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Abstract 

Inflammation contributes to the development and perpetuation of several disorders 

and T lymphocytes orchestrate the inflammatory immune response. Although the role 

of T cells in inflammation is widely recognised, specific therapies that tackle 

inflammatory networks in disease are yet to be developed. CD4+CD28null T cells are a 

unique subset of helper T lymphocytes that recently shot back in the limelight as 

potential catalysts of inflammation in several inflammatory disorders such as 

autoimmunity, atherosclerosis and chronic viral infections. In contrast to conventional 

helper T cells, CD4+CD28null T cells have an inbuilt ability to release inflammatory 

cytokines and cytotoxic molecules that can damage tissues and amplify inflammatory 

pathways. It comes as no surprise that patients who have high numbers of these cells 

have more severe disease and poor prognosis. In this review, I provide an overview 

on the latest advances in the biology of CD4+CD28null T cells. Understanding the 

complex functions and dynamics of CD4+CD28null T cells may open new avenues for 

therapeutic intervention to prevent progression of inflammatory diseases. 
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Introduction 

Several subsets of T and B-lymphocytes with highly specialized functions have been 

characterized so far. Some lymphocytes promote inflammation, whilst others have 

anti-inflammatory roles, and an optimal balance between these two opposing sets of 

lymphocytes is critical for immune homeostasis. We have recently characterized a 

pro-inflammatory subset of CD4+ T helper 1 (Th1) lymphocytes known as 

CD4+CD28null (CD28null) T cells as they characteristically lack CD28, a co-

stimulatory receptor critical for the activation and function of T cells.1, 2 

CD4+CD28null T cells expand in several diseases that associate with chronic 

inflammation (e.g. autoimmunity, atherosclerosis, etc.), whilst in healthy individuals 

they are almost undetectable.3 High frequencies of CD4+CD28null T cells correlate 

with disease severity and poor prognosis, which led to suggestions that these 

lymphocytes may be involved in the pathogenesis of chronic inflammatory disorders.4 

This review provides an overview on the ‘signature’ features that distinguish 

CD4+CD28null T cells from conventional CD4+CD28+ T lymphocytes, the diseases in 

which these cells have been identified, the mechanisms that underlie expansion of this 

cell subset and potential therapeutic strategies that could be employed to target 

CD4+CD28null T cells. 

The ABC of CD4+CD28null T cell biology 

The main feature of CD4+CD28null T cells is the loss of CD28, a co-stimulatory 

receptor that is critical for the activation, proliferation and survival of CD4+ T cells.5 

For most CD4+ T cells and especially for naive CD4+ T lymphocytes, lack of CD28-

transduced signals during activation induces an anergic state and renders lymphocytes 

unable to respond to antigen at subsequent encounters.6 However, this is not the case 

with CD4+CD28null T cells that instead of being anergic have enhanced effector 
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functions and can be (re)-stimulated by antigens.7 Indeed, in several diseases in which 

this subset expands it has been shown that CD4+CD28null T cells have oligoclonal 

antigen receptors with restricted antigen diversity, suggesting that repeated antigen 

stimulation may facilitate expansion of these lymphocytes.8, 9 Moreover, 

CD4+CD28null T lymphocytes display potent effector functions such as secretion of 

inflammatory cytokines interferon-! (IFN-!) and tumour necrosis factor-" (TNF-").1, 

10, 11 Another feature that markedly differentiates CD4+CD28null from conventional 

CD4+CD28+ T lymphocytes is the expression of cytotoxic molecules perforin and 

granzyme B1, 12 that are physiologically employed by natural killer cells and cytotoxic 

CD8+ T lymphocytes to kill target cells (Table 1). Not only that CD4+CD28null T cells 

express cytotoxic molecules but they release them and kill endothelial cells, at least in 

vitro.13 Another contrasting feature to conventional helper CD4+CD28+ T 

lymphocytes is the expression of activating natural killer cell receptors such as 

NKG2D.14 Moreover, CD4+CD28null T cells lose their sensitivity to apoptosis 

induction2 and are resistant to the suppressive actions of regulatory T cells (Tregs),15 

compared to CD28+ counterparts. Tregs have pivotal roles in keeping pro-

inflammatory lymphocytes in check and, by this, maintaining immunological 

tolerance and preventing excessive immune responses.16 By becoming less 

susceptible to suppression, CD4+CD28null T cells may escape from the control of 

Tregs and thus drive inflammation unimpeded. 

It remains controversial whether CD4+CD28null T cells are antigen specific and 

which are the precise antigens that trigger and/or drive their expansion. It has been 

suggested that CD4+CD28null T lymphocytes are auto-reactive and that repeated 

stimulation by auto-antigens drives the expansion of this cell subset. However, 

CD4+CD28null T cells often respond to ubiquitous antigens such as heat shock proteins 
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(HSP) and viral antigens, whilst failing to respond to well-known auto-antigens such 

as collagen in rheumatoid arthritis (RA) or oxidised LDL in atherosclerosis.15, 17 

Indeed, some studies suggested that infection with cytomegalovirus might drive 

expansion of CD4+CD28null T cells, as this virus is well known to induce loss of 

CD28 in CD8+ T cells.18 However, other studies failed to find any relationship 

between CD4+CD28null T cells proliferation and CMV-seropositivity.17, 19 Another 

proposed antigen is human HSP60, as CD4+CD28null T cells from patients with 

myocardial infarction were found to respond to this antigen in vitro.17 Myelin basic 

protein (MBP), that is the target of the autoimmune response in multiple sclerosis 

(MS) has also been suggested to induce proliferation of CD4+CD28null T cells isolated 

from MS patients and to enhance IFN-! production from these cells.20 However, other 

studies failed to identify MBP reactivity in CD4+CD28null T cells.15 An alternative 

hypothesis for what drives CD4+CD28null T cell expansion is that other cues (e.g. 

ligands for co-stimulatory and/or NK cell receptors, chemokines, adhesion molecules) 

rather than antigens may be sufficient to activate and induce effector functions in 

CD4+CD28null T lymphocytes in the disease setting. 

It is tempting to speculate that CD4+CD28null T cells cross the classical 

boundaries of innate and adaptive immune cells and, by doing so, share features with 

innate-like T lymphocytes. Several populations of innate-like T cells have been 

described, including invariant natural killer T (iNKT) cells, !# T cells, and mucosa-

associated invariant T (MAIT) cells.21-23 Responses mediated by innate-like T cells 

occur in the early stages of infectious and inflammatory disorders and shape the 

subsequent adaptive responses.24 The main characteristics of innate-like T cells that 

set them apart from traditional adaptive T lymphocytes are: relatively restricted 

antigen receptor repertoire; potent and rapid cytokine production (due to constitutive 
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transcription of cytokine genes); and cytolytic activity. Indeed, in patients with 

inflammatory disorders it has been shown that CD4+CD28null T cells have oligoclonal 

antigen receptors,8, 9 produce high levels of inflammatory cytokines and express 

cytotoxic molecules, features similar to those of innate-like T cells. 

CD4+CD28null T cells - senescent vs. divergent? 

Highly proliferative cells such as fibroblasts and T lymphocytes are susceptible to 

entering a state of arrested cell division termed cellular senescence. Characteristically, 

senescent cells irreversibly lose their capacity to proliferate, whilst remaining viable 

and metabolically active. Senescent T lymphocytes have been suggested to 

accumulate with age. In addition to growth arrest, senescent cells are often resistant to 

apoptosis, have altered expression of genes that regulate cell cycle entry and 

progression and express senescence markers (e.g. $-galactosidase, p16).25 

Additionally, loss of CD28 has been proposed to identify senescent T lymphocytes. 

At birth nearly all T lymphocytes express CD28 in humans, whilst with ageing, 

CD8+CD28null T cells and, to a lesser extent CD4+CD28null T cells, are detected in 

increasing numbers in the circulation.7 Interestingly, for reasons that are not known, 

the increase in circulating CD28null T lymphocytes occurs only in humans and 

primates but has not been detected in aged mice. Previous studies have shown that 

CD4+CD28null T cells lack CD28 mRNA suggesting that CD28 loss is due to a block 

in transcription, which is regulated by binding of nuclear protein complexes to " and 

$ motifs in the minimal promoter of the CD28 gene.26 However, loss of CD28 is not a 

specific senescence marker as CD4+CD28null T cells are a heterogeneous population 

including not only senescent but also different types of non-senescent effector T 

lymphocytes.27 Importantly, in contrast to the marked expansion of CD8+CD28null T 

cells in aged individuals, CD4+CD28null T cell expansion is rarely detected in most 
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elderly subjects in absence of inflammatory comorbidities7, suggesting that CD8+ T 

cells are more susceptible to replicative senescence. Reduced binding of nuclear 

proteins to the $ but not " motif of the CD28 promoter is characteristic of replicative 

senescence.26 In comparison to CD4+ T cells, CD8+ T cells contain a single $-bound 

protein complex, which explains why they are more susceptible to complete loss of 

nuclear proteins bound to the $ motif of the CD28 promoter and subsequent CD28 

down-regulation.26 CD27 is also progressively lost during T cell differentiation and it 

has been proposed to identify senescent lymphocytes that have lost the ability to 

proliferate.7 CD4+CD28null T cells that lose expression of CD27 have been suggested 

to represent end-stage senescent lymphocytes that have marked telomere shortening 

and impaired proliferation. CD4+CD28nullCD27- T cells have been described in CMV 

(Cytomegalo virus)-seropositive individuals but were absent in CMV-seronegative 

subjects.28 The inability of CD4+CD27- T cells to proliferate is mediated, at least in 

part, by activation of the p38 kinase.27 However, not all CD4+CD28null T cells lose 

CD27,29 and what is the CD27 expression profile on CD4+CD28null T cells in patients 

with autoimmunity or atherosclerosis has not been investigated. Previous studies 

suggested that although proliferation may be affected in senescent lymphocytes, 

certain effector functions (e.g. production of inflammatory cytokines, cytotoxicity) 

are preserved, which may enable these cells to damage tissues and amplify 

inflammation. Of note, we recently found that CD4+CD28null T cells maintain their 

ability to proliferate in vitro in response to anti-CD3 antibodies, albeit with a slower 

division rate compared to CD4+CD28+ T cells, which indicates that CD4+CD28null T 

cells do not have replicative senescence.2 Whether truly senescent or not, it is clear 

that CD4+CD28null T cells have different properties than those ascribed to immune-

exhausted senescent lymphocytes induced by chronic re-stimulation by viruses. 
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Another important aspect is that T cell senescence may not always be irreversible. 

Indeed, senescence of a subset of effector memory CD4+CD27- T cells characterised 

by re-expression of CD45RA (also known as EMRA CD4+ T cells) was reversed in 

vitro by inhibition of p38 signalling.30 In view of these recent findings, it remains to 

be clarified whether CD4+CD28null T cells that expand in various inflammatory 

diseases are indeed senescent or simply diverge phenotypically and functionally from 

helper CD4+ T lymphocytes. Additionally, if CD4+CD28null T cells are senescent, it 

would be important to know whether their senescence is irreversible or whether it can 

be reversed by inflammatory cues. 

CD4+CD28null T cells in inflammatory diseases 

CD4+CD28null T cells were originally identified in patients with rheumatoid arthritis 

(RA).9, 31 Since then this lymphocyte subset has been found in the circulation and/or 

tissues in several chronic inflammatory disorders (e.g. autoimmunity, atherosclerosis, 

viral infections). A high proportion of RA patients have increased frequencies of 

circulating CD4+CD28null T cells and in some patients this subset has also been 

identified in the synovial fluid.12 However, subsequent studies failed to confirm the 

presence of CD4+CD28null T cells in the synovial fluid or membrane.32 Moreover, the 

frequency of CD4+CD28null T cells correlated with RA severity and extra-articular 

involvement (e.g. vascular inflammation).33, 34 In vitro experiments showed that 

CD4+CD28null T cells from RA patients support synoviocyte proliferation better than 

conventional CD4+CD28+ T lymphocytes.35, 36 Excessive proliferation of synovial 

cells causes cartilage erosion and bone destruction in RA, indicating that 

CD4+CD28null T cells could potentially contribute to this process. Another 

autoimmune disorder in which CD4+CD28null T cells have been described is multiple 

sclerosis.20 In this disease, CD4+CX3CR1+ T lymphocytes had similar functional 
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features to those ascribed to CD4+CD28null T cells in RA (i.e. IFN-! production, 

expression of perforin and granzyme).37 CD4+CD28null T cells have also been 

identified in systemic lupus erythematosus, ankylosing spondylitis, Crohn’s disease, 

Wegener’s granulomatosis (currently known as granulomatosis with polyangiitis), 

Grave’s disease, and autoimmune myopathy.38-44 In addition to autoimmunity, 

CD4+CD28null T cells have been characterised in chronic viral infections (e.g. CMV,18 

HIV,45 and hepatitis B29), end stage and chronic kidney disease, including chronic 

rejection of kidney transplants.46 

Advances in the biology and role of CD4+CD28null T cells in atherosclerosis 

Following their identification in RA, CD4+CD28null T cells have been found to 

expand in patients with myocardial infarction or unstable angina (often grouped under 

the term of acute coronary syndrome, ACS).10 Patients with stable angina also have 

higher frequencies of CD4+CD28null T cells compared to healthy individuals, albeit 

lower than the frequencies identified in patients with myocardial infarction.10 

Interestingly, CD4+CD28null T cells were identified preferentially in unstable 

compared to stable atherosclerotic lesions, suggesting that they may trigger plaque 

rupture and life-threatening acute coronary events.8 The role of CD4+CD28null T cells 

in plaque rupture was later reinforced by observations that these cells can kill 

endothelial cells in vitro.13 Moreover, activated CD4+ T lymphocytes isolated from 

the circulation or atherosclerotic plaques of patients with myocardial infarction are 

known to kill vascular smooth muscle cells,47, 48 which may also be the case for 

CD4+CD28null T cells, although direct experimental proof is lacking. Another study 

implicating these lymphocytes in the pathogenesis of myocardial infarction found that 

patients with high percentages of CD4+CD28null T cells have increased risk of 

recurrent acute coronary events and poor outcome compared to patients with low 
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CD4+CD28null T cell frequencies.49 Patients with diabetes, a well-known risk factor 

for myocardial infarction, also have increased circulating CD4+CD28null T cells. 

Moreover, high frequencies of these lymphocytes associate with the occurrence of the 

first acute cardiovascular event and poor outcome following myocardial infarction in 

diabetic patients.50 We demonstrated that CD4+CD28null T cells from ACS patients 

have features that markedly distinguish them from conventional CD4+CD28+ T cells 

(Figure 1). Firstly, both resting and in vitro activated CD4+CD28null T cells produce 

more IFN-! and TNF-" than their CD4+CD28+ counterparts.1 Secondly, in stark 

contrast to conventional CD4+CD28+ T cells, we showed that resting CD4+CD28null T 

cells express perforin and granzymes. Moreover, activation of CD4+CD28null T cells 

induced a decrease in perforin and granzyme, which was accompanied by expression 

of the degranulation marker CD107a on the cell surface. These findings indicate that 

in patients with myocardial infarction CD4+CD28null T cells are equipped with a 

potent pro-inflammatory and cytotoxic arsenal that may enable them to amplify the 

inflammatory response and kill cells in the vascular wall with potentially devastating 

consequences for the stability of atherosclerotic lesions. 

We demonstrated for the first time that alternative co-stimulatory receptors are 

crucial for the pro-inflammatory and tissue-damaging functions of CD4+CD28null T 

cells in atherosclerosis. We found that the expression of alternative co-stimulatory 

receptors OX40 and 4-1BB is significantly higher in CD4+CD28null T cells compared 

to conventional CD4+CD28+ T cells.1 The up-regulation of co-stimulatory receptors 

was present only in CD4+CD28null T cells from patients with myocardial infarction 

but was absent in stable angina, suggesting that this altered phenotype was specific 

for myocardial infarction. Furthermore, using blocking antibodies we clearly 

demonstrated that OX40 and 4-1BB control the production of inflammatory cytokines 
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and perforin from CD4+CD28null T cells. Alternative co-stimulatory receptors may 

facilitate direct stimulation of CD4+CD28null T lymphocytes cells in peripheral tissues 

and render them independent of activation by professional dendritic cells in secondary 

lymphoid organs. Indeed, we have shown that atherosclerotic plaques express OX40L 

and 4-1BBL and that the phenotype of CD4+CD28null T lymphocytes isolated from 

plaques resembled that of CD4+CD28null T cells activated in vitro, with high levels of 

OX40 and 4-1BB.2 Local activation of CD4+CD28null T cells in peripheral tissues may 

amplify inflammation in targeted organs and lead to breakage of self-tolerance and 

autoimmune responses. Overall, our identification of alternative co-stimulatory 

receptors in CD4+CD28null T cells provided a mechanism that regulates the harmful 

actions of CD4+CD28null T cells in atherosclerosis and a proof of concept that 

therapeutic agents targeting OX40 and 4-1BB co-stimulation may be beneficial in this 

disease.51 

How do CD4+CD28null T cells expand? 

As previously mentioned, expansion of the CD4+CD28null T cell subset in patients 

affected by autoimmune disorders or ACS has been linked to the severity of disease 

and an unfavourable prognosis.52, 53 Thus, deciphering the mechanisms responsible for 

the accumulation of these cells may lead to the identification of novel strategies to 

target CD4+CD28null T cells. Following T cell activation and expansion, unwanted 

and potentially harmful T lymphocytes are purged through apoptosis, which ensures 

homeostasis and prevents a build-up of inflammatory T cells. Apoptosis induction is 

tightly regulated by the balance of pro- and anti-apoptotic signals induced in response 

to environmental queues.54 Apoptotic cell death regularly proceeds either via the 

extrinsic (death-receptor-dependent) or intrinsic (mitochondrial-dependent) pathway, 

both of which culminate in activation of caspases that cleave DNA and other essential 
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cellular components, followed by the demise of the cell.54 The extrinsic apoptosis 

pathway is initiated by ligation of death receptors such as Fas (CD95) that relay death 

signals through proteins that associate with their intracellular death domain.55 The 

central molecules in the mitochondrial pathway belong to the Bcl-2 (B cell 

lymphoma-2) family,56 which includes anti-apoptotic (e.g. Bcl-2, Bcl-xL) and pro-

apoptotic proteins (e.g. Bim, Bax).57, 58 One model proposes that anti-apoptotic Bcl-2 

molecules form complexes with the pro-apoptotic Bax in the mitochondrial 

membrane, which prevents apoptosis induction unless these complexes are 

disintegrated.57 This function is carried out by the pro-apoptotic molecule Bim, which 

in response to death triggers, displaces Bcl-2/Bcl-xL and releases Bax to exercise its 

death-inducing effects.59 

We have recently identified that CD4+CD28null T cells from patients with 

myocardial infarction have defects in apoptosis regulation. We demonstrated that, in 

contrast to conventional CD4+CD28+ T lymphocytes, CD4+CD28null T cells resist 

apoptosis induction through Fas ligation or ceramide treatment in vitro.2 The loss of 

apoptosis sensitivity in CD4+CD28null T cells was mediated by a marked reduction in 

Fas and the pro-apoptotic mitochondrial molecules Bim and Bax. Previous studies in 

RA suggested that CD4+CD28null T cell expansion is primarily due to up-regulation of 

the anti-apoptotic molecule Bcl-2.60, 61 Moreover, in this disease CD4+CD28null T cells 

displayed similar levels of Fas, Bcl-xL and Bax compared to CD4+CD28+ T cells. 

Noteworthy, these results were generated using CD4+CD28null T cell lines/clones 

instead of direct analysis of primary CD4+CD28null T cells. The levels of molecules 

regulating apoptosis pathways are perturbed in T cells expanded in culture, as cells 

are subjected to several rounds of re-activation to extend their survival and therefore 

may not model with sufficient fidelity the in vivo status of apoptotic molecules. 
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Interestingly, in patients with myocardial infarction we did not identify any 

differences in anti-apoptotic molecules Bcl-2 and Bcl-xL in freshly analysed primary 

CD4+CD28null T cells, implying that these molecules do not have a central role in 

apoptosis resistance of CD4+CD28null T lymphocytes in this disease. Whether the 

mechanisms that underlie the apoptosis resistance of CD4+CD28null T cells diverge in 

RA and myocardial infarction or are the result of using different types of cells 

remains to be established in future studies. 

Tissue tropism of CD4+CD28null T cells 

CD4+CD28null T cells have been identified not just in the circulation of patients with 

inflammatory diseases but also in target tissues. A better understanding of the 

mechanisms that guide tissue recruitment and re-circulation of this cell subset bears 

potential translational implications. Chemokine receptors and adhesion molecules 

tightly regulate the migration of T lymphocytes during physiological immune 

responses and have crucial roles in inflammatory diseases.62 Some studies suggest 

that expression of chemokine receptors and adhesion molecules by CD4+CD28null T 

cells drives their ability to infiltrate tissues, which may enable these cells to cause 

local inflammation and tissue damage. CD8+CD28null T cells have been found to 

express high levels of adhesion molecule LFA-1 (lymphocyte function-associated 

antigen-1), which is possibly the result of changes in DNA methylation induced by 

ageing.63 LFA-1 is an integrin that regulates T cell recruitment at inflammatory sites 

and their interaction with antigen presenting cells via binding to ICAM-1 

(intercellular adhesion molecule-1) and it lowers the activation threshold of T cells. 

Moreover, as ICAM-1 is also expressed by cells in various tissues (e.g. synoviocytes), 

it has been proposed that LFA-1 may enable CD8+CD28null T cells to stimulate 

synoviocytes. Whether LFA-1 carries out similar functions in CD4+CD28null T cells 
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remains to be investigated. A chemokine receptor that has been identified 

preferentially on CD4+CD28null T cells is CX3CR1 (the fractalkine receptor).36 This 

receptor enables CD4+CD28null T cells to interact with synoviocytes which express 

fractalkine, which in turn increases proliferation, IFN-! production and release of 

cytotoxic molecules from CD4+CD28null T lymphocytes in vitro. Moreover, this 

interaction enhanced the proliferation of synoviocyte cell lines generated from the 

synovium of RA patients.35 CX3CR1 has also been suggested to facilitate 

CD4+CD28null T cell infiltration in peripheral target tissues. However, direct 

identification of these cells in situ is less accurate compared to the peripheral 

circulation as their main feature is the lack of the CD28 receptor and other unique 

markers that could distinguish CD4+CD28null T cells from other CD4+ T lymphocytes 

are not available. It has been suggested that CD4+CD28null T cells are present in the 

brain of some patients with multiple sclerosis, based on detection of CD4+CX3CR1+ 

T cells, which should include predominantly of CD4+CD28null T cells as other subsets 

of CD4+ T cells do not usually express this chemokine receptor.64 Noteworthy, 

fractalkine the ligand for CX3CR1, is upregulated in the serum and cerebrospinal 

fluid of MS patients as well as in MS brain lesions.64 Fractalkine levels are also 

elevated in urine in kidney transplant recipients during graft rejection,65 suggesting 

that this chemokine receptor/ligand pair has important role in guiding the migration of 

CD4+CD28null T cells into target tissues. CD4+CD28null T cells have also been 

identified in the lung in RA patients with pneumonitis66, in the muscle in patients with 

autoimmune myopathies39, 42 as well as lamina propria of patients with Crohn’s 

disease,67 primarily based on identification of CD4+NKG2D+ T cells in these tissues, 

as NKG2D is a marker preferentially expressed by CD4+CD28null and not 
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CD4+CD28+ T cells), although the mechanisms that guide recruitment of this cell 

subset in these tissues remain unknown.  

Potential strategies to target CD4+CD28null T cells 

Blockade of inflammatory cytokines 

Considering that CD4+CD28null T cell expansion is a consistent feature of chronic 

inflammatory conditions, several attempts have been made to identify strategies for 

targeting this cell subset. One of the initial studies targeted the pro-inflammatory 

cytokine TNF-". Bryl et al. found that in vitro treatment with TNF-" down-regulated 

the expression of CD28 on CD4+CD28+ T cell clones by affecting the transcription of 

the CD28 gene.68 In a later study, the same group described that TNF-" blockade with 

Infliximab induced a recovery of CD28 expression on peripheral blood mononuclear 

cells from RA patients.69 Similar effects of Infliximab on CD28 expression were 

generated by treatment of whole blood from patients with unstable angina and 

elevated frequencies of CD4+CD28null T cells, which resulted in an increase in CD28 

levels on T cells.70 Based on these findings TNF-" blockade has been proposed to 

reduce the frequency of CD4+CD28null T cells in RA patients. However, a recent 

study found that the percentage of CD4+CD28null T cells remained unchanged in RA 

patients treated with Infliximab or Etanercept over a period of one year.71 

Interestingly, we have recently found that TNF-" treatment failed to down-regulate 

CD28 in primary CD4+CD28+ T cells from both healthy individuals and patients with 

myocardial infarction (Bullenkamp J. and Dumitriu I.E., manuscript in preparation). 

Moreover, due to severe adverse effects, use of TNF-" inhibitors is currently not 

justified in patients with myocardial infarction and the potential atheroprotective 

effects of TNF-" blockade remain to be precisely established in this disease. Another 

cytokine that has been proposed to enable CD28 re-expression is IL-12. 
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CD4+CD28null T cell clones re-stimulated in the presence of IL-12 were also shown to 

up-regulate CD28.72 In contrast to TNF-", IL-12 on its own failed to up-regulate 

CD28. Whether IL-12 could induce CD28 re-expression in primary CD4+CD28null T 

cells is not known. Importantly, whether inflammatory cytokine blockade alters the 

function of CD4+CD28null T cells in addition to re-expression of CD28 has not been 

investigated. 

Statins 

In addition to their well-documented ability to down-regulate LDL-cholesterol, statins 

have anti-inflammatory and immune-modulatory effects.73 Statin treatment in patients 

with unstable angina was suggested to reduce the percentage of CD4+CD28null T cells, 

although the effect was rather limited (from an average of 3% to 2.3%, p=0.022).74 

Another group suggested that Rosuvastatin triggers apoptosis of CD4+CD28null T cells 

in patients with acute myocardial infarction and induces a contraction of this cell 

subset37. We recently investigated the effect of statins on CD4+CD28null T cells from 

patients with myocardial infarction. Treatment of sorted CD4+CD28null T cells with 

increasing doses of Atorvastatin or Rosuvastatin failed to induce apoptosis.2 This is 

not surprising as many patients with acute myocardial infarction or stable angina who 

are already on statin therapy still exhibit high numbers of CD4+CD28null T cells. 

Additionally, CD4+CD28null T cell frequency remained unchanged for up to two years 

after an acute coronary event although statins are routinely prescribed following 

myocardial infarction13, indicating that statins do not affect the frequency of 

CD4+CD28null T cells, in line with our in vitro findings. 

Modulation of co-stimulatory pathways 

Another class of drugs that have the potential to modulate the deleterious functions of 

CD4+CD28null T cells target co-stimulation. Blockade of T cell co-stimulation is being 
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used in patients with RA. Abatacept, a CTLA-4Ig fusion protein that works by 

binding to B7 ligands CD80/CD86 and blocking their interaction with CD28 on T 

cells has shown some results in RA. Treatment with Abatacept for one year reduced 

the frequency of circulating CD8+CD28null T cells but had only a marginal and not 

statistically significant effect on CD4+CD28null T cells in RA patients, although a 

small correlation between CD4+CD28null T cells and the disease activity score DAS28 

was found.75 Moreover, a study on a small group of RA patients showed that 

Abatacept did no alter the frequency of CD4+CD28null T cells in RA patients on long-

term therapy with this drug (> 5 years),76 suggesting that any effects on this cell 

subset induced by Abatacept may be transient or the mere result of fluctuations in 

disease activity. In view of our findings that OX40 and 4-1BB co-stimulatory 

receptors are up-regulated on CD4+CD28null T cells in myocardial infarction, targeting 

these molecules may prove a more successful approach, especially as OX40 and 4-

1BB belong to a different family of co-stimulatory receptors than CD28 and CTLA-

4.77 Clinical targeting of OX40 and 4-1BB is being investigated in rheumatoid 

arthritis, multiple sclerosis, inflammatory bowel disease, asthma, transplantation and 

graft versus host disease.78 What makes OX40 and 4-1BB such attractive targets for 

modulation of co-stimulation pathways is their preferential expression on 

activated/effector T cells, whilst they are absent in naive/resting lymphocytes. This 

should facilitate specific targeting of effector T cells that mediate tissue damage 

without compromising the ability of naive T lymphocytes to mount appropriate 

immune responses to exogenous antigens. 

Proteasomal inhibitors 

Our findings that CD4+CD28null T cells have markedly reduced levels of the pro-

apoptotic mitochondrial protein Bim, which has central roles in controlling apoptosis 
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induction, made us investigate mechanisms responsible for Bim reduction in 

CD4+CD28null T cells to identify tools to revert their resistance to apoptosis. We 

showed that ERK1/2, a protein kinase that has been implicated in regulating Bim 

levels by phosphorylating it, was constitutively activated in resting CD4+CD28null T 

cells from ACS patients.2 Moreover, ERK1/2 activation was further enhanced by 

CD4+CD28null T cell activation. In line with this, CD4+CD28null T lymphocytes 

expressed significantly higher levels of phosphorylated Bim than conventional 

CD4+CD28+ counterparts. Moreover, ERK1/2 inhibition reduced phosphorylated Bim 

levels in activated CD4+CD28null T cells. Bim phosphorylation has been shown to tag 

this protein for degradation by the proteasome, which may explain the marked 

reduction in Bim that characterises CD4+CD28null T cells in ACS. Proteasome 

inhibition increased phosphorylated Bim levels in both resting and activated 

CD4+CD28null T cells, confirming its central role in regulation of Bim levels.2 We 

were the first to show that treatment with the proteasome inhibitor MG-132 restored 

apoptosis sensitivity of CD4+CD28null T cells in ACS patients. Noteworthy, the dose 

of proteasome inhibitor that restored apoptosis sensitivity in CD4+CD28null T cells 

was approximately a thousand times lower than doses needed for induction of 

apoptosis in cancer cells, suggesting that re-sensitisation of CD4+CD28null T cells to 

apoptosis could potentially be achieved in vivo in ACS at much lower doses than in 

cancer, with lower side-effect profile. Encouragingly, proteasome inhibition did not 

cause apoptosis in conventional T cells, indicating that the proteasome is an attractive 

target for selective elimination of CD4+CD28null T cells, while sparing their 

conventional counterparts and reducing bystander immunosupression.  

Other approaches to target CD4+CD28null T cells 
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Polyclonal anti-lymphocyte globulins have been recently suggested to reduce 

CD4+CD28null T cell frequency in transplant recipients, possibly via triggering 

apoptosis as demonstrated in vitro.79 Additionally, a recent study described that 

expression of Kv1.3 channels may confer the potential to target CD4+CD28null T cells, 

as specific blockade of these channels reduced the ability of CD4+CD28null T 

lymphocytes to produce IFN-! and perforin in vitro.80 Interestingly, another recent in 

vitro study suggested that CD4+CD28null T cells might be resistant to the effects of 

immunosuppressive drugs Tacrolimus and Everolimus, which may explain the 

expansion of this lymphocyte subset in chronic kidney allograft rejection.19 Better 

characterisation of CD4+CD28null T cells should unveil other strategies to modulate 

the expansion and/or the function of this subset. 

Gaps in knowledge and future perspectives 

Although CD4+CD28null T cells have been identified in several inflammatory 

disorders wherein they have enhanced effector function characterised by production 

of inflammatory factors and cytotoxicity, their precise contribution to the 

pathogenesis of these diseases is yet to be completely understood. Important questions 

that remain unanswered are which mechanisms drive the expansion of CD4+CD28null 

T cells, how are these cells recruited in tissues, and how can their deleterious effector 

function be down-modulated. Recent identification of molecules that regulate the 

production of inflammatory cytokines, cytotoxic proteins and the loss of apoptosis 

sensitivity in CD4+CD28null T cells may provide novel strategies for targeting 

CD4+CD28null T cells to tame this subset of lymphocytes and tackle inflammation.
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Table 1. The ABC of CD4+CD28null T cell biology. 

 

 CD4+CD28null 

T cells 

CD4+CD28+ 

helper T cells 

Ref. 

CD28 co-stimulatory receptor absent present 3 

OX40/4-1BB co-stimulatory receptors up-regulated absent* 1 

T cell receptors (TCR) oligoclonal polyclonal 8, 9 

Activating NK cell receptors (e.g. NKG2D) present absent 14 

CX3CR1 (fractalkine receptor) present absent 36 

‘Signature’ cytokines IFN-!, TNF-" variable# 1, 11 

Cytolytic enzymes (perforin, granzymes) present absent 1, 12 

Cytotoxic function present absent 1, 13 

Resistance to apoptosis induction yes no 2, 60 

Ability to provide help signals to B cells no yes 11 

Sensitivity to suppression by Treg cells decreased yes 15 

*, OX40 and 4-1BB expression are induced only after T cell activation; #, depending 
on the Th cell subset (e.g. IFN-! for Th1; IL-4 for Th2; IL-17 for Th17, etc.) 
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Legends to figures. 

Figure 1. Characteristics of CD4+CD28null T cells in atherosclerosis. In patients 

that develop myocardial infarction due to coronary atherosclerosis CD4+CD28null T 

cells have features that distinguish them from conventional helper CD4+CD28+ T 

lymphocytes. Specifically, CD4+CD28null T cells express higher levels of alternative 

co-stimulatory receptors OX40 and 4-1BB, whilst co-inhibitory receptors (CTLA-4 

and PD-1) are present in similar levels to those on CD28+ counterparts. OX40 and 4-

1BB regulate the production of inflammatory cytokines (TNF-" and IFN-!) and the 

release of cytotoxic molecules (perforin, granzymes) by CD4+CD28null T cells. 

Moreover, in these patients the expression of the death receptor Fas and of pro-

apoptotic mitochondrial proteins Bim and Bax are significantly reduced in 

CD4+CD28null T cells. This endows CD4+CD28null T lymphocytes with resistance to 

apoptosis, which may allow these cells to accumulate and amplify inflammation and 

cause vessel wall damage, which may contribute to atherosclerotic plaque rupture. 
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