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BACKGROUND AND PURPOSE
Valproic acid (VPA), a widely used epilepsy and bipolar disorder treatment, provides acute protection against haemorrhagic
shock-induced mortality in a range of in vivo models through an unknown mechanism. In the liver, this effect occurs with a
concomitant protection against a decrease in GSK3β-Ser9 phosphorylation. Here, we developed an in vitro model to investigate
this protective effect of VPA and define a molecular mechanism.

EXPERIMENTAL APPROACH
The human hepatocarcinoma cell line (Huh7) was exposed to conditions occurring during haemorrhagic shock (hypoxia,
hypercapnia and hypothermia) to investigate the changes in GSK3β-Ser9 phosphorylation for a 4 h period following treatment
with VPA, related congeners, PPAR agonists, antagonists and siRNA.

KEY RESULTS
Huh7 cells undergoing combined hypoxia, hypercapnia, and hypothermia reproduced the reduced GSK3β-Ser9 phosphorylation
shown in vivo during haemorrhagic shock, and this change was blocked by VPA. The protective effect occurred through upstream
PTEN and Akt signalling, and prevented downstream β-catenin degradation while increasing histone 2/3 acetylation. This effect
was reproduced by several VPA-related compounds with known PPARγ agonist activity, independent of histone deacetylase
(HDAC) inhibitory activity. Specific pharmacological inhibition (by T0070907) or knockdown of PPARγ blocked the protective
effect of VPA against these signalling changes and apoptosis. In addition, specific activation of PPARγ using ciglitazone
reproduced the changes induced by VPA in haemorrhagic shock-like conditions.

CONCLUSION AND IMPLICATIONS
Changes in GSK3β-Ser9 phosphorylation in in vivo haemorrhagic shock models can be modelled in vitro, and this has identified a
role for PPARγ activation in the protective role of VPA.
Abbreviations
2eVPA, 2-ene-VPA; 2POA, 2-propyloctanoic acid; H2/H3/H4, histone 2/3/4; SA, sebacic acid; siRNA, small interfering RNA;
VPA, valproic acid; VPD, valpromide
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Tables of Links

TARGETS

Nuclear hormone receptorsa Enzymesb

PPARα Akt (PKB)

PPARβ/δ Caspase 3

PPARγ Caspase 7

GSK3β

HDAC

PTEN

LIGANDS

β-catenin GW6471

β-tubulin Octanoic acid

ATP T0070907

Ciglitazone Valproic acid

Decanoic acid

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are permanently archived in the Concise Guide
to PHARMACOLOGY 2013/14 (a,bAlexander et al., 2013a,b).
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Introduction
Haemorrhagic shock is the significant loss of intravascular
blood volume leading to reduced tissue perfusion and
resulting in reduced oxygen (hypoxia), build-up of carbon
dioxide (hypercapnia) and overall reduction in body temper-
ature (hypothermia) (Angele et al., 2008). Decreased tissue
perfusion due to blood loss leads to a reduction in oxygen
available for cellular uptake, the rate of which remains
constant (Kheirbek et al., 2009). This oxygen deprivation
induces a switch from aerobic to anaerobic cellular metabolism
(Shoemaker, 1996), during which carbon dioxide accumulates
in cells, causing acidosis. As ATP consumption continues to
exceed production, it is eventually depleted resulting in cell
death (Keller et al., 2003; Kheirbek et al., 2009). The slowing
of ATP metabolism causes spontaneous hypothermia, the occur-
rence of which is independently associated with an increased
likelihood of the patient dying (Rossaint et al., 2006). Approxi-
mately 40% of early human deaths due to trauma are caused by
haemorrhage and haemorrhagic shock (Kauvar et al., 2006),
and 62% of these deaths occur in the first four hours (Frey
et al., 2006). Thus, timely management of this pathological
state is central to saving lives (Lecky et al., 2002).

Treatment of haemorrhage currently relies on fluid trans-
fusion and blood component reconstitution, including red
blood cells, platelets and spray-dried plasma (Gutierrez et al.,
2004; Alam et al., 2009). However, these components need
to be stored and transported under specific conditions, often
require matching to the patient and carry the risk of disease
transmission (Kauvar and Wade, 2005). Thus, there is a need
for new approaches to stabilizing patients during the critical
4 h period post-injury. Recent investigations into pharmaco-
logical resuscitation have demonstrated that valproic acid
(VPA; 2-propylpentanoic acid), a branched short-chain fatty
acid that is a well-established treatment for amultitude of con-
ditions including epilepsy and bipolar disorder (Isoherranen
et al., 2003; Bialer and Yagen, 2007), prevents death in animal
models following haemorrhagic shock (Shults et al., 2008;
Alam et al., 2009).
British Journal of Ph
Most haemorrhagic shock research is performed using
whole animal models (e.g. Alam et al., 2009; Hwabejire
et al., 2014), a necessary approach for establishing the efficacy
of any given intervention in attenuating the whole-organism
reaction to blood loss. However, the exclusive use of animal
models severely limits the possibilities for detailed investiga-
tion into cellular events during haemorrhagic shock and
pharmacological resuscitation. Isolating and reproducing
the regulation of signalling pathways becomes a time-
consuming and difficult process due to the complexity of
the multi-organ response involved. These issues have limited
the investigation of the molecular mechanisms behind the
pathology and any pharmacological (therapeutic) interven-
tion, indicating a necessity for a simple model system for
the study of signalling changes involved. One of these
changes has been observed in the activity of the key enzyme,
glycogen synthase kinase 3β (GSK3β), which shows reduced
phosphorylation at serine 9 (pGSK3β-Ser9) giving elevated
activity in vivo in the liver during haemorrhagic shock (Alam
et al., 2009). Two upstream regulators of GSK3β signalling,
PTEN and Akt, also show concurrent deactivation (Hwabejire
et al., 2014), while β-catenin degradation, a downstream
effect of GSKβ activity, is increased. These studies have also
shown that VPA prevents this decrease in pGSK3β-Ser9 (Alam
et al., 2009; Hwabejire et al., 2014). An in vitro model of
haemorrhagic shock signalling may provide a useful model
for investigating the mechanism of action of VPA in
haemorrhagic shock.

Although VPA has a wide variety of therapeutic roles
(Terbach and Williams 2009), its molecular mechanisms re-
main mostly unclear. One well-documented direct effect of
VPA is as a histone deacetylase (HDAC) inhibitor (Göttlicher
et al., 2001; Terbach and Williams, 2009), which is likely to
be the cause of its teratogenicity (Jentink et al., 2010), but
may also underpin its anticancer activity (Gurvich et al., 2004;
Duenas-Gonzalez et al., 2008). We have recently shown that
VPA also acts through the prevention of a reduction in
phosphoinositide signalling during seizures (Chang et al.,
2014; Xu et al., 2007) and in the regulation of inositol
armacology (2015) 172 5306–5317 5307
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phosphates in bipolar disorder (Williams et al., 2002). In
addition, we have shown that VPA regulates fatty acid levels
(Elphick et al., 2012), and others have shown that it acts as a
ligand of PPAR (Lampen et al., 1999), of which PPARγ has been
implicated in the direct regulation of PTEN (Patel et al., 2001).
A therapeutic role for this latter mechanism is unclear.

In this work, we established an in vitro model for molecu-
lar signalling in haemorrhagic shock, based on the regulation
of pGSK3β-Ser9 as a molecular marker for the signalling
changes observed in the liver during haemorrhagic shock.
Using a combination of hypoxia, hypercapnia and hyperther-
mia, we showed a reduction in pGSK3β-Ser9 and that VPA
prevents this reduction. We characterized the molecular
pathway leading to this effect and further demonstrated that
congeners of VPA and unrelated structures that are well-
characterized PPARγ agonists were also effective at reducing
pGSK3β-Ser9. These data suggest that pharmacological
protection against haemorrhagic shock signalling may be
through PPARγ activation.
Methods

Huh7 cell culture
Huh7 (Japanese Collection of Research Bioresources Cell
Bank, no. JCRB0403, Japan) cells were cultured in DMEM
high glucose culture medium (Sigma-Aldrich Co. LLC. no.
D5796) supplemented with 10% FBS (Invitrogen), 1×
penicillin/streptomycin (Sigma) and non-essential amino
acids (Sigma) in Normoxic conditions (37°C, 5% CO2). Cells
were passaged at 70–80% confluency using 0.05% Trypsin
in PBS (Severn Biotech). Cells were used experimentally up
to passage 10. For treatment, cells were seeded into 6-well
plates at 2 × 105 cells per well and allowed to recover for
48 h. Treatment compounds were added directly into culture
medium. Cells were treated for 4 h either under standard
conditions or in stress conditions (2% O2, 10% CO2, 32°C;
combined hypoxia, hypercapnia and hypothermia) with
a vehicle control (DMSO unless otherwise indicated) or
compound of interest: 2-ene-VPA (2VPA; MolPort), 2-
propyloctanoic acid (2POA; Sigma), ciglitazone (Tocris),
decanoic acid (Sigma), GSK3787 (Tocris), GW6471 (Tocris),
octanoic acid (Sigma), sebacic acid (SA; Sigma), T0070907
(Tocris), VPA (Sigma, vehicle dH2O), valpromide (VPD;
Katwijk Chemie, The Netherlands).

Protein analysis
Protein extract in RIPA buffer (Sigma) was boiled (95°C,
10 min) in SDS loading buffer (0.8 ml 2M Tris pH 6.8, 3 ml
80% glycerol, 5 ml 10% SDS, 1.25 ml β-mercaptoethanol; all
reagents from Sigma), loaded into a 12.5% acrylamide/
bisacrylamide (Sigma) gel, separated by SDS-PAGE and trans-
ferred to a PVDF membrane (Merck Millipore) via Western
blot. Membranes were blocked in 5% BSAV (Sigma) in TBST
(Severn Biotech) for 1 h. Antibody was added directly to
blocking buffer (1:1000), and membrane was incubated at
4°C overnight. All primary antibodies were provided by Cell
Signaling Technology: GSK3β (no. 12456), pGSK3β-Ser9 (no.
5558), Akt (no. 9272), pAkt-Ser473 (no. 4060), PPARγ (no.
2443), PTEN (no. 9188), Ser380/Thr382/383 pPTEN (no. 9549),
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β-catenin (no. 8480), acetylated lysine (no. 9441), β-actin
(no. 4970), β-tubulin (no. 2128). Membranes were washed
in TBST and incubated with secondary antibody (Li-Cor no.
926-32211 Goat anti-Rabbit) in Odyssey Blocking Buffer
(Li-Cor no. 927-50000) for 1 h at room temperature. Mem-
branes were visualized and quantified using the Odyssey Sa
system (Li-Cor), which directly quantifies fluorescence
and, therefore, protein abundance in a linear manner.
Both phosphorylated and total protein levels were corrected
for loading using β-tubulin/β-actin levels, and relative
phosphorylation was calculated as the ratio of corrected
phosphorylated-to-total protein.
Apoptosis assay
Huh7 cells were analysed for apoptosis using ApoTox Glo
(Promega) according to the manufacturer’s instructions.
Briefly, the assay provides a luminogenic substrate, which
when cleaved by caspase-3/7 yields quantifiable lumines-
cence to indicate the presence of apoptotic signalling.
HDAC inhibition assay
HDAC inhibition assays were performed using a fluorimetric
in vitro histone deacetylase assay (MerckMillipore), according
to the manufacturer’s instructions, using human-derived
HeLa cell enzyme extract (Enzo) in a 1:10 dilution as
described previously (Chang et al., 2015). Briefly, HeLa
deacetylases act upon a substrate to sensitize it to a developer,
the binding of which produces quantifiable luminescence.
The presence of an HDAC inhibitor decreases HDAC activity
therefore yielding decreased fluorescence.
PPARγ siRNA knockdown
Four mixed specific PPARγ siRNAs and negative control siRNA
(Qiagen nos. GS5468 and SI03650325 respectively) were used
in conjunction with Lipofectamine RNAiMAX (Invitrogen)
according to the manufacturer’s protocols. Briefly, cells were
seeded into 6-well plates and cultured to 70% confluence
(48 h). Cells were transfected in 250 μl unsupplemented cul-
ture medium (DMEM high glucose, as before) with all four
PPARγ siRNAs or the negative control siRNA for 6 h, after
which 750 μl DMEM containing 10% FBS was added to each
well. Cells were rested overnight (16 h), at which point
medium was replaced with fresh DMEM (containing 10%
FBS) and allowed to grow for a further 24 h before the
experiments.
Lactate dehydrogenase (LDH) release assay
Huh7 cells were underwent stress conditions (2% O2, 10%
CO2, 32°C) with or without VPA (0.75 mM), and LDH release
was measured using an LDH Cytotoxicity Assay (Pierce) and
according to the manufacturer’s instructions.
Statistical analyses
Results are expressed as means ± SEM. Data were analysed
using one-way ANOVA or Student’s t-test as appropriate. Error
bars depict SEM. P values >0.05 were considered non-
significant, 0.01–0.05 significant (*), 0.001–0.01 very signifi-
cant (**) and <0.001 highly significant (***).
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Results
Developing an in vitro model of haemorrhagic
shock
To establish an in vitro model for the analysis of
haemorrhagic shock signalling, we employed a human liver
cell line (Huh7). Cells were exposed to the haemorrhagic
shock-like conditions of hypoxia (2% O2), hypercapnia
(10% CO2) and hypothermia (32°C) over a 4 h period.
Quantitative analysis of GSK3β-Ser9 phosphorylation sta-
tus, shown to be regulated in in vivo models (Alam et al.,
2009; Hwabejire et al., 2014), was employed as a read-out
for haemorrhagic shock-like conditions (Figure 1A). Simul-
taneous exposure of the cells to all three stress conditions
triggered a significant 50 ± 5% reduction of pGSK3β-Ser9

levels compared with control conditions, an effect which
was not evident in individual or paired conditions. As
phosphorylation at this site inhibits GSK3β activity, these
results suggest an increase in enzymatic activity under
haemorrhagic shock-like conditions. VPA treatment caused
a dose-dependent protection against the reduction in
pGSK3β-Ser9 levels (58 ± 5% at 0.1 mM; 91 ± 10% at 0.5
mM; 128 ± 16% at 0.75 mM VPA compared with control
conditions; Figure 1B) at concentrations found in patients
treated with VPA (0.4–0.7 mM (DSM IV, 2000)) consistent
with in vivo data. VPA did not alter pGSK3β-Ser9 levels in
cells in the absence of haemorrhagic shock-like conditions,
suggesting this VPA-induced effect was dependent upon
these stress conditions.
Defining the haemorrhagic shock signalling
pathway
Because the in vitro haemorrhagic shock model reproduced
the in vivo reduction in pGSK3β-Ser9 levels and VPA-
dependent protection (Alam et al., 2009), we next examined
Figure 1
Developing an in vitromodel of in vivo haemorrhagic shock. (A) Huh7 cells were e
and analysed for pGSK3β-Ser9 levels and normalized to Nx. (B) Huh7 cells were
oxia, hypercapnia and hypothermia (HxHcHp), treated with VPA (0.75 mM) as in
quantified from at least triplicate experiments with technical triplicates (n > 9) ±
the signalling pathway involved in this effect (Figure 2A).
Phosphorylation of GSK3β at Ser9 is catalysed by Akt
(Delcommenne et al., 1998). Monitoring Akt activity, using
pAkt-Ser473 levels as an indication of enhanced activity
(Hanada et al., 2004), suggests that haemorrhagic shock-like
conditions result in a significant reduction in pAkt-Ser473

and thus activity (60 ± 6% compared with control conditions)
(Figure 2C). This reduction was partially blocked by VPA (87 ±
5% at 0.75 mM compared with control). This VPA-induced
effect was only seen under haemorrhagic shock-like
conditions. Phosphorylation of Akt-Ser473 is dependent upon
the production of phosphoinositide 3,4,5-trisphosphate
(Delcommenne et al., 1998), a key signalling molecule that
is degraded by the phospholipid phosphatase, PTEN. Inhibi-
tory regulation of PTEN activity is coordinated by phosphor-
ylation at Ser380/Thr382/383, resulting in enhanced Akt
activity (Sun et al., 1999). Monitoring pPTEN levels by quan-
titative analysis under haemorrhagic shock-like conditions
indicated a significant reduction in phosphorylation (69 ±
7% of control conditions) (Figure 2B), which was reversed
by VPA (89 ± 4% at 0.75 mM compared with control).

GSK3β plays a key role in regulating cellular function
through a range of targets including β-catenin, which is
primed for degradation through phosphorylation (Rubinfeld
et al., 1996). We, therefore, assessed the effect of haemorrhagic
shock-like conditions on β-catenin levels. These conditions
reduced β-catenin levels (63 ± 7% of control), a result consis-
tent with enhanced GSK3β activity. VPA prevented this
decrease in β-catenin abundance (91 ± 5% of control condi-
tions) in agreement with a protective effect of VPA against
the reduction in pGSK3β-sSer9 levels under haemorrhagic
shock-like conditions.

The mechanism of action of VPA in the prevention of
haemorrhagic shock-induced lethality has been proposed to
depend upon HDAC inhibition (Alam et al., 2009). To evalu-
ate whether the molecular mechanism of VPA in this model
system relies on HDAC regulation, we monitored histone
xposed to hypoxia, hypercapnia and/or hypothermia for 4 h as indicated
exposed to normoxic conditions (37°C, 5% CO2; Nx), or combined hyp-
dicated, analysed for pGSK3β-Ser9 levels and normalized to Nx. Data were
SEM. Data were analysed using one-way ANOVA and post hoc Tukey test.

British Journal of Pharmacology (2015) 172 5306–5317 5309



Figure 2
Defining the haemorrhagic shock signalling pathway. Huh7 cells were incubated for 4 h in the presence of hypoxia (2% O2), hypercapnia (10% CO2) and
hypothermia (32°C) (HxHcHp), and treated with VPA as indicated. All data are shown as mean ± SEM normalized to normoxic conditions (Nx). Phosph-
orylation levels are presented as percentage of untreated control and corrected for loading with loading control indicated. (A) An overview of PI3K sig-
nalling pathway regulation by haemorrhagic shock signalling (stress response) and VPA treatment (VPA response). (B) Protein extract was analysed for
PTEN phosphorylation levels at Ser380/Thr382/383. (C) Protein extract was analysed for Akt phosphorylation levels at Ser473. (D) Protein extract was analysed
for total β-catenin levels. (E) Protein extract was analysed for histone (H)2/3 and H4 acetylation using acetylated lysine antibody. Data were quantified from
at least triplicate experiments with technical triplicates (n ≥ 9) ± SEM. Data were analysed using one-way ANOVA and post hoc Tukey test (B, C and D) or
using two-way ANOVA and post hoc Bonferroni tests (E).
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acetylation under control and haemorrhagic shock-like con-
ditions in the presence and absence of VPA (0.75mM). In con-
trol conditions, VPA did not alter histone 2/3 (H2/H3)
acetylation (100 ± 6% of untreated control) but caused a sig-
nificant increase in histone 4 (H4) acetylation (406 ± 38% of
untreated control). Haemorrhagic shock-like conditions
alone did not alter H2/H3 or H4 acetylation levels and also
did not affect the VPA-dependent increase in H4 acetylation.
5310 British Journal of Pharmacology (2015) 172 5306–5317
However, VPA gave rise to a significant increase in H2/H3
acetylation levels (681 ± 121% of control; Figure 2E) during
haemorrhagic shock-like conditions. As VPA-induced H2/H3
acetylation only occurred in these conditions, the mecha-
nism of this effect is likely to be dependent on the presence
of hypoxia, hypercapnia and hypothermia and, therefore, is
likely to be specific to the pathological environment under
investigation.
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PPARγ agonists attenuate haemorrhagic
shock-like signalling independently of HDAC
inhibitory activity
We extended our analysis of haemorrhagic shock-like condi-
tions in regulating pGSK3β-Ser9 levels by investigating the ef-
ficacy of a range of VPA congeners (Figure 3A). We employed
two straight chain fatty acids, octanoic acid and decanoic
acid, the latter of which shows enhanced seizure control
compared with VPA (Chang et al., 2012; Chang et al., 2014);
two acids showing the same branching structure as VPA,
2POA and 2eVPA, which both also show seizure control
(Palaty and Abbott 1995; Chang et al., 2013); VPD, the amide
derivative of VPA (Bialer, 1991); and a key metabolite of
decanoic acid and SA (Gregersen et al., 1983). All compounds
were initially tested at 0.25 and 0.75 mM for efficacy in
preventing the reduction in pGSK3β-Ser9 levels caused by
haemorrhagic shock-like conditions. Octanoic acid, 2POA
and VPD had no effect (Figure 3B), but decanoic acid, 2eVPA
and SA prevented the decrease in pGSK3β-Ser9. These active
compounds were reassessed at 0.1 mM (Figure 3C). Serum
levels in patients taking a decanoic acid-related diet are
Figure 3
PPARγ agonists provide protection against haemorrhagic shock signalling. Huh7
capnia (10% CO2) and hypothermia (32°C) (HxHcHp) and treated with compou
their effect on the pathway of interest. (B) All compounds were assessed for HD
values. Mean values were obtained using the Hill’s equation. (C) Huh7 cells were t
(DA, between 0.05 and 0.75 mM as indicated), for 4 h while undergoing stress c
pGSK3β-Ser9 levels. Data were analysed using one-way ANOVA and post hoc Tuk
lines for ease of comparison. Data were quantified from at least triplicate experim
in Nx. **P > 0.01 and ***P > 0.001 indicate significance compared with HxHcHp
around 0.157mM (Gregersen et al., 1983) suggesting that this
concentration is therapeutically relevant (Hughes et al.,
2014). Decanoic acid and 2eVPA showed enhanced potency
over VPA, replicating its effect on pGSK3β-Ser9 at a 7.5-fold
reduced dose and showing a typical biphasic response with
optimal efficacy at 0.1 mM. Interestingly, both compounds
have been reported to provide a strong activation of PPAR
activity, above that of VPA (Lampen et al., 2001).

Having found novel compounds showing activity in at-
tenuating signalling changes in haemorrhagic shock-like
conditions, we then evaluated these compounds for HDAC
inhibitory activity. Compounds were assessed in an
established HDAC inhibition assay (Chang et al., 2015),
which uses HeLa cell enzyme extract as the source of HDAC
activity, to define an IC50 for efficacy comparison (Figure 3D
and Supporting Information Figure S1). The compounds in-
vestigated were observed to include some with both increased
and reduced potency than VPA in inhibiting HDAC activity.
However, there was no correlation between a compound’s
HDAC inhibitory activity and its efficacy at preventing the
haemorrhagic shock-induced decrease in pGSK3β-Ser9.
cells were incubated for 4 h in the presence of hypoxia (2% O2), hyper-
nds as indicated. (A) Six congeners of valproic acid were investigated for
AC inhibitory activity using a commercial assay (Merck) to establish IC50

reated with octanoic acid (OA), 2POA, VPD, SA, 2eVPA and decanoic acid
onditions (2% O2, 10% CO2, 32°C), and protein extract was analysed for
ey test. Mean values of previous data (Figure 1B) are shown as horizontal
ents with technical triplicates (n ≥ 9) ± SEM and were normalized to results
.
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Attenuation of haemorrhagic shock-like
signalling depends on PPARγ activity
Our data suggest that PPAR agonists may reproduce the
therapeutic mechanism of the protective effect of VPA against
signalling events caused by haemorrhagic shock-like condi-
tions. To verify a role for PPAR activation in this system, we
treated cells undergoing haemorrhagic shock-like conditions
with VPA (0.75 mM) in the presence of selective PPARα,
PPARβ/δ and PPARγ inhibitors. Selective inhibitors for PPARα
(GW6471; 50 μM; Abu Aboud et al., 2013) and PPARβ/δ
(GSK3787; 10 μM; Palkar et al., 2010) did not inhibit the effect
of VPA on pGSK3β-Ser9 (Figure 4A). However, the PPARγ
Figure 4
Protection against haemorrhagic shock-like signalling depends on PPARγ activity
hypercapnia (10% CO2) and hypothermia (32°C) (HxHcHp). (A) Cells were tre
50 μM; GSK3787 10 μM), and protein extract was analysed for pGSK3β-Ser9 le
in response to VPA (0.75 mM) and/or PPARγ inhibitor T0070907 (50 μM) was
down in Huh7 cells using four commercially produced (Qiagen) variants of PPA
cells were transfected in standard cell culture conditions (5% CO2, 37°C). (D)
ulation under equivalent haemorrhagic shock-like and treatment conditions. D
triplicates (n ≥ 9) ± SEM. Data were normalized to untreated (A and B), untran
post hoc Tukey test.
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inhibitor, T0070907 (50 μM; An et al., 2014), blocked the
VPA-induced increase in pGSK3β-Ser9 (Figure 4A). This is con-
sistent with VPA modulating signalling by altering transcrip-
tional activity, where the protective effect was blocked by
the application of a general transcription in inhibitor actino-
mycin D (1 μg ml�1; Supporting Information Figure S2).
These data suggest that the VPA-dependent regulation of
pGSK3β-Ser9 levels is mediated by PPARγ activity.

We next investigated whether VPA-induced PPARγ activa-
tion is related to cell survival. Here, we monitored apoptotic
signalling using an in-cell reporter assay (ApoTox Glo), which
provides a luminogenic substrate for caspase-3/7 cleavage in
. Huh7 cells were incubated for 4 h in the presence of hypoxia (2% O2),
ated with VPA (0.75 mM) and PPAR inhibitors (T0070907 and GW6471
vels and β-tubulin loading control. (B) Apoptotic signalling in Huh7 cells
analysed using a commercial assay (Promega). (C) PPARγ was knocked
Rγ siRNA. A scrambled siRNA (Ctrl) was used as negative control. Huh7
Cells with and without PPARγ knockdown were tested for pGSK3 reg-
ata were quantified from at least triplicate experiments with technical
sfected (C) and Nx (D) and were analysed using one-way ANOVA and
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cells.We tested cells in haemorrhagic shock-like conditions in
the absence or presence of VPA (0.75 mM) and following
treatment with the PPARγ-specific inhibitor T0070907 (50
μM; Figure 4B). VPA treatment reduced apoptotic signalling
to 79 ± 4% (compared with untreated control) and reduced
LDH release (Supporting Information Figure S2) suggesting a
protective effect on cell survival. Apoptotic signalling protec-
tion was prevented by the addition of T0070907 (108 ± 4%
compared with untreated). These data suggest that pharma-
cological inhibition of PPARγ acts to block the effect of VPA
in attenuating haemorrhagic shock-like signalling relating
to cell survival.

Because pharmacological inhibitors may produce off-
target effects, we employed a genetic approach to deplete
PPARγ levels, and then investigated the effect of VPA.
Treating cells with four individual PPARγ siRNAs in combi-
nation significantly reduced PPARγ protein abundance to
22 ± 5% of untreated cells (Figure 4C), whereas scrambled
(Ctrl) siRNA did not. We then assessed changes in
pGSK3β-Ser9 levels in these cells under haemorrhagic
shock-like conditions (61 ± 4% compared with control
conditions; Figure 4D), in the presence and absence of
VPA. Cells treated with scrambled siRNA still showed the
VPA-dependent protection against the pGSK3β-Ser9 reduc-
tion (93 ± 5% compared with control; Figure 4D) seen ear-
lier (Figure 1B). However, treatment with the PPARγ-specific
siRNAs inhibited the VPA-dependent effect on pGSK3β-Ser9

levels, resulting in a further reduction in pGSK3β-Ser9

levels (35 ± 7% compared with control; Figure 4D). These
data further confirm the essential role for PPARγ activation
in protection against haemorrhagic shock-dependent
signalling changes.
Figure 5
PPARγ ligands show enhanced potency compared with VPA at protecting agains
4 h in the presence of hypoxia (2% O2), hypercapnia (10% CO2) and hypotherm
ciglitazone, and protein extract was analysed for pGSK3β-Ser9 levels and β-tubu
PPARγ ligands 2eVPA, decanoic acid (DA) and ciglitazone was analysed using a c
experiments with technical triplicates (n ≥ 9) ± SEM and normalized to Nx 0 (A) a
post hoc Tukey test.
A PPARγ-specific agonist shows potent
therapeutic efficacy in haemorrhagic shock-like
conditions
As specific PPARγ agonists have been used as medical treat-
ments, we investigated a role for one of these in our model
of haemorrhagic shock. Here, the specific PPARγ activator
ciglitazone, like VPA, caused a dose-dependent protection
against the reduction in pGSK3β-Ser9 levels under
haemorrhagic shock-like conditions (122 ± 16% at 20 μM;
127 ± 20% at 40 μM; 164 ± 22% at 80 μM compared with
untreated; Figure 5A). Furthermore, we showd that apoptotic
signalling triggered by haemorrhagic shock-like conditions
was reduced by ciglitazone (77 ± 6% at 60 μM compared with
untreated), as well as 2eVPA (73 ± 7% at 0.1 mM) and decanoic
acid (76 ± 4% at 0.1 mM) (Figure 5B) in a similar manner to
that of VPA (Figure 4B). These data strongly support a role
for activation of PPARγ as a therapeutic treatment for
haemorrhagic shock and propose that currently licensed
medical treatments such as ciglitazone may provide
enhanced protection compared with VPA in the treatment
of haemorrhagic shock.
Discussion
Identifying the molecular mechanisms of pharmacological
treatments to prevent haemorrhagic shock-related mortality
may significantly reduce the incidence of patient death. VPA
has been demonstrated to be effective in this role in multiple
animal studies (Gutierrez et al., 2004; Shults et al., 2008; Alam
et al., 2009), yet its mechanism has remained unclear. Here,
t haemorrhagic shock-induced signalling. Huh7 cells were incubated for
ia (32°C) (HxHcHp). (A) Huh7 cells were treated with the PPARγ ligand

lin loading control. (B) Apoptotic signalling in Huh7 cells in response to
ommercial assay (Promega). Data were quantified from at least triplicate
nd untreated control (B). Data were analysed using one-way ANOVA and
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we established an in vitro model for haemorrhagic shock
signalling to reproduce the decrease in pGSK3β-Ser9 levels
shown in animal experiments (Figure 6). We showed that
VPA protects against this signalling change in this model as
it does in vivo, and that this effect is consistent with those
observed in the regulation of upstream effectors and down-
stream targets of GSK3β. Furthermore, we identified a range
of compounds that provide enhanced potency compared
with VPA in this model. In addition, we have shown that
the mechanism of VPA in this model depends on the activa-
tion of PPARγ. This discovery may provide a rare example of
a defined therapeutic mechanism for VPA in one of its many
roles (Terbach and Williams 2009). Further investigations
based on this discovery may lead to the development of effi-
cacious therapeutic compounds to save lives in the treatment
of massive blood loss.

In developing an in vitro model for haemorrhagic shock
research, we have taken into account three stressors, which
occur at a cellular level during blood loss: hypoxia, a reduc-
tion in oxygen levels; hypercapnia, an increase in carbon
dioxide levels; and hypothermia, a decrease in temperature.
This multiparameter approach to inducing haemorrhagic
shock-like stress conditions is a novel one and has not been
employed in previous studies. Haemorrhagic or ischaemic
studies have often relied exclusively on low oxygen as a
model system for research (Tramontano et al., 2003), al-
though it has been suggested that hypercapnia is essential
to accurately model these conditions (Hotter et al., 2004).
The third component of the ‘lethal triad’ (Angele et al.,
2008) of haemorrhagic shock included in the present study,
hypothermia (Kheirbek et al., 2009), is rarely included in
in vitro studies. Spontaneous hypothermia during blood loss
is independently associated with significantly reduced
Figure 6
Schematic representing changes occurring during haemorrhagic shock-
like conditions, leading to reduced pGSK3β-Ser9 levels. Valproic acid and
other PPARγ activators block this change.
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survival rate, and mild hypothermia is commonly seen
during massive blood loss (Kheirbek et al., 2009).

Studies into haemorrhagic shock have increasingly
focused on cytosolic changes in protein activity in an effort
to discover a target for pharmacological resuscitation
(Li et al., 2008; Hwabejire et al., 2014). The PI3K pathway, in
particular, has been repeatedly implicated in survival-
relevant signalling changes, both in haemorrhagic shock
and in neuroprotection (Kitagishi and Matsuda, 2013). In a
recent in vivo haemorrhagic shock study, VPA treatment was
shown to dose-dependently activate the PI3K pathway
(Hwabejire et al., 2014) and reverse the decrease in phosphor-
ylation of both Akt and PTEN caused by haemorrhagic shock
that regulate GSK3β activity (Delcommenne et al., 1998).
However, our data have replicated these signalling changes
in our Huh7 model, where cells exposed to hypoxia, hyper-
capnia and hypothermia showed decreased phosphorylation
of PTEN, Akt and GSK3β in the manner observed in vivo in
porcine liver (Alam et al., 2009; Hwabejire et al., 2014), rodent
brain (Li et al., 2008) and rodent kidney (Zacharias et al.,
2011) during haemorrhagic shock. As it does in vivo, VPA
acted dose-dependently in our model in blocking the reduc-
tion of GSK3β phosphorylation (Alam et al., 2009; Hwabejire
et al., 2014). Thus, although further studies will be needed to
translate our data from Huh7 cells to primary cells, including
both hepatocytes and other cells types, as cellular responses
in primary cells may not be conserved, our study provides
for the first time, the recreation of this in vivo effect in vitro.

The serine/threonine kinase, GSK3β, plays a central role
in a range of normal cells functions and has been associated
with both the pathology and treatment of a long list of dis-
eases (Jope et al., 2007). GSK3β activity has been implicated
as a target for bipolar disorder treatments (Valvezan and
Klein 2012), in diabetes (Eldar-Finkelman and Krebs 1997),
Huntington’s disease (Carmichael et al., 2002) and
Alzheimer’s disease (Hooper et al., 2008). On a cellular level,
GSK3β phosphorylates a range of substrates including
β-catenin, which it primes for ubiquitylation and subsequent
degradation (Sakanaka, 2002). The accumulation of β-catenin
is generally associated with a pro-survival phenotype in
haemorrhagic shock-like conditions (Alam et al., 2009;
Shults et al., 2008), consistent with an important role for
GSK3β in this pathology. VPA has been extensively debated
as a regulator of GSK3β signalling for over a decade, with
some studies suggesting both direct and indirect inhibitory
effects (Chen et al., 1999; Hall et al., 2002) yet other studies
suggesting no direct effect (Phiel et al., 2001; Ryves et al.,
2005). No studies, to our knowledge, have described a mech-
anism for an effect of VPA on GSK3β activity. Our data suggest
that VPA acts to regulate GSK3β through an indirect mecha-
nism, and, most importantly, only in defined (stress) condi-
tions, which may explain the divergent effects discussed in
the literature. Further studies will be necessary to investigate
this mechanism in other disease models, but it is likely that
the discovery of this context-dependent regulation of GSK3β
by VPAwill have implications for a long list of conditions.

The pro-survival effect of VPA in treating haemorrhagic
shock is widely considered to be due to an HDAC inhibitory
effect (Shults et al., 2008; Alam et al., 2009; Zacharias et al.,
2011). This activity has been associated with a variety of bio-
logical processes, both adverse and therapeutic. For instance,
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VPA-dependent HDAC inhibition has been demonstrated to
be the cause of teratogenic changes in mammals (Gotfryd
et al., 2010; Jentink et al., 2010), which lead to major congen-
ital malformations (e.g. neural tube defects, hypospadias and
skeletal abnormalities) in humans (Tomson and Battino
2008). However, HDAC inhibition has been shown to con-
tribute to beneficial therapeutic effects such as in the treat-
ment of cancer (Duenas-Gonzalez et al., 2008; Gotfryd et al.,
2010). Our study has confirmed an effect of VPA on elevating
histone 4 acetylation in haemorrhagic shock-like conditions,
but this change is equally observed in response to VPA during
normal cell culture conditions. In contrast, we have also
shown that VPA treatment gives rise to a fourfold increase in
histone 2/3 acetylation levels that is only seen under
haemorrhagic shock-like conditions. This is consistent with
in vivo studies where the acetylation of lysine residue H3K9
is used as a marker for histone acetylation (Alam et al.,
2009), but indicates that any histone-mediated attenuating
effects are specific to a certain subset of this class. Our results
suggest that the action of VPA in haemorrhagic shock-like sig-
nalling does not have a generalized effect on HDAC activity,
but instead regulates histone 2/3 deactetylation specifically.

As the molecular mechanisms of VPA in the treatment of
epilepsy and other conditions have remained unclear until
recently (Chang et al., 2014), many congeners of VPA have
been developed in search of improved therapeutic profiles.
These compounds, often with known potency against molec-
ular targets such as HDAC inhibition (Lampen et al., 2001;
Eikel et al., 2006) or PPAR activation (Lampen et al., 1999),
have then been used in a wide range of disease models
potentially affected by VPA (Isoherranen et al., 2003; Bialer
and Yagen, 2007; Chang et al., 2012). In the experiments
described here, six different VPA congeners with a range of
HDAC inhibitory activities (Lampen et al., 2001) were
employed. We found that compound efficacy in attenuating
the decrease in pGSK3β-Ser9 manifested independently of
HDAC inhibitory activity, with 2eVPA, decanoic acid and SA
improving (2eVPA and decanoic acid) or mimicking (SA) the
protective effect of VPA. These three compounds are all
activators of PPARs (Lampen et al., 1999), suggesting PPAR
activity may be a key component of the mechanism of VPA
in modulating haemorrhagic shock-like signalling. These
findings imply that a direct HDAC inhibitory effect of VPA is
unlikely to cause the signalling changes observed in this
haemorrhagic shock model, but PPAR activation may.

The PPAR family, part of the ligand-activated nuclear
receptor superfamily, comprises a range of cytoplasmic recep-
tors for fatty acids that function through nuclear transcrip-
tion (Kota et al., 2005). All three PPAR isoforms (α, β/δ and γ)
possess a number of conserved domains, including a DNA-
binding domain, which interact with PPAR response elements
(PPREs) in target gene promoters (Berger, 2002) alongside a
domain which confers target specificity (Kliewer et al.,
1995). PPARs have been implicated in a wide variety of
cellular and molecular processes, while PPARγ has been
studied in insulin sensitization, cancer and inflammation
(Kota et al., 2005). Our data, for the first time, strongly
suggests a mechanism for VPA in protection against
haemorrhagic shock-like signalling through PPARγ activa-
tion. We show this mechanism by blocking the effect of VPA
using specific PPARγ inhibitors as well as targeted siRNA
knockdown. We also show that treating cells with a specific
PPARγ ligand (Ciglitazone) reproduces the response caused
by VPA. We further show that the VPA-dependent activation of
PPARγ protects against apoptotic signalling under haemorrhagic
shock-like conditions, increasing cell survival. This mechanism
is supported by evidence provided in an earlier study, where a
PPARγ ligand structurally unrelated to VPAwas shown to reduce
organ injury in a rodent model of haemorrhagic shock, an
effect attenuated by a PPARγ inhibitor (Abdelrahman et al.,
2004). Our study is therefore the first to describe the mecha-
nism of VPA in protection against haemorrhagic shock-like
signalling through PPARγ activation.

In this study, we have developed an in vitro model of
haemorrhagic shock to investigate the mechanism of VPA in
attenuating in vivo haemorrhagic shock-related signalling
and lethality (Gutierrez et al., 2004; Shults et al., 2008; Alam
et al., 2009). By combining hypoxia, hypercapnia and hypo-
thermia, we have reproduced a haemorrhagic shock-like envi-
ronment sufficient to cause a reduction in pGSK3β-Ser9,
which is prevented by VPA treatment in a manner analogous
to that observed in vivo (Alam et al., 2009; Hwabejire et al.,
2014). We have also used this model to identify PPARγ activity
as an essential component in the VPA mechanism of action,
although other regulated pathways may also contribute to
this effect (Elphick et al., 2012; Chang et al., 2014). The dis-
covery of this mechanism and the efficacy of PPARγ-specific
ligands (e.g. ciglitazone) as VPA-replacing therapeutic inter-
vention provide an immediate investigative target to trans-
late to in vivo models, and then to more clinical settings.
The further investigation of potent PPARγ ligands as a means
of pharmacological resuscitation in the treatment of
haemorrhagic shock may ultimately provide life-saving
therapeutics.
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Figure S1 Compounds structurally similar to VPA show var-
iable HDAC inhibitory activity. Enzyme extract from HeLa
cells was treated with decanoic acid (A), sebacic acid (B),
valpromide (C), 2eVPA (D), and 2-propyloctanoic acid (E) at
concentrations between 0.5 and 10 mM, proportion of
deacetylated assay substrate measured (fluorescence) and
compared with an uninhibited control. Data are quantified
from at least triplicate experiments with technical triplicates
(n ≥ 9) ± SEM.
Figure S2 VPA acts through a transcriptional mechanism
and reduces LDH release. Huh7 cells were incubated for
4 h in the presence of hypoxia (2% O2), hypercapnia
(10% CO2), and hypothermia (32°C) (HxHcHp). (A) Cells
were treated with VPA (0.75 mM) in the presence or absence
of transcription inhibitor actinomycin D, and protein extract
was analysed for pGSK3β-Ser9 levels and β-tubulin loading
control. (B) Huh7 cells, again under stress conditions, with
or without VPA (0.75 mM) were assayed for LDH release using
LDH Cytotoxicity Assay. Data are quantified from at least
triplicate experiments with technical triplicates (n ≥ 9) ± SEM.
*P > 0.05, ***P > 0.001.
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