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Abstract
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence
variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have
identified >600 variants associated with human traits1, but these typically explain small fractions
of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727
individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height,
a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with
important implications for genetic studies of common human diseases and traits. First, the 180 loci
are not random, but instead are enriched for genes that are connected in biological pathways
(P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is
often located near the most strongly associated variant: in 13 of 21 loci containing a known
skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have
multiple independently associated variants, suggesting that allelic heterogeneity is a frequent
feature of polygenic traits, that comprehensive explorations of already-discovered loci should
discover additional variants, and that an appreciable fraction of associated loci may have been
identified. Fourth, associated variants are enriched for likely functional effects on genes, being
over-represented amongst variants that alter amino acid structure of proteins and expression levels
of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate
that unidentified common variants of similar effect sizes would increase this figure to ∼16% of
phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to
fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA
studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

In Stage 1 of our study, we performed a meta-analysis of GWA data from 46 studies,
comprising 133,653 individuals of recent European ancestry, to identify common genetic
variation associated with adult height. To enable meta-analysis of studies across different
genotyping platforms, we performed imputation of 2,834,208 single nucleotide
polymorphisms (SNPs) present in the HapMap Phase 2 European-American reference
panel4. After applying quality control filters, each individual study tested the association of
adult height with each SNP using an additive model (Supplementary Methods). The
individual study statistics were corrected using the genomic control (GC) method5,6 and
then combined in a fixed effects based meta-analysis. We then applied a second GC
correction on the meta-analysis statistics, although this approach may be overly conservative
when there are many real signals of association (Supplementary Methods). We detected 207
loci (defined as 1Mb on either side of the most strongly associated SNP) as potentially
associated with adult height (P<5×10-6).
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To identify loci robustly associated with adult height, we took forward at least one SNP
(Supplementary Methods) from each of the 207 loci reaching P<5×10-6 into an additional
50,074 samples (Stage 2) that became available after completion of our initial meta-analysis.
In the joint analysis of our Stage 1 and Stage 2 studies, SNPs representing 180 loci reached
genome-wide significance (P<5×10-8; Supplementary Figures 1 and 2, Supplementary Table
1). Additional tests, including genotyping of a randomly-selected subset of 33 SNPs in an
independent sample of individuals from the 5th-10th and 90th-95th percentiles of the height
distribution (N=3,190)7, provided further validation of our results, with all but two SNPs
showing consistent direction of effect (sign test P<7×10-8) (Supplementary Methods,
Supplementary Table 2).

Genome wide association studies can be susceptible to false positive associations from
population stratification7. We therefore performed a family-based analysis, which is
immune to population stratification in 7,336 individuals from two cohorts with pedigree
information. Alleles representing 150 of the 180 genome-wide significant loci were
associated in the expected direction (sign test P<6×10-20; Supplementary Table 3). The
estimated effects on height were essentially identical in the overall meta-analysis and the
family-based sample. Together with several other lines of evidence (Supplementary
Methods), this indicates that stratification is not substantially inflating the test statistics in
our meta-analysis.

Common genetic variants have typically explained only a small proportion of the heritable
component of phenotypic variation8. This is particularly true for height, where >80% of the
variation within a given population is estimated to be attributable to additive genetic
factors9, but over 40 previously published variants explain <5% of the variance10-17. One
possible explanation is that many common variants of small effects contribute to phenotypic
variation, and current GWA studies remain underpowered to detect the majority of common
variants. Using five studies not included in Stage 1, we found that the 180 associated SNPs
explained on average 10.5% (range 7.9-11.2%) of the variance in adult height
(Supplementary Methods). Including SNPs associated with height at lower significance
levels (0.05>P>5×10-8) increased the variance explained to 13.3% (range 9.7-16.8%)
(Figure 1a)18. In addition, we found no evidence that non-additive effects including gene-
gene interaction would increase the proportion of the phenotypic variance explained
(Supplementary Methods, Supplementary Tables 5 and 6).

As a separate approach, we used a recently developed method19 to estimate the total number
of independent height-associated variants with effect sizes similar to the ones identified. We
obtained this estimate using the distribution of effect sizes observed in Stage 2 and the
power to detect an association in Stage 1, given these effect sizes (Supplementary Methods).
The cumulative distribution of height loci, including those we identified and others as yet
undetected, is shown in Figure 1b. We estimate that there are 697 loci (95% confidence
interval (CI): 483-1040) with effects equal or greater than those identified, which together
would explain approximately 15.7% of the phenotypic variation in height or 19.6% (95%
CI: 16.2-25.6) of height heritability (Supplementary Table 4). We estimated that a sample
size of 500,000 would detect 99.6% of these loci at P<5×10-8. This figure does not account
for variants that have effect sizes smaller than those observed in the current study and,
therefore, underestimates the contribution of undiscovered common loci to phenotypic
variation.

A further possible source of missing heritability is allelic heterogeneity – the presence of
multiple, independent variants influencing a trait at the same locus. We performed genome-
wide conditional analyses in a subset of Stage 1 studies, including a total of 106,336
individuals. Each study repeated the primary GWA analysis but additionally adjusted for
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SNPs representing the 180 loci associated at P<5×10-6 (Supplementary Methods). We then
meta-analysed these studies in the same way as for the primary GWA study meta-analysis.
Nineteen SNPs within the 180 loci were associated with height at P<3.3×10-7 (a Bonferroni-
corrected significance threshold calculated from the ∼15% of the genome covered by the
conditioned 2Mb loci; Supplementary Methods, Table 1, Figure 2, Supplementary Figure 3).
The distances of the second signals to the lead SNPs suggested that both are likely to be
affecting the same gene, rather than being coincidentally in close proximity. At 17 of 17 loci
(excluding two contiguous loci in the HMGA1 region), the second signal occurred within
500kb, rather than between 500kb and 1 Mb, of this lead SNP (binomial test P=2×10-5).
Further analyses of allelic heterogeneity may identify additional variants that increase the
proportion of variance explained. For example, within the 180 2Mb loci, a total of 45
independent SNPs reached P<1×10-5 when we would expect <2 by chance.

Whilst GWA studies have identified many variants robustly associated with common human
diseases and traits, the biological significance of these variants, and the genes on which they
act, is often unclear. We first tested the overlap between the 180 height-associated variants
and two types of putatively functional variants, nonsynonymous (ns) SNPs and cis-eQTLs
(variants strongly associated with expression of nearby genes). Height variants were 2.4-fold
more likely to overlap with cis-eQTLs in lymphocytes than expected by chance (47 variants:
P=4.7×10-11) (Supplementary Table 7) and 1.7-fold more likely to be closely correlated
(r2≥0.8 in HapMap CEU) with nsSNPs (24 variants P=0.004) (Supplementary Methods,
Supplementary Table 8). Although the presence of a correlated eQTL or nsSNP at an
individual locus does not establish the causality of any particular variant, this enrichment
shows that common functional variants contribute to the causal variants at height-associated
loci. We also noted five loci where the height associated variant was strongly correlated
(r2>0.8) with variants associated with other traits and diseases (P<5×10-8), including bone
mineral density, rheumatoid arthritis, type 1 diabetes, psoriasis and obesity, suggesting that
these variants have pleiotropic effects on human phenotypes (Supplementary Methods;
Supplementary Table 9).

We next addressed the extent to which height variants cluster near biologically relevant
genes; specifically, genes mutated in human syndromes characterized by abnormal skeletal
growth. We limited this analysis to the 652 genes occurring within the recombination
hotspot-bounded regions surrounding each of the 180 index SNPs. We showed that the 180
loci associated with variation in normal height contained 21 of 241 genes (8.7%) found to
underlie such syndromes (Supplementary Table 10), compared to a median of 8 (range 1-19)
genes identified in 1,000 matched control sets of regions (P<0.001: 0 observations of 21 or
more skeletal growth genes among 1,000 sets of matched SNPs). In 13 of these 21 loci the
closest gene to the most associated height SNP in the region is the growth disorder gene, and
in 9 of these cases, the most strongly associated height SNP is located within the growth
disorder gene itself (Supplementary Methods, Supplementary Table 11). These results
suggest that GWA studies may provide more clues about the identity of the functional genes
at each locus than previously suspected.

We also investigated whether significant and relevant biological connections exist between
the genes within the 180 loci, using two different computational approaches. We used the
GRAIL text-mining algorithm to search for connectivity between genes near the associated
SNPs, based on existing literature20. Of the 180 loci, 42 contained genes that were
connected by existing literature to genes in the other associated loci (the pair of connected
genes appear in articles that share scientific terms more often than expected at P<0.01). For
comparison, when we used GRAIL to score 1,000 sets of 180 SNPs not associated with
height (but matched for number of nearby genes, gene proximity, and allele frequency), we
only observed 16 sets with 42 or more loci with a connectivity P<0.01, thus providing strong
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statistical evidence that the height loci are functionally related (P=0.016) (Figure 3a). For the
42 regions with GRAIL connectivity P<0.01, the implicated genes and SNPs are highlighted
in Figure 3b. The most strongly connected genes include those in the Hedgehog, TGF-beta,
and growth hormone pathways.

As a second approach to find biological connections, we applied a novel implementation of
gene set enrichment analysis (GSEA) (Meta-Analysis Gene-set Enrichment of variaNT
Associations, MAGENTA21) to perform pathway analysis (Supplementary Methods). This
analysis revealed 17 different biological pathways and 14 molecular functions nominally
enriched (P<0.05) for associated genes, many of which lie within the validated height loci.
These gene-sets include previously reported11,13 (e.g. Hedgehog signaling) and novel (e.g.
TGF-beta signaling, histones, and growth and development-related) pathways and molecular
functions (Supplementary Table 12). Several SNPs near genes in these pathways narrowly
missed genome-wide significance, suggesting that these pathways likely contain additional
associated variants. These results provide complementary evidence for some of the genes
and pathways highlighted in the GRAIL analysis. For instance, genes such as TGFB2 and
LTBP1-3 highlight a role for the TGF-beta signaling pathway in regulating human height,
consistent with the implication of this pathway in Marfan syndrome22.

Finally, to examine the evidence for the potential involvement of specific genes at individual
loci, we aggregated evidence from our data (eQTLs, proximity to the associated variant,
pathway-based analyses), and human and mouse genetic databases (Supplementary Table
13). Of 32 genes with highly correlated (r2>0.8) nsSNPs, several are newly identified strong
candidates for playing a role in human growth. Some are in pathways enriched in our study
(such as ECM2, implicated in extracellular matrix), while others have similar functions to
known growth-related genes, including FGFR4 (FGFR3 underlies several classic skeletal
dysplasias23) and STAT2 (STAT5B mutations cause growth defects in humans24).
Interestingly, Fgfr4-/- Fgfr3-/- mice show severe growth retardation not seen in either single
mutant25, suggesting that the FGFR4 variant might modify FGFR3-mediated skeletal
dysplasias. Other genes at associated loci, such as NPPC and NPR3 (encoding the C-type
natriuretic peptide and its receptor), influence skeletal growth in mice and will likely also
influence human growth17. Many of the remaining 180 loci have no genes with obvious
connections to growth biology, but at some our data provide modest supporting evidence for
particular genes, including C3orf63, PML, CCDC91, ZNFX1, ID4, RYBP, SEPT2,
ANKRD13B, FOLH1, LRRC37B, MFAP2, SLBP, SOCS5, and ZBTB24 (Supplementary
Table 13).

We have identified >100 novel loci that influence the classic polygenic trait of normal
variation in human height, bringing the total to 180. Our results have potential general
implications for genetic studies of complex traits. We show that loci identified by GWA
studies highlight relevant genes: the 180 loci associated with height are non-randomly
clustered within biologically relevant pathways and are enriched for genes that are involved
in growth-related processes, that underlie syndromes of abnormal skeletal growth, and that
are directly relevant to growth-modulating therapies (GH1, IGF1R, CYP19A1, ESR1). The
large number of loci with clearly relevant genes suggests that the remaining loci could
provide potential clues to important and novel biology.

We provide the strongest evidence yet that the causal gene will often be located near the
most strongly associated DNA sequence variant. At the 21 loci containing a known growth
disorder gene, that gene was on average 81 kb from the associated variant, and in over half
of the loci it was the closest gene to the associated variant. Despite recent doubts about the
benefits of GWA studies26, this finding suggests that GWA studies are useful mapping tools
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to highlight genes that merit further study. The presence of multiple variants within
associated loci could help localize the relevant genes within these loci.

By increasing our sample size to >100,000 individuals, we identified common variants that
account for approximately 10% of phenotypic variation. Although larger than predicted by
some models26, this figure suggests that GWA studies, as currently implemented, will not
explain a majority of the estimated 80% contribution of genetic factors to variation in height.
This conclusion supports the idea that biological insights, rather than predictive power, will
be the main outcome of this initial wave of GWA studies, and that new approaches, which
could include sequencing studies or GWA studies targeting variants of lower frequency, will
be needed to account for more of the “missing” heritability. Our finding that many loci
exhibit allelic heterogeneity suggests that many as yet unidentified causal variants, including
common variants, will map to the loci already identified in GWA studies, and that the
fraction of causal loci that have been identified could be substantially greater than the
fraction of causal variants that have been identified.

In our study, many associated variants are tightly correlated with common nsSNPs, which
would not be expected if these associated common variants were proxies for collections of
rare causal variants, as has been proposed27. Although a substantial contribution to
heritability by less common and/or quite rare variants may be more plausible, our data are
not inconsistent with the recent suggestion28 that a large number of common variants of
very small effect mostly explain the regulation of height.

In summary, our findings indicate that additional approaches, including those aimed at less
common variants, will likely be needed to dissect more completely the genetic component to
complex human traits. Our results also strongly demonstrate that GWA studies can identify
large numbers of loci that together implicate biologically relevant pathways and
mechanisms. We envision that thorough exploration of the genes at associated loci through
additional genetic, functional, and computational studies will lead to novel insights into
human height and other polygenic traits and diseases.

Methods summary
The primary meta-analysis (Stage 1) included 46 GWA studies of 133,653 individuals. The
in-silico follow up (Stage 2) included 15 studies of 50,074 individuals. All individuals were
of European ancestry and >99.8% were adults. Details of genotyping, quality control, and
imputation methods of each study are given in Supplementary Methods Table 1-2. Each
study provided summary results of a linear regression of age-adjusted, within-sex Z scores
of height against the imputed SNPs, and an inverse-variance meta-analysis was performed in
METAL (http://www.sph.umich.edu/csg/abecasis/METAL/). Validation of selected SNPs
was performed through direct genotyping in an extreme height panel (N=3,190) using
Sequenom iPLeX, and in 492 Stage 1 samples using the KASPar SNP System. Family-based
testing was performed using QFAM, a linear regression-based approach that uses
permutation to account for dependency between related individuals29, and FBAT, which
uses a linear combination of offspring genotypes and traits to determine the test statistic30.
We used a previously described method to estimate the amount of genetic variance
explained by the nominally associated loci (using significance threshold increments from
P<5×10-8 to P<0.05)18. To predict the number of height susceptibility loci, we took the
height loci that reached a significance level of P<5×10-8 in Stage 1 and estimated the
number of height loci that are likely to exist based on the distribution of their effect sizes
observed in Stage 2 and the power to detect their association in Stage 1. Gene-by-gene
interaction, dominant, recessive and conditional analyses are described in Supplementary
Methods. Empirical assessment of enrichment for coding SNPs used permutations of
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random sets of SNPs matched to the 180 height-associated SNPs on the number of nearby
genes, gene proximity, and minor allele frequency. GRAIL and GSEA methods have been
described previously20,21. To assess possible enrichment for genes known to be mutated in
severe growth defects, we identified such genes in the OMIM database (Supplementary
Table 10), and evaluated the extent of their overlap with the 180 height-associated regions
through comparisons with 1000 random sets of regions with similar gene content (±10%).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phenotypic variance explained by common variants
(a) Variance explained is higher when SNPs not reaching genome-wide significance are
included in the prediction model. The y-axis represents the proportion of variance explained
at different P-value thresholds from Stage 1. Results are given for five studies that were not
part of Stage 1. *Proportion of variation explained by the 180 SNPs. (b) Cumulative number
of susceptibility loci expected to be discovered, including already identified loci and as yet
undetected loci. The projections are based on loci that achieved a significance level of
P<5×10-8 in the initial scan and the distribution of their effect sizes in Stage 2. The dotted
red line corresponds to expected phenotypic variance explained by the 110 loci that reached
genome-wide significance in Stage 1, were replicated in Stage 2 and had at least 1% power.
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Figure 2. Example of a locus with a secondary signal before (a) and after (b) conditioning
The plot is centered on the conditioned SNP (purple diamond) at the locus. r2 is based on the
CEU HapMap II samples. The blue line and right hand Y axis represent CEU HapMap II
recombination rates. Created using LocusZoom (http://csg.sph.umich.edu/locuszoom/).
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Figure 3. Loci associated with height contain genes related to each other
(a) 180 height-associated SNPs. The y-axis plots GRAIL P-values on a log scale. The
histogram corresponds to the distribution of GRAIL P-values for 1,000 sets of 180 matched
SNPs. The scatter plot represents GRAIL results for the 180 height SNPs (blue dots). The
black horizontal line marks the median of the GRAIL P-values (P=0.14). The top 10
keywords linking the genes were: ‘growth’, ‘kinase’, ‘factor’, ‘transcription’, ‘signaling’,
‘binding’, ‘differentiation’, ‘development’, ‘insulin’, ‘bone’. (b) Graphical representation of
the connections between SNPs and corresponding genes for the 42 SNPs with GRAIL
P<0.01. Thicker and redder lines imply stronger literature-based connectivity.
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