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Background. Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, 
the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral 
involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria 
species on the brain remains unexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, 
and vascular biomarkers in a cohort of knowlesi-infected patients and controls.

Methods. Archived plasma samples from 19 Malaysian patients with symptomatic knowlesi infection and 19 healthy, age- 
matched controls were analyzed. Fifty-two biomarkers of brain injury, inflammation, and vascular activation were measured. 
Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering 
heatmap analysis.

Results. Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected 
patients, including S100B (P < .0001), Tau (P = .0007), UCH-L1 (P < .0001), αSyn (P < .0001), Park7 (P = .0006), NRGN 
(P = .0022), and TDP-43 (P = .005). Compared to controls, levels were lower in the infected group for BDNF (P < .0001), CaBD 
(P < .0001), CNTN1 (P < .0001), NCAM-1 (P < .0001), GFAP (P = .0013), and KLK6 (P = .0126). Hierarchical clustering 
revealed distinct group profiles for brain injury and vascular activation biomarkers.

Conclusions. Our findings highlight for the first time a potential impact of P knowlesi infection on the brain, with specific 
changes in cerebral injury and endothelial activation biomarker profiles. Further studies are warranted to investigate the 
pathophysiology and clinical significance of these altered markers, through neuroimaging and long-term neurocognitive 
assessments.
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Malaria is a life-threatening, vector-borne infection caused 
by parasites of the genus Plasmodium, that led to an estimated 
249 million cases worldwide and approximately 608 000 
deaths in 2022 [1]. Malaria is endemic in Southeast Asia, 
where it poses a significant public health challenge. In 

Malaysia, Plasmodium falciparum and Plasmodium vivax have 
historically been the species responsible for most malaria infec-
tions and deaths, but thanks to national efforts in eradicating 
the disease, no indigenous cases have been reported since 
2018 [1]. However, an emerging concern in the country is 
Plasmodium knowlesi (Pk), a zoonotic species that has become 
a significant contributor to malaria infections in humans locally 
[2, 3], with a total of 19 625 Pk cases and 57 deaths reported in 
Malaysia since 2017, including 2500 cases and 9 deaths in 2022 
alone [1]. Malaysia accounts for most Pk infections globally, 
and this species is currently the major cause of human malaria 
in the country [4, 5].

One of the most severe manifestations of P falciparum infec-
tion is cerebral malaria, a life-threatening neurological compli-
cation characterized by coma [6] and pathological hallmarks 
such as petechial hemorrhages and parasite sequestration in 
the brain vasculature [7]. Neurocognitive sequelae are frequent 
in survivors and can persist long after the infection has been 
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treated [8, 9]. While cerebral malaria is predominantly associ-
ated with P falciparum [6], recent case reports have highlighted 
instances of cerebral involvement and severe neurological com-
plications in patients infected with other Plasmodium species 
[10–13]. A high proportion of severe Pk infections has been re-
ported in Southeast Asia [5, 14], as well as fatal cases [13–15]. A 
recent study also showed that, similarly to P falciparum, 
Pk-infected erythrocytes are able to bind to endothelial cells 
[16]. Postmortem findings in one fatal case of severe Pk malaria 
revealed brain pathology features similar to those seen in fatal 
falciparum cerebral malaria, including Pk-infected erythrocyte 
sequestration in the microvasculature [13], suggesting that Pk 
malaria may also affect the brain. Remarkably, coma was not 
observed in this patient [13], which contrasts with the World 
Health Organization definition of cerebral malaria caused by 
P falciparum [6].

We recently reported that patients with severe and uncom-
plicated falciparum malaria—and therefore without coma— 
have a wide range of brain changes detected using magnetic res-
onance imaging (MRI) [17, 18]. Severe malaria patients from 
our cohort had elevated plasma levels of the neurotrophic 
factor S100 calcium-binding protein β (S100B), a biomarker 
associated with central nervous system insults [19], which cor-
related with brain MRI features typically found in cerebral ma-
laria [17]. Overall, our findings suggest that there is a frequent 
and unrecognized impact of malaria infection on the brain in 
falciparum malaria, irrespective of coma. These effects are like-
ly aggravated by acute kidney injury (AKI), with potential long- 
lasting repercussions on quality of life and productivity in sur-
vivors [20].

Despite the similar pathologies reported between cerebral 
malaria and fatal Pk infection [13] and the high incidence of 
kidney dysfunction in severe Pk malaria [21], the potential im-
pact of Pk infection on the human brain remains largely unex-
plored. To bridge this important knowledge gap, we quantified 
plasma biomarkers of brain injury, vascular activation, and in-
flammation in a cohort of Malaysian Pk-infected patients and 
healthy controls.

MATERIALS AND METHODS

Participants and Samples

This study leveraged archived plasma samples from patients 
aged ≥18 years with malaria symptoms attending either a 
government hospital or private clinic in Johor, Selangor, 
Pahang, Perak, and Trengganu states between December 
2019 and January 2023 (Figure 1). Recruitment of community- 
matched, age-matched, uninfected controls was conducted via 
active screening of individuals from communities in Johor, 
Selangor, Negeri Sembilan, and Kedah. Subjects were ap-
proached for participation if they had no fever, were aged 
≥18 years, and were part of any of the considered high-risk 

groups (defined as individuals working in proximity with forest 
and forest fringes) [22]. Data collection procedures are de-
scribed elsewhere [23]. For this study, a total of 38 serum sam-
ples from 19 infected patients and 19 healthy controls were 
analyzed (Supplementary Methods).

Biomarker Panel Selection

Our biomarker panel was designed to include 3 subpanels 
(Supplementary Methods). First, a brain injury subpanel in-
cluded 9 biomarkers directly selected for their established roles 
in malaria-related brain injury across Plasmodium species 
(Supplementary Table 1). Additional 12 brain injury biomark-
ers were included due to their relevance in neurodegeneration 
and brain injury, with a focus on neuroinflammatory processes 
that may overlap with those reported in malaria [8, 9]. Second, 
an infection and immune activation subpanel comprised 21 
biomarkers, selected based on their documented associations 
with immune responses in malaria infection (Supplementary 
Table 2). Last, an endothelial activation subpanel consisted of 
10 vascular biomarkers, chosen through a similar evidence- 
based approach (Supplementary Table 3).

Measurement of Plasma Biomarker Levels via Luminex and Simoa Assays

Thirty-eight biomarkers were analyzed using the customizable 
Human Luminex Discovery Assay (LXSAHM, R&D Bio-Techne): 
alpha-synuclein (αSyn), amyloid-β precursor protein (APP), 
angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), bone mor-
phogenetic protein 9 (BMP-9), calbindin D (CaBD), chemo-
kine ligand 2 (CCL2), chemokine ligand 4 (CCL4), 
chemokine ligand 5 (CCL5), chemokine ligand 18 (CCL18), 
contactin-1 (CNTN1), C-reactive protein (CRP), enolase 2/ 
neuron-specific enolase (ENO2/NSE), fetuin A, granulocyte- 
macrophage colony-stimulating factor (GM-CSF), interferon 
gamma (IFN-γ), intercellular adhesion molecule 1 (ICAM-1), in-
terleukin 1 alpha (IL-1α), interleukin 1 beta (IL-1β), interleukin 
1RA (IL-1RA), interleukin 2 (IL-2), interleukin 4 (IL-4), inter-
leukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), in-
terleukin 17 (IL-17A), lipocalin-2 (neutrophil gelatinase– 
associated lipocalin [NGAL]), myeloperoxidase (MPO), osteo-
pontin (OPN), parkinsonism-associated deglycase (Park7), 
platelet-derived growth factor AA (PDGF-AA), platelet- 
derived growth factor BB (PDGF-BB), receptor for advanced 
glycation end products (RAGE), serine proteinase inhibitor 
clade E1 (Serpin E1), tumor necrosis factor alpha (TNF-α), vas-
cular cell adhesion molecule (VCAM-1), vascular endothelial 
growth factor (VEGF), and von Willebrand factor A2 domain 
(vWF-A2).

Additionally, 10 biomarkers were analyzed using the 
Neuroscience 18-plex Human ProcartaPlex Panel assay 
(Thermo Fisher Scientific/Invitrogen, EPX180-15837-901): 
amyloid-β (1-42) (Aβ(1-42)), brain-derived neurotrophic factor 
(BDNF), kallikrein 6 (KLK6), migration inhibitory factor 
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(MIF), nerve growth factor beta (NGF-β), neural cell adhesion 
molecule (NCAM-1), neurogranin (NRGN), S100B, TAR 
DNA-binding protein 43 (TDP-43), and chitinase-3-like pro-
tein 1 (YKL-40).

For these assays, serum levels of biomarkers were measured 
using a MAGPIX bioanalyzer (Diasorin), according to the 
manufacturer’s instructions. Singlicate measurements were 
taken of each sample. Sample concentrations were extrapolated 
from a standard curve, fitted using a 6-parameter logistic 
algorithm.

Last, 4 brain injury biomarkers were analyzed using a highly 
sensitive single molecule immunoassay using Human Neurology 
4-Plex A assay (Quanterix, 102153). Neurofilament light (NfL), 
total Tau protein (Tau), glial fibrillary acidic protein (GFAP), 
and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) 
concentrations were measured on a Simoa HD-X Analyzer 
(Quanterix), according to the manufacturer’s instructions. 

In brief, samples were thawed at 21°C and centrifuged at 10  
000 relative centrifugal force for 5 minutes at the same tem-
perature. Onboard the instrument, samples were diluted 1:4 
with sample diluent and bound to paramagnetic beads coated 
with specific capture antibodies. Beads bound to these mark-
ers were then incubated with biotinylated detection antibod-
ies in turn conjugated to streptavidin-β-galactosidase 
complex that acts as a fluorescent tag. Subsequent hydrolysis 
reaction with a resorufin β-D-galactopyranoside substrate 
produced a fluorescent signal proportional to the concentra-
tion of GFAP, NfL, Tau, and UCH-L1. Analyte concentra-
tions were extrapolated from a standard curve, fitted using a 
4-parameter logistic algorithm.

Serological Assessment of Malaria Exposure via Luminex Immunoassay

As past infections with Plasmodium spp could also in-
fluence observed biomarker levels across participants, total 

Figure 1. Sample collection sites. Samples from Plasmodium knowlesi–infected patients were collected from government hospitals and private clinics in Johor, Selangor, 
Pahang, Perak, and Trengganu states (dots). Samples from community-matched, age-matched uninfected controls were collected via active sample screening of communities 
in Johor, Selangor, Negeri Sembilan, and Kedah (highlighted areas). Map was created in R with RStudio using Leaflet (https://leafletjs.com/) and OpenStreetMap (https:// 
www.openstreetmap.org). An interactive version of the map can be found in GitHub (https://github.com/Cescualito/LSHTM_Wassmer_Pknowlesi_Malaysia).
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immunoglobulin G (IgG) antibody responses of all Pk-infected 
patients and healthy controls were measured using a multiplex 
bead-based immunoassay developed for Luminex xMAP tech-
nology to assess previous exposure to Pk as well as to P falcip-
arum, P vivax, Plasmodium malariae, and Plasmodium ovale 
(Supplementary Methods, Supplementary Table 4).

Statistical Analysis

Sociodemographic characteristics of the participants were re-
ported as mean ± standard deviation for continuous data, or 
absolute frequencies (%) for categorical data. Continuous 
data were assessed for normality using Shapiro-Wilk tests. 
Comparisons between Pk-infected cases and healthy controls 
were made using t tests or Wilcoxon tests for normally and 
non–normally distributed continuous data, respectively, and 
χ2 tests for categorical data.

Differences in levels of individual biomarkers between 
Pk-infected patients and controls were examined using 2-tailed 
t tests and Wilcoxon tests for normally and non–normally dis-
tributed data, respectively. Bonferroni correction for multiple 
comparisons was applied. Correlation matrixes were used to vi-
sualize the relationships between biomarker levels in both 
groups, with previous data scaling. Any potential correlations 
between biomarker levels and demographic and clinical pa-
rameters were evaluated using Spearman rank correlation 
coefficient.

To elucidate potential profiles of biomarker levels that could 
distinguish between infected patients and controls, a hierarchi-
cal clustering heatmap analysis was performed, prior to scaling 
of biomarker data. This provided a visual representation of the 
relationships between individuals based on the similarity of 
their biomarker profiles. The clustering analysis was applied 
separately to each biomarker subpanel.

To assess malaria exposure, a hierarchical clustering heat-
map was similarly performed to allow visual comparison of in-
dividual antibody responses to Pk-specific antigen profiles 
across study participants. Comparisons of group means of 
mean fluorescence intensity responses between Pk-infected 
cases and healthy controls were conducted using the nonpara-
metric Kruskal-Wallis test with Dunn correction for multiple 
comparisons.

Statistical analyses were performed in R (version 4.3.1) with 
RStudio software (version 2023.09.1-494), and data were visu-
alized in R (version 4.3.1) with RStudio software (version 
2023.09.1-494) and GraphPad Prism 10 software. P values of 
<.05 (2-tailed) were considered statistically significant.

RESULTS

Cohort Characteristics

All participants were male (N = 38 [100%]). Both Pk-infected 
patients and community-matched, age-matched uninfected 

controls had an average age of 39 (±15) years. In the 
Pk-infected group, patients presented with median parasitemia 
15 200 parasites/μL (interquartile range 372,750–3,047,350).

Concentrations of Individual Markers Between Pk-Infected Patients and 
Controls

Brain Injury Subpanel
Bonferroni-corrected analyses revealed significantly higher 
plasma levels of the following brain injury biomarkers in 
the Pk-infected group, compared with uninfected controls: 
S100B (P < .0001), Tau (P = .0007), UCH-L1 (P < .0001), 
αSyn (P < .0001), Park7 (P = .0006), NRGN (P = .0022), and 
TDP-43 (P = .005). In contrast, levels of the following biomark-
ers were found to be significantly lower in the Pk-infected group 
when compared with uninfected controls: CaBD (P < .0001), 
CNTN1 (P < .0001), NCAM-1 (P < .0001), BDNF (P < .0001), 
GFAP (P = .0013), and KLK6 (P = .0126). Results obtained 
on CaBD and CNTN1 levels revealed clear cutoff values that 
allowed for subject classification based on infection status: 
All Pk-infected patients (19/19 [100%]) presented with plasma 
CaBD levels <1400 pg/mL or CNTN1 levels <12 500 pg/mL, 
whereas concentrations in all uninfected controls (19/19 
[100%]) were >1400 pg/mL for CNTN1 and >15 000 pg/mL 
for CNTN1, respectively (Figure 2, Supplementary Results, 
Supplementary Table 5).

Infection and Immune Activation Subpanel
Group differences in plasma levels were found after correction 
for multiple comparisons. IL-1RA (P < .0001), IL-10 
(P < .0001), and MPO levels (P = .0314) were significantly 
higher in the Pk-infected group when compared with their un-
infected peers, whereas CCL4 (P < .0001), CCL5 (P < .0001), 
CRP (P = .0280), and RAGE levels (P = .0025) were signifi-
cantly lower (Supplementary Figure 1, Supplementary Table 5).

Endothelial Activation Subpanel
Ang-2/Ang-1 ratios (P < .0001) and VCAM-1 levels 
(P = .0001) were significantly higher in Pk-infected patients 
compared with uninfected controls, whereas Ang-1 (P < .0001), 
BMP-9 (P < .0001), PDGF-AA and -BB (P < .0001), and Serpin 
E1 levels (P < .0001) were significantly lower (Supplementary 
Figure 2, Supplementary Table 5).

Hierarchical Clustering of Samples Based on Biomarker Blood Levels

Hierarchical clustering heatmap analyses revealed distinct 
group profiles for brain injury biomarkers (Figure 3A). 
Most infected individuals clustered together (17/19 
[89.47%]), indicating a cohesive pattern of elevated levels of 
Park7, S100B, αSyn, and TDP-43. Two infected individuals 
exhibited atypical clustering with the healthy controls, sug-
gesting a subgroup with a distinct biomarker profile. In the 
control group (19/19 [100%]), certain biomarkers, including 
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BDNF, CaBD, CNTN1, and GFAP, displayed higher levels 
and clustered together, representing a baseline biomarker 
profile in healthy individuals. As mentioned, 2 infected indi-
viduals (2/19 [10.53%]) clustered with the control group in 
this category, indicating potential overlap or similarity in 
the levels of these specific biomarkers between infected and 
control individuals.

Clustering of vascular biomarkers revealed clear and distinc-
tive group profiles (Figure 3C). In the control group (19/19 
[100%]), a cohesive cluster formed by high levels of PDGF-AA, 
Ang-1, PDGF-BB, Serpin E1, and BMP-9 was observed. 
Conversely, in the infected group (19/19 [100%]), a distinct clus-
ter of higher levels of VCAM-1 and the Ang-2/Ang-1 ratio was 
identified. Last, clustering of biomarkers associated with infec-
tion and immune activation did not reveal distinct separation be-
tween the 2 groups (Figure 3B, Supplementary Figure 3).

DISCUSSION

Our study sheds light on the potential neurological implications 
of Pk infection in Malaysia. Our investigation of circulating levels 
of brain injury, inflammation, and vascular biomarkers in 
Pk-infected patients compared to healthy controls uncovered al-
terations potentially associated with cerebral injury.

Circulating levels of S100B, Tau, UCH-L1, BDNF, and 
NCAM-1 have been documented in previous malaria studies. 
S100B, an abundant neurotrophic factor predominantly ex-
pressed in astrocytes, is a biomarker of blood-brain barrier 
(BBB) barrier permeability and central nervous system injury 
[24]. Our group reported increased plasma levels of S100B in 
Indian patients with falciparum severe malaria compared to un-
complicated cases [17] (Table 1). Similarly, levels of 
microtubule-associated protein Tau, a neuropathological hall-
mark of Alzheimer disease and a biomarker for brain injury 
[25], were found to be elevated in the plasma of Ugandan children 
with cerebral malaria compared to uninfected controls and corre-
lated with mortality and neurocognitive impairment [26]. Plasma 
levels of the ubiquitin-protein hydrolase UCH-L1, a marker of 
neuronal damage [27], were significantly higher in Ugandan chil-
dren with cerebral malaria compared with asymptomatic com-
munity children and were linked to BBB dysfunction and 
cognitive deficits at follow-up [28]. Low plasma levels of the neu-
rotrophic factor BDNF were associated with a higher risk of fal-
ciparum cerebral malaria, disability, or death in a similar pediatric 
cohort in Uganda [29]. Last, low plasma levels of NCAM-1, a 
protein involved in neural development and synaptic formation, 
were associated with severe malarial anemia in Malian 
children [30], a condition recently shown to also contribute to 

Figure 2. Group comparisons: levels of blood circulating biomarkers of brain injury. Wilcoxon test results: *P < .05; **P < .01; ***P < .001; ****P < .0001; ns, not 
significant. Abbreviations: αSyn, alpha-synuclein; Aβ(1-42), amyloid-β (1-42); AHSG, alpha 2-HS glycoprotein; APP, amyloid-β precursor protein; BDNF, brain-derived neurotrophic 
factor; CaBD, calbindin D; CNS, central nervous system; CNTF, ciliary neurotrophic factor; CNTN1, contactin-1; CSF, cerebrospinal fluid; ENO2/NSE, enolase 2/neuron-specific 
enolase; FGF-21, fibroblast growth factor 21; GDNF, glial cell line–derived neurotrophic factor; GFAP, glial fibrillary acidic protein; KLK6, kallikrein 6/neurosin; NCAM-1, neural 
cell adhesion molecule; NGAL, neutrophil gelatinase–associated lipocalin (also known as lipocalin-2); NfL, neurofilament light chain; NGF-β, nerve growth factor beta; NRGN, 
neurogranin; Park7, parkinsonism-associated deglycase; S100B, S100 calcium-binding protein β; Tau, total Tau protein; Tau pT181, phosphorylated Tau protein; TDP-43, TAR 
DNA-binding protein 43; UCH-L1, ubiquitin carboxy-terminal hydrolase L1; YKL40, chitinase-3-like protein 1.
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neurocognitive impairment [28]. Our findings of increased 
S100B, Tau, and UCH-L1 plasma levels and decreased BDNF 
and NCAM-1 during Pk infection align with these observations 
(Table 1), suggesting potential cerebral involvement, neuronal in-
jury, BBB disruption, and loss of neuroprotective mechanisms.

In broader clinical contexts, biomarkers elevated in our 
Pk-infected cohort have been associated with diverse condi-
tions and are used as indicators of brain injury or dysfunction. 
For instance, patients with Parkinson disease had significantly 
higher plasma levels of the synaptic vesicle trafficking regulator 
αSyn compared to healthy controls [31], and elevated levels of 
postsynaptic protein NRGN were associated with mild to acute 
traumatic brain injury [32]. The increased levels of αSyn and 
NRGN in our Pk-infected patients suggest potential neurolog-
ical implications, prompting further investigation into the un-
derlying mechanisms of knowlesi malaria pathogenesis and 
their clinical significance over time.

In our study, several biomarkers were significantly decreased 
in Pk-infected individuals compared to healthy controls, in-
cluding GFAP, CaBD, CNTN1, and KLK6. The astrocytic inter-
mediate filament protein GFAP, used clinically to assess 

traumatic brain injury [33], glymphatic function [34], and neu-
rodegeneration [35], was not found to be elevated in Ugandan 
children with falciparum cerebral malaria [28]. In contrast, the 
observed differences in GFAP levels in our groups may suggest 
altered astroglial and/or glymphatic functions in infected par-
ticipants, supporting our hypothesis of cerebral involvement 
in Pk malaria. CNTN1, crucial for neural development and syn-
aptic formation, was decreased in our Pk-infected patients. 
Downregulated serum levels of this biomarker predicted cogni-
tive and motor declines in patients with Parkinson disease [36], 
Last, plasma levels of the neuroinflammation modulator KLK6 
were significantly increased in patients with advanced 
Alzheimer disease compared with healthy controls [37]. 
Although challenging to interpret, these results suggest cerebral 
involvement during Pk infection and a potential risk of cogni-
tive decline, indicating a complex interplay between neuroin-
flammatory and neuroprotective mechanisms that warrant 
further investigation.

Despite our expectations based on existing malaria literature 
(Supplementary Table 1), we did not observe significant group 
differences in the iron-trafficking protein NGAL, a recognized 

Figure 3. Hierarchical clustering heatmaps: distinct circulating biomarker profiles between groups. A, Biomarkers of brain alterations or cerebral injury. B, Biomarkers of 
infection and immune activation. C, Vascular biomarkers. Data are scaled. Abbreviations: αSyn, alpha-synuclein; Aβ(1-42), amyloid-β (1-42); Ang-1, angiopoietin-1; Ang-2, 
angiopoietin-2; Ang-2/Ang-1, ratio between Ang-2 and Ang-1; APP, amyloid-β precursor protein; BDNF, brain-derived neurotrophic factor; BMP-9, bone morphogenetic pro-
tein 9; CaBD, calbindin D; CCL, chemokine (C-C motif) ligand; CNTN1, contactin-1; CRP, C-reactive protein; CSF, cerebrospinal fluid; ENO2/NSE, enolase 2/neuron-specific 
enolase; GFAP, glial fibrillary acidic protein; GM-CSF, granulocyte-macrophage colony-stimulating factor; ICAM-1, intercellular adhesion molecule 1; IFN-γ, interferon gamma; 
IL, interleukin; KLK6, kallikrein 6/neurosin; Lipocalin-2, neutrophil gelatinase–associated lipocalin; MIF, migration inhibitory factor; MPO, myeloperoxidase; NCAM-1, neural 
cell adhesion molecule; NfL, neurofilament light chain; NGF-β, nerve growth factor beta; NRGN, neurogranin; OPN, osteopontin; Park7, parkinsonism-associated deglycase; 
PDGF, platelet-derived growth factor; Pk, Plasmodium knowlesi; RAGE, receptor for advanced glycation end products; S100B, S100 calcium-binding protein β; Serpin E1, 
serine proteinase inhibitor clade E1; Tau, total Tau protein; TDP-43, TAR DNA-binding protein 43; TNF-α, tumor necrosis factor alpha; UCH-L1, ubiquitin carboxy-terminal 
hydrolase L1; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor; vWF-A2, von Willebrand factor (A2 domain); YKL40, chitinase-3-like protein 1.
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biomarker of neuroinflammation [38]. Elevated plasma NGAL 
levels were associated with cerebral malaria in adult patients 
from India and distinguished between fatal and nonfatal out-
comes [18]. Similarly, plasma NfL levels in Mozambican chil-
dren with uncomplicated and severe falciparum malaria 
showed a significant increase over time, particularly in severe 
malaria cases with neurological symptoms, suggesting NfL as 
a potential follow-up biomarker of brain injury in malaria 
[39]. Last, the glycoprotein fetuin A was previously reported 
as elevated in serum from Malaysian patients with Pk malaria 
compared to uninfected controls [40]. Our findings, diverging 
from anticipated outcomes, underscore the complexity of bio-
marker dynamics in infections with different Plasmodium spe-
cies and emphasize the need for further exploration in the 
context of Pk malaria.

In our hierarchical clustering analysis, we observed distinct 
group profiles for brain injury biomarker levels, indicating dif-
ferences between Pk-infected patients and healthy controls. 
Most infected individuals clustered together with elevated lev-
els of specific biomarkers such as S100B, αSyn, Park7, and 
TDP-43, suggesting a cohesive pattern of cerebral injury. 
However, 2 infected individuals exhibited an atypical clustering 
with the healthy controls, indicating potential overlap or milder 
infection. Conversely, in the control group, several biomarkers 
including BDNF, GFAP, CaBD, and CNTN1 displayed higher 
levels and clustered together, representing a baseline biomarker 
profile in healthy individuals.

Clustering of vascular biomarkers revealed clear and distinc-
tive group profiles. Uninfected individuals formed a cohesive 
cluster with high levels of PDGF-AA, Ang-1, PDGF-BB, 
Serpin E1, and BMP-9, revealing a healthy, baseline vascular 
profile. Conversely, the infected group cluster had high levels 
of VCAM-1 and Ang-2/Ang-1 ratio, indicative of vascular in-
volvement and endothelial activation during Pk infection. 
The elevated Ang-2/Ang-1 ratio observed in our infected group 
aligns with findings from previous studies on severe malaria 
caused by other Plasmodium species [41, 42]. Similarly, in-
creased levels of VCAM-1 have been reported in both falcipa-
rum and vivax malaria infections [43, 44].

Last, total IgG antibody responses observed against 
Plasmodium spp antigens, including Pk, were low not only 
among most uninfected controls but also Pk-infected patients 
(Supplementary Figure 6), and did not form distinct clusters 
between the 2 groups (Supplementary Figure 7). This suggests 
the cohort was largely malaria naive, with low reactivity to 
long-term infection markers.

In our cohort, no correlations were found between partici-
pant’s age or parasitemia and circulating levels of brain injury 
biomarkers (Supplementary Figures 4–5). Research in primate 
models have contributed valuable data on pathophysiology of 
Pk infection, showing that Macaca fascicularis monkeys typi-
cally control parasitemia and develop chronic infections Ta
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without severe brain injury [45]. In humans, however, our find-
ings are in line with previous evidence of pathological mecha-
nisms similar to the ones seen in severe falciparum malaria [7], 
including brain sequestration [13, 16], as well as microvascular 
and neuronal injury [25, 42]. We hypothesize that neuropathol-
ogy in Pk infection may involve similar mechanisms to falcip-
arum but that lower parasitemia and distinct host responses 
could modify the extent and nature of brain damage, explaining 
the absence of coma. In addition, the reported sequestration of 
Pk-infected erythrocytes [13, 16] could lead to a hidden bio-
mass not reflected by parasitemia, as described in falciparum 
malaria [46].

Our study has several limitations. First, due to the 
initial scope of the parent study [23], detailed clinical data on 
neurological complications and renal failure among the 
Pk-infected group were not collected, restricting our ability to 
fully contextualize the observed alterations in brain injury bio-
markers (Supplementary Table 6). As a result, we were 
unable to investigate direct associations between elevated brain 
injury biomarkers in Pk infection and brain function alter-
ations, as described in severe falciparum malaria [17, 18]. 
Similarly, recent studies link AKI to brain injury pathogenesis 
[17] and long-term neurocognitive sequelae [8, 9], but this as-
sessment was not possible in our cohort. However, AKI is a 
common complication of knowlesi malaria [21], and it is 
plausible that similar distant organ pathways are involved, re-
sulting in an exacerbation of the brain changes [20]. Further 
work is warranted to explore this hypothesis. Second, without 
follow-up samples from the parent study, we were not able to 
evaluate whether the elevated biomarker levels return to base-
line or increase over time. This would be particularly relevant 
for NfL, which typically increases after cerebral insult, and 
would provide insight into the resolution or persistence of 
brain injury following Pk infection [27, 39]. Last, a sympto-
matic, nonmalaria control group would have allowed stronger 
ascertainment of associations between biomarkers and Pk 
infection.

In conclusion, our study represents the first comprehensive 
assessment of surrogate markers of cerebral involvement in 
Pk-infected patients from Malaysia. Despite the limitations of 
this exploratory analysis, our findings indicate that Pk infection 
may impact brain and vascular health through pathways similar 
to the ones described for P falciparum, leading to elevated levels 
of brain injury, inflammation, and vascular biomarkers com-
pared to healthy controls. Measuring the same panel of 
biomarkers longitudinally in well-characterized cohorts of pa-
tients with severe falciparum and severe vivax malaria is war-
ranted to allow further comparative pathogenesis analyses 
during infection with Pk and other Plasmodium spp. Our study 
sets the stage for further research into pathophysiology and 
long-term brain impact of Pk malaria through follow-up neu-
roimaging and neurocognitive evaluations.
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