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 A topical microbicide can be 
used vaginally or rectally by 
a woman or a man to reduce 

the risk of acquiring HIV-1 infection 
during sexual intercourse [1 –4]. An 
effective microbicide could make a 
signifi cant contribution to reducing 
the global spread of HIV-1. What 
will it take to make one? What types 
of inhibitory compounds could be 
developed as a practical product, and 
what obstacles must be faced? In this 
article, our emphasis will be on newer 
technologies (Table 1, “Specifi c Entry 
Inhibitors”), rather than the earlier-
generation surfactants, pH-modifi ers, 
and polyanions (Table 1, “Non-Specifi c 
Entry Inhibitors”) that are already 
being tested in large-scale clinical trials 
[5] and have been reviewed extensively 
elsewhere [1,2,4].

  We believe a successful microbicide 
would have to fulfi ll four interrelated 
criteria: safety, acceptability, effi cacy, 
and affordability. We will address each 
issue in turn, discussing how it might 
affect the development of various 
microbicide concepts.

  Safety

  Safety will, of course, be of paramount 
importance. The microbicide fi eld 
suffered a signifi cant setback when 
effi cacy trials of the surfactant 
nonoxynol-9 showed that the HIV-1 
transmission rate was greater in the 
active group than in the placebo [6]. 
The most likely reason was that, in 
sustained repetitive use, nonoxynol-
9 disrupted the vaginal epithelium, 
damaging an important natural barrier 
against HIV-1 [6]. Hence any practical 
microbicide will need to preserve the 
body’s natural defenses. An example of 
such a defense is the fi lm of lactobacilli 
that maintains a low vaginal pH, which 

lowers the risk of HIV-1 infection. In 
contrast, vaginosis caused by anaerobic 
bacteria raises the pH and the risk of 
HIV-1 infection [7]. 

  For any substance that is 
repeatedly applied to a mucosal site, 
carcinogenicity and teratogenicity must 
also be carefully evaluated over the 

long term. It is not suffi cient merely 
to assess the effects of microbicides 
on the lower genital tract of healthy 
women; safety studies must also involve 
women with genital ulceration and 
infl ammation caused by other sexually 
transmitted diseases, or with cervical 
ectopy (outgrowth of the delicate 
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cervical columnar epithelium onto the 
ectocervix, particularly common in 
young women). It is also highly likely 
that microbicides will enter the uterus, 
which is very susceptible to toxicity 
effects [8,9]. Microbicides are likely to 
be used rectally by men and women, 
and the rectal tract environment is 
particularly sensitive to agents that 
disrupt cell membranes or mucosal 
barriers [10–12]. 

  Despite the widely recognized 
problems with nonoxynol-9, effi cacy 
trials of another surfactant-based 
microbicide, C31G vaginal gel 
(Savvy) are in progress. Some Savvy 
components can damage or infl ame 
epithelial tissues, particularly in the 
cervix [13]. Another high-profi le 
failure on safety grounds could have 
very serious consequences for the long-
term future of the microbicide concept. 

  If microbicides are used in the same 
populations targeted by vaccine trials, 
it will be important to determine 
whether they affect localized immune 
responses to vaccines. Conversely, 
microbicides should not cause localized 
infl ammation, because attracting 
immune system cells to the sites of virus 

deposition would probably facilitate 
transmission [14,15]. Compounds 
that could be immunogenic, such as 
peptides and proteins, or compounds 
that could affect the normal traffi cking 
of immune system cells, such as 
chemokine derivatives, will need to be 
studied carefully from this perspective. 
CpG oligonucleotides and imiquimod, 
both activators of innate immunity via 
Toll-like receptors, did not protect 
against vaginal transmission of simian 
immunodefi ciency virus to macaques 
and may even have exacerbated it 
by causing local infl ammation [16]. 
Mucosal biopsies during Phase I trials 
can help determine whether candidate 
microbicides are infl ammatory in 
humans.

  Women who are already infected 
with HIV without knowing it are 
certain to use any licensed microbicide 
product. Hence, the development of 
drug resistance is also a safety concern, 
particularly for reverse transcriptase or 
entry inhibitors similar to ones used 
to treat HIV-1 infection [17–19]. It 
seems unlikely that topically applied 
inhibitors would generate systemic 
concentrations suffi cient to exert a 

signifi cant selection pressure [19,20]. 
However, local resistance could be 
fostered within mucosal sites close to 
the site of application, perhaps leading 
eventually to the systemic emergence 
of resistant variants. Microbicide usage 
in a geographic area where strains 
resistant to that drug class are already 
present may also constitute a selective 
pressure, facilitating transmission of 
resistant viruses. Clinical studies will 
need to address this issue, analogous 
to when antiviral drugs are used to 
prevent mother-to-child transmission 
[21]. 

  A related point is whether a vaginally 
applied inhibitor specifi c for CCR5-
using (R5) viruses could promote, 
as opposed to passively permit, the 
transmission of CXCR4-using (X4) 
variants that are associated with more 
rapid disease progression [2,19,22,23]. 
X4 virus transmission is rare, and any 
increase would be a cause for concern 
[15,23,24]. One solution would be to 
combine a CCR5 inhibitor with other 
entry or post-entry inhibitors that are 
active against X4 viruses.

  Acceptability

  Acceptability is a real-world concept 
rarely considered by academic scientists 
working on microbicide development 
in vitro or with animal models. It is, 
however, a critical issue for a fi nal 
product that is to be used in a sexual 
setting. Sex is often spontaneous, 
conducted in the dark, and can be 
associated with alcohol and/or drug 
use. If a microbicide is diffi cult to use, 
has the wrong consistency (too viscous 
or too fl uid), has an unusual smell or 
color, or just comes across to the users 
or their sexual partners as being “nasty” 
or culturally unacceptable, then it will 
simply be rejected. Early consideration 
should be given to such points.

  The duration of protection that 
can be achieved by a topically applied 
compound may affect its acceptability. 
Ideally, it should not be necessary to 
apply a microbicide only moments 
prior to intercourse; an effi cacy window 
measured in hours or longer will be 
an important feature. Intra-vaginal 
devices that release active compounds 
slowly over sustained periods are under 
evaluation [25]. Even so, it is advisable 
for microbicide developers to assess the 
longevity of protection by performing 
delayed challenge experiments in 
animal models. 

DOI: 10.1371/ journal.pmed.0030351.g002

 Figure 2.  Comparison of the Concentrations of Microbicide Compounds Required for 
Blocking Infection In Vitro and In Vivo
   For a detailed explanation of Figure 2, see Text S2. 
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  When small-molecule entry inhibitors 
were tested in the rhesus macaque 
vaginal challenge model, signifi cant 
protection was achieved even with a six-
hour delay before challenge [19]. The 
vaginal application of lipid-formulated 
small inhibitory RNA (siRNA) to 
herpes simplex virus (HSV) structural 
genes protected mice against a lethal 
vaginal challenge with HSV a few hours 
later; in other studies, non-viral target 
genes remained silenced for at least 
nine days, raising the possibility of 
achieving truly sustained protection 
against HIV-1 and other viruses [26].

  Acceptability issues also apply to 
genetically modifi ed commensal 
bacteria, such as lactobacilli or  E. 
coli , that are altered to secrete or 
express proteins with anti–HIV-
1 activity [27–29]. The transgene 
product could be immunogenic, or 
it might change the pathogenicity of 
the engineered organism. The real 
risks of this approach are probably 
very low, but problems with political 
or public perception may arise: 
genetically modifi ed food has attracted 
considerable controversy worldwide. It 
might not be easy to persuade a nation 
such as Zambia, which has rejected 
genetically modifi ed corn shipments 
paid for by Western donors, now to 
permit widespread vaginal and rectal 
colonization by similarly engineered 
microorganisms made in American 
laboratories. In principle, similar 
objections could be raised to the use of 
siRNA as a microbicide if the method 
is labeled as gene therapy rather 
than what it actually is: the topical 
application of a replication inhibitor. 

  Effi cacy

  Effi cacy is self-evident: a microbicide 
must work for it to be useful. One 
obvious reason for failure would be 
inconsistent use, either because it is 
not an acceptable product (see above) 
or because it is too expensive for 
those who need it most (see below). 
Adverse effects on epithelial integrity 
and immune activation could also 
impair effi cacy (see above). However, 
a regularly used product might fail 
because it simply lacks the potency 
to protect against the HIV-1 strains it 
encounters. Thus, it will be essential 
to accurately identify the underlying 
causes of failure for any microbicide 
that is ineffective in Phase III trials; 
different problems will require 
different solutions.

  But how can we identify what 
concepts are worth evaluating in 
effi cacy trials? Not every candidate 
microbicide can be tested in Phase III 
trials, which are costly in terms of both 
volunteer numbers (2,000 to 12,000 
participants) and money ($40 million 
to $70 million). There are also issues of 
public perception: multiple, sequential 
failures may compromise the prospects 
for future trials of more promising 
concepts. Four broadly similar 
polyanions (PRO2000, Carraguard, 
BufferGel, and cellulose sulfate), one 
surfactant (C31G), and one nucleoside 
reverse transcription inhibitor (PMPA) 
are now in Phase IIb/III effi cacy trials, 
conducted by several different funding 
agencies (see Table 1 and http:⁄⁄www.
microbicide.org). The success of any 
of these products would greatly boost 
the microbicide concept, but would 

also complicate the future testing of 
potentially more potent substances. 
To prove that a new candidate is more 
effective than a partially active fi rst-
generation microbicide would require 
a larger trial than a simple comparison 
with a placebo.

   Macaque models.  The most 
practical way, albeit an imperfect one, 
to judge which microbicides would 
have the potential to be protective 
in humans is to use the macaque 
models. Many different compounds 
have now been shown to be able to 
protect macaques from vaginal and/or 
rectal challenge by a simian/human 
immunodefi ciency virus (SHIV) or 
simian immunodefi ciency virus [2–5]. 
We will consider the varied implications 
of these results, while noting that 
the onus should now be on all future 
potential microbicides to do at least as 
well as compounds that are effective 
in the macaque. Not every compound 
that is protective in the macaque will 
be useful in humans (e.g., nonoxynol-
9) because the macaque model cannot 
mimic what happens in long-term 
use, and it can also be argued that a 
reliance on the macaque model could 
preclude potentially useful compounds 
from ever being evaluated in humans. 
But is it prudent to prioritize concepts 
that have not demonstrated the 
potential for effi cacy above others that 
have, when hard and expensive choices 
must be made?

  Using monkey models in this way 
will require reaching a consensus 
about which model(s) to use and what 
the results mean from a quantitative 
perspective. Only a few different 

 Table 1.  Summary of Pre-Clinical and Clinical Trials of Microbicides   

 Category of Microbicide Type of Trial
 Pre-Clinical  Safety (Phase I)  Effi cacy (Phase IIb/III) 

 Non-Specifi c Entry Inhibitors Mandelic acid polymer (SAMMA); K5-N OS SPL7013 (dendrimer); CAP; polystyrene 

sulfonate

PRO2000; Carraguard; cellulose sulfate; 

BufferGel;

 Surfactants — — C31G (Savvy)

 NRTIs — — PMPA (tenofovir)

 NNRTIs DABO TMC-120; UC-781; MIV-150 —

 Specifi c Entry Inhibitors CCR5 ligands (PSC-RANTES, CMPD-167); 

CXCR4 ligands (AMD3100, AMD3465); 

gp120 ligands (BMS378806, cyanovirin N, 

plant lectins, CD4-IgG2, MAb b12); gp41 

peptides (C52L)

— —

 Genetic Engineering Inhibitor- expressing bacteria; siRNA — —

 A more comprehensive list of substances and continual updates of phases of the respective trials can be obtained from the Alliance for Microbicide Development, http://www.
microbicide.org. 
  NRTIs, nucleoside reverse transcriptase inhibitors; NNRTIs, non-nucleoside reverse transcriptase inhibitors
  DOI: 10.1371/ journal.pmed.0030351.t001 
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challenge viruses are in widespread 
use, perhaps only a single R5 SHIV 
and two X4 SHIVs. One or two RT-
SHIVs (expressing the HIV-1 reverse 
transcriptase) are also being evaluated. 
It should therefore be possible to agree 
on uniform challenge stocks.

   “Low-dose” versus “high-dose” 
challenge models.  More diffi cult, but 
surely not insuperable, is the issue 
of the “low-dose” versus “high-dose” 
challenge models (Figure 1), both of 
which are in use [19,22,30–36]. In fact, 
both models use challenge doses that 
are high compared with the infectious 
inoculum encountered by humans. 
Better terms for the two models might 
be “single-high-dose” and “divided-
high-dose” since the cumulative 
amount of infectious virus is similar in 
each case, as is the cumulative animal 
infectious dose, which may be the most 
crucial parameter (Figure 1). Both 
models could be pursued, particularly 
if head-to-head comparison studies 
are performed involving the same test 
compounds and challenge viruses. 
The protection provided by the same 
concentration of the virus-binding 
entry inhibitor, CAP, seems very similar 
in the two models [32,36]. If both 
models provide much the same answer, 
as we suspect will be the outcome, the 
one to favor would presumably be the 
logistically simpler “single-high-dose” 
model.

  One issue arising from animal model 
research relates to the inhibitor dose 
that would be required for prevention 
of HIV-1 transmission to a human. As 
the amount of compound required 
has a signifi cant bearing on its cost 
(see below), and conceivably on its 
formulation (see above), this issue 
requires careful consideration. 

  It has been generally found from 
studies in the “single-high-dose” 
macaque model that protection 
against vaginal or rectal transmission, 
irrespective of the challenge 
virus, requires the use of inhibitor 
concentrations in the millimolar 
range, 102- to 107-fold greater than 
doses effective in cell culture systems 
(Figure 2). Although only two 
receptor blockers, both targeted at 
CCR5, have yet been tested in the 
macaque, the available data suggest 
that the differential may be greater for 
compounds that target the cell than for 
those directed at the incoming virus 
(Figure 2). One reason could be that 

more inhibitor is needed to diffuse 
into mucosal tissues and occupy the 
available receptors than to encounter 
the virus in the fl uid phase of the 
vaginal lumen. However, even for the 
virus-binding inhibitors, the ratio of 
the concentrations active in vivo and in 
vitro is still substantial (102- to 106-fold; 
Figure 2). Whether similar ratios will 
be observed with the “divided-high-
dose” challenge model remains to 
be determined; we believe there will 
be little difference between the two 
models in this regard. 

  Differences as large as those noted 
in Figure 2 cannot be attributed to 
the use of much higher amounts of 
virus in vivo. In some studies, the tissue 
culture infectious dose (TCID50) used 
for in vitro infection assays and for in 
vivo challenge was identical [19,22]; 
in another, only 3-fold more virus was 
used in vivo than in vitro [36]; and the 
amount of virus applied in an in vitro 
assay using cervical tissue explants was 
actually 6-fold  higher  than the amount 
that was used to challenge macaques 
in the same study [19]. Furthermore, 
since the volumes used in vitro are 

smaller than those used for delivery 
of an inoculum in vivo, the virus 
concentrations are actually higher in 
vitro. In only one study was substantially 
(100- to 1,000-fold) more virus applied 
vaginally than was used in tissue culture 
assays [37]. 

  Also, in any given in vitro assay, an 
increase in viral dose does not mean a 
proportional increase in the amount 
of inhibitor required to counter it. 
Indeed, there is normally a zone of viral 
input over which the effective inhibitor 
concentration (present in great molar 
excess over its target) is approximately 
constant. The “Percentage Law” covers 
this scenario [38]. By comparing the 
fractions of animals infected after 
receiving low and high doses of virus in 
the two models, we can also conclude 
that the infectivity of the inoculum 
does not have to be reduced more 
than about an order of magnitude to 
achieve partial protection [30–32,35]. 
Hence the requirement for high 
inhibitor concentrations for protection 
of macaques from vaginal challenge 
is unlikely to have a virological 
basis; it more probably refl ects the 
pharmacology of inhibitor delivery to 
sites where virus is deposited and/or 
where it fi rst encounters its cell surface 
receptors. 

  The above discussion has 
implications for the critical question: 
Will much less inhibitor be required 
to protect a woman from an infectious 
man than a macaque from a researcher 
with a syringe full of cell-free virus? 
We believe it would be imprudent to 
make this assumption. A comparison 
of the limited datasets available to 
date from the “single-high-dose” and 
“divided-high-dose” models shows that 
a proportional relationship between 
the effi cient dose of blocker and the 
infectious dose of virus cannot be 
assumed. Such models do not account 
for the effects of sexual intercourse, 
the length of time between application 
and exposure to infectious virus, and 
the potential diluting effects of vaginal 
fl uid and semen. Furthermore, these 
models have yet to be adapted to 
evaluate potential inhibitors of cell-
mediated transmission by the virus-
containing lymphocytes present within 
an infectious ejaculate.

   Using high concentrations of 
multiple inhibitors.  Taking all the 
above factors into account, we believe 
the strategy most likely to be effective 

 Five Key Papers in the Field
   Hillier et al., 2005  [6] A review of the 
epithelial damage caused by the early 
microbicide candidate nonoxynol-9 
and how this enhances the risk of HIV-1 
transmission. 

   Lederman et al., 2004  [22] A modifi ed 
form of a chemokine, PSC-RANTES, 
applied vaginally, was shown to protect 
macaque monkeys from challenge with a 
chimeric SHIV.

   Palliser et al., 2006  [26] This paper 
shows how siRNA molecules targeting 
viral genes, when applied vaginally in a 
murine model, can protect against lethal 
infection with HSV type 2.

   Stone, 2002  [1] This review introduces 
the concept of vaginal and rectal 
microbicides and gives a historical 
perspective on the development of 
the fi eld. It describes different classes 
of drugs that might make suitable 
microbicides.

   Veazey et al., 2005  [19] Different classes 
of entry inhibitors, small-molecule 
CCR5, and Env ligands, alone and in 
combination, were shown to protect 
macaque monkeys from challenge with a 
chimeric SHIV.  
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in women would be to use high 
(millimolar range) concentrations 
of more than one inhibitor. Using 
combinations has obvious advantages 
for prevention, just as it does for 
treatment of established infection. 

  For example, combinations could 
reduce the transmission of viruses 
insensitive to one or more components, 
provide additive or synergistic potency 
(allowing dose-sparing), and increase 
the breadth of coverage against the 
divergent strains that a microbicide 
must combat in the real world. 
However, there may be practical 
obstacles to combinations: at present, 
individual compounds must fi rst 
be approved separately, and it will 
be a complex process to optimally 
co-formulate different substances, 
then to prove in clinical trials that 
all the constituents are active. Also, 
interactions between inhibitors may 
cause unexpected toxicities.

  A candidate microbicide’s breadth 
of reactivity against circulating HIV-1 
strains cannot, of course, be evaluated 
in the monkey model, because only 
a few challenge viruses are available. 
However, panels of suitable test viruses 
from multiple genetic subtypes have 
been assembled for in vitro evaluation 
of vaccine-induced neutralizing 
antibodies [39–41]. The genetic 
variation issues that bear on preventing 
HIV-1 transmission are similar for 
microbicides and for vaccine-induced 
neutralizing antibodies; the vaccine test 
panels should serve a dual purpose. 

   Microbicidal protection by 
engineered commensal bacteria.  One 
sophisticated approach to achieving the 
continuous presence of a viral blocker 
in mucosal tissues is colonization of 
the vagina or rectum with recombinant 
bacteria secreting fusion inhibitory 
peptides or proteins [27–29]. Some 
quantitative aspects of this strategy 
are illustrated in Figure 3. Firstly, the 
inhibitor concentrations secreted 
in bacterial cultures are sometimes 
not suffi cient to block infection by 
primary isolates. Secondly, there is a 
large gap between in vitro–inhibitory 
and in vivo–protective concentrations 
(see Figure 2). Thirdly, lactobacilli 
in the vagina occur naturally in thin 
fi lms at varying but lower densities 
than in bacterial cultures. Fourthly, 
the continuous losses and dilution of 
substance secreted into the vaginal or 
rectal lumen will reduce the cumulative 

inhibitor concentration. Whether 
the engineered-lactobacilli approach 
to a microbicide could be effective 
will depend on whether inhibitor 
concentrations present at steady 
state in a bacterial fi lm are suffi cient 
to counter the incoming virus. The 
concept now needs to be evaluated in 
the macaque model, to determine the 
inhibitor concentrations present in vivo 
and whether they can protect against a 
SHIV challenge.

  Affordability

  Affordability is relevant because a 
microbicide must be manufactured at a 
cost that allows the product to be either 
given away or sold at a price accessible 
to developing-world users. Funding by 
governments or international agencies 
will affect what price is realistic. 
However, it would be hard to make 
the case that a microbicide product 
could cost much more than $1 per 
application; ideally it would be much 

DOI: 10.1371/ journal.pmed.0030351.g003

 Figure 3.  Microbicidal Protection by Engineered Commensal Bacteria
   For a detailed explanation of Figure 3A, see Text S3. For a detailed explanation of Figure 3B, see 
Text S4. 
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less. Some sophisticated, high-tech 
approaches may represent outstanding 
science, but would simply be too 
expensive to apply. 

  We will address this point by 
considering the economics of 
developing the C52L peptide as 
a microbicide product. C52L is a 
bacterially expressed, sequence-
modifi ed version of the licensed drug 
enfuvirtide (T-20). We showed it to be 
broadly inhibitory against diverse HIV-
1 strains in vitro, to act synergistically 
with other entry inhibitors (CMPD 
167 and BMS-378806), and to protect 
macaques from vaginal transmission 
of SHIV-162P3, both alone and in 
combination with other entry inhibitors 
[19]. Such properties suggest it could 
make a valuable contribution to a 
multi-component, entry inhibitor–
based microbicide. However, although 
the International Partnership for 
Microbicides has reached agreements 
with Merck and Bristol-Myers Squibb 
to develop CMPD 167 and BMS-378806 
as a practical microbicide product(s), 
C52L was not the subject of a similar 
agreement [42]. The reason is its 
likely high cost of manufacture on a 
large scale, particularly to the good 
manufacturing practice requirements 
necessary for human trials. 

  Broadly similar considerations may 
apply to developing other peptides 
or proteins such as PSC-RANTES 
and cyanovirin-N that have also been 
protective in monkey models [22,34,35]. 
PSC-RANTES is about a log more 
potent than C52L in vitro and in vivo, 
but because chemical modifi cations 
to the basic chemokine structure are 
required, it is more diffi cult to make [3]; 
cyanovirin-N may also be hard to express 
in large quantities. 

  Economies of scale are possible 
for any approved product that must 
be made in bulk, and cost-effi ciency 
improvements might be feasible (e.g., 
the development of fermentation 
technologies, plant-based expression 
systems, and new chemokine derivatives 
that can be expressed effi ciently in 
bacteria). Signifi cant investments must 
now be made to cover the start-up 
costs associated with the development 
of such potentially more economic 
methods to produce protein- and 
peptide-based microbicides.

  The cost of making enough siRNA 
to protect a woman from vaginal HIV-1 
transmission has been estimated to be 

about $8 per dose, based on what was 
needed to protect mice from lethal 
HSV infection [26]. This is perhaps 
an order of magnitude too expensive 
for routine use. However, if siRNA 
can provide durable protection, as 
suggested by the longevity of gene 
silencing in mice, it might be possible 
to apply it infrequently, perhaps weekly, 
reducing the cost to acceptable levels. 

  A non-nucleoside reverse 
transcriptase inhibitor provides 
prolonged protection in tissue explant 
experiments [43]. The sustained 
release of such an inhibitor from 
silicone elastomer rings, designed for 
intravaginal application, can maintain 
concentrations in vitro well above 
those required to prevent explant 
infection [25]. While vaginal rings 
may cost about $5 to $10, they can 
be loaded with enough drugs to last 
several months. Clearly, compounds 
and delivery methods that provide 
prolonged protection may reduce 
costs while improving both effi cacy 
and acceptability.

  Conclusion

  Not every scientifi cally sound concept 
can be developed as a product for 
use in the real world. Every concept 
has its challenges; while some will be 
overcome, other obstacles may be 
insuperable. Our intention has been 
to highlight some of the more obvious 
issues that affect all, or some, of the 
many promising microbicide concepts 
now being considered for product 
development. �
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