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The human brainstem is a densely packed, complex but highly organised structure. It not only serves as a con-
duit for long projecting axons conveying motor and sensory information, but also is the location of multiple
primary nuclei that control or modulate a vast array of functions, including homeostasis, consciousness, loco-
motion, and reflexive and emotive behaviours. Despite its importance, both in understanding normal brain
function as well as neurodegenerative processes, it remains a sparsely studied structure in the neuroimaging
literature. In part, this is due to the difficulties in imaging the internal architecture of the brainstem in vivo in
a reliable and repeatable fashion.
A modified multivariate mixture of Gaussians (mmMoG) was applied to the problem of multichannel tissue
segmentation. By using quantitative magnetisation transfer and proton density maps acquired at 3 T with
0.8 mm isotropic resolution, tissue probability maps for four distinct tissue classes within the human
brainstem were created. These were compared against an ex vivo fixated human brain, imaged at 0.5 mm,
with excellent anatomical correspondence. These probability maps were used within SPM8 to create accurate
individual subject segmentations, which were then used for further quantitative analysis. As an example,
brainstem asymmetries were assessed across 34 right-handed individuals using voxel based morphometry
(VBM) and tensor based morphometry (TBM), demonstrating highly significant differences within localised
regions that corresponded to motor and vocalisation networks. This method may have important implica-
tions for future research into MRI biomarkers of pre-clinical neurodegenerative diseases such as Parkinson's
disease.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

The human brainstem is a complex but highly organised structure,
densely packed with long projecting axons and interspersed nuclei. It
not only serves as a conduit for motor and sensory information, but
also is the location of multiple primary nuclei that control or modu-
late a vast array of vital functions including homeostasis, conscious-
ness, locomotion, and reflexive and emotive behaviours (Parvizi and
Damasio, 2001). There is increasing evidence that several neurode-
generative diseases, such as Parkinson's disease (Del Tredici et al.,
2002; Hawkes et al., 2010) and Alzheimer's disease (Grinberg et al.,
2009; Simic et al., 2009), are characterised by early involvement of
this region during long prodromal periods, many years before overt
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clinical symptoms are detectable. Despite its importance, both in
understanding normal brain function as well as neurodegenerative
processes, it remains a relatively sparsely studied structure in the
neuroimaging literature. In part, this is due to the difficulties in re-
solving the internal architecture of the brainstem in vivo in a reliable
and repeatable fashion. In this paper, we use high-resolution quanti-
tative imaging to obtain accurate measurements within the human
brainstem, and utilise these to develop a tissue segmentation algo-
rithm that allows an automated, unbiased approach to quantitative
analysis within this region.

Mutichannel tissue segmentation is a method that can potentially
improve the segmentation accuracy of cortical tissue types (Ortendahl
and Hylton, 1986). It is known that different midbrain structures can
be better visualised using specific MRI contrast, for example proton den-
sity imaging for the pedunculopontine nucleus (Zrinzo et al., 2008) or
magnetisation transfer (MT) imaging for the substantia nigra (Helms et
al., 2009). By exploiting the information from several different imaging
contrasts usingmultivariate data-clustering techniques, amore parsimo-
nious segmentation of structures can be achieved,where a single channel
fails. The mixture of Gaussians model (MoG) is a well-established
served.
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technique in data clustering (Hasselblad, 1966; see Bishop, 2006 for ex-
amples), and has been extensively used in tissue segmentation algo-
rithms (eg. Ashburner and Friston, 2005). Here we modify the standard
multivariate MoG algorithm to iteratively estimate and refine spatial tis-
sue probability maps frommultispectral data. The modifiedmultivariate
mixture of Gaussians (mmMoG) was then optimised specifically for
brainstem segmentation using high-resolution quantitative data, and
used to generate four unique tissue probability maps (TPMs). Quantita-
tive MRI yields accurate and reproducibleMRmeasurements that mean-
ingfully reflect underlying biological propertieswithin the various tissues
(Tofts, 2003). It is these properties that are exploited to classify and seg-
ment homologous tissue types using a population of subjects.

The primary aim of this study was to develop amethod to segment
the internal structureswithin the human brainstemusing quantitative
imaging. Thus, we aimed to improve the sensitivity of pre-existing
neuroimaging analysis techniques such as voxel based morphometry
(VBM) (Ashburner and Friston, 2000) within this region. To test the
brainstem specific segmentation algorithm we assessed human
brainstem asymmetries across 34-right handed subjects using tensor
based morphometry (TBM) and VBM.

2. Methods

2.1. Subjects

Thirty-four healthy right-handed adults (seventeen males, mean
age for males = 31.1 y, for females = 22.6 y), underwent a single
MRI scanning session at theWellcome Trust Centre for Neuroimaging.
Involvement of human volunteers was approved by the local ethics
committee, and each subject provided written informed consent prior
to MRI examination.

In vivo results were validated against a brain specimen of a
57 year-old male, who died of a cardiac arrest. Autopsy was performed
approximately 16 h post mortem for unrelated diagnostic purposes at
the Göttingen University Medical Centre, Germany. Informed written
consent had been obtained from the subjects next of kin prior to autop-
sy, as approved by the local ethics committee. The brain was fixated in
phosphate-buffered saline with 3.7% formaldehyde for three weeks
eventually diagnosed as macroscopically normal.

2.2. In vivo image acquisition

All examinations were performed on a 3 T whole-body MRI system
(Magnetom TiM Trio, Siemens Healthcare, Erlangen). 3D multi-echo
FLASH images were acquired at 0.8 mm isotropic resolution with MT,
T1 and proton density (PD)-weighted contrast following the multi-
parameter quantitative mapping protocol described in (Helms et al.,
2008). To improve SNR, a 32-channel receive head coil was used and
the protocol was repeated twice to allow the images to be averaged.
The total acquisition time was 1 h and 15 min. Full imaging parame-
ters are summarised in Table 1. For each subject quantitative MT, R1
(=1/T1), PD and R2* (equal to 1/T2*) maps were extracted from the
acquired images using in-house MATLAB code. In addition, B1-field
Table 1
Imaging parameters.

Image type Slice no. FOV
(mm2)

Acquisition matrix
(voxels)

TR
(ms)

MT 240 216 × 256 270 × 320 23.7
T1 240 216 × 256 270 × 320 23.7
PD 240 216 × 256 270 × 320 23.7
B1-map 48 192 × 256 48 × 64 500

Fieldmap 64 192 × 192 64 × 64 1020
maps (4 mm isotropic resolution) were acquired using a 3D EPI SE/STE
method (Lutti et al., 2010, 2012) and used to correct the R1 maps for
RF transmit field inhomogeneity effects. The systematic bias of the PD
maps by the inhomogeneous sensitivity profile of the receive head coil
was corrected using the UNICORT algorithm (Weiskopf et al., 2011).
Quantitative PD estimates were obtained by scaling the corrected PD
maps by the expected average proton density of white matter (69%
(Tofts, 2003)).

2.3. Post mortem image acquisition

The fixated brain specimen was sealed in double plastic bags and
scanned on an identical MRI system at the Göttingen University
Medical Centre, Germany, using the quadrature birdcage knee coil.
Care was taken to minimise air pockets and to prevent folding arte-
facts from overlapping with brain. Non-selective 3D FLASH MRI
(256 axial partitions of 384 × 384 pixels at 0.5 mm isotropic resolu-
tion) with off-resonance MT pre-saturation (at +1.2 kHz, 9.984 ms
Gaussian, 500°) was performed. Eight gradient echoes at echo times
of 2.46, 4.92, and 19.68 ms (500 Hz/pixel) were averaged to increase
SNR (Helms et al., 2009), yielding a combination of PD, MT and mod-
erate T2* weighting. At a repetition time of 39 ms, a flip angle of 16°
was chosen to increase SNR and suppress the fluid signal (Helms et
al., 2011). Total measurement time was 140 min for four averages.

2.4. Pre-processing

A brainstem mask for each individual was created from the MT
maps using ITK-SNAP (Yushkevich et al., 2006). This was mainly
done using the “snake” function to automatically segment the brainstem
region based on intensity, but the superior and inferior boundaries
required manual demarcation. The following anatomical landmarks
were used: Inferiorly, the level of the foramen magnum; posteriorly, a
vertical line following the most posterior aspect of the medulla, which
included part of the middle and superior cerebellar peduncles. Superior-
ly, the boundary of the cerebral aqueduct and 3rd ventricle was used. At
this level, the lateral margins of the brainstem mask were demarcated
by the lateral border of the cerebral peduncle, the superior colliculi
and medial geniculate nuclei posteriorly, and the posterior edge of the
mammilo-thalamic tract anteriorly. Additionally any cerebellar greymat-
ter was excluded. These boundaries were chosen to allow the masking
procedure to be consistent across subjects whilst including all of the
midbrain and brainstem in the segmentation step. The accuracy of the
masking procedure was assessed by examining the group-averaged
brainstem mask after warping. For the purpose of co-registration, the
MT maps were initially segmented into grey, white and CSF tissue
classes at the native resolution (0.8 mm) using the unified segmen-
tation withinSPM8 (http://www.fil.ion.ucl.ac.uk/spm/) (Ashburner
and Friston, 2005). These segmentations were registered to a common
group-average 0.8 mm isotropic template using a diffeomorphic regis-
tration algorithm (Ashburner and Friston, 2011). Then, the individual
MT and PD maps were all warped to the common template space,
alongwith the individual brainstemmasks. Thesemaskswere averaged,
TE
(ms)

Flip angle Echo no. Notes

[2.2:2.55:9.85] 6 4 Parallel imaging (GRAPPA)
along phase encoding direction
Partition partial Fourier (6/8)
Bandwidth = 425 Hz/pixel

[2.2:2.55:9.85] 28 4
[2.2:2.55:9.85] 6 4
(SE:39.38;
STE:70.58)

SE:[270:
−10:130]

2

10; 12.46 90; 2

http://www.fil.ion.ucl.ac.uk/spm/
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smoothed by a Gaussian kernel of 1 mm full-width-at-half-maximum
(FWHM) and binarised to create a common brainstem region. This was
to refine the segmentation step (outlined below) by ensuring that all sub-
jects were included in the estimation of the TPMs across the brainstem
region.

2.5. Multichannel segmentation of quantitative images

Quantitative mapping yields MR parameter estimates that are
highly consistent across subjects for homologous tissue types across
subjects, which normally cannot be achieved using conventional MR
imaging (Draganski et al., 2011). Therefore, quantitative MRI data
(so called “maps”) allow information to be shared across a population
of subjects. This should yield a more parsimonious model than if
the subjects' data were segmented individually. Here, we describe a
segmentation approach for partitioning spatially normalised quanti-
tative images from a population of subjects, into K different tissue
probability maps. It is the generation of these probability maps
from populations of quantitative multivariate data that distinguishes
this approach from classical unified segmentation (Ashburner and
Friston, 2005). To define the approach: Each spatially normalised
image contains J voxels, such that the intensity of the jth voxel
of the ith subject may be represented by xij. If the data is multi-
spectral (i.e., consists of quantitative maps of multiple parameters
such as PD and MT maps) the intensity at voxel j of subject i will be
a vector of M values, where M is the number of quantitative maps
per subject.

The objective of this clustering may be viewed as factorising the
data into the K tissue probability maps (TPMs) of interest, and K rep-
resentations of the probability density functions of the intensities of
the tissue types. The kth tissue type of the jth voxel of the TPM is de-
noted by bkj, such that bkj ≥ 0 and ∑ k = 1

K bkj = 1. In the current
model, the intensities within each of the tissue classes are as-
sumed to be drawn from a multivariate normal distribution, such
that x~N (μk,Sk), which reflects the number of distinctive quantita-
tive maps utilised. Determining a maximum likelihood estimate
for this factorisation involves maximising the following log-likelihood
objective function.

E ¼ ∑
I

i¼1
∑
J

j¼1
log ∑

K

k¼1
bkjp xijjμk; Sk

� � !
: ð1Þ

Initially, class memberships of voxels from the various subjects are
assumed to be unknown. Optimising this objective function involves
introducing hidden variables, zijk, which encode these class member-
ships. This leads to the following expectation–maximisation algo-
rithm for optimising the model. To avoid bias, randomised starting
estimates for the parameters were used. The following steps are re-
peated for each slice until the log-likelihood no longer increases.

1. E-step. Estimate the hidden variables for the current iteration (n),
using the parameter estimates from the previous iteration (n − 1).

z nð Þ
ijk ¼

b n−1ð Þ
kj p xijjμ n−1ð Þ

k ; S n−1ð Þ
k

� �
∑K

l¼1b
n−1ð Þ
lj p xijjμ n−1ð Þ

l ; S n−1ð Þ
l

� � : ð2Þ

This requires the probability density of an M-dimensional multivar-
iate Gaussian, which is:

p xijjμk; Sk
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞM det Skj j

q exp −1
2

xij−μk

� �
S−1
k xij−μk

� �� �
: ð3Þ

Specifically, in this current example a bivariate Gaussian was used to
model the intensity distributions from the MT and PD maps.
2. M-step. Then use the current estimates of the hidden variables to
determine the parameter estimates that maximise the objective
function. The tissue probability maps are updated by:

b nð Þ
kj ¼

∑I
i¼1z

nð Þ
ijk

∑I
i¼1∑K

l¼1z
nð Þ
ijk

: ð4Þ

Means and variances of the intensity distributions are re-estimated
by:

μ nð Þ
k ¼

∑I
i¼1∑J

j¼1z
nð Þ
ijk xij

∑I
i¼1∑J

j¼1z
nð Þ
ijk

ð5Þ

S nð Þ
k ¼

∑I
i¼1∑J

j¼1z
nð Þ
ijk xij−μ nð Þ

k

� �
xij−μ nð Þ

k

� �T
∑I

i¼1∑J
j¼1z

nð Þ
ijk

: ð6Þ

The algorithm converges to a local (rather than the global) optimum.
Therefore, the final solution is dependent on the starting estimates used
to initialise the algorithm. For this reason thewhole pipelinewas repeat-
ed several times to ensure that the solutions obtainedwere stable, and K
was varied to produce a range of TPMs which were inspected and the
minimum number that produced anatomically congruent, homologous
tissue types without over-clustering was selected. Over-clustering was
judged to be present when the same tissue type was present in several
TPMs, and subsequent intensity plotswere highly overlapping. Practical-
ly, the optimal number was found at K = 6, generating four brainstem
tissues, one containing partial volume edge voxels and one as a non-
brainstem class. The latter two were summed into a single map. Once
the TPMs were generated and visually inspected, these were then used
in SPM8 “New Segment” to produce individual level segmentations as
outlined below.

2.6. Visualisation

The probability maps were compared against a fixed specimen
imaged at a high-isotropic resolution of 0.5 mm. For illustrative pur-
poses, these images were labelled at six representative slices using the
Duvernoy's brainstem atlas as a reference (Naidich and Duvernoy,
2009) and presented in the results. For further anatomical validation,
three representative figures of MR microscopy at 9.4 T were taken
from Duvernoy's brainstem atlas with permission, and the correspond-
ing TPM projected directly onto these ex-vivo sections. Finally, the
three-dimensional structure formed by each tissue class was visualised
using SPM8 to render the TPM, binarised at a threshold of 0.5. Subse-
quent VBM results were also projected on to these surfaces.

2.7. Individual level segmentation

The calculated tissue probabilitymaps (TPMs)were usedwith SPM8's
“New Segment” algorithm. Specifically, five tissue classes were used; four
within brainstem and one for everything else. Two Gaussians were used
to model each tissue class (Ashburner and Friston, 2005) except for the
periaqueductal grey (PAG) matter (one Gaussian) and non-brainstem
(eight Gaussians). Individual level segmentations were generated from
the MT and PD maps, cropped to include the brainstem region only,
which increased the computational speed. All the images from each of
the four tissue classes were then left–right flipped and re-sliced to
allow brainstemasymmetries to be assessed using VBMas a proof of con-
cept. All of the flipped and un-flipped brainstem tissue classes were
re-warped back to a group average using the same diffeomorphic regis-
tration algorithm to allow re-estimation of the Jacobians for subsequent
TBM and VBM analyses. The deformation fields were then used to warp
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each tissue class to the common template, and resulting images “modu-
lated” by multiplying with the corresponding Jacobian determinants.

2.8. Brainstem asymmetries

For VBM, a design matrix for a paired t-test between flipped and
un-flipped brainstems was constructed for each of the warped and
modulated tissue classes, including age, sex and total intracranial
volume as covariates in the model. Implicit masking was used with
overall grand mean scaling global normalisation. For each tissue
class, we examined the contrast showing increased tissue density in
the un-flipped as compared to the flipped images. In this, significant
results would represent localised brainstem regions with significant
asymmetries in a right-handed population. These were corrected for
multiple comparisons at a family wise error (FWE) p b 0.05. They
were visualised both on an example warped MT image and also on
group-averaged renderings of each tissue type. Tensor based mor-
phometry (TBM) is similar to VBM, except that statistical analysis is
carried out directly on maps of the Jacobian determinants instead of
the warped modulated tissue class maps. Besides the input images,
the remaining set-up and analysis was identical.

3. Results

3.1. Tissue probability maps

Six tissue classes were initially generated, but subsequent inspec-
tion revealed that one only represented edge of brainstem voxels and
so was added to the non-brainstem tissue class. The remaining classes
represented brainstem white matter and three grey matter classes:
Tissue class one (brainstem grey matter) predominately included
structures consistent with monoamine neuron groups including the
substantia nigra, ventral tegmental area and raphe nuclei. It also
encompassed cranial nerve nuclei and the inferior olivary nucleus.
Tissue class two (reticulated grey matter) consisted mainly of the re-
ticular and pontine nuclei, but also included tissue surrounding the
inferior olivary nucleus which was most likely the amiculum. Tissue
class three was specific for the peri-aqueductal grey (PAG). This re-
gion also included some voxels at the edge of the brainstem that,
due to partial volume effects at the brainstem-CSF interface, shared
similar intensity profiles. However in practical terms, these were
masked out from any statistical analysis using a manually refined
ROI encapsulating just the PAG and central grey matter, although a
threshold of 0.8 also excluded the majority of the non-PAG regions
in this class. Tissue class 4 was specific for brainstem white matter.
The brainstem tissue classes are summarised in Fig. 1, with com-
parison against the corresponding labelled sections of the ex vivo
high-resolution brainstem. Fig. 2 shows the Gaussian distributions
associated with each tissue class; the MPM values have been
normalised by the maximum corresponding parameter so both
could be visualised on a scale between 0 and 1. It demonstrates
that the PAG was a highly unique class with very low MT and
high PD intensities, as was the brainstem grey matter with low
MT and medium PD values. Tissue classes 4 (white matter) and 2
(reticulated grey matter) are more similar as would be expected,
given the course of white matter tracts between the pontine nu-
clei. To better separate these classes, both the PD and the MT in-
tensity information is required as shown. The white matter has a
higher average MT value, and lower PD with less PD covariance
contrasted to the reticulated grey with a higher average PD and
lower MT.

3.2. Anatomical validation

Direct validation is difficult without post-mortem data from at
least one of the study participants. Additionally, with the exception
of the substantia nigra, it is not possible to manually segment many
of these structures, as their borders are ill defined on a single image
using one MR modality. Here we have taken two approaches to at-
tempt to validate our in vivo data. In Fig. 1, we have taken correspond-
ing sections from the high resolution MT-T2* post mortem data, and
labelled the visible structures captured by the TPMs. In an additional
step, we also took three representative slices from the brainstem atlas
used to label Fig. 1 and projected the TPMs directly onto these images
of ex vivo MR microscopy at 9.4 T for the mesencephalon, pons and
medulla (Fig. 3 — taken from Duvernoy's Atlas of the Human Brain
Stem and Cerebellum with permission). Both show strong correspon-
dence with the recognised brainstem anatomy that can be captured
post-mortem at higher resolutions and field-strengths. This indicates
that our segmentation algorithm is indeed able to segment brainstem
structures at 3 T, and these structures correlate to the accepted MR
anatomy. Currently, there is no other approach to achieve this in
vivo, particularly at 3 T, limiting any form of analysis in this brain re-
gion. Further work is needed to understand how quantitative changes
associated with pathology will impact the segmentation algorithm.
However, once the tissue priors are achieved, the algorithm becomes
no different to the classical segmentation and VBM approaches which
have been extensively published, therefore, the presence of disease
would not be expected to hamper the segmentation approach.

3.3. Individual segmentation

The four tissue types were re-warped to a common template using
geodesic shooting, resulting in much greater detail captured by the
brainstem Jacobians (Fig. 4) compared to the standard approach.

3.4. Brainstem asymmetries

Significant asymmetries (FWE b 0.05) were found in all the
brainstem tissue classes. These are summarised in Fig. 5 and Table 2. Ad-
ditionally, by thresholding each T-map at FWE b 0.05 and performing
a left–right flip, no overlapping regions across all tissue types were
present, indicating that the results represent regional expansions in
functionally distinct structures. These regions were projected onto a
warped MT and PD brainstem and compared against Duvernoy's atlas.
Thus, the majority of the regions could be unequivocally identified.
The exception was two significant regions that appeared to be present
in the motor trigeminal nucleus and medial vestibular nucleus. These
were labelled according to the closest associated structure in Duvernoy's
atlas, comparing against surrounding visible structures (on both the in-
dividual and ex vivo scans) and exiting cranial nerves for localisation.
These findings will be considered in detail in the discussion.

3.5. Tensor based morphometry

These findings mirrored those found using a VBM approach, but
only required one statistical test. TBM carried out on the Jacobians,
obtainedwithout using the extended brainstem segmentation described
above, confirms that this new approach ismuchmore sensitive to detect
regional changes within the substance of the brainstem (Fig. 6).

4. Discussion

In this study we have developed a method that allows the internal
structure of the human brainstem to be reliably segmented and quan-
titatively analysed for the first time in vivo. By developing a multi-
modal segmentation algorithm using mmMoG, brainstem specific
tissue probability maps could be generated for four distinct brainstem
tissue classes. These probability maps could then be utilised within
the pre-existing SPM framework to allow individual segmentation
of the brainstem in vivo. Using an accurate diffeomorphic registration
algorithm and maintaining the individual segmentations in their



Fig. 1. Brainstem tissue probability maps compared against high resolution ex vivo combined MT T2* MRI. Vertical distance from the obex in the z-axis is given in millimeter. Tissue
class 1—Brainstem grey matter. Tissue class 2—Reticulated grey matter. Tissue class 3—Periaqueductal grey matter and posterior hypothalamus. Tissue class 4—White matter.
Abbreviations: A8—Dopaminergic centre (approximate location), CP—Cerebral peduncle (anterior to posterior: consisting of frontopontine, corticonuclear, corticospinal and
parietotemporal pontine tracts), CST—Corticospinal tract, CTT—Central tegmental tract, ICP—Inferior cerebellar peduncle, ML—Medial lemiscus, MLF—Medial longitudinal fasciculus,
PAG—Periaqueductal grey, SCT—Spinocerebellar tract, SNpc—Substantia nigra pars compacta, SNpr—Substantia nigra pars reticulata, TST—Tectospinal tract, VTA—Ventral tegmental
area. *Artefact due to fixation.
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native resolution, a highly accurate warping could be achieved with
substantial improvement in the estimation of regional deformations.
Spatial accuracy was further increased by not smoothing the resulting
modulated tissue classes, a step that was permissible for two reasons.
Firstly, the brainstem is topologically much simpler than the cortex as
there is no gyrification to contend with. Secondly, the diffeomorphic
registration method used (geodesic shooting algorithm (Ashburner
and Friston, 2011)) is more accurate at aligning this region across



Fig. 2. Tissue intensity profiles for the four tissue classes. The MT and PD intensities have been normalised by the maximum value within the brainstem.
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subjects. A VBM analysis examining for brainstem asymmetries was
primarily undertaken as proof of concept. This demonstrated signifi-
cant results, which will be discussed further.
4.1. Biophysical interpretation of brainstem tissue classes

In this study we have defined four brainstem tissue classes on the
basis of the measured MT and PD parameters. The advantage with
using quantitative MRI parameter maps is that they reflect biophysi-
cal properties of the underlying tissue more closely than generic MR
image. Since the brainstem structures contain axonal tracts and
interdispersed nuclei at varying proportion, it is useful to rely on pa-
rameters that are sensitive to these features.
Fig. 3. Comparison of calculated tissue classes against three correspon
Taken from Duvernoy's Atlas of the Human Brain Stem and Cerebellu
Proton density (PD) refers to the concentration ofMRI visible hydro-
gen inmobile water (Tofts, 2003). Since only a small fraction of water is
trapped in or otherwise associated tomacromolecules, the PD values are
therefore a reflection of the tissuewater content. Magnetisation transfer
(MT) emerges from hydrogen in motionally restricted macromolecules,
which do contribute to the MRI signal because of their ultrashort T2.
These are, however, weakly coupled to those in water by dipole–dipole
interactions and or chemical exchange, and so a selective saturation of
the macromolecular magnetisation will be transferred to the water
magnetisation and observed as reduced signal (Wolff and Balaban,
2005). TheMTmaps describe the percentage reduction of water during
a single repetition and are not confounded by underlying T1 relaxation
and B1 inhomogeneity and more directly related to macromolecular
content (Helms et al., 2008). Biologically, the axonal myelin-sheaths
ding ex-vivo brainstem sections from “MR microscopy at 9.4 T”.
m with permission.

image of Fig.�2
image of Fig.�3


Fig. 4. Jacobians for original group warp (top row) and brainstem segmentation group
warp (bottom row), highlighting the increased resolution to capture volumetric differ-
ences using the latter method.
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are particularly rich in macromolecules and hence MT is a reflection of
the quantity ofmyelinwithin a voxel. In vivoquantitativeMTparameters
have been previously shown to be highly correlated with ex vivo mea-
sures of myelination and axonal density at post mortem (Schmierer et
al., 2004).

Fig. 2 summarises the differences between the tissue classes in
terms of measured MT and PD. As expected, white matter (tissue
class 4) contains the highest degree of myelination and due to the
dense packing of axonal fibres in the brainstem it is therefore unsur-
prising that there is the lowest amount of free water. Tissue class 2,
consisting predominately of reticulated grey matter and pontine nu-
clei, consists of grey matter that is highly invested or split by ascend-
ing and descending white matter fibres, and so forms an intermediate
cluster between the white matter and classical grey matter. It is ques-
tionable whether MRI can provide sufficiently high spatial resolution
to resolve the partial volumes into pure grey and white matter clas-
ses, however further work at higher field strengths is required to ad-
dress this question. In the PAG (tissue class 3), the MT values indicate
a very low myelin content and comparatively higher PD compared to
the other tissue types. This is consistent with the known ultrastruc-
ture of the PAG which is well described as a cell rich, myelin poor
region with large numbers of small unmyelinated axons and cells
frequently located in small clusters, without interdigitating glial ele-
ments (Buma et al., 2004; Carrive, 2004).

Regarding the contribution of each MPM to the final segmentation
result, this can also be inferred from Fig. 2, and the value of the multi-
modal segmentation approach highlighted. The PAG (tissue class 3)
was a very distinct tissue class, and on the PD alone the properties of
the PAG should make it unique enough to be isolated. This can be
seen on an individual PD image (Fig. 7). However the CSF in these im-
ages is noisier compared withMT, hence the value of utilising bothmo-
dalities. With MT images alone, the PAG may be classified with the
monoaminergic group due to some overlapping intensity values. With
the remaining tissue types, it is apparent that the MT alone can sep-
arate the WM and monoaminergic groups (tissue class 1), as has
been previously noted by Helms et al. (2009), but would be unable
to reliably distinguish WM and reticulated WM, a finding that is ap-
parent with routine segmentation (Fig. 4). In contrast, the proton
density alone could isolate GM from WM, but as the tissue contrasts
are quite narrow, the result would not be as good as for MT alone.
4.2. Asymmetries in the human brainstem

Asymmetry within the human cortex is a well-established phenom-
enon. Structurally it can be found at multiple scales from columnar
organisation (Seldon, 1982) and cytoarchitectonic boundaries
(Rademacher et al., 2001) through white matter tracts (Hasan et al.,
2009), small world network topological features (Tian et al., 2011) and
cortical thickness (He et al., 2007; Luders et al., 2006). These
asymmetries are thought to correlate to numerous lateralised functions,
such as handedness (Goble and Brown, 2008), language (Seldon, 1981)
and auditory processing (Toga and Thompson, 2003). A number of
post-mortem studies have also verified some of these findings, but
these are limited due to their labour intensive, time-consuming
nature (Schleicher et al., 1999) and may be confounded by numerous
practical factors such as fixation methods andmeasurement techniques
(Whitaker and Selnes, 1976). Numerous in vivo MRI studies of cortical
asymmetry have been published using a variety of techniques, yet given
this abundance of literature there is sparse evidence for asymmetries in
the healthy human brainstem. The most likely explanation for the lack
of previous evidence is simply that the brainstem is a difficult structure
to study. It is constructed of numerous small nuclei with closely associat-
ed tracts whose distribution, organisation and function remain poorly
understood. The majority of automated MRI based volumetric studies
rely on estimating the differences between a structure of interest and a
common template. However, as shown in Fig. 4, classical segmentation
algorithms treat the brainstem as a single homogenous structure and as
such are unable to estimate anything but the most gross anatomical
differences. The most reliable structural asymmetry is that of the left
corticospinal tract (CST), which has been shown to be larger on the left
by post-mortem studies (Rademacher et al., 2001). Quantitative differ-
ences in imaging metrics such as FA, but not absolute tract volume,
have been found using DTI (Reich et al., 2006; Westerhausen et al.,
2007). However, due to the methods used to isolate the CST using DTI,
it is unlikely that DTI in isolation can assess the full extent of the
brainstem CST volume. Specifically, this is hindered by the need to man-
ually specify seed regions thatwill exhibit significant inter-individual var-
iability (Rademacher et al., 2001). Additionally, practical tractography
issues, such as choice of algorithm, DTI parameters and thresholding
level will all limit the accuracy. By utilising the technique within a VBM
framework, we have shown multiple asymmetries throughout the
brainstem whilst controlling for gender and total brain volume. Impor-
tantly, both the corticospinal tract and pyramid were larger on the left,
which is in keeping with known anatomy (Kertesz and Geschwind,
1971; Rademacher et al., 2001). In addition to this, our work resulted in
novelfindings across several brainstemzones. All of the identified regions
have also been described as part of the vocal control network (Jürgens,
2002), which given the lateralising effect of Broca's aphasia on the
motor control of vocalisation (van Lieshout et al., 2007) could provide a
biological basis for the observed asymmetries. Clearly, given that the
brainstem is so tightly packed with nuclei responsible for so many func-
tions, these asymmetries could be due to many reasons and further
work is needed to investigate whether these findings are related to func-
tional cerebral dominance. However, this example demonstrates the im-
proved sensitivity of the brainstem segmentation scheme, and the wider
applicability of this method will be expanded on below.

4.3. Brainstem segmentation — applications

The motivation for developing methods to analyse the brainstem
with increased accuracy was driven by the observation that several
neurodegenerative diseases have a long prodromal pre-clinical phase
before the classical spectrum of diagnostic symptomology becomes evi-
dent. An example of this is Parkinson's disease (PD): Currently, it can be
argued that neuroimaging is able to detect dopaminergic cell loss in PD
approximately four to seven years before clinical motor symptoms are
evident (Ponsen et al., 2004). This requires highly specialised techniques
such as single photon emission tomography (SPECT) or 18F-flourodopa
positron emission tomography (PET). Not only are thesemodalities lim-
ited by cost and availability (Siderowf and Stern, 2008), they are also in-
vasive, require significant nigro-striatal disease to be present in order to
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Fig. 5. Brainstem regions with significant asymmetries for each tissue class, corrected for multiple comparisons at FWE b0.05. Row 1—Brainstem grey matter; Row 2—Reticulated
grey matter; Row 3—PAG; Row 4—White matter. Renderings display posterior, anterior and superior views of group average TPMs, superior view displayed with anterior posterior
axis from bottom to top of the page respectively.
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detect a reduction in dopamine, and are subject to significant variability
(Michell et al., 2004). However, through large epidemiological and
histopathological studies(Hawkes, 2008), it has become clear that the
prodromal phase of PD may extend up to 20 or more years before in-
volvement of the nigrostriatal system (Hawkes et al., 2010). This period
is characterised by subtle autonomic, olfactory, enteric, sleep, behav-
ioural and cognitive changes (Hawkes et al., 2010; Park and Stacy,
2009; Siderowf and Stern, 2008). Histologically, during this time, there
is early involvement of the olfactory cortex and dorsal vagal motor
nuclei, before progressive alpha-synuclein deposition ascends the
brainstem to involve the raphe group, locus coeruleus and reticular
nuclei (Del Tredici et al., 2002; Jellinger, 2009). These are all struc-
tures that can be successfully segmented using the proposed meth-
odology, allowing mass univariate methods such as VBM, voxel
based quantification (Draganski et al., 2011) or more complicated
multivariate analysis to be undertaken with far greater accuracy. Ad-
ditionally, promising fusions of VBM with machine learning tech-
niques have been previously used to predict the degree of cognitive
impairment in Alzheimer's disease based on VBM results (Stonnington
et al., 2010). These could easily be implemented with the current
brainstem segmentations. Additionally, these segmentations would be
well suited to brainstem fMRI, where tissue specific alignment across
subjects could reduce noise and increase statistical sensitivity (Beissner
et al., 2011; Pattinson et al., 2009). Though the current acquisition time
is relatively long (75 min), it was designed as an exploratory analysis.
In this studywe choose to repeat and averageMPMsequence to optimise
the SNR, a step that could be omitted in required in futurework reducing
the acquisition time to 37 min. Additionally, ongoing work is currently
applying these methods to a 21-minute, 1 mm isotropic MPM sequence.
Whilst not as accurate as the 0.8 mm3 data, it still is a significant advance
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Table 2
Principle regions with significant asymmetries in the brainstem (FWE b 0.05).

Tissue class Region
(from Duvernoy's atlas)

Asymmetry
direction

Left Right

1 Inferior olive +
Medial vestibular nucleus +
Motor trigeminal nucleus +

2 Nucleus reticularis medullae
oblongatae centralis

+

Inferior pontine nuclei (lateral) +
Superior pontine nuclei (lateral) +
Trigeminal sensory nucleus/nucleus
reticularis pontis

+

3 Inferior PAG +
Mid-medial PAG +

4 Inferior cerebellar peduncle +
Pyramid +
Corticospinal tract +
Middle cerebellar peduncle (inferiolateral) +
Middle cerebellar peduncle (superiolateral) +
Superior cerebellar peduncle +

Fig. 7. Proton density image showing the PAG.
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on currently available techniques, andwould bewell suited to future pa-
tient studies. In short, the proposed method opens the brainstem to a
rapidly evolving array of methodological techniques that are well placed
to find increasingly specific, non-invasive neuroimaging biomarkers of
pre-clinical neurodegenerative diseases and help elucidated the normal
function of the brainstem in vivo.
4.4. Brainstem segmentation — limitations

The impact of physiological noise on image quality and the seg-
mentation results has not been explored. However recent in vivo
myeloarchitectonic studies of cortical areas using this method illus-
trate the robustness of the technique and its sensitivity to tissue
microarchitecture (Dick et al., 2012; Sereno et al., 2012). Physiological
noise has mostly been addressed in the context of fMRI, where image
stability is paramount (Glover et al., 2000; Hutton et al., 2011). How-
ever these methods cannot be directly implemented in anatomical
imaging due to the different types of image acquisition. Phase-navigator
correctionmethods (Barry et al., 2008; Hu and Kim, 1994)might be ben-
eficial although they may reduce the efficiency of the FLASH acquisitions
used here. Recent developments involve prospective real-time correction
of physiological effects: These include real-time shimming methods
Fig. 6. Tissue based morphometry result corrected for multiple comparisons at FWE b0.05.
the classical results without brainstem segmentation, highlighting the improvement in sta
distance from the obex in the z-axis is given in millimeter.
for correction of respiratory-induced effects (Van Gelderen et al., 2007)
and optical systems for fast prospective correction of subject motion
(Zaitsev et al., 2006). Thesemethods are likely to yield a significant reduc-
tion of physiological effects on anatomical scans. However, minimal im-
pact on accuracy will be required for use in quantitative MR imaging.

The other principle limitation relates to cluster number selection. In
this current study, a range of clustering solutions were investigated and
judged visually. This is clearly a non-ideal solution that could be subject
to observer bias. However, the problem of cluster number optimisation,
despite being extensively studied, is still one that remains problematic
and poorly characterised for a number of reasons. The precise definition
of a cluster is subjective as it depends entirely on your view-point. The
top-down definition seeks to partition a heterogeneous population into
more homogenous groups, whereas the bottom-up stance asserts that
using local measures of similarity, common groups can be constructed,
though equally this could be reformulated as measures of dissimilarity
to separate groups. The situation becomes even more complex when
attempting to define what a meaningful, or good cluster is, as it depends
entirely on the context and users' requirements or aims (Blum, 2009), i.e.
“Clustering is in the eye of the beholder” (Estivill-Castro, 2002). This is
particularly true in neuroanatomical studies, where established parti-
tions are steeped in historical, often contradictory results (Swanson,
2003). Practically we were extremely cautious in this study not to
over-interpret the results, and strived to ensure a biological basis existed
for our observations. Over-clustering was deemed to be present when a
previously defined, anatomically congruent cluster, broke down into
smaller sub-components that did not have an obvious anatomical basis
(for example, white-matter sub-clusters or multiple partial volume clus-
ters). Objectively, this was additionally visualised by plotting the tissue
intensity profiles. An over-clustered result was evident by highly
Top row shows slice position, middle row the new brainstem analysis and bottom row
tistical sensitivity for regional changes within the substance of the brainstem. Vertical
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overlapping plots. However it is likely that more clusters could be found
either by utilising greater numbers of scans to estimate the TPMs,
obtaining higher resolution data, using higher field strengths or combin-
ing with additional modalities (e.g. diffusion, iron-weighted). Future
work to develop these techniques will use a combination of these
methods to improve on the segmentation results. Additionally, further
work is required to investigate the ex vivo biological correlates of mea-
sured quantitative MRI parameters such as MT and PD. However, this is
a substantial and non-trivial undertaking, and is far beyond the scope
of this current study.

5. Conclusion

In conclusion, we have developed a method to allow accurate auto-
mated segmentation of the human brainstem in vivo for the first time.
We have demonstrated that these segmentations can be used in
pre-existing quantitative frameworks such as VBM, and have provided
an analysis of brainstem asymmetries as an example. This method
would also be well suited to the emergent field of brainstem fMRI
(Beissner et al., 2011; Pattinson et al., 2009) to improve registration ac-
curacy between subjects, with a subsequent increase in spatial and sta-
tistical sensitivity. Additionally, this technique is particularly important
in the search for neuroimaging biomarkers in pre-clinical neurodegen-
erative diseases such as Parkinson's disease, where it offers several ad-
vantages over current modalities. Future work will aim to generalise
themultichannel segmentation scheme to the entire cortex, in addition
to fusing this technique with diffusion tensor imaging to achieve both a
fine grain sub-segmentation of brainstem regions, and also a deeper un-
derstanding of brainstem networks and their natural variability in vivo.
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