A meta-analysis of 120,246 individualsidentifies 18 new loci for fibrinogen concentration
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Abstract

Genome-wide association studies have previoudy identified 23 genetic loci associated with circulating
fibrinogen concentration. These studies used HapMap imputation and did not examine the X
chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes
indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes
Project reference panel and including ~120,000 participants of European ancestry (95,806 participants
with dataon the X chromosome). Approximately 10.7 million SNPs and 1.2 million indels were
examined. We identified 41 genome-wide significant fibrinogen loci of which 18 were newly identified.
There were no genome-wide significant signals on the X chromosome. The lead variants of 5 significant
loci were indels. We further identified 6 additional independent signals, including 3 rare variants, at two
previoudy characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma

fibrinogen concentration.
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Fibrinogen is a coagul ation factor crucia to clot formation, and an active regulator of the inflammatory
response (1). It isa strong and established predictor of cardiovascular disease, autoimmune disorders, and
cancer (1-5). Circulating fibrinogen concentration has a moderate heritability of 34% to 46% (6-8).
Previous genome-wide association studies (GWAS) have highlighted genetic loci involved in
inflammatory pathways such as the acute-phase response and interleukin 1 and 6 signaling as main
determinants of fibrinogen concentration (9-13).

The variance in fibrinogen concentration explained by genetic loci identified in these previous
GWASisless than one tenth of its estimated heritability (11). It is therefore likely that part of the
heritability stems from genetic variants that are not well tagged by the single nucleotide pol ymorphisms
(SNPs) found in HapMap, including further common, uncommon, and rare SNPs, and other types of
variants such as insertions or deletions (indels). Additionally, part of the heritability could be explained
by variants on the X chromosome, which has not previously been interrogated.

To better interrogate the full range of genetic variants, including those with low minor allele
frequency that may have been poorly tagged by HapMap variants, we performed a meta-analysis of 34
GWA S imputed using 1000 Genomes Project reference panels (14), including the X chromosome. We
performed a joint/conditional analysis to identify additional independent signals within known and new

loci associated with plasma fibrinogen concentration.

Results

Autosomal meta-analysis

Participant characteristicsin each study are shown in Supplementary Table 1, covariates adjusted for by
each study are shown in Supplementary Table 2, and genomic inflation factors are shown in
Supplementary Table 3. The meta-analysis of the autosomes included 9,492,263 SNPs and 841,128
indels, of which 4,354 SNPs and 420 indels at 41 loci were genome-wide significant. Of these, 18 loci are
new signals (Table 1), while 23 have been associated with fibrinogen concentration by previous GWAS

(Table 2). Among genome-wide significant variants, 14 of 4,354 were rare (MAF < 0.01), and a further
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477 were uncommon (0.01 < MAF < 0.05). The lead variants of known locus SNX13, and novel loci
ATXN2L, GYS2, GIMAP4, and IFT122 were indels. Separate QQ plots of al autosomal variants, common
variants, uncommon variants, rare variants, SNPs, and indels are shown in Supplementary Figure 1. A
Manhattan plot of all autosomal variants is shown in Supplementary Figure 2. Additionally, a Manhattan
plot highlighting rare and uncommon variants is shown in Supplementary Figure 3. Heterogeneity 12 and
P-values are shown in Supplementary Table 4. Only rs7439150 at the fibrinogen gene cluster showed
significant heterogeneity (1% 50.0, P-value: 0.0004). Regional plots are shown in Supplementary Figure
4, and forest plots are shown in Supplementary Figure 5. Associations with rare variants were found at the
two most robust fibrinogen loci: the fibrinogen gene cluster and the IRF1 locus (lead variant annotated to
Cborf56). Associations with uncommon variants were also found at these loci, aswell as at SPPL2A and
HNF4A. At one known locus (SNX13) and four new loci (IFT122, GIMAP4, GYS2, and ATXNZ2L) the |ead
variant was an indel. At each of these loci there were also SNPs in linkage disequilibrium with the indel
that reached genome-wide significance. CD300LF was the only previously identified locus that was not
represented among our significant results. The previoudly reported lead variant in CD300LF, rs10512597
(P-value: 1.8x10°7), had a smaller effect size (B: -0.006 In(g/L)) than was previously reported (B: -0.008

In(g/L)). Therewas no strong evidence of heterogeneity (1% 22.7, P-value: 0.11).

Conditional analysis

Two loci (fibrinogen gene cluster and IRF1) harbored multiple jointly significant variants (Table 3).
Forest plots of the additional variants discovered through conditional analysis are shown in
Supplementary Figure 6, and their heterogeneity I1? and P-values are shown in Supplementary Table 5. At
the fibrinogen gene cluster, five variants were jointly significant: the lead variant rs7439150, an additional
common variant rs76289367, and three rare variants, rs150768229, rs6054, and rs148685782.
rs148685782 showed significant heterogeneity (12= 65.0, P-value = 0.0004). At the IRF1 locus three
variants were jointly significant: the lead variant, rs2057655, and two uncommon variants, rs12777 and
5:131786964. Of the secondary signals, rs12777 isin strong linkage disequilibrium with a previously
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associated SNP, rs1242111 (R?=0.8), while 5:131786964 is a new independent signal (R*= 0.0). The
uncommon variants near SPPL2A were not significant in the conditional anaysis. The uncommon lead
variant rs141272690 was only marginally significant in the primary analysis (P-value= 1.89x10%), so
that even a small correlation with the lead common variant rs12913259 (R? = 0.02) raised the P-value

above the threshold in the conditional analysis.

X-chromosome meta-analysis

The meta-analysis of the X chromosome included 251,747 SNPs and 26,448 indels. There were no
genome-wide significant variants detected on the X chromosome. Thiswas true in both sex-specific meta-
analyses, and in the combined meta-analyses, irrespective of whether the sex-specific results were
combined using inverse-variance weighted meta-analysis or sample size based meta-analyses. QQ plots

and Manhattan plots for the X chromosome are shown in Supplementary Figure 7 and 8.

Functional annotation

Genome-wide significant associations with other traits were found for 28 out of the 41 laci, of which 10
were associated with cholesterol levels, 7 were associated with C-reactive protein, and 5 were associated
with platelet count (Supplementary Table 5). Out of the 41 lead variants, 20 were associated with blood
expression levels of one or more neighboring genes (Supplementary Table 6). Notably, rs1035559 at
16022.2 was exclusively associated with HP expression levels (P = 9.8x107%), and rs7224737 at 17¢21.2
was exclusively associated with STAT3 expression levels (P = 5.4x10™?). Out of the 41 lead variants 36
were available in HaploReg V2. Detailed annotation of these variants as well as 457 correlated SNPsis
shown in Supplementary Table 7. Eight of these SNPs are predicted to influence the binding of miRNAs
to transcripts of their host gene. Further information about these SNPs and their effect on miRNA binding
is shown in Supplementary Table 8. Of these eight SNPs, two were lead variants. First, the fibrinogen
decreasing minor alele of lead variant rs715 in the 3-UTR of CPSL is predicted to create a miRNA
binding site for miR-3154. Second, the fibrinogen increasing minor alele of lead variant rs6224634 in the
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3-UTR of LHFPL4 is predicted to disrupt the binding site of miR-6761-3p. In both cases predicted

successful miRNA-target gene binding is associated with lower fibrinogen concentration.

Variance explained

In the Women’ s Genome Health Study, the lead variant at the fibrinogen gene cluster explained 0.8% of
the variance, and all five jointly significant variants together explained 1.6% of the variance. At 5g31.1
the lead variant explained 0.2% of the variance, while all three jointly significant variants together
explained 0.3% of the variance. The 47 independently significant variants at 41 loci explained 3.0% of the
variance in circulating fibrinogen concentration. The variance explained by the 23 previoudly identified

loci was 2.6%.

Discussion
Weidentified 18 new autosomal loci associated with circulating fibrinogen concentration in individuas
of European ancestry, increasing the variance explained from 2.6% to 3.0%. The small increase in the
variance explained relative to the large number of new loci is suggestive of a highly polygenic genetic
architecture. At two loci (fibrinogen gene cluster and IRF1 locus) rare or uncommon variants were jointly
significant aongside common lead variants. In five cases the lead variant at an associated |ocus was an
indel. There were no significant associations on the X chromosome: this may be result of issues specific
to the X chromosome rather than the absence of relevant signals. The most important issue is that the X
chromosome is generally poorly covered by genotyping arrays (15).

Four of the 18 new laci implicate inflammatory pathways not previously linked to fibrinogen.
First, the septin gene family is represented at two significant loci: SEPT7 at 7p14.2 and SEPT2 at 2937.3.
Proteins from the septin gene family form cage-like structures around bacteriato facilitate autophagy
(16). The link between these processes and fibrinogen concentration is unclear. Second, our results also
implicate genes from the GIMAP family, which are structurally similar to septins (17). The signal at
7036.1 appears to be driven by one or more genes from a cluster of eight GIMAP genes, and the lead
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variant is associated with blood expression levels of four of these. Through their involvement in
lymphocyte maturation, these genesinfluence lymphocyte counts and diversity, and thereby also the
inflammatory response (18). Finaly, the lead variant at 16g22.2 is strongly associated with blood
expression levels of the neighboring HP (P-value < 9.8x107%), the gene encoding haptoglobin. Like
fibrinogen, haptoglobin is an acute-phase reactant. The association of rs1035560 with fibrinogen
suggests that besides sharing upstream regul ators, haptoglobin itself may be involved in the regulation of
circulating fibrinogen.

Six of the new loci appear to be closely related to STAT3, atranscription factor working
downstream of IL-6 that upregulates the expression of fibrinogen and other acute-phase proteins (19). At
17921.2, lead variant rs7224737 (175 kb from STAT3) was associated with STAT3 blood expression
levels (P = 5.4x10™%). At 9922.2, the lead variant rs3138493 lies upstream of GADD45G. This geneis
expressed in the liver, where it has been shown to inhibit the Tyr705 phosphorylation of STAT3 (20). As
Tyr705 phosphorylation of STAT3 alowsit to dimerize and move into the nucleus, it is essentia for the
upregulation of STAT3 targets like the fibrinogen genes. At 10g26.13, the lead variant rs2420915 is an
intergenic SNP close to FGFR2. Over-expression of FGFR2, or the related FGFR1 is required for the
Tyr705 phosphorylation of STAT3 (20). At 19g13.33, the lead variant rs73058052 is associated with
blood expression levels of IRF3. After activation in response to vird infection, IRF3 enables the
expression of type | interferons INFA and INFB, leading to the upregulation of STAT3 (21, 22).
Furthermore, our results point towards two SH2B adaptor proteinsimplicated in STAT3 signaling. At
12g24.12, the lead variant rs7310615 was associ ated with blood expression levels of SH2B3. Using
immortalized B lymphoblastoid cell lines, aloss of the SH2B3 protein was accompani ed by increased
STAT3 phosphorylation (23). At 16p11.2, lead variant 16:28845027 lies close to SH2B1. The B variant
of SH2B1 appearsto form a complex with STAT3, alowing STAT3 to cross through the membrane into
the nucleus as an alternative to STAT3 dimerization (24). Collectively, these findings suggest that awide
range of disturbancesto STAT3 may affect circulating fibrinogen concentration.

In addition to STATS3, our results highlight HNF4A, another transcription factor known to
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regulate fibrinogen gene expression. The association between lead variant rs1800961 and circulating
fibrinogen has been previously been described by Wassel et al and Hufman et a (12, 25). rs1800961 isa
nonsynonymous coding variant that has been shown to decrease HNF4A expression in vitro (26).

The majority of rare and uncommon variants associated with fibrinogen concentration were found
at loci with common variant signals. Only the signal at HNF4A was led by an uncommon variant, and no
signals were led by rare variants. Conditional analysis suggests that there are two secondary signals at the
IRF1 locus led by uncommon variants, and three secondary signals near the fibrinogen gene cluster led by
rare variants. The uncommon variants that were significant near SPPL2A were not significant in the
conditional analysis, but the linkage disequilibrium with the lead common variant was very low. Our
results suggest that common and rare variant signals are often independent of each other, and do not
support the hypothesis that associations with common variants are synthetic associations merely reflecting
linkage disequilibrium with rare variants (27, 28).

Absolute effect sizes of significant variants ranged from 0.005 to 0.033 In(g/L) among common
variants, 0.013 to 0.087 In(g/L) among uncommon variants, and 0.036 to 0.254 In(g/L) among rare
variants. Despite their small effect size, common variants have helped discover biologically relevant
fibrinogen loci. Therefore, the complete lack of overlap between the effect sizes of significant common
and rare variants suggests that further rare variants with smaller effect sizes are likely to exist at important
and possibly unknown fibrinogen loci. While the rare variants with large effects we found were limited to
the two most important fibrinogen loci, rare variants with moderate effects may be more widespread.

When considering not only the primary signal at the fibrinogen gene cluster, but aso the four
additional signals the variance explained by the locus doubles from 0.8% to 1.6%. Two of these
additional signals are driven by rare non-synonymous exonic variants (rs6054 and rs148685782) with
very large effect sizes (f=-0.12 and B =-0.21 In(g/L) respectively). The association between rs6054 and
fibrinogen has been described earlier in a candidate gene study (12), and rs148685782 (also known as
vAla82Gly) has previously been reported as a causal variant for mild congenital hypofibrinogenaemia
(29-31). Furthermore, in a previous study we examined exome-wide genotypes using exome arrays and
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identified independent associations of both rs6054 and rs148685782 with fibrinogen (25). In the present
study, however, two further variants, rs140473879 and rs149234484, are in strong linkage disequilibrium
with rs148685782 and tag this signal. These variants are intergenic, but each changes several regulatory
motifs. Thus, the identification of rs148685782 as a causal variant is not conclusive.

Strengths of this study include the use of alarge ethnically homogenous sample, and coverage of
previoudy unexamined uncommon and rare variants, indels, and variants on the X chromosome. At the
same time, the lack of ethnic heterogeneity may also be alimitation, asincluding different ethnicities can
help narrow down the association signal to asmaller region (32). This study has other limitations that
should be acknowledged. To most effectively use the available data, we used all 34 studiesin the
discovery sample (33). The results have thus not been replicated. Neverthel ess, the consistent association
of these loci across the 34 studies and the strict Bonferroni correction enforcing a 5% false discovery rate
ensure that essentialy all of theloci represent true associations. A second limitation isthat an
approximation based on meta-analysis summary data was used to identify additional independently
associated variants at the identified loci rather than a stepwise conditional analysis using individual-level
data. Different methods were used to measure plasma fibrinogen across the studies. EDTA or citrate
plasma samples were used, and a variety of assays were used (34). While the association between
fibrinogen and cardiovascular disease has previoudy been shown to be independent of assay type, the
genetic etiology of fibrinogen may differ across assay types (35). However, to minimize the impact on our
results, studies that used multiple assays to measure fibrinogen performed their analyses stratified by the
assay.

Finally, our ability to attribute these signalsto causal genesremainslimited. For each locuswe
reported the gene closest to the lead variant, but proximity alone is not strong evidence that a geneisthe
underlying causal gene. Thus, we also reported the genes whose expression levelsin blood were most
strongly associated with the lead variant, and we reported genes with nonsynonymous exonic variantsin
high linkage disequilibrium with the lead variant. Based on blood expression levels, some signals were
characterized by a single promising candidate causal gene, but other signals were associated with either
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no candidate causal genes, or more than one. Furthermore, genetic variants can have effects on the
expression of multiple genes across different tissues, and these effects can be tissue specific.

We identified 41 loci that collectively explain 3% of the variance in plasma fibrinogen
concentration. Of these loci, 18 had not been identified previoudy through GWAS. The new loci
emphasize the importance of STAT3 to fibrinogen regulation, and highlight several new potential
pathways that should be experimentally confirmed. The use of 1000 Genomes Project imputation
increased our ability to assess the role of uncommon variants, resulting in an in depth characterization of

the two most important fibrinogen loci.

Materialsand Methods

Study sample

This meta-analysis was conducted within the framework of the Cohorts for Heart and Aging Research in
Genetic Epidemiology (CHARGE) consortium (36). The study sample consists of 34 studies with
120,246 individuals of European ancestry. 12 studies with 25,453 participants were not included in the
previous fibrinogen GWAS (11). Fibrinogen concentration was measured in citrated or EDTA plasma
samples using avariety of methodsincluding the Clauss method, immunonephel ometric methods,
immunoturbidimetric methods, and prothrombin time derived methods as described in Supplementary
Table 1 and the Supplementary Methods, which further describe the studies. All studies were approved by

appropriate research ethics committees and all respondents signed informed consent prior to participation.

Genotyping and imputation

Genotyping, pre-imputation quality control, imputation, and analysis methods are presented in
Supplementary Table 2. All studies imputed variant dosages using reference panels from the 1000
Genomes Project using MACH or IMPUTE (14, 37-39). The phase | version 3 reference panel was used
by all studies except two, which used the phase | version 2 reference panel. Before meta-analysis, we
excluded variants with MACH imputation quaity < 0.3 or IMPUTE imputation quality < 0.4, and
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variants with effective minor alele count (minor allele count x imputation quality) < 10. Thesefilters
were applied at thelevel of individual studies. Because we wanted to focus only on those variants that
passed these filtersin alarge proportion of the studies, we additionaly excluded variants with atotal

sample size of less than half of the maximum sample size at the meta-anaysis level.

Autosomal association analysis

Plasma fibrinogen concentration was converted to g/L and natural log transformed. All studies adjusted
for age and sex. When necessary, analyses were a so adjusted for study-specific covariates, such as center
or case/control status. In family studies, linear mixed models were used to account for family structure.
Analyses were adjusted for principal components to account for population structure and cryptic
relatedness. These adjustments are shown in Supplementary Table 2. To account for remaining
stratification, we applied a genomic control correction to the results of each of the studies before meta-
anaysis. We used an inverse-variance model with fixed effects implemented in METAL to meta-analyze
association results (40). Heterogeneity was assessed using |2 and corresponding P-values.

As proposed by Huang et a, variants with P-values lower than 2.5x10® were considered genome-
wide significant (based on a Bonferroni correction for 2,000,000 tests) (41). Significant variants were
assigned to loci in order of ascending P-value. A variant was assigned to a new locus when there were no
significant variants within 500 kb of it belonging to a previoudly defined locus. V ariants were annotated

to genes using ANNOV AR version 2013Mar07 (42).

X-chromosome association analysis

Of the 120,246 participants, 95,806 had imputed data on the X chromosome. Dosages of variants on the X
chromosome were coded as [0,2] in men and [0,1,2] in women. This way one allele in men has the same
value astwo allelesin women. Thus, we assume full inactivation of one of the two X chromosomesin
women. Variants in the pseudo-autosomal region were excluded. Analyses of the X chromosome were
stratified by sex in each study, and the studies then were meta-analyzed separately for men and women
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using an inverse-variance model with fixed effects (40). We then combined the sex-specific meta-analysis
results for variants on the X chromosome using both an inverse variance weighted model with fixed
effects and a sample-size weighted model based on P-values and effect direction. The sample-size
weighted model does not take the effect size into account, and thus may work better when there are
different effects in men and women (43, 44), as can happen when there isincomplete inactivation in

women.

Conditional analysis

Some loci may harbor multiple independent variants that affect fibrinogen (11, 45). To putatively identify
these jointly significant variants, we used an approximate method for conditiona and joint analysis using
meta-analysis summary statistics implemented in GCTA (46, 47). The method consists of a genome-wide
stepwi se selection procedure selecting variants according to their conditiona P-values and, after the
model has been optimized, the estimation of the joint effects of the selected variants. This method
depends on areference panel to estimate linkage disequilibrium patterns between variants. We used best-
guess imputation for variants with imputation quality > 0.3 in 5,733 unrelated individuals from the
Rotterdam Study as the reference panel (48). A description of the Rotterdam Study is given in the

Supplementary Methods.

Functional annotation

For each locus, we searched the National Human Genome Research Institute GWAS cata og for genome-
wide significant associations with other traits within 100kb of the lead variant (49). We used the Blood
eQTL browser, apublicly available database, to examine whether any lead variants, or their most
correlated HapMap proxy (with R? > 0.8), were associated with expression |levels of nearby genesin
blood. Results from the blood eQTL browser are based on non-transformed peripheral blood samples
from 5,311 individuas with replication in 2,775 individuals (50). For each lead SNP and its highly
correlated neighbors (with R? > 0.9), we used HaploReg V2 to determine the level of conservation,
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association with gene expression in arange of tissuesincluding the liver, and any overlap with ENCODE
transcription factor binding sites, and DNAse-hypersensitive, promoter , and enhancer regionsin various
cell types (51, 52). Furthermore, we determined the overlap of these SNPs with microRNAs and

microRNA binding sites (see Supplementary Methods) (53-55).

Variance explained

In the Women' s Genome Health Study, the largest contributor to the meta-analysis, we computed a
weighted genetic risk score based on the lead variants at each genome-wide significant locus, as well as
any jointly significant variants identified in the conditional analysis (56). A description of the Women's
Genome Health Study is given in the Supplementary Methods. Beta coefficients from the genome-wide
association meta-analysis including all studies were used as weights, except in loci with multiple jointly
significant variants. For variants at these loci, joint beta coefficients were obtained from the conditional
analysis. The genetic risk score was computed as the sum of the weighted variants dosages. The variance
in fibrinogen concentration explained was estimated using a linear regression model. Additionally, for
any loci with jointly significant variants we compared the variance explained by the lead variant to the
variance explained by the jointly significant variants. We were not able to directly compare our estimate
of the variance explained to previous estimates, as these had been computed in different populations and
were adjusted for age and sex. Thus, we re-cal cul ated the variance explained without adjustment for age
and sex. For this we used HapM ap-imputed dosages of the independently associated SNPs reported by
Sabater-Lledl et al (11). Since the variance explained is estimated on the basis of imperfectly imputed

dosages, we expect our estimates to be slightly lower than if they were based on measured genotypes.
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Tables

Table 1: Association of thelead variants at 18 newly identified loci with natural log transformed plasma fibrinogen concentration (g/L).

L ocus Variant Position Closest Gene eQTL NSYN variants A1/A2 Frequency 8 P-value

2p25.3  rs7588285 3648186  COLEC11 CIG 0.20 0.0074 1.2x10°%
3p25.3  rs62246343 9543642 LHFPL4 TIC 0.17 0.0071 2.2x10®
3921.1 rs1976714 122864771 PDIAS TIG 0.35 -0.0055 2.3x10%
3921.3 3:129228166 129228166 |FT122 RPL32P3 D/R 0.10 0.009 1.0x10
7pl4.2 rs2710804 36084529 EEPD1 CIT 0.37 0.0055 2.9x10%
7936.1  7:150289652 150289652 GIMAP4 GIMAP4 D/R 0.21 -0.0073 9.3x10%
8p23.1  rs7012814 9173358 LOC157273 AlG 0.47 0.0060 2.1x10%0
9g22.2  rs3138493 92219260 GADDA45G SEMA4D TIC 0.48 -0.0054 2.5x10°%°
10023.31 rs2250644 91008879  LIPA T/IC 0.33 0.0054 2.2x10%
10926.13 rs2420915 122840277 MIR5694 WDR11 AIG 0.09 -0.0094 5.2x10%

11p12 rs7934094 43505707 TTC17 GIT 0.22 -0.0083 2.5x10%3




12p12.1  12:21703935 21703935

12924.12 rs7310615 111865049

15915.1 rs56702977 42671308

16p11.2  16:28845027 28845027

16022.2  rs1035560 72032730

170921.2  rs7224737 40289364

19013.33 rs73058052 50099422

GY

SH2B3

CAPN3

ATXN2L

PKD1L3

RAB5C

PRR12

SH2B3 SH2B3

ZFP106

TUFM

HP

STAT3 HSPB9

IRF3 PRRG2

R/D

CIG

AlG

D/R

CIT

AIG

T/IC

0.37

0.50

0.13

0.39

0.40

0.24

0.16

0.0062 8.4x10°%

-0.0069 1.5x101

0.0080 2.1x10%

0.0061 7.7x10%0

0.0064 2.6x102

0.0061 6.1x10°%°

0.0074 2.0x10®

Abbreviations: eQTL indicates the gene with the strongest significant association between its expression levelsin blood and the lead variant or its

proxy. NSY N variants indicates genes containing nonsynonymous variant correlated to the lead variant (R? > 0.9). A1 indicates the coded alele.
A2 indicates the other allele. Frequency is the frequency of the coded allele. B indicates the B coefficient adjusted for age, sex, population

structure, and study-specific covariates, such as center or case/control status. The § coefficient can be interpreted as the In(g/L) change in

fibrinogen per 1 unit change in the dosage of the coded dlele.
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Table 2: Association of the lead variants at 23 known loci with natural log transformed plasma fibrinogen concentration (g/L).

Locus Variant Position Closest Gene eQTL NSYN variants A1/A2 Frequency 8 P-value

1p31.3  rs1892534 66105944 LEPR TIC 038 -0.0073 4.3x107%5
1921.3  rs61812598 154420087 IL6R IL6R AIG  0.39 -0.0115 2.7x10°%
1944 rs10157379 247605599 NLRP3 NLRP3 cIT 0.38 -0.0103 6.3x10%
2q12 rs1558643 102731691 IL1RL T/C 040 0.0058 3.1x10%°
2913 rs6734238 113841030 IL1F10 ILIRN G/A 041 0.0106 6.7x10%
2q34 rs715 211543055 CPSL CPS1 CIT 0.32 -0.0082 4.3x10%¢
2g37.3 rs59104589 242237902 HDLBP STK25 T/IC 0.34 -0.0083 8.2x10%°
3022.2  rs9840812 135843162 PPP2R3A PCCB CIT 0.23 0.0117 1.7x10%
4p16.3  rs59950280 3452345  HGFAC AIG 034 0.0075 1.7x107%?
4g31.3  rs7439150 155481541 FGB FBG AIG 020 0.0313 9.5x1078!
5g31.1 rs2057655 131807624 Cborf56 SL.C22A4 AIG 0.21 -0.0203 1.8x107
7p21.1  7:17904452 17904452  SNX13 RD 048 0.0067 1.3x1013
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7p15.3 rs71520386

8024.3 rs11780978

10921.3  rs7916868

11912.2  rs11230201

12013.12 rs2731439

14924.1  rs367677

15921.2  rs12913259

16912.2  rs11859517

20013.12 rs1800961

21922.2  rs9808651

22013.33 rs75347843

22853521

145034852

64988931

59996994

51060350

69273090

51014716

53181247

43042364

40466468

51112361

TOMMY7

PLEC GRINA

JMJID1C

MSAAGA MSAAGA

DIP2B DIP2B

ZFP36L1

SPPL2A

CHD9

HNF4A

PSMG1

SHANKS ARSA

HNF4A

T/IC

AIG

AIT

G/IC

T/IC

G/A

T/IC

T/IC

T/IC

AIG

AIG

0.20

0.40

0.49

0.41

0.36

0.22

0.30

0.29

0.03

0.27

0.19

0.0066

0.0059

0.0089

-0.0057

-0.0064

0.0077

-0.0068

-0.0074

-0.0170

-0.0095

0.0084

5.1x10°%°

5.5x1010

1.6x102

4.5%x101°

8.7x101?

1.8x1012

2.3x1012

8.9x10

1.2x101°

2.5x10%

1.8x1010

Abbreviations: eQTL indicates the gene with the strongest significant association between its expression levelsin blood and the lead variant or its

proxy. NSYN variants indicates genes containing nonsynonymous variant correlated to the lead variant (R? > 0.9). A1 indicates the coded allele.
A2 indicates the other allele. Frequency is the frequency of the coded allele. B indicates the B coefficient adjusted for age, sex, population

structure, and study-specific covariates, such as center or case/control status. The B coefficient can be interpreted as the In(g/L) change in

40



fibrinogen per 1 unit change in the dosage of the coded allele.
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Table 3: Joint/conditional association of 8 variants at 2 loci with natural log transformed plasma fibrinogen concentration (g/L).

Locus Variant Position Closest Gene Annotation AL/A2 Freguency B P-value  Joint Joint P-value
4931.3 rs7439150 155481541 FGB intergenic AIG 0.205 0.0313 9.5x108' 0.0259 1.9x10°%
4g31.3 rs150768229 155488301 FGB intronic CIA 0.009 -0.0458 6.4x10*2 -0.0385 9.3x10™®
4g31.3 rs6054 155489608 FGB NSYN TIC 0.005 -0.1228 2.4x10% -0.1222 4.9x10°?
4g31.3 rs148685782 155533035 FGG NSYN CIG 0.005 -0.2239 1.2x10% -0.2179 4.0x10%
4931.3 rs76289367 155546159 FGG intergenic GIT 0.148 0.0263 2.0x107 0.0109 1.6x10"
5g31.1 rs12777 131671662 S .C22A4 SYN G/IC 0.044 0.0240 9.3x102%" 0.0207 6.9x10%
5031.1 5:131786964 131786964 C5orf56 ncRNA I/IR 0.015 -0.0543 2.5x10% -0.0428 2.0x10%
5g31.1 rs2057655 131807624 C5orf56 NcRNA AIG  0.207 -0.0203 1.8x107 -0.0188 1.9x10®

Abbreviations: Al indicates the coded alele. A2 indicates the other alele. Frequency is the frequency of the coded allele. NSYN indicates a
nonsynonymous exonic variant. SYN indicates a synonymous exonic variant. B indicates the B coefficient adjusted for age, sex, population
structure, and study-specific covariates, such as center or case/control status. Joint § indicates the B coefficient of the jointly significant variants,

adjusted for the above and for each other. All B coefficients can be interpreted as the In(g/L) change in fibrinogen per 1 unit change in the dosage

of the coded dl€ele.
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