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Abstract

Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving
retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds
with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for
research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area.
Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on
Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber).
Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and
results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly
inhibited by four structurally distinct tastants (three bitter tasting compounds - denatonium benzoate, quinine
hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers - capsaicin). In addition, stomach irritants
(copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A
concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as
capsaicin (IC50 = 11.964.0 mM) . quinine hydrochloride (IC50 = 44.366.8 mM) . denatonium benzoate (IC50 = 12964 mM) .
phenylthiourea (IC50 = 36665 mM) . copper sulphate (IC50 = 143363 mM). In contrast, 21 compounds within the cytotoxic
and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds
showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular
mechanism of action for these compounds. These results therefore demonstrate that Dictyostelium has potential as a non-
sentient model in the analysis of the molecular effects of tastants, although it has limited utility in identification of emetic
agents in general.
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Introduction

Emetic research employs a range of animal models, either to

identify the emetic liability of a novel chemical entity (NCE) or to

characterise mechanisms giving rise to emesis [1]. Common

models can be divided into those that have the ability to vomit (e.g.

ferret, house musk shrew, dog and cat), and those that lack the

emetic reflex (e.g. rats and mice) [2]. In rats, pica, the ingestion of

a non-nutritive substance such as kaolin, and conditioned taste

aversion/food avoidance (CTA/CFA) are used as an emetic-like

readout [3]. Considerable variability in the sensitivity to emetic

compounds exists between animal models, due to the multiple

pathways available for induction of the reflex, and differences in

receptor pharmacology and distribution, and metabolic pathway

regulation [4,5]. This variability therefore makes it difficult to

establish a single animal model for emetic research, and encourages

a multi-model approach and increasing animal usage [5].

The very nature of emetic research has the potential to cause

considerable distress in the subjects, and some emetic compounds

(e.g. cisplatin) induce intense retching and vomiting and a

protracted emetic response that can last for several days [6]. To

reduce the number of animals needed for these adverse tests,

Holmes et al. [5] suggested a tiered approach to identify potential

emetic liability of NCEs early in compound optimisation. In this

approach, a series of individual assays would be performed in

order to reduce the final number of compounds tested on sentient

models. The first tier in this approach would involve the in silico

analysis of novel compounds under investigation, whereby

structures of known emetic efficacy are compared with novel

compounds under investigation employing previously recorded

data from in vivo studies. Secondly, a simple non-sentient model

would be used to screen for compounds showing strong effects

associated with other emetic compounds. Thirdly, tissue culture

experiments would be employed using mammalian cell lines to
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predict emetic liability, and then finally animal models would be

incorporated. This approach could substantially reduce the number

of animal experiments by excluding many compounds with poten-

tial emetic liability at an earlier stage. This tiered approach requires

development of a simple non-sentient model system capable of

identifying emetic liability of compounds in a high-throughput type

screen.

Dictyostelium is a simple model system, widely used in the analysis

of cell signalling, development, and cell behaviour during

movement [7–10]. The genome of the model has been sequenced

[11], identifying a wide range of homologues related to human

disease proteins and associated intracellular signalling pathways.

Many of these proteins and related pathways are absent in other

simple model systems such as Saccharomyces cerevisiae and Schizo-

saccharomyces pombe [11,12], suggesting Dictyostelium may have

specific advantages over other commonly used non-sentient models.

Dictyostelium is increasingly being used in biomedical research

[12–14], in for example, the analysis of mitochondrial disease [15],

in Alzheimer’s disease signaling [16], and in understanding

pathways of microbial infection [17]. In many of these studies,

and in other more pharmacologically-oriented projects, Dictyoste-

lium has been used to analyse drug-induced changes in behaviour

during movement at a cellular level [18]. For example, in the

analysis of bipolar disorder drugs valproic acid and lithium

[19,20], for potential chemotherapy research [13,21,22], and for

the vasodilator nitric oxide [23].

In this paper, we explore the utility of using Dictyostelium as a

simple non-sentient model in the tiered approach to reducing

animals in testing for emetic liability, as proposed by Holmes et al.

[5]. This was investigated by monitoring cell behaviour (speed,

shape and direction of movement) following exposure to a range of

compounds known to induce emesis, pica or CTA/CFA. The

broad categories of compounds investigated (summarised in

Table 1) include: tastants (bitter and pungent [‘‘hot’’] compounds),

cytotoxic anti-cancer agents, selective receptor agonists and

antagonists and metal salts. Our results indicate that tastants

(both bitter and hot compounds) cause a rapid, pronounced and

concentration-dependent effect on cell behaviour, although a

range of cytotoxic and receptor agonist/antagonists compounds

giving rise to emetic or taste aversive responses had no effect.

These results suggest that Dictyostelium may provide a new model

for the analysis of bitter and hot compound perception and

signalling, although it shows little functionality as a generalised

predictor of emetic function for novel chemical entities.

Results

To investigate the utility of employing Dictyostelium as a model

for the study of tastants, cytotoxic agents, receptor agonists/

antagonists and other emetic or aversive compounds, we first

defined a standard assay. In this assay, Dictyostelium cell behaviour

was monitored by time lapse photography every 6 seconds over a

15 min period (under control conditions) (Figure 1) within a

chemotactic gradient (moving towards cAMP). Computer-gener-

ated outlines of individual cells enabled the quantification of cell

velocity, aspect and angle of movement (Figure 2 and Movie
S1). These three measurements encapsulate the complete basic

behaviour of moving cells. In addition, an X, Y coordinate plot is

provided illustrating the path length and direction of movement of

individual cells throughout the recorded period. Under these

conditions, cells exhibited stable behaviour that did not signifi-

cantly change over the 15 min period monitored (Figure 3).

This standard assay enabled the analysis of compounds with

known emetic or aversive responses in a range of species, on

Dictyostelium cell behaviour (Table 1). For each compound and

concentration, at least triplicate experiments were recorded (moni-

toring approximately 30 cells each), establishing the behaviour of

cells for five min prior to compound addition. Following drug

addition, images were then recorded for a further ten min to

monitor acute drug effects. The concentrations of compounds used

in these tests are based upon concentrations used in vivo (e.g.

copper sulphate), plasma concentrations (e.g. cisplatin) or concen-

trations shown to be active in vitro in mammalian tissues relevant to

the emetic reflex (e.g. RTX on neurones, denatonium on intestinal

epithelial cells) as shown in Table 1. A compound was determined

to have an effect on cell behaviour if the average cell velocity or

aspect changed significantly (P,0.05) between the first five min

period (prior to addition of the drug) and the final five min of the

assay. Where a substance was without apparent effect at in vitro

concentrations, experiments were then repeated at 10 – 200 fold

higher concentration (Table 1) to reduce the risk of obtaining a

false-negative result.

Of the 28 compounds screened, seven evoked a significant acute

effect on Dictyostelium cell behaviour (Tables 1 and 2, Figures 4
and 5). These were: denatonium benzoate, phenylthiourea,

quinine hydrocholoride; copper chloride and sulphate salts;

capsaicin; and rolipram. The effect of all of these compounds

was a concomitant loss of velocity, cell shape and angular

movement. Strength of effect also varied, where for example,

addition of 5 mM copper sulphate caused Dictyostelium cells to

slowly stop moving and lose shape over a ten min period (Figure 4
and Movie S2), although still generating a significant decrease in

velocity (P = 0.014) and change in aspect (P = 0.047). In contrast,

the addition of denatonium benzoate (5 mM) caused an

immediate loss in cell velocity and aspect (Figure 5). This

variation in time of onset for drug effects is also seen in the X,Y

coordinate plots for these compounds (Figure 3D, 4D and 5D).

Interestingly, a number of compounds that have also been shown

to have tastant activity related to those tested here did not inhibit

cell behaviour in this assay (e.g. the hot compound resiniferatoxin

and the bitter compound cycloheximide).

We then investigated the concentration-dependence of this

effect for denatonium benzoate, phenylthiourea, quinine hydro-

chloride, copper sulphate and capsaicin. A relationship between

compound concentration and change in velocity was found in all

cases, as indicated by the secondary plots (Figure 6). IC50 values

calculated from these experiments suggest the ranking of potency

to be; capsaicin (IC50 = 11.964.0 mM, R2 = 0.78) . quinine

hydrochloride (IC50 = 44.366.8 mM, R2 = 0.61) . denatonium

benzoate (IC50 = 12964 mM, R2 = 0.65) . phenylthiourea

(IC50 = 36665 mM, R2 = 0.50) . copper sulphate (IC50 = 14336

3 mM, R2 = 0.54).

Since the block in cell behaviour during these experiments may

occur through a variety of mechanisms including cell toxicity or

death, we continued the analysis of tastants on Dictyostelium by

monitoring the reversibility of behaviour effects, a potential role of

cell death in this effect, and the results of long-term exposure

(during development). To assess the reversibility of tastant action,

we analysed the recovery of cells following compound exposure. In

these experiments, cell movement was recorded for 4.5 min in the

absence of a chemotactic (cAMP) gradient, prior to the addition of

each tastant for 4.5 min (using concentrations at eight-fold higher

that the IC50 value, representing approximate concentrations at

which the concentration-dependence curve begins to plateau

(Figure 6)). This length of exposure was chosen to show a

significant reduction in cell velocity. The buffer containing the

tastant was then replaced with fresh buffer (lacking tastant) and

cells were observed for a further 26 min (Figure 7). Under
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control conditions (in the absence of tastant), cell handling gave

rise to a small non-significant drop in velocity, which then

returned towards the initial velocity by the end of the test period.

In the presence of all tastants, cells show an initial significant

reduction in velocity upon exposure compared to untreated cells,

which is consistent with earlier experiments (Figure 6). However,

following the removal of the 3 mM phenylthiourea, 1 mM

denatonium benzoate, or 350 mM quinine hydrochloride, cells

then increased in velocity, returning towards the rate of movement

of untreated cells under control conditions, and showing no

significant difference for the last time periods measured

(Figure 7). In contrast, cells exposed to 100 mM capsaicin did

Table 1. Emetic or taste aversive compounds assessed for effects on Dictyostelium behaviour during chemotaxis.

Generic Target
Target Receptor/
Mechanism of Action

Common
Name Concentration

Effect on
Dictyostelium Species Dose Range Reference

Receptor Agonist/
Tastant

T2R Receptor ligand Denatonium
Benzoate

0.05–10 mM Y R*, H* 0.01–10 mM [36,39,63,72]

Phenylthiourea 0.05–5 mM Y H* 2–5 mM [63]

Quinine HCl 0.05–1 mM Y R* 0.0082–250 mM [36,73]

TRPV1 Receptor
Agonist

Capsaicin 0.01–0.3 mM Y S 0.04–0.4 mg/kg [28,74]

Resiniferatoxin 1 mM, 10 mM N S 0.1–1000 mg/kg [27,29,75,76]

Cytotoxic Cytotoxic/DNA
Damage??

5-Fluorouracil 250 mM N F,R,S,H 35–100 mg/kg [77–79]

Actinomycin D 10 mM, 700 mM N D,R 0.13–0.25 mg/kg [79,80]

Cisplatin 50 mM, 300 mM N F,D,R,S, H 3–20 mg/kg [6,29,80–87]

Cycloheximide 5 mM N F,D 20 mg/kg [81]

Methotrexate 50 mM, 250 mM N S,H 80 mg/kg [77,78]

Streptozotocin 1 mM N H 14–27 mg/kg [88–90]

Vincristine 1 mM N R 0.1–1 mg/kg [79]

Receptor
Antagonist

Extracellular Enzyme
Inhibitor

Digoxin 1 mM N C,H 0.2–0.6 mg/kg [91,92]

PDEIV Inhibitor Rolipram 10 mM, 700 mM Y F,D,R,S 0.5–10 mg/kg [60,93–95]

SSRI/Transmitter
Uptake Inhibitor

Fluoxetine 6.5 mM N S 60 mg/kg [96]

Receptor Agonist 5-HT Receptor
Agonist

5-hydroxytryptamine 1 mM, 100 mM N S 4–10 mg/kg [96–98]

Dopamine Receptor
Agonist

Apomorphine HCl 10 mM, 1 mM N F,D,R,H 0.1–10 mg/kg [80,81,83,85,99–101]

Ligand Gated Ion
Channel Activator

Veratridine HCl 30 mM, 500 mM N D, C 0.02–0.25 mg/kg [102–104]

Neurokinin Receptor
Agonist

Substance P 1 mM N D 0.03–0.2 mg/kg [105]

Nicotinic Receptor
Agonist

Nicotine 6 mM, 100 mM N F,D,R,S,H 1.5–20 mg/kg [29,75,87,97,106–109]

Opioid Receptor Agonist Loperamide HCl 1 mM, 100 mM N F 0.5 mg/kg [85,110,111]

Other CNS depressant Lithium Chloride 10 mM N R,S,H 50–200 mg/kg [109,112,113]

Enteroendocrine
Cell Stimulant

Metformin 500 mM, 10 mM N H* 1–30 mM [114,115]

Free Radical Generator Pyrogallol 500 mM, 10 mM N S 128 mg/kg [27,116]

Gastric mucosal irritant Copper Sulphate 0.16– 5 mM Y F,D,R,S, H 5–120 mg/kg [29,85,97,109,117,118]

Copper Chloride 1.6 mM Y Based on concentratio
of copper sulphate:
[29,85,97,109,117,118]

Zinc Sulphate 1.6 mM N H 1% [119]

Prostaglandin PGF2a 1 mM, 100 mM N F,S 1–13.5 mg/kg [117,120]

A range of emetic or taste aversive compounds within the categories of tastants, cytotoxic agents, generalised receptor agonists/antagonists, and other compounds
were selected for acute exposure to chemotaxing Dictyostelium cells. These compounds have a range of target receptors and/or mechanisms of action, as indicated.
Compound concentrations employed in these Dictyostelium experiments (shown here) were derived from the experimental dose range for each compound used in
emetic-related experiments in other species: F = Ferret; D = Dog; R = Rat; S = Shrew; C = Cat; H = Human. For in vivo experiments in the rat, the table refers to the
dose at which pica was observed, for all other species it refers to the emetic dose. An effect on chemotaxis (defined as a significant change in cell velocity following
acute treatment (see Figure 3 and 4)) is represented by Y (Yes), with no effect denoted N (No). * Caused conditioned taste aversion responses in the rat or data derived
from in vitro studies.
doi:10.1371/journal.pone.0024439.t001
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not recover velocity in the time period measured here (not shown).

However, reducing the concentration of capsaicin to 50 mM

enabled cells to recover velocity (Figure 7).

To further analyse cell viability following tastant exposure, we

then measured cell survival following 10 and 30 min treatment.

These experiments also initially employed tastant concentrations

at eight-fold IC50 values (Figure 6) and cell viability was

determined using trypan blue staining (Table 3). In the presence

of phenylthiourea, denatonium benzoate and quinine hydrochlo-

ride, the percentage of surviving cells were above 95% after

10 min of exposure and above 90% after 30 min of exposure,

indicating cell death is not the cause of the block in cell behaviour

following treatment with these compounds. However, 100 mM

capsaicin reduced cell survival to 51% and 57% after 10 and

30 min respectively. We therefore reduced capsaicin concentra-

tion to 50 mM, to show a 98% cells survived after both 10 and

Figure 1. Time-dependent image series of Dictyostelium cells during chemotaxis. A–O: Cells moving towards a gradient of cAMP (5 mM)
over a 15 min period, with images shown for each min. Two cells are indicated (arrows) over the test period. Bar = 10 mm.
doi:10.1371/journal.pone.0024439.g001
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30 min of exposure, also indicating that cell death was not the

cause of capsaicin-induced block in cell movement at or below this

concentration.

Finally, we examined the chronic effect of tastants on

Dictyostelium development by exposing cells to each compound

for 24 hours during starvation on a nitrocellulose filter (Figure 8).
Under control conditions, cells were able to chemotax together to

form a mound and ultimately develop into a multicellular fruiting

body composed of a spore head held above the substratum by

dead, vacuolated stalk cells [13]. Repeating these experiments in

the presence of tastants (at eight-fold IC50 values, Figure 6) did

not inhibit fruiting body formation (Figure 8). Furthermore,

development in the presence of phenylthiourea (3 mM), quinine

hydrochloride (350 mM) and capsaicin (100 mM) did not alter the

general structure of the fruiting body (spore head and stalk),

however in the presence of denatonium benzoate (1 mM),

development was slowed, with a reduced number of immature

Figure 2. Analysis of Dictyostelium cell behaviour. Cells moving
under a chemotactic gradient were analysed using ImageProPlus
software to determine cell velocity ( mm/min); cell aspect (shape -
measured as a ratio between the diameters of cells across each axis,
where a value of 1 represents a circle); cell angle (degrees-where cell
migration was measured in comparison to the y-axis); and cell tracking
(where the co-ordinates of individual cells were illustrated following
normalisation to (0,0) at 5 min) in order to illustrate changes in
migration before and after compound addition.
doi:10.1371/journal.pone.0024439.g002

Figure 3. Analysis of Dictyostelium cell behaviour over a 15 min
period under control conditions. Mean data representing 85 cell
chemotaxis over a 15 min period for A: cell velocity; B: cell aspect; C:
cell angular movement; D: cell tracking (where the co-ordinates of
individual cells were illustrated following normalisation to (0,0) at 5 min,
represented by single lines for 0–5 min (blue) or 5–15 min (dashed red)
and cell direction has been adjusted so that cells are moving up the
page). Data from A–C is presented as mean of triplicate experiments
analysing approximately 30 cells in each.
doi:10.1371/journal.pone.0024439.g003

Table 2. Statistical significance of the concentration-
dependent acute reduction in Dictyostelium cell velocity.

Compound Concentration (mM) P-value (Velocity)

Capsaicin 0.01 NS

0.05 0.025

0.10 0.041

0.20 0.001

0.30 0.006

Copper Chloride 1.60 0.045

Copper Sulphate 0.16 NS

0.80 NS

1.20 NS

1.60 0.032

2.40 0.028

5.00 0.005

Denatonium Benzoate 0.05 NS

0.50 0.015

1.00 0.037

5.00 0.021

10.0 0.06

Phenylthiourea 0.05 NS

0.20 NS

0.50 NS

1.00 0.024

2.00 0.011

5.00 0.040

Quinine Hydrocholoride 0.05 NS

0.10 0.049

0.20 0.002

0.50 0.029

1.00 0.035

Rolipram 0.01 NS

0.70 0.007

Concentration range of compounds showing a significant acute effect on
Dictyostelium cell velocity between the first 5 and final 5 min of the assay.
T-tests performed were 2-tailed paired student t-tests, with ,30 cells measured
in each replicate. NS = not significant.
doi:10.1371/journal.pone.0024439.t002
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fruiting bodies present after 24 hours. This effect was overcome

after prolonged incubation (48 hours; data not shown).

Discussion

Research into the mechanisms by which diverse compounds

induce emesis, and the related phenomena of pica and CTA/

CFA, traditionally employs a range of unpleasant experiments on

several animal species (primarily ferret, dog and rat), with

considerable heterogeneity in dose and response for many

compounds between different models [5]. It would thus be of

significant advantage to provide early indicators of potential

emetic liability during drug development prior to in vivo animal

studies. We therefore tested a broad spectrum of emetic and

aversive compounds from each major class of emesis-inducing

chemical group, for their acute effects on Dictyostelium behaviour

during chemotaxis. It was found that a range of structurally

discrete tastants (capsaicin – the pungent compound in chilli

peppers; and denatonium benzoate, phenylthiourea, and quinine

hydrochloride – all bitter tasting compounds), a stomach irritant

(copper containing compounds), and a phosphodiesterase IV

(PDE4) inhibitor (rolipram) (Table 1 and 2) all caused rapid

disruption of cellular behaviour, including a simultaneous decrease

in cell velocity and loss of cell shape leading to rounding.

Following a block in cell movement, the angle of movement also

approached zero degrees. Interestingly, no treatments were found

to cause changes in cell direction independent of speed or cell

shape. It is worth noting that a range of emetic/aversive

compounds that have been previously shown to cause chronic

effects on Dictyostelium development, including lithium and

cytotoxic compounds such as cisplatin [20,22,24,25], did not

acutely affect cell velocity, shape or angular direction in this study.

The differences in compound effects may be due to the short

exposure time (ten min) used here, in comparison to previous

reports that employ treatment times of 1–24 hours.

Capsaicin, a vanilloid, is the active compound found in chillies

responsible for causing a burning taste sensation and it has been

demonstrated to be an agonist for the transient receptor potential

vanilloid-1 (TRPV1) receptor [26]. The TRPV1 receptor has been

implicated in the induction of emesis via the acute release of

endogenous substance P [27,28]. Identification of the mechanism

of action of Capsaicin in Dictyostelium may provide a novel model

for molecular research in this area, and provide further insight into

a mechanism of action (through either receptor activation or

inhibition, or via intracellular cell signalling pathway regulation).

Initial examination of the Dictyostelium proteome failed to find any

proteins with significant homology to known human, mouse or

worm (C. elegans) TRPV1 proteins (based upon BLAST analysis

with TRPV receptors - Table S1), and this therefore raises the

possibility of an alternative mechanism of action of pungent tasting

compounds in regulating Dictyostelium cell behaviour. Surprisingly,

the ultra potent analogue of capsaicin, resiniferatoxin, did not

significantly affect Dictyostelium cell behaviour at the concentrations

used here, although it is capable of inducing emesis in animal

models [28,29]. It is unclear if structural or physicochemical

differences between the two compounds give rise to altered efficacy

in regulating the Dictyostelium target.

Bitter taste has been thought to be perceived in humans since a

pre-Neanderthal age, providing a mechanism for identifying

potentially toxic substances [30]. It has been shown that bitter

taste can initiate the sensation of nausea [31]. Response to bitter

tasting compounds has also been shown across a wide spectrum of

model systems from mammals to frogs, fish, Drosophila, and C.

elegans [32–38]. Denatonium benzoate, phenylthiourea and

Figure 4. Analysis of Dictyostelium cell behaviour with addition
of 5 mM copper sulphate after 5 Min. Mean data representing 124
cell chemotaxis over a 15 min period following addition of copper
sulphate (5 mM) at 5 min (arrow) for A: cell velocity; B: cell aspect; C:
cell angular movement; D: cell tracking (where the co-ordinates of
individual cells were illustrated following normalisation to (0,0) at 5 min,
represented by single lines for 0–5 min (blue) or 5–15 min (dashed red)
and cell direction has been adjusted so that cells are moving up the
page). Data from A–C is presented as a mean of triplicate experiments
analysing approximately 40 cells in each.
doi:10.1371/journal.pone.0024439.g004

Figure 5. Analysis of Dictyostelium cell behaviour with addition
of 5 mM denatonium benzoate after 5 Min. Mean data repre-
senting 89 cells chemotaxis over a 15 min period following addition of
denatonium benzoate (5 mM) at 5 min (arrow) for A: cell velocity; B:
cell aspect; C: cell angular movement; D: cell tracking (where the co-
ordinates of individual cells were illustrated following normalisation to
(0,0) at 5 min, represented by single lines for 0–5 min (blue) or 5–
15 min (dashed red) and cell direction has been adjusted so that cells
are moving up the page). Data from A–C is presented as a mean of
triplicate experiments analysing approximately 30 cells in each.
doi:10.1371/journal.pone.0024439.g005
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quinine hydrochloride are all bitter compounds, and all caused

significant and dramatic changes in cell velocity and aspect. All

three compounds are proposed T2R receptor ligands involved in

this bitter taste detection, and this mechanism functions in emesis

in humans at high concentrations [39–42]. The common effect

observed here for three structurally-independent bitter compounds,

at concentrations used in emetic based research (Table 1), suggests

a T2R receptor-like mechanism of action in Dictyostelium. However,

BLAST analysis of the Dictyostelium proteome using 25 different

human T2R receptors (with these proteins sharing a 30–70%

homology [[43–45]); 24 mouse [43], six insect (Drosophila; NCBI

36094, 117484, 38935, 117498, 117349, 117492) [34], three worm

(C. elegans; NCBI 178326, 177117, 188314) [32,37] and three

candidate fish (zebrafish; NCBI 664690, 553134, 798975) [35,46]

bitter receptors, again did not identify any Dictyostelium proteins

showing significant homology within its genome (See Table S2).
Furthermore, other related receptors such as the mammalian

TRPM5 receptor (NCBI 29850), also associated with bitter taste

detection [47,48], did not have recognisable Dictyostelium homo-

logues (based on BLAST analysis – see Table S3). Although the

lack of recognised bitter receptors in Dictyostelium (as defined by

protein sequence homology to other species) suggests a potential

novel mechanism for the detection of bitter compounds, it must be

noted that receptors for other taste-related compounds have been

found in other models that lack homology to established tastant

receptors (e.g. sweet receptors in Drosophila [49]). Identifying the

mechanism (or molecular target) of bitter taste perception in

Dictyostelium may thus provide a novel mechanism of action for bitter

tasting compounds, leading to the subsequent analysis of this

mechanism in humans.

Copper compounds are essential in the diet but at higher

concentrations can causes gastrointestinal upsets, which include

nausea, vomiting, cramps and diarrhoea [50,51]. This has lead to

the formation of regulatory guidelines for copper levels in drinking

Figure 6. Concentration-dependent reduction of cell velocity for emetic and taste aversive compounds. Reduction in cell velocity
compared to untreated cells was plotted against log10 concentrations, where compound concentration was chosen from those showing a non-
significant effect on cell behaviour; up to a maximum of a 200-fold increase from this value. All data is presented as a mean 6 S.E.M of triplicate
experiments, comparing mean cell velocity during the first 5 min and final 5 min with increasing concentration.
doi:10.1371/journal.pone.0024439.g006
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water [50,51]. Analysis of the molecular mechanism of this effect

in mammalian systems suggests the gastro-duodenal luminal

concentration of copper sulphate is the key to emesis induction,

thus implicating a gut mucosal-triggered reaction, and this is

supported by neurophysiological studies [52–56]. However, the

molecular emetic mechanism of copper in the gut remains unclear.

Several studies have analysed a role for copper in Dictyostelium [57],

and these have suggested that cells are highly resistant to copper

through high cellular export [57]. The molecular mechanism of

copper may be due to an inhibition of ATP-dependent ion

currents, controlled by P2X receptors [58,59].

Phosphodiesterase IV (PDE4) inhibitors are proposed for use as

anti-inflammatory agents (e.g. in asthma) but may cause nausea

and vomiting as side-effects [60]. Phosphodiesterases are respon-

sible for degrading cAMP and cGMP in Dictyostelium [61], and

there is one potential PDE4 homologue in Dictyostelium that shares

a 33–35% identity with the 4 human isoforms A–D. Inhibition of

phosphodiesterases would be expected to elevate extracellular

cAMP levels, leading to saturation of cAMP receptors in

chemotaxis, and thus the observed inhibition of cell behaviour

shown in our assay. Rolipram did not exert an effect on

Dictyostelium cell behaviour at low concentrations (10 mM), but

blocked cell movement at higher concentrations (700 mM). The

high concentration required for this effect may thus reflect a non-

specific action of Rolipram on Dictyostelium phosphodiesterases

[62].

The acute block in Dictyostelium cell behaviour caused by tastants

may occur through a range of mechanisms including interaction

with unknown receptor(s) or other molecular target(s), or through

basic cytotoxicological mechanisms. To investigate these potential

toxicological mechanisms, we carried out a range of short- and

long-term exposure experiments on Dictyostelium. Using a concen-

tration derived from the IC50 value for each compound (eight fold

higher), we initially showed that all cells treated with bitter

compounds recovered from acute (4.5 min) exposure (Figure 7).
This suggests that inhibition of cell behaviour by these tastants is

not through a cytotoxicological mechanism. This was then

confirmed by measuring cell death following 10 and 30 min

Figure 7. Analysis of Dictyostelium cell behaviour recovery post-tastant exposure. Mean data representing cell velocity during random cell
movement over a 35 min period, with average cell velocity measured for 4.5 min under control conditions (at 24.5–0 min), prior to the addition of
tastants at 0 min (D), followed by removal of tastants at 4.5 min (W), and the recording of recovery up to 31 min. Tastant concentrations used are:
1 mM denatonium benzoate, 3 mM phenylthiourea, 350 mM quinine hydrocholide, and 50 mM capsaicin. Data is presented as a mean 6 S.E.M for
each 4.5 min period, with triplicate experiments analysing approximately 30 cells in each. Grey bars indicate the equivalent time periods used in the
analysis of cell velocity comparing control and each condition. N/S = non significant, * = P,0.05.
doi:10.1371/journal.pone.0024439.g007
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exposure, since these compounds had no significant effect on cell

viability (Table 3). In contrast 100 mM capsaicin treatment did

not enable cell recovery over 26 min, and caused a large reduction

in cell viability following 10 min exposure. This effect however is

likely to be maximal, since increased exposure (30 min) to

capsaicin did not further reduce cell viability. However, reduction

of capsaicin concentration to 4-fold over IC50 values enabled cells

to recover velocity and did not reduce cell viability. These

combined experiments suggest that tastants examined here do not

function through an acute toxicological mechanism to block

Dictyostelium cell behaviour.

To extend these toxicological assays for the analysis of longer

exposure periods, we also examined the role of tastants on

Dictyostelium development (Figure 8). In these experiments, cells

were exposed to tastants (again at eight-fold IC50 values) for

24 hours, and the ability to develop into mature fruiting bodies

was monitored as previously described [10–12]. Long term

exposure to all compounds did not block fruiting body forma-

tion, clearly indicating that these compounds are not lethal to

Dictyostelium at high concentrations for extended exposure.

Phenylthiourea, quinine and capsaicin exposure also did not alter

fruiting body morphology, whereas denatonium benzoate slowed

development, with immature fruiting bodies present after 24

hours, that later developed into mature structures. These

combined cytotoxicological and developmental experiments sug-

gest that bitter and hot compounds do not block Dictyostelium

behaviour through toxic or irreversible mechanisms.

All pharmacological studies must consider drug concentrations,

to differentiate between potential target-specific and non-specific

effects. In mammalian experimental systems, bitter tasting

compounds have been shown to cause effects on mouse intestinal

STC-1 [63,64] as well transfected HEK-293 cells [65] at similar

concentrations to those used in our experiments (up to 10 mM and

1 mM respectively), suggesting that Dictyostelium is as sensitive as

other models for detecting bitter taste. Similarly, capsaicin has also

been used in human-based taste experiments at concentrations

shown here to affect Dictyostelium behaviour [66,67] (100 mM).

Since the molecular mechanisms of these compounds in

chemotactic cell behaviour remains unknown, it is not possible

to infer a commonly targeted signalling pathway. However, in

mammalian systems, T2R receptor signalling is regulated by a

TRPV1-like receptor, TRPM5, thus both ‘bitter’ and ‘hot’

compounds share a common signalling pathway [68]. Although

Dictyostelium does not contain proteins with high amino acid

sequence similarity to either of these receptors, further investiga-

tion will be necessary to determine if Dictyostelium’s ability to detect

these compounds involves a common signalling pathway.

An important limitation of this work is that primary assay used

in this investigation only monitors the acute effects of test

substances (within 10 min of exposure), thus any delayed effect

would not be observed. For example, cytotoxic agents (e.g.

cisplatin) used in anti-cancer treatments cause DNA damage, and

this effect may not lead to significant changes in cell behaviour

within the ten min response time recorded. These compounds do,

however, give rise to a chronic block in development following

longer exposure [22].

Conclusions
A broad range of emetic and aversive compounds within the

categories of tastants (e.g. bitter and hot compounds), cytotoxic

agents, or generalised receptor agonists/antagonists were tested to

determine if Dictyostelium cell behaviour could be used to

Table 3. Analysis of tastants on Dictyostelium cell viability.

Compound/
Exposure

Mean Cell
Count (alive) S.E.M

Mean Cell
Count (dead) S.E.M

Cell
Total

Cell Viability (%
cells Surviving) P-value

Time (Min)

Control

10 135 2.2 1 0.6 136 99 N/A

30 135 4.3 0 0 135 100 N/A

1 mM DB

10 181 16.5 7 0 188 96 0.006

30 183 5.9 16 3.2 199 92 0.021

350 mM QHCl

10 139 12.1 1 1 140 99 NS

30 146 2.59 3 1.2 150 97 NS

3 mM PTU

10 128 8.7 0 0 128 100 NS

30 119 7.1 4 0.9 123 97 0.021

100 mM Capsaicin

10 87 1.5 83 7.7 170 51 0.002

30 74 4.1 57 1.8 131 57 0.0004

50 mM Capsaicin

10 174 1.3 3 1.5 177 98 NS

30 150 8.9 3 0.8 153 98 0.021

Chemotactically competent Dictyostelium cells were exposed to compounds at indicated concentrations and cell viability assessed after 10 and 30 min using trypan
blue. All experiments were performed in triplicate. N/A = Not applicable NS = Not significant.
doi:10.1371/journal.pone.0024439.t003
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investigate the molecular mechanisms of these compounds. We

show that Dictyostelium provides a limited model for emetic or

aversive compound identification. However, Dictyostelium may

enable an exciting new avenue for research into the molecular

mechanisms of bitter and hot compounds, since these compounds

have a rapid and strong effect on behaviour, the compounds have

an uncharacterised molecular mechanism of action, and we have

demonstrated the compounds are unlikely to affect cell behaviour

via toxicological means. Further investigation into the molecular

mechanism of tastants on Dictyostelium may thus provide novel

mechanism(s) of bitter and hot compound action.

Materials and Methods

Chemicals
The following chemicals were obtained from Sigma Aldrich Co.

Ltd (Dorset, UK), and are provided with catalogue numbers: 5-

fluorouracil (2,4-Dihydroxy-5-fluoropyrimidine; F6627), actinomy-

cin D (2-Amino-(N,N)-1-bis(hexadecahydro-6,13-diisopropyl-2,

5, 9-trimethyl-1,4,7,11,14-pentaoxo-1H-pyrrolo[2,1]-[1,4,7,10,13]

oxatetraazacyclohexadecin-10-yl)-4,6-dimethyl-3-oxo-3H-phenox-

azine-1,9-dicarboxamide; A1410), capsaicin (8-Methyl-N-vanillyl-

trans-6-nonenamide; M2028), cisplatin (cis-Dichlorodiammine pla-

tinum(II); 479306), copper chloride (203149), copper sulphate

(cupric sulphate pentahydrate; C8027), cycloheximide (3-[2-(3,5-

Dimethyl-2-oxocyclohexyl)-2-hydroxyethyl] glutarimide; C7698),

denatonium benzoate (N,N-Diethyl-N-[(2,6-dimethylphenyl carbam-

oyl) methyl] benzyl ammonium benzoate; D5765), digoxin (12b-

Hydroxydigitoxin; D6003), fluoxetine ((6)-N-Methyl-c-[4-(trifluor-

omethyl)phenoxy]benzenepropanamine hydrochloride; F132), lith-

ium chloride (L9650), loperamide hydrochloride (4-(p-Chlorophe-

nyl)-4-hydroxy-N,N-dimethyl-a,a-diphenyl-1-piperidinebutyramide

hydrochloride; L4762), metformin (1,1-Dimethylbiguanide hydro-

chloride; 04635), methotrexate (4-Amino-10-methylfolic acid hy-

drate), nicotine (3-(1-methylpyrrolidin-2-yl)pyridine; M4010),

PGF2a ((5Z,9a,11a,13E,15S)-9,11,15-Trihydroxyprosta-5,13-die-

noic acid tris salt; P0424), phenylthiourea (1-Phenyl-2-thiourea;

P7629), pyrogallol (1,2,3-Trihydroxybenzene; P0381), quinine

hydrochloride ((R)-[(2S,4R,5R)-5- ethenyl-1 -azabicyclo [2.2.2]

octan-2-yl]- (6-methoxyquinolin-4-yl) methanol dihydrate hydro-

chloride; Q1125), resiniferatoxin (4-Hydroxy-3-methoxy- [(2S,3aR,

3bS,6aR,9aR,9bR,10R,11aR)- 3a,3b,6,6a,9a, 10,11,11a-octahydro-

6a-hydroxy-8, 10-dimethyl-11a-(1-methylethenyl)-7-oxo-2-(phenyl-

methyl)-7H-2,9b -epoxyazuleno[5,4-e]-1,3-benzodioxol-5-yl] benze-

neacetate; R8756), rolipram (4-[3-(Cyclopentyloxy)-4-methoxyphe-

nyl]-2-pyrrolidinone; R6520), streptozocin (N-(Methylnitro-

socarbamoyl)-a-D-glucosamine; S0130), veratridine (3-Veratroylver-

acevine; V5754), vincristine (22-Oxovincaleukoblastine sulfate salt;

V8388) and zinc sulphate monohydrate (96495). The following

compound (with catalogue number) were obtained from Tocris

Bioscience Ltd: (Bristol, UK) 5-hydroxytryptamine (3-(2-Ami-

noethyl)-1H-indol-5-ol hydrochloride; 3547), apomorphine hydro-

chloride (R(–)-10,11-Dihydroxyaporphine; 2073) and substance

P ((2S)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-1-[(2S)-2-amino-5-(diami-

nomethylideneamino) pentanoyl]pyrrolidine-2-carbonyl]amino]-

hexanoyl]pyrrolidine-2-carbonyl]amino]-N-[(2S)-5-amino-1-[[(2S)-

1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-amino-4-methylsulfanyl-1-oxobutan-

2-yl] amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-

1-oxo-3-phenylpropan-2-yl] amino]-1-oxo-3sphenylpropan-2-yl]a-

mino]-1,5-dioxopentan-2-yl]pentanediamide; 1156). All compounds

were dissolved in dimethylsulfoxide (DMSO) (5-fluorouracil, actino-

mycin D, cycloheximide, digoxin, fluoxetine, rolipram, quinine

hydrochloride, capsaicin and resiniferatoxin) or phosphate buffer

(16.5 mM KH2PO4, 3.8 mM K2HPO4, pH 6.2) (lithium chloride,

cisplatin, streptozotocin, vincristine, metformin, pyrogallol, copper

sulphate, copper chloride, zinc sulphate, substance P, nicotine,

loperamide hydrochloride, PGF2a, denatonium benzoate, phenylthio-

urea), apart from 5-hydroxytryptamine, apomorphine hydrochloride

(dissolved in 0.9% ascorbic acid); methotrexate and veratridine

(dissolved in 0.1% sodium hydroxide).

Cell Behaviour Assay
To prepare Dictyostelium cells (Ax2) for behaviour analysis

experiments, cells were grown in shaking suspension in Axenic

medium (Formedium Co. Ltd, Norfolk, UK), washed and

resuspended in phosphate buffer at 1.76106 cells/ml. Cells were

then pulsed for 5 hours with 30 nM cyclic adenosine monophos-

phate (cAMP) (Sigma Co. Ltd, Dorset, UK) at 6 min intervals

whilst shaking at 120 rpm. Cells were then washed in phosphate

buffer, resuspended at 16107 cells/ml, and used in a Dunn

chamber (Hawksley, Sussex, UK) assay [69], migrating toward

5 mM cAMP. A stable chemotactic gradient was allowed to form

over a 30 min period, prior to recording cell shape and position

using an Olympus IX71 microscope at 40x magnification with a

QImaging RetigaExi Fast1394 digital camera. Cell images were

recorded every 6 seconds over a 15 min period, with the initial

5 min period recorded prior to addition of test compounds (within

a 10 mL aliquot diluted in 5 mM cAMP) to the outer well of the

Dunn chamber. Subsequent images were recorded over the

following ten min period for each compound, and at each

Figure 8. Analysis of tastants on Dictyostelium development.
Cells were allowed to develop over 24 hours in the presence of control
conditions, 3 mM phenylthiourea, 1 mM denatonium benzoate, 350 mM
quinine hydrochloride and 100 mM capsaicin. All images are represen-
tative of triplicate experiments indicating cell survival after 24-hours
exposure to each compound. Scale bar represents 1 mm.
doi:10.1371/journal.pone.0024439.g008
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concentration, with a minimum of three independent experiments

for each drug/concentration and an average cell number of ,30

cells quantified per experiment. Cell recordings were prepared in

the second quadrant of the Dunn chamber, enabling cell angular

movement to be recorder at around 250 degrees. Solvent only

controls were carried out for all experiments to ensure readouts

were based upon compounds listed, with for example, no effect of

DMSO shown at 0.6%– the highest concentration used in the

experiments described here.

Dictyostelium Recovery Following Tastant Exposure
Dictyostelium cells (Ax2) were pulsed as described above, re-

suspended at 1.76105 cells/mL, and 250 mL aliquots of cells

were added to Lab-Tek 8-well chambered coverglass wells

(Thermo Fisher, Leicestershire, UK) and allowed to adhere for

45 min. Cell movement was recorded as above at intervals of 18

seconds for a total of 35 min (in the absence of a chemotactic

gradient). Cells were allowed to establish a base-line velocity for

4.5 min, prior to the addition of 10 mL of tastant to give indicated

final concentrations. Following 4.5 min tastant exposure, cell

buffer containing tastants was aspirated from the chamber and

replaced with 250 mL phosphate buffer (over a 30 second period),

and cells were monitored for a further 25.5 min. All experiments

were performed in a minimum of triplicate individual assays, at

each compound concentration.

Cell Viability Assay
Dictyostelium cells (Ax2) were pulsed as described, re-suspended at

2.56105 cells/mL, exposed to tastants (at indicated concentra-

tions) for 7 or 27 min and then stained with 0.4% trypan blue

solution (final concentration 0.067%) for 3 min prior to live

counting. Dead cells were identified as a distinctive blue colour

since live cells did not change colour. Experiments were performed

in triplicate.

Development Assay
Dictyostelium development assays were performed in triplicate

experiments as previously described [13,70,71].

Data Analysis and Statistics
Changes in cell velocity, aspect (the ratio between the major

and minor axes of an elliptical shape such as a cell) and angular

movement (Figure 2) were monitored for every cell within each

of the 600 frames recorded over the 15 min period and analysed

by ImagePro software (Media Cybernetics, Buckinghamshire,

UK). Compound effects were compared using the mean velocity

and aspect of cells between the first 5 min and the final 5 min

and significance was determined using a two-tailed paired

student t-test (P#0.05). Angle was also measured throughout in

order to observe any changes in the direction of cell movement.

The relative co-ordinates of cells (X,Y) were also mapped and

represented in a line-tracking plot whereby the co-ordinates of

cells at 5 min (when the compound was added) were normalised

to (0,0).

In quantifying velocity, concentration-related drug response was

calculated by subtracting the mean velocity of cell movement in

the final five min from the mean velocity in the first 5 min for each

compound at each concentration. These were plotted against drug

concentration (log10) to quantify the change in velocity with drug

concentration. A non-linear three parameter log 10 concentration

response curve was fitted by GraphPad Prism (GraphPad Software

Inc v5.02, San Diego, USA) using a least squares fit. Using

GraphPad, the subsequent concentration at half maximal compound

inhibition (IC50) was calculated well as the R2 value in order to

display the accuracy of the curve fit.

Cell velocity was quantified in the Dictyostelium recovery

experiments as described above. Significance was determined

using unpaired one-tailed student t-tests (based on a unidirectional

drop in velocity as observed in Dictyostelium cell behaviour assay) by

comparing mean velocity of control cells and equivalent mean

velocities at each compound concentration. Tastant dependent

effects were determined by comparing 0–4.5 min and 27-31 min

periods (grey bar) between control and tastant treated cells to

assess initial decrease in cell velocity and recovery of velocity

(Figure 7).
Significance was determined in cell viability assays by com-

paring the percentage cell viability between control conditions and

each compound concentration using paired 2-tailed student t-tests.

Supporting Information

Movie S1 Dictyostelium chemotaxis was monitored by
time-lapse photography to record cells moving within a
Dunn Chamber towards the chemo-attractant, cAMP,
across the screen from left to right. Images were taken every

6 seconds over a 15 minute period. Computer generated cell

outlines enables average cell velocity, shape and direction of

movement to be quantified.

(AVI)

Movie S2 Dictyostelium chemotaxis was monitored by
time-lapse photography to record cells moving within a
Dunn Chamber towards the chemo-attractant, cAMP,
across the screen from bottom right to top left. Images

were taken every 6 seconds over a 15 minute period. Computer

generated cell outlines enables average cell velocity, shape and

direction of movement to be quantified. Cell movement was

recorded over a 5 minute period, prior to the addition a range of

emetic or aversive compounds (indicated by a black screen flash),

and cell behaviour was recorded for a further 10 minutes. In the

movie shown here, the stomach irritant copper sulphate (5 mM )

was added, causing Dictyostelium cells to slowly stop moving and

lose shape over the ten min period tested.

(AVI)

Table S1 Homology search results (BLAST analysis) of
the Dictyostelium genome for proteins showing amino
acid similarity to TRPV receptors from multiple spe-
cies. Potential homologues are defined by an E-value of less than

1.00E-40 [11], thus Dictyostelium does not contain proteins showing

significant sequence similarity to be considered as homologues.

(DOCX)

Table S2 Homology search results (BLAST analysis) of
the Dictyostelium genome for proteins showing amino
acid similarity to known bitter receptors from multiple
species. Potential homologues are defined by an E-value of less

than 1.00E-40 [11], thus Dictyostelium does not contain proteins

showing significant sequence similarity to be considered as

homologues. N/A = Not applicable.

(DOCX)

Table S3 Homology search results (BLAST analysis) of
the Dictyostelium genome for proteins showing amino
acid similarity to TRPM5 receptors from human and
mouse. Potential homologues are defined by an E-value of less

than 1.00E-40 [11], thus Dictyostelium does not contain proteins

showing significant sequence similarity to be considered as

homologues. N/A = Not applicable.

(DOCX)
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