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Abstract

A comparative genomics approach was utilised to compare the genomes of Mycobacterium avium subspecies
paratuberculosis (MAP) isolated from early onset paediatric Crohn’s disease (CD) patients as well as Johne’s diseased
animals. Draft genome sequences were produced for MAP isolates derived from four CD patients, one ulcerative colitis (UC)
patient, and two non-inflammatory bowel disease (IBD) control individuals using Illumina sequencing, complemented by
comparative genome hybridisation (CGH). MAP isolates derived from two bovine and one ovine host were also subjected to
whole genome sequencing and CGH. All seven human derived MAP isolates were highly genetically similar and clustered
together with one bovine type isolate following phylogenetic analysis. Three other sequenced isolates (including the
reference bovine derived isolate K10) were genetically distinct. The human isolates contained two large tandem
duplications, the organisations of which were confirmed by PCR. Designated vGI-17 and vGI-18 these duplications spanned
63 and 109 open reading frames, respectively. PCR screening of over 30 additional MAP isolates (3 human derived, 27
animal derived and one environmental isolate) confirmed that vGI-17 and vGI-18 are common across many isolates.
Quantitative real-time PCR of vGI-17 demonstrated that the proportion of cells containing the vGI-17 duplication varied
between 0.01 to 15% amongst isolates with human isolates containing a higher proportion of vGI-17 compared to most
animal isolates. These findings suggest these duplications are transient genomic rearrangements. We hypothesise that the
over-representation of vGI-17 in human derived MAP strains may enhance their ability to infect or persist within a human
host by increasing genome redundancy and conferring crude regulation of protein expression across biologically important
regions.
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Introduction

Mycobacterium avium subspecies paratuberculosis (MAP), a Gram-

positive acid fast bacillus, is a member of the Mycobacterium avium

complex and is the causative agent of Johne’s disease (JD), a

chronic granulomatous enteritis affecting ruminants. While there

is no doubt MAP has the ability to cause enteric disease in animals

its potential zoonotic role in human conditions, such as Crohn’s

disease (CD), remains unresolved. The first isolation of viable

MAP from a CD patient was made almost 25 years ago [1,2].

Kirkwood et al. [3] more recently demonstrated that MAP could

be identified by IS900 PCR significantly more often in mucosal

biopsies and or peripheral blood mononuclear cells (PBMCs) from

paediatric CD patients (47%) not yet receiving therapy, when

compared to non-IBD controls (11%). Yet viable MAP could only

be cultured from mucosal biopsies from four of ten CD patients

and none of the non-IBD controls.

MAP is an extremely persistent pathogen that can survive

within the livestock environment (i.e., water, faeces and soil) for

long periods [4,5]. While bacilli from these environmental sources

may pose some risk to humans, the main source of transmission

from animals to humans is more likely to be via contaminated

milk. A study of 567 pasteurised milk samples from the UK found

11.8% were MAP positive by PCR analysis and that MAP could

be cultured from 1.8% [6]. Similar recovery rates have been found

elsewhere [7] which indicate a possible transmission route of live

MAP from animals to humans is occurring through contaminated

milk and possibly through animal derived foodstuff.

Due to the importance of MAP as a global animal pathogen and

its potential zoonotic role in CD, many studies have investigated

the genetic diversity of MAP isolated from different host species. A

number of strategies have been developed for assessing the genetic

variation of MAP isolates. Restriction fragment length polymor-

phism (RFLP) [8] was the strategy first utilised and it demonstrated
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the existence of three animal derived strain types. Other

techniques such as PCR-restriction endonuclease analysis of the

insertion sequence IS1311 [9], IS900 RFLP [10], pulsed-field gel

electrophoresis [11], representational difference analysis [12]

candidate gene analysis [13,14,15] and, most recently, compara-

tive genome hybridisation [16,17,18,19,20,21] have confirmed the

existence of these three MAP types. Each strain type contains

varying degrees of genomic deletions derived from a putative MAP

precursor genome. Type I MAP strains predominantly infect ovine

hosts, whilst Type II principally infect bovine hosts. Type III MAP

has been isolated from both ovine, bovine and caprine sources [4].

Previous genetic investigations have shown MAP strains isolated

from humans cluster with strains of bovine origin [19,22]. AFLP

fingerprinting however has suggested bovine MAP cluster into two

major nodes but those recovered from sheep or humans resolve on

separate branches [23].

To date, the complete genome sequence is available for only

one MAP isolate [24,25]. This isolate, a bovine derived Type II

strain (designated K10), has served as an important reference

genome for many genomic MAP studies. However, to gain an

understanding of the broader genomic diversity within this species,

multiple strains must be sequenced. This is particularly relevant

for MAP due to the significant genetic differences observed

between the three major strain types. The comparison of multiple

strains from a single species is now common practice [26,27].

Indeed, multiple Mycobacterium tuberculosis genomes have been fully

sequenced and this has led to the identification of numerous

genetic polymorphisms that may underline the basis of virulence

attenuation in this species [28].

This study utilised high throughput DNA sequencing combined

with comparative genome hybridisation to examine the genetic

relationship between multiple human and animal derived MAP

strains at a genome-wide level. Genetic differences between strains

may reveal phylogenetic relationships that provide a better

understanding of the processes involved with MAP zoonotic

transmission.

Materials and Methods

MAP isolates
The genomes of ten MAP isolates (seven human and three

animal derived) were sequenced using the Illumina GAIIx

platform. The details of each isolate are presented in Table 1.

The seven human isolates were cultured from mucosal biopsies

taken from the ileum or caecum from paediatric patients

undergoing initial endoscopy at the Royal Children’s Hospital

(Melbourne, Australia) between 2003 and 2008. Diagnosis of IBD

was established using standard clinical, endoscopic and histopath-

ological criteria as reported previously [29]. For the purpose of this

study clinicians diagnosed patients as CD, UC or non-IBD and

researchers were informed of the diagnosis prior to MAP isolation.

The initial isolation of human CD derived isolates Pt139, Pt144,

Pt145 and Pt149 was conducted and published by Kirkwood et al.

[3]. Subsequent isolation of strains from non-IBD (Pt154, Pt155)

and UC (Pt164) patients were conducted by us exactly as described

by Kirkwood et al. [3]. The collection of all mucosal biopsies was

approved by the Human Ethics Committee of the Royal

Children’s Hospital (EHRC no. 23003). Informed consent was

obtained from each individual parent or guardian [3].

Human CD MAP isolates ATCC-43544 (Ben) and ATCC-

43015 (Linda) were obtained from the American Type Culture

Collection (ATCC). Isolation and characterisation of these isolates

has been described elsewhere [1,2]. The human CD MAP isolate

SN8 was a gift from Dr Saleh Naser of the University of Central

Florida, USA. This isolate was obtained from an ileum biopsy

from a CD patient in 2002 and was further characterised by

Overduin et al. [30].

Strains labelled CLIJ were isolated from the ileocaecal valve

from autopsied animals diagnosed with clinical JD from Victoria,

Australia between 1997 and 2005. Collection and characterisation

of CLIJ623 and CLIJ361 was performed by Stewart et al. [31].

Isolation and characterisation of isolates CLIJ644, CLIJ684 and

CLIJ748 was performed exactly as described by Stewart et al. [31]

and has not been published to date. Collection of these isolates was

approved by the Australian Animal Health Laboratory Animal

Ethics Committee (AAHL AEC no. 626). Isolation and character-

isation of strains derived from caprine hosts (CAM87, 464 and

456) have been previously reported by Castellanos et al. [16].

The bovine strains: 96/1400-1, 93/6428, 96/4651 and 96/

5141, and ovine strains: 97/5541-1, 98/3368, 99/3759-2 and 99/

340, were isolated from faecal or tissue samples submitted to the

Department of Primary Industries (Victoria) for routine of JD

surveillance and diagnosis between 1993 and 1999. The bovine

derived strains labelled K, and the single isolate DJ1, were isolated

by the Veterinary Laboratory Agency (South Wales, UK) from

faecal samples collected from animals with clinical JD or from

animals in which subclinical MAP infection was suspected. These

faecal samples were collected between 2000 and 2005. Strains

labelled G were also isolated from faecal samples derived from

animals with clinical JD (between 1999 and 2001) and were a gift

from Dr Detlef Jonas of the Regional Veterinary Laboratory

(Landesuntersuchungsamt Rheinland-Pfalz), Germany. The US23

strain was derived from a bovine host with clinical JD in the USA.

To our knowledge a description of these strains has not been

reported previously.

All isolates used for genome sequencing (including the ovine

derived isolate CLIJ361) were cultured on Herrold’s slants

containing mycobactin, sodium pyruvate and fungizone for

between six to nine months. All isolates were derived from a

single colony. Ziehl-Neelsen staining was performed on each

cultured isolate to confirm acid-fast bacilli.

Genomic DNA isolations for genome sequencing, PCR
and real-time PCR

DNA for whole genome sequencing was extracted using the

chloroform extraction protocol as described herein. Bacterial cells

were scraped from Herrold’s slopes using a sterile loop and

resuspended in 500 ml of TE (pH 8.0). Cells were washed once

and resuspended in 500 ml of TE (pH 8.0). The cell suspension

was first incubated at 80uC for 20 min and then at 37uC for 1.5 h

containing 1 mg/ml of lysozyme (Sigma). RNaseA (Sigma) was

added to a final concentration of 50 mg/ml and the cell lysate was

incubated for a further 30 min at 37uC. The lysate was then

incubated at 65uC for 20 min containing 1% SDS and 180 mg/ml

of proteinase K (Sigma). CTAB (hexadecyltrimethyl ammonium

bromide) to a final concentration of 1% (w/v) and NaCl to 0.7 M

were added and the lysate incubated at 65uC for a further 10 min.

Seven hundred and eighty microlitres of chloroform/isoamyl

alcohol (24:1) was then added, mixed and the sample centrifuged

at 17,0006g for 5 min. Between 600–700 ml of the aqueous phase

was removed and precipitated with 0.6 volumes of isopropanol at

220uC. The DNA was pelleted by centrifugation at 17,0006g for

15 min at 4uC. The pellet was washed once with 500 ml of 70%

ethanol at 17,0006g for 10 min. The pellet was air dried for

10 min at room temperature and resuspended in nuclease free

water.

All additional PCR assays, except the IS900 PCR and real-time

PCR, were performed using a crude DNA template as previously
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described by Moravkova et al. [32]. Briefly, a loop full of bacilli

were scraped from a single Herrold’s slope and resuspended in

50 ml of nuclease free water. The cell suspension was heated to

100uC for 20 min and centrifuged for 5 min at 17,0006g. The

supernatant was transferred to a fresh tube and stored at 220uC
until use.

IS900 PCR
Amplification of the IS900 element was performed for each

isolate to confirm MAP identity prior to whole genome

sequencing. PCR was conducted in a total volume of 50 ml

containing 5 ml of 106 buffer (Qiagen), 200 mM of each dNTP

(Promega), 0.2 mM of forward primer (JF11) and 0.2 mM of

Table 1. Details of Mycobacterium avium subspecies paratuberculosis isolates investigated in this study.

Isolate Type Host Sample Origin Diagnosed condition Ref

CLIJ623{ II bovine gut autopsy Australia clinical BJD [31]

CLIJ644{ II bovine gut autopsy Australia clinical BJD -

CLIJ361{ I ovine gut autopsy Australia clinical OJD [31]

Pt139{ II human gut biopsy Australia early onset CD [3]

Pt144{ II human gut biopsy Australia early onset CD [3]

Pt145{ II human gut biopsy Australia early onset CD [3]

Pt146{ II human gut biopsy Australia early onset CD [3]

Pt154{ II human gut biopsy Australia Non-IBD gastritis -

Pt155{ II human gut biopsy Australia Non-IBD

spirochaetosis -

Pt164{ II human gut biopsy Australia UC -

ATCC-19698 II bovine faeces USA clinical BJD [50]

ATCC-43544 II (Ben) human gut biopsy USA CD [1]

ATCC-43015 II (Linda) human gut biopsy USA CD [1]

CLIJ684 II bovine gut autopsy Australia clinical BJD -

CLIJ748 II bovine gut autopsy Australia clinical BJD -

96/1400-1 II bovine faeces Australia clinical BJD -

93/6428 II bovine faeces Australia clinical BJD -

96/4651 II bovine gut tissue Australia clinical BJD -

96/5141 II bovine gut tissue Australia clinical BJD -

97/5541-1 I ovine gut tissue Australia clinical OJD -

98/3368 I ovine faeces Australia clinical OJD -

99/3759-2 I ovine faeces Australia clinical OJD -

99/340 I ovine gut autopsy Australia clinical OJD -

K11 II bovine faeces Wales, UK clinical BJD -

K18 II bovine faeces Wales, UK clinical BJD [30]

K43 II bovine faeces Wales, UK clinical BJD -

K57 II bovine faeces Wales, UK clinical BJD -

K46 II bovine faeces Wales, UK clinical BJD -

K47 II bovine faeces Wales, UK clinical BJD -

K48 II bovine faeces Wales, UK clinical BJD -

SN8 II human gut biopsy USA CD [30]

US23 II bovine faeces USA clinical BJD -

456 II caprine gut biopsy Spain clinical JD [16]

464 II caprine gut biopsy Spain clinical JD [16]

213G I pigmented ovine gut biopsy Scotland, UK clinical JD [10]

W43 II - river water Wales, UK - [51]

S5 Bison caprine faeces India clinical JD [52]

G50 II bovine faeces Germany clinical BJD -

G128 II bovine faeces Germany clinical BJD -

DJ1 II bovine faeces Wales, UK clinical BJD -

CAM87 III caprine faeces Spain clinical JD [16]

{represent isolates used for genome sequencing. CD = Crohn’s disease, UC = ulcerative colitis, BJD = bovine Johne’s disease, OJD = ovine Johne’s disease.
doi:10.1371/journal.pone.0022171.t001
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reverse primer (JF12) (Table S1), 2.5 units of Taq DNA polymerase

and 5 ml of a 1:100 diluted DNA template. Reactions were first

subjected to 94uC for 3 min followed by 35 cycles of 94uC for

1 min, 58uC for 1 min and 72uC for 30 s. Amplicons were

visualised on 2% TAE gels containing 16GelRed stain (Biotium).

PCR and restriction enzyme analysis of the IS1311 element was

previously used to confirmation animal isolates as Type I or Type

II strains [31].

Genome sequencing and reference assembly
For isolates CLIJ623, CLIJ644, CLIJ361, Pt139, Pt146, Pt154

and Pt164 whole genome sequencing was performed on the

Illumina GAIIx platform using one flow-cell lane per isolate with

36-cycle paired-end chemistry. For isolates Pt144, Pt145 and

Pt155 whole genome sequencing was performed with 70-cycle

single-read chemistry. Reads were trimmed from the 39 end to

ensure a minimum Phred quality of 3, and read pairs containing

ambiguous bases were removed. Read mapping onto the K10

genome sequence was performed using SHRiMP (ver. 1.3.2) [33]

and SNPs and indels were called using Nesoni (ver. 0.29) (http://

www.bioinformatics.net.au/software.shtml) with default parame-

ters. Only SNPs for which the base was identified in greater than

80% of the mapped reads, with sequence coverage over 10-fold,

were considered to represent unambiguous core SNPs. A recently

revised version of the K10 genome was used as the reference

genome [25].

Comparative genomic hybridisation (CGH)
Microarray design and validation has been previously described

for the MAPAC array [16]. MAP DNA for CGH analysis was

extracted as described previously [16]. Briefly, approximately 109

cells were scraped and emulsified through a 25-gauge needle in

650 ml mycobacterial lysis buffer (8.6 ml water, 0.5 M EDTA,

5 M NaCl, 1 M Tris-HCl [pH 8.0], 10% sodium dodecyl sulphate

[SDS], 1 mg/ml lysozyme [Sigma]), 0.15 mg/ml proteinase K

(Sigma), and 0.5 mg/ml lipase (Sigma, UK) then incubated at

37uC in a rotator for 1 h. Samples were added to lysing matrix B

(MP Biomedicals, UK) in 1.9-ml ribolyser reaction tubes,

mechanically disrupted in a FastPrep-24 ribolyser (MP Biomed-

icals) at 6,500 rpm for 45 s then kept on ice for 10 min. Lysate

(220 ml) was added to 200 ml of Qiagen DNAeasy AL lysis buffer,

mixed and applied to a DNAeasy column. Ethanol (100%; 200 ml)

was then added and the tube sealed and mixed. Columns were

washed in 500 ml Qiagen lysis buffers 1 and 2, with centrifugation

at 8,0006g for 1 min, and then eluted in 90 ml DNA/RNase-free

water overnight on the column at 4uC. MAP DNA from each

sample (1.5 mg) was then labelled by random priming with 5 U

Klenow polymerase (Invitrogen) to incorporate either Cy3 or Cy5

dCTP (GE Healthcare) for the test strain or the reference strain,

respectively. Equal amounts of the Cy3- and Cy5-labelled samples

were then co-purified through a Qiagen MinElute column, mixed

with 500 ml Qiagen Buffer PB, washed twice with 500 ml Qiagen

Buffer PE then eluted in 17 ml DNAse/RNAse free dH2O.

Labelled DNA was then denatured at 95uC for 2 min in

hybridisation buffer (30% formamide, 3.756Denhardt’s solution,

66SSC, 0.75 mM sodium pyrophosphate, 37 mM Tris [pH 7.4],

0.075% SDS), loaded onto prehybridized (3.56 SSC [16 SSC is

0.15 M NaCl plus 0.015 M sodium citrate], 0.1% SDS, 10 mg/ml

bovine serum albumin) microarray under two 22- by-22-mm

LifterSlips (Erie Scientific), sealed in a humidified hybridization

cassette (Corning) and hybridized overnight by immersion in a

water bath at 55uC for 16 to 20 h. Slides were washed once in

400 ml 16 SSC, 0.06% SDS at 55uC for 2 min and twice in

400 ml 0.066 SSC for 2 min. Microarrays were then scanned

using an Affymetrix 428 scanner, and signal intensity data were

extracted using BlueFuse for Microarrays v3.5 (BlueGnome).

Intensity data were post-processed by BlueFuse to exclude both

controls and low-confidence data (p,0.1) prior to normalization

by two-dimensional Lowess (window size of 20) and median

centring. Further analysis of the normalized data was undertaken

using GeneSpring 7.3.1 (Agilent Technologies). Analysis methods

used triplicate microarray data from each strain with a hidden

Markov model for CGH calling [34]. Genes showing .1.5 fold

increase or decrease in signal over the control MAP K10 were

listed as significant.

Validation and characterisation of vGI duplications
PCR and sequencing was used to confirm genomic organisation

of two apparent duplications (vGI-17 and vGI-18). We designed

outward-facing primers (Table S1) located at the 59 and 39 ends of

the duplicated region and performed PCR using genomic DNA as

template. The vGI-17 PCR was performed in a total volume of

50 ml containing 25 ml of GoTaq Hot Start Green Master Mix

(Promega), 0.2 mM of forward primer (GSP1-59-vGI-17) and

0.2 mM of reverse primer (GSP1-39-vGI-17), 5 ml of crude DNA

template and nuclease free water to 50 ml. Reactions were first

heated to 95uC for 3 min followed by 30 cycles of 95uC for 1 min,

58uC for 1 min and 72uC for 4 min. PCR for vGI-18 was

performed in a total volume of 50 ml containing 16 PfuUltra II

reaction buffer (Stratagene), 0.2 mM of forward primer (GSP1-59-

vGI-18) and 0.2 mM of reverse primer (GSP1-39-vGI-18), 250 mM

of each dNTP, 1 ml of PfuUltra II fusion HS DNA polymerase and

5 ml of crude DNA template. Reactions were subjected to 95uC for

2 min followed by 30 cycles of 95uC for 20 s, 62uC for 20 s and

72uC for 3 min, followed by a final extension for 3 min at 72uC.

PCR products were resolved on 1% TAE agarose gel containing

16GelRed DNA stain and visualised under UV transillumination.

A selection of PCR products was purified using the QIA Quick

PCR Clean-up Kit (Qiagen) and directly sequenced on both

strands using the Applied Biosystems PRISM BigDye Terminator

Mix and the Applied Biosystems 3730S Genetic Analyser (Applied

Biosystems).

The vGI-17 duplication was quantified by real-time PCR using

the standard curve method. MAPK_3057 was chosen as the

endogenous control because this locus showed no evidence of

duplication within any genome. We therefore assumed that a

single copy of MAPK_3057 represents a single bacillus. CGH data

also suggests that vGI-17 is present in no more than duplicate

copies in any one cell. Absolute copy numbers of the vGI-17 and

MAPK_3057 were then determined and ratio of vGI-17 to

MAPK_3057 calculated. This ratio is interpreted as a percentage

of cells that contain the vGI-17 duplication.

A total of 11 isolates were chosen for real-time PCR analysis

and included the human isolates Pt139, Pt146, Pt154, Pt164,

ATCC-43544 and the bovine isolates CLIJ623, CLIJ644, 96/

1400, 93/6428, 96/4651 and 96/5141. For isolates Pt139, Pt146,

Pt154, Pt164, ATCC-43544, CLIJ623 and CLIJ644 bacteria were

harvested from Herrold’s slants after approximately 20 months

growth. For isolates 96/1400, 93/6428, 96/4651 and 96/5141

bacteria were harvested from Middlebrook 7H9 broth after 3

months of culture. DNA was extracted using the CTAB method as

described above. Genomic DNA was quantified using the Qubit

Fluorometer (Invitrogen) as per the manufacturer’s recommenda-

tions.

First PCR products of vGI-17 and the endogenous control gene

MAPK_3057 were produced as described above. MAPK_3057

PCR conditions were identical to vGI-17. PCR products were

cloned into P-GEM-T Easy vector system (Promega), transformed
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into chemically competent E.coli (Bioline) and cultured on LB agar

overnight at 37uC. Colonies were picked and further cultured

overnight in LB broth. Plasmids were purified using the QIAprep

Spin Miniprep kit (Qiagen). A serial dilution of plasmid DNA

ranging from 101 to 108 copies was used to generate a standard

curve. PCR conditions were identical for both vGI-17 and

MAPK_3057 and were performed in triplicate. PCR was

performed in a total volume of 20 ml containing 10 ml of EXPRESS

SYBR GreenERTM qPCR SuperMix (Invitrogen), 0.2 mM of

forward primer (GSP1-59-vGI-17 or MAPK_3057F) and 0.2 mM

of reverse primer (GSP1-39-vGI-17 or MAPK_3057R), 0.4 ml of

ROX Reference Dye (Invitrogen), 5 ml of plasmid template (or

50 ng of genomic DNA extracted from each isolate) and nuclease

free water to 20 ml. Reactions were first heated to 95uC for 2 min

followed by 40 cycles of 95uC for 30 s, 55uC for 30 s and 72uC for

3 min. The default melt curve analysis was conducted after the final

cycle. PCR and data analysis was performed on an Applied

Biosystems StepOnePlus real-time PCR system.

Results

Single nucleotide polymorphisms
Read mapping onto the corrected K10 genome [25] was used to

detect single nucleotide polymorphisms (SNPs) within each isolate.

Read mapping identified a total of 3738 sites across the K10

genome that sequence varied in one or more of the isolates

sequenced in this study. The number of SNPs detected varied

between isolates (Figure 1). The majority of these SNPs (3582;

95.8%) were unique to the CLIJ361 ovine isolate. A set of 30 SNPs

were found to be shared by all human derived isolates and the

bovine derived isolate CLIJ623. A set of 15 SNPs were found to be

shared by all isolates compared to the K10 reference, possibly

reflecting an Australian MAP specific polymorphism. A full

description of SNPs identified within each isolate is presented in

Table S2. All raw sequence data has been deposited in the NCBI

Sequence Read Archive as study SRA030663. The Whole Genome

Shotgun project has been deposited at DDBJ/EMBL/GenBank

under the accession AFHX00000000 (CLIJ623), AFNR00000000

(CLIJ644), AFNS00000000 (CLIJ361), AFPC00000000 (Pt139),

AFPD00000000 (Pt144), AFPE00000000 (Pt145), AFPF00000000

(Pt146), AFPG00000000 (Pt154), AFPH00000000 (Pt155) and

AFPI00000000 (Pt164). The version described in this paper is the

first version AFHX01000000, AFNR01000000, AFNS01000000,

AFPC01000000, AFPD01000000, AFPE01000000, AFPF0100

0000, AFPG01000000, AFPH01000000 and AFPI01000000.

Although CLIJ644 is a typical bovine derived isolate it shared

22 SNPs with the ovine derived isolate CLIJ361 and 76 unique

SNPs. Of particular note is the fact that CLIJ644 and CLIJ623,

both Victorian bovine derived MAP isolates, demonstrated

significant variation in SNP profiles (Figure 1). These isolates

shared no common SNPs apart from the 15 SNPs identified in all

sequenced Australian isolates.

Phylogenetic analysis of bovine and human derived isolates

based on SNPs revealed that human derived isolates show

significant differences to both bovine CLIJ644 and K10 reference

genomes, but are similar to CLIJ623 (Figure 2). The ovine derived

isolate CLIJ361 was omitted from phylogenetic analysis due to its

significant genetic divergence from the other isolates.

A total of 24 non-synonymous SNPs, including three deletions,

three insertions and 18 substitutions, were identified within unique

Figure 1. The number of SNPs identified in each isolate compared to the K10 reference genome. Identical colours represent SNPs shared
between isolates. CLIJ = clinical John’s disease, Pt = human patient. Note scale change on the y-axis. Origins of isolates are presented in Table 1.
doi:10.1371/journal.pone.0022171.g001
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Figure 2. Phylogenetic analysis of human and bovine derived Mycobacterium avium subspecies paratuberculosis. Neighbour-joining
phylogenetic tree based on single nucleotide polymorphisms (SNPs) of Mycobacterium avium subspecies paratuberculosis isolates derived from animal
and bovine hosts. The ovine derived isolate CLIJ361 was omitted from this analysis due to its significant genetic divergence from the other isolates.
doi:10.1371/journal.pone.0022171.g002
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human derived isolates and CLIJ623 compared with K10. Seven

open reading frames (ORFs) were either extended or truncated as

a result (Table 2). It is perhaps most interesting to note that MAP

isolates derived from CD and UC patients as well as the two non-

IBD control subjects were highly similar.

Duplicated regions
Two large genomic duplication regions were identified in some

strains via their significantly higher sequencing coverage

(Figure 3A). CGH also revealed an increase in signal intensity of

approximately 2-fold when compared to K10 (Figure 3B). The first

duplication, designated variable Genomic Island-17 (vGI-17),

spanned 63 open reading frames including locus tags MAPK_1203

to MAPK_1265 (originally annotated as MAP2503 to MAP2565).

Both sequence analysis and CGH showed this duplication to be

present in all seven human derived isolates and the animal derived

isolate CLIJ623. The second duplication, designated vGI-18,

spanned 109 open reading frames including MAPK_0302 to

MAPK_0410 (originally annotated as MAP3466 to MAP3358c).

The vGI-18 duplication was only found to be present in three of the

human derived isolates (Pt139, Pt144 and Pt145) revealed by

sequence analysis and CGH. A full list of genes within vGI-17 and

vGI-18 are included as Tables S3 and S4.

Both vGI-17 and vGI-18 are flanked by copies of the IS4 family

transposase of which six copies are present in the K10 genome.

Although this insertion sequence (IS) is annotated as an IS4 family

transposase, homology searches suggest it shows greater similarity

to the IS1182 family. However, until specific nomenclature is

assigned to this IS, we will continue to use the IS4 family

annotation. A PCR based strategy was devised to confirm the

Figure 3. Schematics and PCR results for vGI-17 and vGI-18. A: Read depth plots for the seven human derived MAP isolates mapped onto the
K10 reference genome. Regions with read depth exceeding the average are shown in red, while regions with below average depth are shown in blue.
The inner track is Pt139, then Pt144, Pt145, Pt146, Pt154, Pt155 and the outer track is Pt164. B: MAPAC scatterplot comparing total genomic DNA from
human MAP isolate Pt145 with MAP K10 control DNA. Diagonal lines represent 22, 0 and +2 fold differences in signal between test and control spots.
vGI-17 and vGI-18 appear as clusters of significantly increased signal over MAP K10. C: PCR results from the human MAP isolate Pt139 and bovine
isolate K10 for vGI-17 and vGI-18 duplications. D: IS900 PCR as positive PCR control.
doi:10.1371/journal.pone.0022171.g003
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position and orientation of vGI-17 and vGI-18 duplications.

Outward oriented PCR primers were designed for both vGI-17

and vGI-18 located within the extreme 59 and 39 regions of the

duplications and immediately internal of the adjacent IS4

(Figure 4). Sequencing of PCR amplicons obtained with these

primer pairs showed true tandem duplications of each region

separated by an extra internal copy of the IS4 family transposase

(Figures 3C and 3D).

To identify the frequency of tandem duplications in other MAP

strains, duplication specific vGI-17 and vGI-18 PCRs were used to

screen a panel of MAP isolates from a variety of hosts and

geographical locations (Table 3). Both vGI-17 and vGI-18 tandem

duplications were found in the majority of isolates examined,

including those that which were not initially considered to contain

duplications following genome sequencing and CGH. Indeed,

vGI-17 and vGI-18 were identified as present in cultures of each of

the three additional human isolates (ATCC-43544, ATCC43015

and SN8; refer to Table 1 for isolate descriptions) and many

animal isolates including several geographical locations. The

proportion of cells containing the vGI-17 duplication was

quantified in a subset of isolates using real-time PCR. The

absolute copy number of vGI-17 and the single copy endogenous

reference gene MAPK_3057 was determined by the standard

curve method against dilutions of recombinant plasmid and the

ratio of vGI-17 to MAPK_3057 calculated as the proportion of

total MAP cells in each culture (as a percentage) containing the

vGI-17 duplication. This ranged between 0.01 to 15% (Figure 5)

with human derived isolates containing a higher proportion of

vGI-17 positive cells compared to bovine derived isolate with the

exception of the bovine isolate 96/5141 and CLIJ623, which both

had a comparable proportion of vGI-17 to human derived isolates.

When quantified by real-time PCR the proportion of cells

containing vGI-17 was lower than previously demonstrated by

sequencing and CGH. We suggest this discrepancy may be a

consequence of differences in culture age. Indeed isolates used for

genome sequencing were grown for six to nine months whereas

isolates for qPCR were cultured for approximately 20 months.

The PCR amplicon for vGI-17 was larger within the four ovine

derived strains 97/5541-1, 98/3368, 99/3759-2 and 99/340.

Sequence analysis of these products revealed that in this ovine strain

a 244 bp region present in a gene immediately adjacent to vGI-18

(MAPK_0300 previously MAP3468) had been duplicated and

replaced a 100 bp region within an ORF (MAPK_1265 previously

MAP2502) immediately adjacent to vGI-17 (Figure 4). This result

suggests both vGI-17 and vGI-18 are related and could indicate other

genomic rearrangements associated with the IS4 elements have

occurred around these loci in the Type I MAP genome.

Isolate sequences not present in K10
Sequence reads that did not align to the K10 reference genome

were subsequently de novo assembled using Velvet 0.7.63 [35] and

checked for contaminant sequences. These resultant contig

sequences represent DNA present in the K10 genome. The ovine

derived isolate CLIJ361 contained significantly more contigs

compared to all other isolates sequenced (Table 4) totalling

approximately 90 kb of unique sequence. The human and bovine

derived isolates contained only a small number of unique contigs

(Table 4).

All human and bovine (CLIJ623 and CLIJ644) derived isolates,

but not the ovine derived isolate (CLIJ361), produced one

common contig representing an additional 164 bp in the ABC-

type multidrug transporter, MAPK_1668, compared to the K10

reference (Figure 6A). This extended the N-terminal region of the

encoded protein by 173 aa relative to K10. This extended form

resembles its ortholog in M. avium subspecies hominissuis

(MAV_2079), and probably reflects a fixed deletion in the K10

strain rather than an identical insertion into both the Australian

MAP strains and M. avium subspecies hominissuis.

Similarly, an additional 253 bp region located at the 59 region

of MAPK_2390 was identified and is predicted to encode a

sulfotransferase (Figure 6B). This additional sequence extended the

encoded protein sequence by 144 aa which more closely resembles

its ortholog (MAV_3100) in M. avium subspecies hominissuis. This

Figure 4. Genome organisation of vGI-17 and vGI-18. Each vGI consists of a tandem duplication separated by an internal IS4 element.
Approximate primer locations are indicated by dashed half arrows. Yellow boxes depict a 244 bp insertion into the duplicated copy of MAPK_1203
(designated MAPK_1203*). This sequence was 100% identical to a region of MAPK_0300 and only was found to be specific to ovine type I MAP strains.
Refer to Table S3 and S4 for full lists of genes within vGI-17 and vGI-18.
doi:10.1371/journal.pone.0022171.g004
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additional sequence was found only in bovine strain CLIJ644 and

ovine strain CLIJ361.

All remaining de novo assembled contigs of bovine isolate

CLIJ644 were found to be mapped to a single 5.3 kb region of the

M. avium subspecies hominissuis genome. This region contained

MAV_3107 (polyketide synthase) and MAV_3108 (erythronolide

synthase, modules 3 and 4). Due to the repetitive nature of

polyketide synthase genes, it remains unclear where exactly this

5.3 kb region is located within the CLIJ644 genome, however our

data suggests it is likely to be between polyketide synthase Pks7 and

Pks8. This additional sequence was unique to CLIJ644. A full

description of contigs and their positions on the M. avium

subspecies hominissuis genome is available as Table S5.

K10 sequences not found in sequenced isolates
Read mapping identified regions of the K10 genome for which

there was no corresponding sequence in the isolate from which the

reads were derived. These unmapped regions represent differences

in the coding capacity compared to K10. A total of 1574

unmapped regions were identified. At the sequence coverage used

most of these unmapped regions were identified as regions with no

or low sequence coverage. Conservative analysis identified four

regions (two small and two large) that were present in K10 but not

in one or more of the other strains. Read mapping of CLIJ361

revealed two large regions spanning 23 full and two partial open

reading frames where no reads were mapped. The absence of this

region compared to K10 has been reported previously in Type I

MAP strains [17]. A 162 bp unmapped region within the

hemolysin-like protein (MAPK_1064) was also observed within

CLIJ361 as well as a 126 bp unmapped region within an acetyl-

CoA acetyltransferase (MAPK_2970). Apart from small gaps in

read depth, the human and bovine isolates did not contain any

large unmapped regions compared to the K10 reference genome.

Discussion

The aim of this study was to investigate the genetic relationship

between multiple human and animal derived MAP strains at a

genome-wide level. We hypothesised that genetic differences

between strains may reveal phylogenetic relationships that provide

a better understanding of the processes involved with MAP

zoonotic transmission.

Our phylogenetic analysis based on SNPs showed a high

genomic homogeneity within a panel of human isolates including

four CD derived, a single UC derived and the two non-IBD

control isolates. This is in agreement with the hypothesis that

MAP, although capable of infecting humans, may not necessarily

be able to trigger CD without cooperation from other factors

influencing individual susceptibility. Significantly these human

derived isolates were also closely related to a single dairy cattle

isolate CLIJ623 [31] obtained within a similar geographical

location (Victoria, Australia). This study only isolated a limited

number of human strains and these were all MAP type II, but the

relationship confirms previous studies demonstrating restricted

allelic diversity within human MAP isolates [36] and a close

genetic homogeneity to bovine isolates [21,37]. This could also be

indicative of a superior ability of bovine type II strains to persist

within a human host. However, as Australians are much more

likely to be exposed to MAP through bovine derived food products

such as milk than ovine food products, this finding is more likely to

be a reflection of the nature of zoonotic transmission and

represents a common strain circulating amongst JD infected herds

and humans in Victoria. The distinct genomic profile of MAP

strains associated with humans determined in this work will allow

future research to more fully investigate the geographical

distribution and host preference of MAP human associated strains

within Australian livestock species.

All MAP human associated isolates and the bovine isolate

CLIJ623 were found to contain 24 non-synonymous SNPs. The

Table 3. vGI-17 and vGI-18 duplication PCR results.

Isolate Type Host vGI-17 vGI-18

CLIJ623 II bovine + +

CLIJ644 II bovine + 2

CLIJ361 I ovine 2 2

Pt139 II human + +

Pt144 II human + +

Pt145 II human + +

Pt146 II human + +

Pt154 II human + +

Pt155 II human + +

Pt164 II human + +

ATCC-19698 II bovine + +

ATCC-43544 (Ben) II human + +

ATCC-43015 (Linda) II human + +

CLIJ684 II bovine + +

CLIJ748 II bovine + +

96/1400-1 II bovine + +

93/6428 II bovine + +

96/4651 II bovine + +

96/5141 II bovine + +

97/5541-1 I ovine +* +

98/3368 I ovine +* +

99/3759-2 I ovine +* +

99/340 I ovine +* +

K11 II bovine + +

K18 II bovine 2 2

K43 II bovine + +

K57 II bovine + 2

K46 II bovine 2 2

K47 II bovine + +

K48 II bovine + +

SN8 II human + +

US23 II bovine + 2

456 II caprine 2 2

464 II caprine 2 2

213G I pigmented ovine 2 2

W43 II - + 2

S5 bison caprine + 2

G50 II bovine 2 2

G128 II bovine + 2

DJ1 II bovine 2 2

CAM87 III caprine 2 2

PCR was performed on a panel of isolates derived from various host species and
geographical locations.
*denotes a larger vGI-17 PCR product observed in some ovine MAP strains.
doi:10.1371/journal.pone.0022171.t003
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majority of these result in single amino acid substitutions. However

significant frame shifts occur in seven cases. The truncation by 149

aa of the acyl-CoA dehydrogenase FadE3_2 is particularly

notable. The protein encoded by this gene has been shown to

be significantly up-regulated in vivo-derived MAP from JD animals

compared to laboratory cultured MAP [38] and also up-regulated

in response to heat stress [39]. Furthermore the M. avium strain

905 also increased expression of proteins involved in fatty acid

metabolism (FadE2) after phagocytosis by THP-1 cells [40]. The

consequence of alterations in fatty acid metabolism for the survival

of MAP in a human intracellular environment is as yet unknown,

however FadE orthologs are known to be important in the

catabolism of cholesterol by Mycobacterium tuberculosis during human

cell entry [41] and so could be similarly involved in host specific

carbon sourcing.

Gene duplication can increase genetic redundancy across

potentially biologically important regions and thus may function

to convey an enhanced ability of the organism to persist within a

hostile environment. Duplication/deletion events involving IS

elements have been reported previously in MAP [16]. Indeed,

utilising CGH Castellanos et al. [16] detected 16 regions of

consecutive genes (designated vGI-1 to vGI-16) with significantly

altered signal ratios indicative of duplications/deletion. These

polymorphisms were observed in both MAP Type I and MAP

Type III strains and were often flanked by IS elements. Our study

using both CGH and genome sequencing identifies two new large

duplications (vGI-17 and vGI-18) spanning a total of 172 ORFs.

Duplication specific PCR and amplicon sequencing confirmed

Figure 5. Proportion of cells containing vGI-17. Quantification of vGI-17 was determined for 11 isolates using a standard curve method. The
copy number ratio of vGI-17 to the reference gene MAPK_3057 was used to determine the proportion of cells containing the vGI-17 duplication.
Standard error bars were derived from triplicate PCR reactions.
doi:10.1371/journal.pone.0022171.g005

Table 4. Summary of de novo assembly of unmapped reads
for each isolate.

Isolate
Number of
contigsa

Largest contig
(bp)

Smallest contig
(bp)

CLIJ623 1 113 -

CLIJ644 26 1128 85

CLIJ361 88 7694 100

Pt139 1 109 -

Pt144 4 175 123

Pt145 3 168 135

Pt146 2 143 107

Pt154 2 143 107

Pt155 11 328 122

Pt164 0 - -

aOnly contigs with sequence coverage above 10-fold were considered for
further analysis.

doi:10.1371/journal.pone.0022171.t004
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Figure 6. Schematic representation of genome insertions. (A) a 165 bp insertion up-stream of MAPK_1669 identified in all isolates compared
to the K10 reference genome. The orthologous locus in M. avium subspecies hominissuis (M. av 104) is considered a pseudogene due to frame-shift
induced a premature stop codon. (B) a 253 bp insertion up-stream of MAPK_2390 identified in bovine isolate CLIJ644 and ovine isolate CLIJ361.
doi:10.1371/journal.pone.0022171.g006
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that both vGI-17 and vGI-18 duplications are located directly in

tandem in the genome, separated by an internal copy of the IS4

family transposase and flanked by copies of the IS4 family

transposase. PCR screening of a panel of MAP strains from a

worldwide selection of sources showed that vGI-17 and vGI-18

duplications were present at low proportion in the majority.

Analysis of the vGI-17 duplication from ovine MAP isolates also

suggested that an unusual form of this recombination/duplication

event in these MAP types may have resulted in a fixed insertional

event that has extended the reading frame of an ORF immediately

adjacent to the duplication. The consequence of this is as yet

unknown.

The organisation and duplication of IS4 elements at the

extremities of both vGI-17 and vGI-18 suggests that transposi-

tion/recombination may be the mechanism underlying the

heterogeneity of duplication between MAP isolates. This study

shows these duplications to be present within a proportion of

cultures from most MAP isolates regardless of source location,

host, and environment or strain type. Real-time PCR suggested

that the proportion of cells containing the vGI-17 duplication in

any single culture was significantly more prevalent in cultures of

human derived strains compared to most other MAP isolates

tested from a variety of sources. Variation in the abundance of

vGI-17 in cultures appeared to decrease with age but could not

be eliminated by single colony subculture. The propensity for

clumping in MAP makes the generation of pure cultures

problematic and could have influenced this however the

variability between strains is indicative that these strains have

capacity for inducible genomic plasticity. It remains unclear at

this time if these are a result of mixed strain isolation from the

primary source, differential induction or leaching during

multiplication in an artificial culture environment or a predom-

ination in primary cultures of human strains as a result of

increased capacity for vGI duplication induced through adapta-

tion to host environmental pressures and transmission cycles.

Further work to determine the prevalence of vGI-17 and vGI-18

duplications within in vivo derived MAP is thus called for.

Duplications have been observed in other Mycobacterium species.

Interestingly, a proportion of the genes within vGI-18 are also

duplicated within the genome of Mycobacterium bovis BCG [42].

This finding suggests a conserved regulation of specific duplica-

tions may exist within the Mycobacterium genus. In M. bovis BCG

the DU2 tandem duplication occurs as one of four different forms

with an overlap of three intact genes between variants. One of

these overlapping genes is glpD2 (glycerol-3-phosphate dehydro-

genase) located within the centre of vGI-18 (MAPK_0345). Brosch

et al. [42] suggested that duplication of the glpD2 locus may

enhance growth on glycerol based media. A glycerol rich

(Herrold’s) culture medium was used to grow our MAP strains

so it is possible that duplication of glpD2 and its surrounding loci

may have been promoted within this environment. A most

intriguing aspect of vGI-17 is the duplication of the transcriptional

regulator sigma factor E (sigE) which controls a regulon of genes

essential for intracellular survival and virulence. In M. tuberculosis

the sigE regulon promotes intracellular survival through mediation

of the host inflammatory response [43]. In addition, other

members of the sigma transcription factor family, namely sigF

and sigJ, were also found to be duplicated within vGI-18. Within

Mycobacterium bovis, the expression of sigF has been found to be up-

regulated in response to a variety of stresses, including antibiotic

stress, nutrient depletion and oxidative stress [44]. Similarly, the

expression of sigJ in M. tuberculosis is also induced by oxidative

stress [45]. It is tempting to hypothesise that MAP strains that

contain multiple copies of the sigE, sigJ and sigF transcriptional

regulators may exhibit superior ability to mediate the host

inflammatory and stress responses, which, in turn, may impart a

superior ability to persist with the intracellular environment.

However, considering that the anti-sigma E factor (htrA) is located

immediately downstream of sigE within vGI-17, as well as the anti-

sigma F factor (rsbW) within vGI-18, it remains unclear whether an

additional copy of the sigma factors in the presence of an

additional copy of its anti-sigma regulator would have any

transcriptional effect compared to a strain with single copies of

both. Further work is in progress to investigate these relationships

and the influences triggering duplication events.

Other duplicated genes with known biological relevance include

the two-component signal transduction system mtrA and mtrB

(MAPK_0408-0409), known to be an essential for intracellular

survival and infectivity of M. tuberculosis [46,47] and a number of

tricarboxylic acid cycle enzymes within vGI-17 and vGI-18

including succinate dehydrogenase, isocitrate dehydrogenase,

malate dehydrogenase, malate oxidoreductase and fumarate

reductase. The duplication of these loci may act to enhance

survival and metabolic capacity of MAP within intracellular

environments.

In conclusion this study provides genomic evidence of MAP

zoonotic transmission from domestic animals to humans. Muta-

tions in over 71 distinct loci [48,49] are currently linked to CD,

many having functions related to the processing of intracellular

pathogens. This link suggests that intracellular pathogens such as

MAP may play a role in the disease progression of CD patients

who have pathogen specific susceptibility genes. The presence in

humans of an inductive MAP phenotype discovered in this study

may offer significant insights for future work. Research within our

laboratories is now concentrating on determining the functional

relevance and regulation of large region duplications in conjunc-

tion with a molecular epidemiological survey of MAP strains to

determine their frequency of occurrence in animal hosts.
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