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Mechanisms of Differentiation in Melanoma
Cells and Melanocytes

by Dorothy C. Bennett*

Literature is reviewed on the mechanisms of differentiation in mammalian melanoma cells and normal
melanocytes. Pigment cells are particularly useful for studies requiring the observation of differentiation in
living cells, for example, studies of commitment. lbpics discussed include melanin synthesis and other mar-
kers of pigment cell differentiation; stochastic models of differentiation and commitment; the lability of early
stages of differentiation; extracellular factors affecting pigment cell differentiation, with implications for
intracellular controls; the role of proliferation and the cell cycle in differentiation, and the relative roles of
changes in transcription, translation, and posttranslational processes.

Introduction: A Model System With
Specific Uses
Considered in terms of molecular biology, the study of

differentiation in melanoma cells is in its infancy as com-
pared to that of the lymphoid, erythroid, and myogenic
lineages in mammals. However, there are two features
unique to pigment cells that enable this model system to
add its own particular contributions to our understand-
ing of differentiation. One is the production of the poly-
quinonoid pigment melanin. Evolved for absorption of
light, melanin is visible in minute amounts and hence is
an ideal marker of differentiation. It can be seen in sin-
gle cells, which can be alive, unstained, and even at early
stages of maturation (1-5). This has been particularly
beneficial in the study of commitment.
The second feature is the comprehensive background

in classical genetics. Coat-color mutations of mice, for ex-
ample, have been mapped to over 50 loci; many of these
act during embryonic development and differentiation,
providing a rich source of material for analysis at the cel-
lular and molecular levels (6). The cosmetic aspect of hu-
man pigmentation and the steadily increasing incidence
of malignant melanoma among Caucasian populations (7)
provide more general reasons for the growth of interest
in melanoma and melanogenesis.
Melanoma cells are among the easiest to establish in

culture, and a great many human and animal melanoma
lines have been derived. For a number of these lines, the
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induction or promotion of pigmentation by specific agents
or conditions has been reported. Some of these lines are
listed in Thble 1, including the two which together account
for the great majority of work on melanoma differentia-
tion. These are the B16 (8,9) and Cloudman or S91 (10,11)
lines, and their subclones, both originally from transplant-
able melanomas of inbred mice (8,10). This review will be
concerned mainly with research on such melanoma cells,
but will also include some studies of nontumorigenic hu-
man and mouse melanocytes, which have recently yielded
some informative additions and contrasts.

Normal Melanocyte Lineage
For the discussion of differentiation, some terms will be

needed from the biology, biochemistry, and development
of normal melanocytes. These fields have been reviewed
in detail by Fitzpatrick et al. (1), and the biochemistry of
melanin synthesis has also been reviewed by Lerch (12),
Prota (13), and recently by Hearing and Jimenez (14).
Mature melanocytes are dendritic cells found basally in

the epidermis and hair follicles and in some internal or-
gans (1,6). The melanin granules that they secrete, and
which are endocytosed by neighboring keratinocytes, are
actually specialized subcellular organelles called melano-
somes, or aggregates of these (1). Melanin is synthesized
in the melanosomes from the amino acid tyrosine, or tyro-
sine and cysteine in the red and yellow pheomelanins
(1,12-14). Most of this reaction pathway can proceed spon-
taneously, the first step however requiring and the sec-
ond being accelerated by the melanosomal enzyme
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Table 1. Some melanoma lines in which pigmentation can be induced or stimulated.

Line Species Inducing agents or conditionsa References
Widely studied
B16 Mouse Manyb (8,9)

(black, C57BL)
S91 or Cloudman Mouse Manyb (10,11)

(brown, DBA/2J)
Others
RPMI 3460 Hamster Theophylline, cAMP, papaverine (89)
19/30 Human High cell density (96)
independent
melanoma lines

HO Human TPA and other phorbol esters, DMSO (96,97)
Hs939 Human Retinoic acid (98)
8/11 melanoma lines Human Theophylline, a-MSH, dbcAMP, PGE, (99)
4 melanoma lines Human Mezerein, interferon (59)
SK-MEL-23&131, Human Cholera toxin, TPA (100)
clones 22a
and others

LiBr Human Theophylline, DMSO, retinoic acid (101)
aAbbreviations: cAMP, cyclic adenosine monophosphate; TPA, 12-0-tetradecanoyl phorbol-13-acetate; DMSO, dimethyl sulfoxide; a-MSH,

a-melanocyte-stimulating hormone; dbcAMP, dibutyryl cAMP; PGE1, prostaglandin El.
bSee Table 4.

tyrosinase, through its two distinct activities, a
monophenolase (EC 1.14.18.1) and a diphenolase activity
(EC 1.10.3.1) (12). These oxidise tyrosine to dihydroxy-
phenylalanine (dopa), and dopa to dopaquinone, respec-
tively. The diphenolase activity also accelerates later
steps in melanin synthesis, as detailed elsewhere (12,14).
Evidence has been presented for participation of a sec-
ond enzyme in this pathway, termed dopachrome ox-
idoreductase (DCOR), although the purification of this has
not been reported to date (15).
Melanocytes develop from unpigmented precursor cells,

melanoblasts, which originate from the neural crest and
migrate through the embryonic dermis to reach their fi-
nal epidermal sites (1,16,17). The definition used here will
be that of Hirobe, namely: melanoblasts may have
premelanosomes (melanosome precursors lacking mela-
nin), but contain no tyrosinase activity (18). This can be
ascertained by a histochemical test for tyrosinase, the for-
mation of a brown to black product from L-dopa (18,19).
There is also an internediate cell type that can be cul-
tured and cloned from neonatal human skin. These cells
are unpigmented by light microscopy, but tyrosinase-
positive by the dopa test (20). They have been termed
premelanocytes, as they can generate pigmented melano-
cytes in culture (20). The equivalent of these cells in vivo,
if any, is not known, but it may be speculated that they
are related to the unpigmented melanocytes in the
sheaths of adult human hairs, which apparently show
stem cell behavior by regenerating functional melano-
cytes after skin damage (21). Melanocytes found in the
same position in mouse hair follicles are suggested to be
the source of chemically induced melanotic tumors,
another variety of stem-cell behavior (22).

Markers and Measures of Pigment
Cell Differentiation

It will be helpful at this point to distinguish between

differentiation and melanogenesis in pigment cells.
Melanogenesis is the biosynthesis of melanin, either by
pigmented or by previously unpigmented cells. Differen-
tiation is defined here as the production of different cell
types in development (23), including the generation of any
cell type (e.g., melanocyte) from its precursor (e.g.,
melanoblast). Definitions of a change in cell type have
been discussed previously (24). Here it is sufficient to note
that differentiation has two features that distinguish it
from a simple metabolic adaptation: a) complexity: empir-
ically, precursor cells always differ in a number of ways
from their product cells; and b) stability or commitment:
the completed change in cell type cannot be reversed un-
der specified conditions, usually removal of the inducing
stimulus.
Commitment does occur when melanoma cells and

melanocytes become pigmented as discussed below. The
pigmentation process is also complex, being associated
with a set of other cellular changes such as increased cell
size, dendriflcation (production of dendrites) and altera-
tions in specific protein and mRNA synthesis (Table 2).
Typical morphological changes during induced pigmenta-
tion of a B16 melanoma subline are shown in Figure 1 as
an illustration of the complexity. This kind of melanogen-
esis thus answers the description of differentiation, al-
though in malignant cells it will not necessarily be nor-
mal differentiation.

It will be seen from Table 2 that all the common assays
of pigment cell differentiation are assays of melanogene-
sis. This should be remembered because the two may not
always be proportional. For example, an agent that sim-
ply increased tyrosine uptake could well increase the rate
of melanogenesis but not differentiation. Of course, the
same problem can apply to studies of other cell lineages,
for example, where erythroid differentiation is measured
solely by hemoglobin synthesis. In the case of pigment
cells it is to be hoped that changes in transcription and
in membrane antigens (Table 2) will soon be more widely
useable as independent markers of differentiation.
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Only one transcriptional change has been reported so

far during melanoma differentiation (TIhble 2) (25). This
was detected with a DNA probe selected from a human
melanocyte cDNA library with an antityrosinase antise-
rum. However, the probe is believed to code not for
tyrosinase but for an antigenically related protein, pos-
sibly the melanocyte glycoprotein gp75 (26). Four other
recent reports describe cDNA clones selected in similar
attempts to clone human or mouse tyrosinase (27-30), and
three of these are proposed to be authentic sequences for
tyrosinase (27-29). However, at least one of them appears
to code for something else. This is clone pMT4 (27), which,
cross-hybridizes to clone 5A (30), and maps at or near the
brown (b) locus in the mouse (30). It is thus unlikely to
code for tyrosinase, as no mutation at this locus reduces
tyrosinase activity (6). Jackson speculates that the prod-
uct, "tyrosinase-related protein," may be either an en-

zyme such as DCOR, or a melanosomal structural protein
(30). Conversely, clones Pmel-34 (human) (28) and Tyrs-33
(mouse) (29), which are mutually highly homologous (30),
both map at or near the mouse albino (c) locus, at which
all mutations reduce tyrosinase activity. Even so, further
proof is needed that these do represent tyrosinase, espe-
cially because, as with pMT4 (14), both predicted proteins
(28,29) show some significant differences from the
reported amino acid composition of mouse tyrosinase, on

which five independent studies agree well (14).

Stochastic Behavior in Initiation of
Differentiation

A stochastic event is just a probabilistic one, with a cer-

tain probability either per unit time or following some
other event. All molecular interactions are stochastic, for
example. So if a cellular process depends on a sufficiently
rare molecular event or events, then we may detect the
stochastic behavior at the level of the whole cell.

Till et al. proposed in 1964 that the kinetics of commit-
ment of hemopoietic stem cells in mice could be explained
by dependence on a single stochastic event (31). This was
shortly after the first suggestion of a probabilistic step
in the cell cycle by Cattaneo et al. (32) Since then a vari-
ety of workers have proposed stochastic models both for
cell differentiation in different mammalian lineages
(33-37) and for cell proliferation (38-40). The idea is ap-

pealing because it provides a straightforward mechanism
for fine control over the level of proliferation and/or
differentiation of a population of stem cells. For example,
if a 20% increase in the rate of differentiation is needed,
then the probability of differentiation can be raised by
that amount through a corresponding increase in the con-
centration of the putative rare controlling molecule(s) in
the cells. Although the response of a single cell will be un-
predictable, that of a population will be highly predictable.

Table 2. Cellular changes during pigment cell differentiation.

Marker or property Direction of change References Used as measure?a
Correlates of melanogenesisb
Light absorption by melanin + (89,67,102) + +
Melanosome number/maturity (electron microscopy) + (3,100,103) +
Proportion of cells pigmented + (5,41) + +
Tyrosinase activity + (3,60,95,104,105) + +
Tyrosinase abundance (immunoprecipitation)c + (60,95) +

Others widely reportedb
Cell size (volume, protein content or area) + (65,105)
Dendrification + (86,97,106) +
Proliferation rate - or+d (3,60,87,88)

Reported for mouse melanomab
Four cellular polypeptides - and + (94)
Tumor growth usually - (3,4,105)
Hematogenous metastasis + (105)
Transcription of Pmel 17-1 mRNA' + (25)

Reported for human melanomas and melanocytes
Ganglioside GM3 + (97)
Antigen Leo Mel 3 (ganglioside GD3?) + (101)
Antigens M-4 to M-8 (106,107)
Antigens M-9, M-10,, Mel 1 +f (100,106,107)
Glycoprotein gp 75' £ + (26,100)
Antigens Ia, AO10, Mlll, mCSP - (100)
EGF receptor f (100)
Antigens CF21, C350 + (100)

a(+) used as a measure of differentiation occasionally, or newly introduced; (+ +) often used as a measure.
bAll changes listed under these headings are inducible by MSHs
cTyrosinase or immunologically related protein(s) (see text).
dDependent on culture conditions (see text).
eTranscript Pmel 17-1 is suggested to code for gp 75, thought to be a melanosomal glycoprotein (26,100).
'Markers correlated with pigmentation among different lines, rather than induced. Markers Mlll and CALLA (common acute lymphoblastic leukemia

antigen) are reported to correlate with an intermediate level of pigmentation (100).
'Melanoma chondroitin sulfate proteoglyean.
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FIGURE 1. Morphology of differentiation in B16F1O melanoma cells.

Undifferentiated cells were maintained by frequent subculture at low

population density in a supplemented MEM medium (105) with 25mM

sodium bicarbonate and 10%/ 002 (equilibrated pH 6.9). Cells (104/mL)
were plated in this growth medium. Mfter attachment the medium

was replaced by (top) the samne; (center) as top but supplemented with

the stable analog of MSH, [4-norleucine, 7-D-phenylalanine]-a-MSH
(1 nM); (bottom) as center but with 45mM bicarbonate (pH 7.2). Cul-

tures were grown for 4 days, fixed with formalin, and photographed
using a 20 x phase contrast objective. See Bennett et al. for further

details (105).

Nonetheless, elegance is no proof, and repeated attempts
have been made to test such models.

Melanoma cells were used in one such attempt (5). The

B16 subline B16C3.6 (5,41) was grown under conditions

in which nearly all the cells were unpigmented. After

transfer to conditions promoting differentiation, the cells

were observed continuously by time-lapse cinemicrogra-
phy. It was thus possible to score the time of first appear-

ance of visible pigment in each cell. This was temporally

associated with distinct changes in cell shape, size, and
cytoplasmic movements (5). There was little or no delay
before pigmented cells began to accumulate, showing that
melanogenesis became visible under these conditions
soon after its actual onset.
Even with freshly cloned cells and conditions giving

very rapid pigmentation, this initiation of differentiation
occurred at a wide range of different times in individual
cells of the same culture (5). This heterogeneity of timing
could not be ascribed to differences in cellular microen-
vironment, from analyses of cell position and contacts.
Nor was it due to genetic variation, as shown by selection
experiments following the design of Gusella et al. (33). The
lack of a detectable cause and the quantitative distribu-
tions of response times were consistent with a stochastic
basis for the asynchrony (5).
One interesting feature emerged: The timing of initia-

tion of (visible) differentiation was highly correlated in sis-
ter cells (products of the same mitosis), with correlation
coefficients of up to 0.95. This occurred even when the
parental mitosis was before the start of induction of
differentiation. Such a correlation is not consistent with
a single stochastic event as the cause of all the asynchrony
(40), but is compatible with another model of stochastic
control (5) (next section).

Early Instability and Gradual
Commitment
An idea about commitment that is widespread in text-

books is that, in development, first, cells (or tissues) be-
come committed or determined, then later they differen-
tiate overtly or, in other words, acquire characteristics or
gene products of the new cell type. This idea arose from
transplantation experiments on embryos, in which an un-
differentiated embryonic tissue would sometimes develop
into the correct adult tissue even when moved to the
wrong site (42). This was a useful concept in its original
context, but it has led to a widespread belief that in any
kind of cell differentiation, the first thing to happen will
be commitment. Commitment tends to be imagined as a
rapid event, the switch that sets off the differentiation
process. It is this event that is often postulated to be
stochastic (31,33,34,36,37). However, the following work
with pigment cells suggests to the contrary that commit-
ment does not have to be instantaneous, nor to precede
the expression of other differentiated properties.
The data were obtained by clonal analysis of B16C3

melanoma cells (5,24), and of diploid human melanocytes
(20). Cells of various degrees of pigmentation, from a par-
tially differentiated population, were plated singly in clon-
ing wells in growth medium and followed by microscopy
at intervals to record proliferation and pigmentation.
With the melanoma cells, some cells proliferated to form

large clones, virtually all of which were unpigmented,
while others failed to grow progressively and in general
remained or became pigmented. Some of the large clones
grew from unpigmented cells; others, however, came from
progenitor cells that were pigmented, their progeny be-
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FIGURE 2. Stabilization in melanoma cell differentiation. See text for ex-

planation and Bennett (5) for experimental details. The probability
or proportion of cells showing reversion by day 14 is given because
reversion was rare after this time. Codes: initial degree of pigmen-
tation of each cell, after overnight attachment; (U) unpigmented; (VL)
very lightly; (L) lightly; (M) moderately; and (W) well-pigmented.
Grades defmed in Bennett (5).

coming unpigmented and resembling the original un-

differentiated cells by other criteria (5). In other words,
some differentiating cells appeared to revert to the
precursor form. Interestingly, the proportion of clones
reverting in this way decreased with increasing pigmen-
tation of the progenitor cell (5) (Fig. 2). Reversion was
never observed from well-pigmented cells, which could
thus be described as fully committed.

Diploid human melanocytes showed an essentially simi-
lar pattern, in that some lightly pigmented cells reverted
to form unpigmented clones, but there were two notable
differences (20) (Table 3). First, diploid pigmented cells
could show extensive proliferation, often as quickly as un-

pigmented cells (premelanocytes) in the same medium.
Second, among human melanocytes, reversion to the un-

pigmented state was rare in cells that were more than
very lightly pigmented (Thble 3). Some pigmented clones
were subcultured and produced up to 106 pigmented cells
and none unpigmented. This was incidentally a convinc-
ing demonstration of commitment with pigmentation,
which has since been further extended by the isolation of
two immortal, pigmented mouse melanocyte lines (43,44).
No unpigmented cells have been detected in the line
melan-a in more than 2 years of culture under the de-
scribed conditions (44).
The reason for the difference in the percentage of clones

that proliferated may be trivial. The melanoma cells had
been induced to synthesize melanin very rapidly, whereas

the melanocytes had developed pigment spontaneously
and slowly. Thus, the melanoma cells may have been
damaged by the rapid accumulation of melanin precur-
sors, of which at least dihydroxyindole can be toxic to
melanoma cells (45). It is more interesting that the poten-
tial for reversion was lost earlier in the melanocytes than
in the melanoma cells. One cannot generalize about malig-
nancy from one example, but there may be a connection
with observations that visibly pigmented melanoma lines
in culture are rare (46) and difficult to maintain as such (2).
As a general conclusion, both malignant and normal

cells showed gradual commitment, which developed at the
same time as pigmentation, and could be quantitated as

a falling probability of reversion (e. g., Fig. 2). These ob-
servations fit a modified stochastic model (5), as shown in
Figure 3. Here the idea of a stochastic initial commitment
event is replaced by a stochastic event called initiation,
which does switch on differentiation yet which is revers-
ible to begin with. That is, there is initially a finite prob-
ability of reversion, which falls with time in the differen-
tiating state. Commitment is complete when this
probability reaches zero. The probabilities of initiation
and reversion are controlled by extracellular conditions.
The concept of gradual commitment fits the behavior

of a wide range of differentiating cell types, and it no
longer seems absurd to suggest that it may be more the
rule than the exception. It has long been familiar from the
simpler organisms Anabaena (47) and Dictyostelium (48).
There is now evidence for the activation of differentiated
characteristics without or before commitment in most of
the principal lineages used to study mammalian differen-
tiation (24), including erythroid cells (49), myoblasts (50),
and preadipocytes (51), as well as the early mouse embryo
(24,52). Gradual commitment has been described in am-
phibian embryos (53) and postulated in normal stem cells
of the human skin (54), bone marrow and other tissues, in
the stem cell continuum model (55).

Extracellular Factors Affecting
Melanogenesis and Implications for
Intracellular Mechanisms
A good deal of information is available on physiological

and phannacological agents that affect differentiation and
melanogenesis of cultured melanoma cells, although there
is not much information on factors directly (i.e., in the ab-
sence of other cells) affecting differentiation of normal
melanocytes (56). Thus it seems most fruitful to concen-

trate on melanoma cells. Controls over the type of mela-

Table 3. Proliferation and pigmentation of clones from pigmented normal and malignant cells.a

Characteristic B16C3 melanoma Diploid human melanocytes
Number of clones graded "lightly" to "well"-pigmented' 41 23
Number that proliferated by 14 daysc 12 (29%) 15 (65%)
Number of these still pigmented by 14 days 1 (8%) 13 (87%)

aData pooled from several experiments described in Bennett (5) and Bennett et al. (20). See text for further explanation.
bArbitrary gradations as in Fig. 2 legend.
cDefined as clones of three or more cells by day 14; all these subsequently grew progressively, whereas there was considerable variability in the

number of days before proliferation began.

Stabilization of melanogenesis, B16C3 clones
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FIGURE 3. A stochastic model of differentiation, incorporating a rever-
sion probability. Figure modified from Bennett (5). (po) probability of
initiation; (pi) probability of reversion. The fall in pi could be due to
either the accumulation of a new gene product or the loss of one made
by the precursor cell. The probabilities are expressed per unit of time
rather than per cell cycle.

nin (eumelanin or pheomelanin) produced by mature
mouse melanocytes were reviewed by Takeuchi (56).
Agents and conditions known to alter melanogenesis of

B16 and S91 cells are listed in Table 4. From reports to
date, these two melanomas have shown qualitatively simi-
lar responses to all tested agents except retinoic acid
(57,58). This does not prove that all other pigment cells
will behave similarly, because, for example, the phorbol
ester TPA, which inhibits pigmentation in both these
lines, is reported to promote melanogenesis in human
melanomas and in pigmented human melanocytes (59,60)
while inhibiting it in human premelanocytes (20), quail
neural crest cells (61) and chick melanoblasts (62).

It was known at an early stage that cAMP and its ana-
logs promoted pigmentation (63-65), and that MSHs in-
creased the intracellular concentration of adenylate cy-
clase (66). This led naturally to the hypothesis that
melanogenesis was controlled through cAMP as a second
messenger (3,4). A number of workers have tested this
idea by examining the effects of substances that promote
pigmentation upon adenylate cyclase or cAMP in mela-
noma cells. Table 5 summarizes a selection of these
studies. The conclusion is quite clear: Some of these
agents increase the level ofcAMP and/or its synthesis, but
others do not. Thus melanogenesis and/or melanoma
differentiation can be altered through both the cAMP
pathway and at least one other.
Indeed, from Table 4, one might infer that virtually ev-

ery major pathway of intracellular signaling impinges on
melanogenesis. There is protein kinase C, which tumor
promoters like TPA (67,68) activate and which would thus
presumably inhibit pigmentation in B16 and S91 cells.
There is the intracellular pH (5,69,70); weak bases have

Table 4. Extracellular factors affecting pigmentation
of B16 and S91 cells.a

Effect Effect
Agent on B16 Reference on S91 Reference
Inhibitors of proliferation
Cytosine arabinoside + (2) N
Colcemid + (2) N

Cyclic nucleotides
cAMP + (65) + (63)
dbcAMP + (65) + (63,64)

Methylxanthines
Caffeine + (65) N
Theophylline + (65,103) N
Isobutyl methylxanthine + (108) + (109)

Hormones, vitamins, etc.
a-MSH and analogs + (67,105) + (63,110)
P-MSH N + (111)

Adrenocorticotrophic
hormone analogs N + (93)

Triiodothyronine - (112) N
Pigment-promoting factor + (113) N
Prostaglandins E1, E2 N + (88)
Prostaglandins A1, D2 N _ (88)
Retinoids - (57) + (58)
la,25 dihydroxyvitamin D3 + (57) N
Insulin N - (109)

Miscellaneous
High cell density Biphasic N

or + (114)
Biphasic (108)

+ (69)
Cholera toxin + U + (110)
Galactose + (115) N
Increased extracellular pH + (5,69,115) N
Weak permeant bases,

e.g., imidazole (in-
creased intracellular pH) + (70,71) N

Benzodiazepines + (116) N
Difluoromethyl ornithine
(inhibits polyamine
synthesis) + (75) N

Ultraviolet light N + (77)
TPA and other tumor
promoters - (67,68) - (58)

Interferon - (68) N
aOnly representative references are given. (+), (-) promotion and

inhibition of pigmentation; (N) no report known to the author; (U)
unpublished work in the author's laboratory.

Table 5. Effects of selected promoters of melanogenesis on
melanoma adenylate cyclase or cAMP.

Effect on
adenylate Effect on

Agent cyclase [cAMP]a Cells References
MSHs + + S91 (66,77)
Adrenocorticotrophic
hormone + S91 (66)

High cell density 0 B16 (108)
Isobutyl methylxanthine + B16 (108)

+ S91 (77)
Theophylline + B16 (4)

O B16 (117)
la,25 dihydroxyvitamin D3 0 S91 (57)
Prostaglandin E1 + + S91 (66,88)
Prostaglandin E2 0 S91 (88)
Ultraviolet light 0 S91 (77)
a(cAMP] refers to the intracellular concentration ofcAMP; (+) increase

in specified parameter; (0) no effect.
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been suggested to act by inhibiting lysosomal action (71)
and specifically MSH receptor turnover (72). The effect
of pH is not just on tyrosinase, because the stimulatory
effect increases (5) beyond the pH optimum of tyrosinase,
7.4 (14). A role has been postulated for intracellular cal-
cium concentration: methylxanthines affect this as well as
cAMP (73), while a preliminary study reports stimulation
of B16 cell pigmentation by calmodulin and inhibition by
its antagonists (74). One reason that this would not be sur-
prising is that calmodulin is important in cAMP metabo-
lism. Lastly, the polyamines could play a part, presuma-
bly a negative one since inhibition of their synthesis
promoted melanogenesis (75). Protein kinase C can also
promote polyamine synthesis (76). It would be of partic-
ular interest to elucidate how ultraviolet light, the phys-
iological stimulus of pigmentation in humans, can act
directly on melanocytes as has recently been reported
(77). One possibility is through vitamin D3 biosynthesis
and metabolism (Table 4) (57), but it is not yet known
whether pigment cells are capable of this. See Fitzpatrick
et al. (1) for other possibilities. At present it is impossi-
ble to say which signaling pathway if any is primary in
controlling pigmentation or melanoma differentiation in
general.

Differentiation and Cell Proliferation
There is wide interest in possible connections between

cell differentiation and proliferation, perhaps especially
because in proliferative diseases like cancer, cell differen-
tiation too is usually abnormal. In simpler eukaryotes
there are some clear examples of direct connections be-
tween differentiation and proliferation. For example, in
nematodes, many of the somatic cell divisions are genet-
ically predetermined and give rise to two specified daugh-
ter cells of different types and fates (78). In budding yeast,
the switching of mating type requires the transition be-
tween GI and S phase known as "start" (79). It is still un-
der debate, however, whether any form of mammalian
differentiation is directly linked with division, and if so,
in what way. Specific models of stem-cell differentiation
in relation to division were reviewed previously (80). Two
general classes of relationship will be discussed here in
connection with melanoma cells.

Do Cells Differentiate in a Specific Cell
Cycle Phase?
Some authors apparently just assume that differentia-

tion can be initiated only once per cell cycle (31,33). Others
present indirect evidence that a particular phase such as
S phase or G1 is required for a given form of differentia-
tion (81,82); however, others again dispute such evidence
(34,36), and the author has not encountered any really con-
clusive example.
There is little published work on melanoma differenti-

ation in relation to the cell cycle. One group suggested
that S91 cells respond to cAMP throughout the cycle but
to MSH only in G2 phase (83), because MSH receptors are

expressed only then (51). However, an attempt had been
made to synchronize the cells used, and the authors ap-
peared unaware either that such observations can be ar-
tefacts due to the synchronization procedure (84), or that
good synchrony is most unlikely with cells that have such
a long doubling time as theirs (39,40,85). Moreover, a rapid
morphological response to MSH has been reported in
100% of asychronous S91 cells in the presence of cyclohex-
imide, indicating the continuous presence of receptors
(86).
When growing B16 cells were induced to differentiate

with alkaline medium, time-lapse cinemicrography
showed a lack of cell cycle dependence (5). Initiation of
visible pigmentation in individual cells could be at any
time from one mitosis to the next; moreover, some cells
did not divide at all and so were probably in G1 phase
throughout (39,40). Thus, melanoma differentiation in
alkaline medium has no relation to the cell-cycle phase, as
apparently with cAMP. The possibility of periodic expres-
sion of MSH receptors requires further testing.

Is Differentiation Promoted by a Reduced
Proliferation Rate?
Many treatments that induce differentiation of cultured

cells of numerous lineages also reduce the proliferation
rate. This is true of the most commonly used inducers for
melanoma cells, including MSH, alkaline pH, and
methylxanthines, under standard culture conditions
(4,63,69). The question thus arises whether differentiation
is directly promoted by, or even requires, this reduction.
Most of the answer (for pigment cells) can be seen from

Thble 6, in which the effects upon proliferation of some in-
ducers and inhibitors of melanogenesis are collated.
Clearly, some inducers do not reduce growth; indeed,
some are mitogenic under specified conditions. For exam-
ple, MSH is mitogenic at low tyrosine concentrations or
with frequent changes of medium (87,88). These condi-
tions would minimize the accumulation of toxic melanin
precursors (45), suggesting that growth-inhibition can be
a result rather than a cause of pigment synthesis. Indeed,
several authors report that melanogenesis begins before
the reduction of proliferation (63,70,87,89). In addition,
some inhibitors of differentiation reduce the proliferation
rate or do not affect it. In short, reduced proliferation is
neither necessary nor sufficient for melanogenesis. It is
possible but not proven that reduced proliferation in-
creases melanogenesis in the absence of inhibitory factors.

Nucleus and Cytoplasm: Levels of
Control in Melanoma Differentiation
During differentiation there is a coordinated switch

from the composition, metabolism, and morphology of the
precursor cell to those of the product cell. It is of interest
to know whether this set of effects is achieved through
changes in rates of RNA transcription, processing or sta-
bility, rates of synthesis or posttranslational modification
of proteins, or a combination of these. For pigment cell

55
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Table 6. Effects on pigment cell proliferation of selected inducers and inhibitors of melanogenesis.

Effect on
Agent/condition Cells proliferationa References
Inducers
MSH, standard medium S91, B16 0 or - (63,67,87,105)
MSH, "tyrosine-free" medium S91 + (87)
MSH, serum-free medium S91 + (118)
dbcAMP, high concentration S91, B16 (65,119)
dbcAMP, low concentration S91 + (119)
Increasing extracellular pH (between 6.9-8.0) B16 - (5,69,105)
Ultraviolet light S91, human melanocytes - (77)
Prostaglandin El S91 - (88)
Retinoic acid S91 - (58)
Diazepam B16 0 (116)
Cholera toxin Human melanocytes + (106)
IBMX Human melanocytes + (106)
TPA Human melanocytes + (106)

Inhibitors
TPA B16, S91 0 or - (58,67)
TPA Human premelanocytes + (20)
TPA Chick melanoblasts + (62)
Insulin S91 (109)
Insulin in presence of MSH S91 + (109)
Prostaglandins Al, D2 S91 (88)
Triiodothyronine B16 (112)

'(+) increase; (-) decrease; (0) no effect.

differentiation the picture is far from complete, but there
is some information.
Recent work with enucleated melanoma cells

(cytoplasts) has shown, perhaps surprisingly, that two ma-
jor aspects of differentiation have a posttranscriptional
component. MSH and other inducers can rapidly promote
both increased tyrosinase activity (90) and dendrification
(86) of melanoma cytoplasts. Furthermore, neither effect
is reduced in intact cells by cycloheximide, in the short
term, and both are thus posttranslational; indeed, they
are actually accelerated by cycloheximide, suggesting
mediation through the loss of a labile repressor (86,90).
There is no infonnation on whether this may be the same
repressor in both cases.
A marked spontaneous activation of tyrosinase was also

observed in stored melanoma homogenates (2,91,92), with
evidence for loss of a repressor in each case (2,91,92).
There was evidence both for (91) and against (92) media-
tion of this loss by a cAMP-dependent protein kinase
(PKA). PKA remains a candidate for a mediator of MSH
actions. A recent report described the rapid phosphory-
lation of two cellular proteins in S91 cells exposed to
either MSH or dbcAMP (or similar agents) (93). Con-
versely, the rapid dendrification effect mentioned above
can be mimicked by an inhibiter of protein kinase C, and
suppressed by an activator of it, TPA (86). As a provisional
interpretation, both activation of PKA and inhibition of
PKC may mediate particular actions of MSH.
Not all effects of MSH are posttranslational, however.

MSH changes the abundance of certain proteins (94), in-
cluding one that may be tyrosinase as it reacts with an
antityrosinase antiserum (95) [remembering that there
are related proteins that can cross-react with such an-
tisera (25,30)]. It is unclear whether these changes in
abundance are due to changes in transcription, transla-

tion, or degradation, except that MSH does appear to in-
crease the abundance of at least one mRNA, for a
tyrosinaselike protein (25). If the identities of the latest
two putative cDNA sequences for tyrosinase (28,29) are
confirmed, then no doubt it will shortly be known
whether gene transcription for tyrosinase itself is in-
creased in melanoma differentiation.

Concluding Remarks
Pigment cells are being used to study a wide range of

aspects of cell differentiation. As mentioned in the in-
troduction, they have been particularly useful in the study
of commitment. Nonetheless, and although much has been
learned from these and other cells about markers and cel-
lular components that show changes during differentia-
tion, we still understand very little about the crucial ques-
tions of how all these changes are initiated, coordinated,
and stabilized in a cell. As the future study of these higher
level problems is likely to require (among other ap-
proaches) both genetics and the use of intact, living cells,
we can expect a continued and growing interest in pig-
ment cells as a model system for differentiation.
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by the Cancer Research Campaign, the Imperial Cancer Research Fund,
the Wellcome Foundation, and the Science and Engineering Research
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