum Genet 131:747–756

MacGregor EA (2004) Oestrogen and attacks of migraine with and 
without aura. Lancet Neurol 3:354–361

Mooney MA, Nigg JT, McWeeney SK, Wilmot B (2014) Functional 
and genomic context in pathway analysis of GWAS data. Trends 
Genet 30:390–400

Mulder EJ, Van Baal C, Gaist D, Kallela M, Kaprio J, Svensson DA, 
Nyholt DR, Martin NG, MacGregor AJ, Cherkas LF, Boomsma 
DI, Palotie A (2003) Genetic and environmental influences on 
migraine: a twin study across six countries. Twin Res 6:422–431

Nagata E, Hattori H, Kato M, Ogasawara S, Suzuki S, Shibata M, 
Shimizu T, Hamada J, Osada T, Takaoka R, Kuwana M, Tsunoda 
T, Aiso S, Takizawa S, Suzuki N, Takagi S (2009) Identification 

of biomarkers associated with migraine with aura. Neurosci Res 
64:104–110

Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy 
of the trigeminovascular pathway and associated neurologi-
cal symptoms, CSD, sensitization and modulation of pain. Pain 
154(Suppl):1

Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, 
Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, 
Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, 
Ferrari MD, Frants RR (1996) Familial hemiplegic migraine 
and episodic ataxia type-2 are caused by mutations in the Ca2+ 
channel gene CACNL1A4. Cell 87:543–552

Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Hor-
vath S, Geschwind DH (2013) Integrative functional genomic 
analyses implicate specific molecular pathways and circuits in 
autism. Cell 155:1008–1021

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nka-
dori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK (2010) 
Understanding mechanisms underlying human gene expression 
variation with RNA sequencing. Nature 464:768–772

Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, International Schizo-
phrenia C, Purcell SM, Sklar P, Scolnick EM, Xavier RJ, Alt-
shuler D, Daly MJ (2009) Identifying relationships among 
genomic disease regions: predicting genes at pathogenic SNP 
associations and rare deletions. PLoS Genet 5:e1000534

Reyngoudt H, Achten E, Paemeleire K (2012) Magnetic resonance 
spectroscopy in migraine: what have we learned so far? Cepha-
lalgia 32:845–859

Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, 
International Inflammatory Bowel Disease Genetics C, Cotsapas 
C, Daly MJ (2011) Proteins encoded in genomic regions associ-
ated with immune-mediated disease physically interact and sug-
gest underlying biology. PLoS Genet 7:e1001273

Sandor PS, Mascia A, Seidel L, de Pasqua V, Schoenen J (2001) Sub-
clinical cerebellar impairment in the common types of migraine: 
a three-dimensional analysis of reaching movements. Ann Neu-
rol 49:668–672

Sandor PS, Di Clemente L, Coppola G, Saenger U, Fumal A, Magis 
D, Seidel L, Agosti RM, Schoenen J (2005) Efficacy of coen-
zyme Q10 in migraine prophylaxis: a randomized controlled 
trial. Neurology 64:713–715

Sangiorgi S, Mochi M, Riva R, Cortelli P, Monari L, Pierangeli G, 
Montagna P (1994) Abnormal platelet mitochondrial function in 
patients affected by migraine with and without aura. Cephalalgia 
14:21–23

Sauro KM, Becker WJ (2009) The stress and migraine interaction. 
Headache 49:1378–1386

Schoenen J, Jacquy J, Lenaerts M (1998) Effectiveness of high-dose 
riboflavin in migraine prophylaxis. A randomized controlled 
trial. Neurology 50:466–470

Segre AV, Consortium D, investigators M, Groop L, Mootha VK, 
Daly MJ, Altshuler D (2010) Common inherited variation in 
mitochondrial genes is not enriched for associations with type 2 
diabetes or related glycemic traits. PLoS Genet 6:e1001058

Sparaco M, Feleppa M, Lipton RB, Rapoport AM, Bigal ME (2006) 
Mitochondrial dysfunction and migraine: evidence and hypoth-
eses. Cephalalgia 26:361–372

Stys PK (2011) The axo-myelinic synapse. Trends Neurosci 
34:393–400

Sun YV (2012) Integration of biological networks and pathways with 
genetic association studies. Hum Genet 131:1677–1686

Tolner EA, Houben T, Terwindt GM, de Vries B, Ferrari MD, van den 
Maagdenberg AMJM (2015) From migraine genes to mecha-
nisms. Pain 156(Suppl 1):S64–S74

Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello 
M, van den Maagdenberg AMJM, Ferrari MD, Pietrobon D 



439Hum Genet (2016) 135:425–439 

1 3

(2009) Enhanced excitatory transmission at cortical synapses as 
the basis for facilitated spreading depression in Ca(v)2.1 knockin 
migraine mice. Neuron 61:762–773

van den Maagdenberg AMJM, Pietrobon D, Pizzorusso T, Kaja S, 
Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa 
J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin 
migraine mouse model with increased susceptibility to cortical 
spreading depression. Neuron 41:701–710

van den Maagdenberg AMJM, Pizzorusso T, Kaja S, Terpolilli N, 
Shapovalova M, Hoebeek FE, Barrett CF, Gherardini L, van de 
Ven RC, Todorov B, Broos LA, Tottene A, Gao Z, Fodor M, De 
Zeeuw CI, Frants RR, Plesnila N, Plomp JJ, Pietrobon D, Ferrari 
MD (2010) High cortical spreading depression susceptibility and 
migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann 
Neurol 67:85–98

Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, 
Reilly SK, Lin L, Fertuzinhos S, Miller JA, Murtha MT, Bichsel 
C, Niu W, Cotney J, Ercan-Sencicek AG, Gockley J, Gupta AR, 

Han W, He X, Hoffman EJ, Klei L, Lei J, Liu W, Liu L, Lu C, 
Xu X, Zhu Y, Mane SM, Lein ES, Wei L, Noonan JP, Roeder 
K, Devlin B, Sestan N, State MW (2013) Coexpression networks 
implicate human midfetal deep cortical projection neurons in the 
pathogenesis of autism. Cell 155:997–1007

Zhang B, Horvath S (2005) A general framework for weighted gene 
co-expression network analysis. Stat Appl Genet Mol Biol 4: 
Article17

Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, 
Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Lid-
delow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ 
(2014) An RNA-sequencing transcriptome and splicing database 
of glia, neurons, and vascular cells of the cerebral cortex. J Neu-
rosci 34:11929–11947

Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L (2014) Cross-
Map: a versatile tool for coordinate conversion between genome 
assemblies. Bioinformatics 30:1006–1007


	Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas
	Abstract 
	Introduction
	Results
	Spatial co-expression network of the adult human brain
	Genes associated with migraine
	Migraine-associated loci converge into five co-expression modules
	Migraine-associated modules show enrichment of functions involved in neurotransmission, mitochondria, gene expression regulation and oligodendrocytes
	Enrichment of oligodendrocytic and neuronal genes in migraine-associated modules
	Confirmation of the association of modules A–D with migraine using a local seed network
	Local seed network shows enrichment of functions and cell types similar to modules A–D

	Discussion
	Materials and methods
	GWAS dataset
	Gene-based P values
	Spatial gene expression
	Spatial gene co-expression and hierarchical clustering
	Enrichment of candidate genes in the modules
	Functional annotation
	Cell type enrichment
	Local modules from seed genes

	Acknowledgments 
	References




