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Introduction 

The ISCoPE (Injured Spinal Cord Pressure Evaluation) study was set up in 2009, aiming 

to develop intraspinal pressure (ISP) monitoring to guide the management of patients with severe 

traumatic spinal cord injury (TSCI). This is analogous to intracranial pressure (ICP) monitoring, 

which is widely used to manage patients with traumatic brain injury.1 We simultaneously 

monitor ISP and arterial blood pressure to compute the spinal cord perfusion pressure (SCPP = 

mean arterial pressure MAP – ISP) and the spinal pressure reactivity index at the injury site. Our 

experiments show that after TSCI, the spinal cord swells at the level of injury causing raised ISP, 

reduced SCPP and impaired pressure reactivity. By intervening to increase SCPP, motor 

outcome improves, assessed using motor evoked responses and a limb motor outcome score. For 

details, see the paper by Werndle et al.2 We also showed that surgical decompression 

(laminectomy + expansion duroplasty) after TSCI is beneficial by reducing ISP, increasing SCPP 

and improving spinal pressure reactivity more effectively than laminectomy.3 

During the ISCoPE study, we found Magnetic Resonance Imaging (MRI) of TSCI 

patients invaluable. We use MRI pre- and post-operatively to evaluate the extent of spinal cord 

edema (which determines the number of levels to decompress), to look for haematoma (that may 

require evacuation) and to assess the effectiveness of decompression (presence of cerebrospinal 

fluid around the swollen cord). Since ISP monitoring is achieved by using the Codman 

Microsensor Transducer (CMT), we tested the MRI safety of the CMT in a spinal configuration.  

The CMT has been evaluated at 0.5 T4 and 3 T5 in a cranial setup measuring ICP, but has 

never been assessed in a magnet at a spinal configuration. For ICP measurement, the CMT was 

assessed in the magnetic and radiofrequency (RF) fields of the MRI system: the static magnetic 

field, switching magnetic fields for localisation and RF fields. The effect of the RF field on the 

CMT was larger than that caused by the magnetic fields.5 Resonance in the CMT wire due to RF 

fields was demonstrated, with the energy dissipated from the induced current causing a 
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significant heating effect. This was reduced with coiling of the CMT wire. In a high-field 

magnet, the CMT was deemed MR-conditional as defined by the American Society for Testing 

Materials International. The term MR-compatible was replaced by the terms MR-conditional and 

MR-safe. MR-safe poses no hazard in all MR environments. MR-conditional poses no hazards as 

long as it is used in a specified MR environment with specified conditions of use.  

There are several differences in spinal imaging when using an ISP probe compared with 

cranial imaging when using an ICP probe. First, any potential damage caused by placing the 

CMT measuring ISP in MRI would cause neurological deterioration, compared to the non-

eloquent right frontal cortex used for ICP monitoring. Second, due to the depth of the spinal cord 

from the skin surface, there is a longer uncoiled CMT wire exposed to the RF field compared 

with the ICP configuration. Third, ISP monitoring does not require the steel cranial access bolt, 

and thus artefacts due to it are avoided.  Here we studied the heating effect on the CMT caused 

by a transmitter body coil combined with a receiver only coil for spinal imaging to determine the 

ideal configuration that abolishes heating. We reproduced the imaging in a human TSCI subject.  

 

Methods 

CMT/MRI setup. The CMT system (Depuy Synthes, UK) consists of a pressure probe tip, CMT 

wire, connector and a cable connected to the pressure monitor, which is placed outside the 5 x 

10-4 T line of the MR imaging unit (Fig. 1A) for isolation from the magnetic and RF fields 

during imaging. For imaging in gel, a 3 T Siemens Magnetom Verio (Siemens Healthcare, UK) 

system was used. For imaging the TSCI patient, a 1.5 T Philips Intera (Philips Healthcare, UK) 

system was used, which has four-fold less RF energy deposited per kg bodyweight compared to 

the 3 T magnet. 
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CMT setup in gel phantom. A spinal cord phantom made using a 15 mL Falcon centrifuge tube 

filled with agar gel. Temperature was measured with a Luxtron 3100 Fluroptic thermometer 

(Luxtron, Santa Clara, CA) using four Fiberoptic Thermocouples (FT1 – FT4) secured at the tip 

of the pressure transducer (FT1), 1 cm (FT2) and 2 cm (FT3) away from the tip, and outside the 

phantom to measure ambient temperature (FT4). The CMT wire, with the thermocouples secured 

to it, was inserted longitudinally midway into the gel phantom. 

 

CMT testing in gel phantom. After allowing the fiberoptic thermocouples to equilibrate at 

ambient temperature, temperatures from FT1 – FT4 were measured during a FLAIR imaging 

sequence at 2 s intervals. Temperature measurements started 10 s before the start of imaging and 

stopped 10 s after the end of imaging. The FLAIR sequence was chosen due to the high RF 

deposition and switching rates, potentially causing larger energy deposition in tissue per kg 

weight compared to T1 or T2-weighted sequences. The body transmit/receive coil was used, 

which is routinely used for spine imaging. The imaging parameters were: FOV 179 x 224 mm, 

0.7 x 0.7 x 4 mm resolution, 256 x 320 matrix size, TR = 7 s, TE = 96 ms, turbo factor 16. The 

imaging sequence was repeated on a second day. 

 

Protocols. Induced heating may be affected by d (distance of the CMT tip from the center of the 

magnet bore along a radius parallel to the floor), the transducer wire passing away from 

(configuration x) vs. into (configuration y) the magnet bore (Fig 1C), coiling vs. non-coiling of 

the transducer wire and connecting vs. not connecting the transducer to the pressure monitor. To 

examine the effect of these conditions, we imaged using four different protocols (Fig. 1B): 

Protocol i.  The transducer wire was not coiled, was passed away from the magnet bore 

(configuration x, Fig. 1C) and was not connected to the pressure monitor. d = 0, 10, 20, 30 cm. 
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Protocol ii. The transducer wire was not coiled, was passed through the magnet bore 

(configuration y, Fig. 1C) and was not connected to the ISP monitoring box. d = 0, 10, 20, 30 

cm. 

Protocol iii. The transducer wire was coiled, used in the configuration that produced the 

largest temperature change (d = 30 cm, configuration y) and was not connected to the ISP 

monitoring box. The wire was coiled in 5 cm diameter loops such that each alternating loop was 

in an opposite direction to form a non-inductive loop.  

Protocol iv. The transducer wire was coiled, used in the configuration that produced no 

temperature (d = 0 cm, configuration x) rise and was connected to the ISP monitoring box. 

 

Post-operative TSCI patient imaging. Approvals for the patient imaging study were obtained 

from the St. George’s Joint Research Office and the National Research Ethics Service London – 

Camberwell St Giles Committee (No. 10/H0807/23) as part of the ISCoPE. We tested the CMT 

at 3T in the gel, but only at 1.5T in the patient to further reduce the risk of CMT heating. The 

transducer was implanted in the subdural space during surgery at the level of injury in a TSCI 

patient, as previously described2. In brief, after laminectomy and fixation, the dura is punctured 

distal to the level of injury with a 21-gauge needle bent 90°. The CMT was inserted through the 

dural puncture so that the transducer tip lies at the level of maximal cord swelling between the 

injured cord and the dura. Post-operative MR images were taken using a transmit/receive body 

coil in a 1.5 T magnet according to CMT manufacturer’s guidelines. The CMT was coiled in 5 

cm-diameter loops, away from the magnet bore (configuration x), as close to the midline as 

possible but not touching the patient or the magnet bore. 
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Results 

CMT testing in gel. Ambient temperature was 20.2°C ± 0.0 (mean ± s.e.m) on day 1 and 

20.1°C ± 0.0 on day 2 (p = 0.27).  Temperature readings from the phantom were identical 

on both days. The temperature of the CMT probe tip fluctuated in a pulsatile fashion at a 

frequency of 0.1 Hz (Fig. 2). The temperature elevations correspond to the RF pulses and the 

temperature falls to the periods between the RF pulses. There was insufficient time for the probe 

tip to cool to room temperature between RF pulses. In all configurations heating was localized to 

the tip of the transducer (Table 1). CMT probe heating occurred rapidly after the start of imaging 

and, once imaging was stopped, the thermocouple cooled down rapidly. Fig. 2 shows the time 

course of the temperature changes at the tip of the transducer (FT1).  Testing in protocol i 

produced a maximal temperature rise of 0.8°C at d = 30 cm (Fig. 2A). Testing in protocol ii 

produced maximal temperature rises of 2.4°C at d = 0 cm and 5.2°C at d = 30 cm (Fig. 2B). 

Maximal heating was observed with protocol ii at d = 30 cm. To test whether coiling reduces the 

heating due to the resonance caused by the RF fields, the imaging sequence was repeated as per 

protocol iii. Coiling of the transducer abolished the heating effect (Fig. 2C). We then tested 

whether connecting the CMT system to ISP monitoring box would cause heating with the CMT 

transducer wire at the setup at which the lowest temperature change was detected (d = 0 cm, 

configuration x, transducer wire coiled). Fig. 2D shows no detectable rise in CMT probe 

temperature when the ISP monitoring box was connected. 

 

Patient. A sixty-five year old man sustained a cervical TSCI in a road traffic accident. On 

examination, he was classified as American Spinal cord Injury Association (ASIA) C. CT and 

MR imaging revealed no spinal fracture, but disruption of the C4/5 intervertebral disc with 

associated ligamentous disruption and spinal cord edema. He underwent fixation anteriorly (C4/5 

discectomy, interbody carbon cage, anterior plate with C4 and C5 screws) and posteriorly (C4 



Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

and C5 lateral mass screws and rods) with C4 and C5 laminectomies. The CMT probe was 

inserted subdurally at C4/5 as described in the Methods and was tunnelled under the skin for 3 

cm. 

 

Post-operative imaging in TSCI patient. MRI was done on post-operative day six. Imaging 

parameters are as follows: sagittal imaging FOV 275 mm, slice thickness 4mm; TE 120 ms / TR 

3500 ms and TE 10 ms / TR 400 ms; axial imaging: FOV 225mm, slice thickness 4mm, TE 80 

ms, TR 3078 ms. The CMT transducer was set up as follows (Fig. 3A): the transducer wire was 

coiled into 5 cm-diameter loops at the skin exit site 3 cm from midline and was kept off the skin 

with gauze. The ISP monitoring box was disconnected. The transducer wire was passed away 

from the magnet bore (configuration x), next to but not touching the patient.  

Fig. 3B shows representative MR images obtained. The spinal cord could be seen clearly 

despite the presence of the intradural CMT wire and anteroposterior bony fixation. The 

transducer wire is visible as it passes through the subcutaneous tissues and the tip enters the 

subdural space. Importantly, there was no change in the neurological condition of the patient 

after vs. before the MR imaging. Fig. 3C and 3D show the ISP and SCPP signals before and after 

MR imaging. MR imaging did not affect the functioning of the CMT transducer. 

 

Discussion 

Our main finding is that it is possible to perform MRI of the cervical spinal cord with a 

CMT in situ to measure ISP. For safety, the CMT wire should be coiled and passed away from 

the magnet bore. The International Commission on Non-Ionizing Radiation Protection 

recommends limiting tissue temperature rise to 0.5 °C for clinical use.6 Our setup allows good 

quality MR scans to be produced without heating the CMT, without affecting the CMT function 

and without neurological deterioration. 
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The CMT is a silicon strain-gauge system covered in titanium with a tip diameter of 0.7 

mm. It is connected by copper wires ensheathed in nylon to a connector.7 During MRI, the CMT 

is subject to magnetic and RF fields.4 The static magnetic field can exert torque or translational 

forces on ferrous objects causing them to align with the field. No torque or translational motion 

of the CMT have been shown in a 3 T magnetic field.5 The connector is only weakly 

ferromagnetic, i.e. the force exerted by the magnetic field was less than the gravitational force, 

and does not, therefore, move in the magnetic field.5 Securing the connector to the imaging 

platform further prevents any movement of the connector. 

The RF field used for proton excitation is the main source of heating during MRI.4 As the 

RF power increases with the square of the magnetic field, the heating effect caused by the RF 

field becomes important when safety-testing devices in MRI. RF waves are reflected at the end 

of the wire, forming standing RF waves. The standing RF waves induce electrical currents in the 

wire, with maximum current density at the tip. Heat generated by the current is thus dissipated 

maximally at the CMT tip, as measured by the probe FT1. Heating of pressure transducers used 

for ICP monitoring due to resonance during MRI has been described; the heating effect had been 

severe enough to cause coagulative necrosis in brain and melt the insulation and copper wires 

within the CMT when the transducer wire was taped straight along the patient’s neck,8 though 

heating was abolished by coiling the CMT. 

Our findings of temperature rise of the CMT tip with the transducer wire straight through 

the magnet bore in a cervical spine phantom agree with the findings in a brain phantom.5 

Abolishing the temperature rise with transducer coiling in a configuration where there had 

previously been the largest temperature rise suggests that the induced current caused by 

resonance had been minimized. This phenomenon has previously been attributed to two reasons5. 

Firstly, coiling of the CMT forms an induction coil that impedes the flow of the induced current. 
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Secondly, coiling of the CMT reduces the effective length of the wire, thus shifting its resonant 

frequency outside that of the RF field.  

We showed that it is possible to perform MRI of the cervical spine with a CMT in the ISP 

monitoring position with good quality images. MRI of the spine poses several problems, briefly, 

the inhomogeneity of the magnetic field, small cross sectional area of the spinal cord, 

physiological movement of the spinal cord and cerebrospinal fluid, and lastly the presence of 

metallic constructs for fixation.9 In our patient, the presence of titanium constructs for cervical 

fixation did not degrade spinal cord imaging appreciably. MRI quality of the thoracic spinal cord 

with the CMT in situ may be more challenging because of the longer and thicker metallic 

constructs used for thoracic vs. cervical instrumentation. Our data, obtained from one TSCI 

patient, suggest that MR scanning with the CMT in situ for ISP monitoring may be safe. 

However, MR scanning of several TSCI patients needs to be performed to confidently 

conclude the safety of the CMT in the RF field.  

ISP monitoring introduces a clinically useful physiological variable into the management 

of acute TSCI. The ability to perform MRI with the CMT in situ may further our understanding 

of TSCI pathophysiology in the acute setting.  

 

Conclusion 

The Codman Microsensor transducer is MR-conditional in the cervical spine configuration in our 

3 T system. We performed MRI of a patient with traumatic spinal cord injury in a 1.5 T system 

and obtained good quality images of the cord without neurological deterioration.  
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Figure Legends 

Fig 1. Codman microsensor transducer in gel phantom. A. Schematic showing (top) 

components of transducer setup and (bottom) positioning of fiberoptic temperature transducers 

(FT1 – FT4). B. (i – iv) Different protocols used for imaging and temperature measurement (for 

details see Methods). C. Gel phantom in magnet bore at distance d from the center of the bore, 

parallel to the floor. Configuration x = transducer wire passing away from magnet bore, 

Configuration y = transducer wire passing through magnet the bore. 

 

Fig 2. Temperature at transducer tip vs. time. Temperature at different d with wire uncoiled 

and not connected to the ISP monitoring box in A. configuration x and B. configuration y. C. 

Temperature in configuration y at d = 30 cm with wire uncoiled (red) or coiled (purple) and not 

connected to the ISP monitoring box. D. Temperature in configuration x at d = 0 cm with 

transducer wire coiled and disconnected (red) or connected (purple) to the ISP monitoring box. 

 

Fig 3. MRI of TSCI patient with Codman Microsensor Transducer. A. Schematic showing 

CMT setup with transducer wire coiled and passed out of the magnet bore. B. T2 MR images. i, 

ii, iii Sagittal cuts; iv, v, vi axial cuts; iii magnified view from ii; vi magnified view from v; 

arrow = transducer tip. C. ISP and SCPP signals obtained before and after MR imaging. D. 

Magnified views of 1, 2, 3 and 4 from C. 
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Table 1. Maximum temperature change of FT1 – FT4. 

Protocol Distance, d cm Max temperature change °C 

FT1 FT2 FT3 FT4 

i 0 0.1 0.0 0.0 0.0 

10 0.0 0.0 0.0 0.0 

20 0.5 0.1 0.1 0.1 

30 0.8 0.1 0.1 0.2 

ii 0 2.4 0.3 0.2 0.2 

10 1.0 0.0 0.1 0.2 

20 2.0 0.2 0.3 0.2 

30 5.2 0.7 0.5 0.5 

iii 30 

coiled 

0.0 0.0 0.0 0.0 

iv 0 

coiled 

disconnected 

0.1 0.1 0.0 0.0 

0 

coiled 

connected 

0.1 0.0 0.0 0.1 

d, distance of probe tip from center of magnet bore; FT1-4, fiberoptic transducer;  

Protocols i – iv described in Methods and Fig. 1B. 

 
 


