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Abstract

In human health risk assessment of chemicals and pharmaceuticals, identification of

genotoxicity hazard usually starts with a standard battery of in vitro genotoxicity

tests, which is needed to cover all genotoxicity endpoints. The individual tests

included in the battery are not designed to pick up all endpoints. This explains why

resulting data can appear contradictory, thereby complicating accurate interpretation

of the findings. Such interpretation could be improved through application of mathe-

matical modeling. One of the advantages of mathematical modeling is that the

strengths and weaknesses of each test are taken into account. Furthermore, the gen-

erated predictions are objective and convey the associated uncertainties. This

approach was explored by the working group “Predictivity of In Vitro Genotoxicity

Testing,” convened in the context of the 8th International Workshop on Genotoxicity
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Testing (IWGT). Specifically, we applied mathematical modeling to a database with

publicly available in vitro and in vivo data for genotoxicity. The results indicate that a

mammalian in vitro clastogenicity test and a mammalian cell gene mutation test

together provide strong predictive weight-of-evidence for evaluating genotoxic haz-

ard of a substance, although they are better in predicting absence of genotoxic

potential than in predicting presence of genotoxic potential. Remarkably, the bacterial

reverse mutation (Ames) test did not significantly change these predictions when

used in combination with in vitro mutagenicity and clastogenicity tests using cells of

mammalian origin. However, in case only data from a bacterial reverse mutation test

are available for the assessment of genotoxic potential, these do bear weight of evi-

dence and thus can be used. Genotoxicity assays are generally executed in tiers, in

which the bacterial reverse mutation test often is the starting point. Thus, it is reason-

able to suspect that early in development test results from the bacterial reverse

mutation test have influenced the composition of the database studied here. We per-

formed several tests on the robustness of the database used for the analyses pre-

sented here, and the forthcoming results do not indicate a strong bias. Further

research comparing in vitro genotoxicity data with in vivo data for additional com-

pounds will provide more insights whether it is indeed time to reconsider the compo-

sition of the standard in vitro genotoxicity battery.

K E YWORD S

genetic toxicity, prediction, risk assessment, uncertainty

1 | INTRODUCTION

Genetic toxicity testing, one of the toxicological effects included in

the safety evaluation of diverse substances, encompasses three end-

points: gene mutation, chromosomal damage, and aneugenicity (chro-

mosome loss or gain). Assessment of genetic toxicity for regulatory

purposes usually involves a tiered approach, starting with a standard

battery of in vitro genotoxicity tests, followed by in vivo testing on

the same genotoxicity endpoint in case of a positive in vitro test result

(Cimino, 2006; Dearfield et al., 2011; Eastmond et al., 2009). Gener-

ally, the conclusion from this approach is limited to hazard identifica-

tion, that is, it relies on a yes/no binary decision. Characterization of

the genotoxic hazard using quantitative analyses has been demon-

strated to be feasible and of added value (Beal et al., 2023; Chepelev

et al., 2023; Luijten et al., 2020; Nicolette et al., 2021; White

et al., 2020); however, this is not yet a standard requirement in the

regulations currently in use.

The current standard battery of in vitro genotoxicity tests is

rather consistent across regulatory jurisdictions and geographical

regions; commonly it includes a bacterial mutagenicity test, a mamma-

lian cell gene mutation test, and/or a mammalian cell chromosomal

damage (Cimino, 2006; European Commission, 2008, 2009, 2013;

U.S. Food and Drug Administration, 2007; Groff et al., 2021;

ICH, 2008) test or a bacterial reverse mutation test and a mammalian

cell micronucleus test (EFSA Scientific Committee, 2011; Scientific

Committee on Consumer Safety [SCCS], 2023). The performance of

the battery for detecting genotoxic potential has been evaluated for a

large set of chemicals that are known to be carcinogenic and/or to

induce genotoxic effects in rodents (Kirkland et al., 2011). The results

of this analysis indicated that a combination of the bacterial reverse

mutation test, that is, the Ames test (OECD Test Guideline (TG) 471),

and a mammalian in vitro test for chromosomal damage, that is, the

in vitro mammalian cell micronucleus test (MNvit; OECD TG 487),

would be sufficient to reliably predict genotoxic potential of chemi-

cals. The MNvit was preferred over the in vitro mammalian chromo-

some aberration test (CAvit; OECD TG 473), because the MNvit is

capable of detecting both structural chromosomal damage and aneu-

genicity. The data used in the analysis followed the principles of the

OECD test guidelines for the tests listed above, but not all data may

have been generated according to the testing recommendations at

that time.

A combination of two or more tests for assessing genetic toxicity

is considered necessary to cover the different genotoxicity endpoints;

hence, the tests included in the battery strategically differ in the bio-

logical mechanisms involved. Due to these differences in coverage of

biological mechanisms, data resulting from the battery may seem con-

tradictory. In other words, two different tests may give different

results for the same test article. This makes accurate interpretation of

the findings from multiple tests sometimes challenging. Moreover, this

interpretation is often not entirely objective: it is often based on the

biological background of each of the tests included in the battery and

the perceived relevance of the endpoint, combined with the
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knowledge of the expert(s) involved in the data evaluation. Mathemat-

ical modeling could provide a useful tool to support interpretation of

findings from multiple tests, because it takes into consideration in a

defined manner all data included in a dataset used for evaluating the

predictive performance of combinations of different tests and not

only the data for a single test article. In this way, it considers both

strengths and weaknesses of a given test. The outcomes of mathe-

matical modeling inform on the predictive weight of evidence (likeli-

hood) for a given result or combination thereof, as well as the

contribution of each test involved in the analysis. Furthermore, pre-

dictions derived from mathematical modeling are likely to be more

objective and can provide insight into the associated uncertainties.

We applied a mathematical modeling approach to a large data-

base of chemicals comprising publicly available genetic toxicity data,

with the aim to evaluate the performance of the in vitro genotoxicity

test battery. Different combinations of in vitro genotoxicity tests were

analyzed, using the results obtained from in vivo genotoxicity test(s)

as a reference. The approach used and the forthcoming results were

presented and discussed by the “Predictivity of In Vitro Genotoxicity

Testing” working group at the 8th International Workshop on Geno-

toxicity Testing (IWGT) in Ottawa, which took place in August 2022.

The discussion was focused on strengths and weaknesses of the

modeling approach, the database with in vitro and in vivo data from

genetic toxicity tests, and the interpretation of results. This manu-

script describes the outcomes for the different combinations of

in vitro genotoxicity tests. Additionally, it provides a summary of the

working group's evaluation, discussion, and consensus.

2 | METHODS

2.1 | Data collection

For the mathematical modeling presented here, we compiled a data-

base of chemical substances with in vitro and in vivo data from geno-

toxicity tests that can be used for regulatory toxicology. The database

includes the following in vitro genotoxicity tests: the bacterial reverse

mutation test (OECD TG 471; [OECD, 2020]), the mouse lymphoma

tk mutation test (MLA) (OECD TG 490; [OECD, 2016f]), the hprt

mutation test (OECD TG 476; [OECD, 2016d]), the in vitro mamma-

lian cell micronucleus test (MNvit, OECD TG 487; [OECD, 2023]), and

the in vitro mammalian chromosome aberration test (CAvit, OECD TG

473; [OECD, 2016a]). For in vivo genotoxicity, data were collected for

the micronucleus (MN) test (OECD TG 474; [OECD, 2016b]), the

chromosome aberration (CA) test (OECD TG 475; [OECD, 2016c]),

the in vivo transgenic rodent (TGR) gene mutation assay (OECD TG

488; [OECD, 2022b]), the in vivo mammalian alkaline comet assay

(OECD TG 489; [OECD, 2016e]) and the mammalian erythrocyte Pig-

a gene mutation assay (OECD TG 470; [OECD, 2022a]).

The database was constructed using existing databases that were

previously reported (Fujita et al., 2016; Kasamatsu et al., 2021;

Kirkland et al., 2011, 2016; Kirkland, Zeiger, Madia, & Gooderham

et al., 2014; Madia et al., 2020a, 2020b; Morita et al., 2016;

Yamada & Honma, 2018), complemented with data from the

European Chemicals Agency (ECHA; https://echa.europa.eu/), data

from the database of GHS (Globally Harmonized System of Classifica-

tion and Labelling of Chemicals) classification results in Japan (https://

www.nite.go.jp/chem/english/ghs/ghs_download.html), data from the

Japanese Ministry of Health, Labour and Welfare (https://anzeninfo.

mhlw.go.jp/user/anzen/kag/sokatutbl.htm), and data used to support

the Pig-a OECD TG 470 [OECD, 2022a]. We adopted the calls as pre-

viously reported where appropriate, except for the MLA, where some

existing calls for the MLA were replaced by calls resulting from a

recent re-evaluation (Schisler et al., 2018). The calls in the database

fell into three categories, that is, positive (+), negative (�), and equivo-

cal (E). The categories inconclusive (I) and uninterpretable (U) were

not considered in any of the analyses reported in this manuscript. In

total the database contains 2239 chemicals with in vitro and/or

in vivo data (Table S1).

2.2 | Considerations used for mathematical
modeling of the data

The main purpose of the present study was to evaluate the perfor-

mance of different combinations of in vitro genotoxicity tests. For

this, we focused on different classes of in vitro genotoxicity tests

instead of individual tests. The rationale for doing so is because the

current regulations commonly require data for a specific genetic toxic-

ity endpoint, but do not specifically prescribe which test to use. In

other words, for each genetic toxicity endpoint data may be obtained

from different tests. We considered the following three classes of

in vitro genotoxicity tests: (i) bacterial reverse mutation test (Ames);

(ii) mammalian cell gene mutation test (MLA and/or hprt; while hprt

measures only mutation, MLA measures both chromosomal damage

and mutations, but for this analysis MLA is considered a mutation

endpoint only); and (iii) mammalian in vitro chromosome damage test

(MNvit and/or CAvit). For the latter, it should be noted that we did

not distinguish between structural (clastogenicity) and numerical

(aneuploidy) chromosome aberrations. Putative changes in chromo-

some number (chromosome loss) can be detected with a variety of

methods; however, the number of micronucleus tests for which aneu-

ploidy was investigated and reported is limited.

For each of the three classes, results from tests were combined

per chemical available in the database. In cases where data for more

than one test with the same substance was available, the calls were

merged in such a way that a positive call overruled (a) negative call(s).

Equivocal calls were excluded from the main analysis; however, they

were used to check for the robustness of the database (Section 2.4.2).

The results obtained for chemicals tested in an in vivo genotoxi-

city test were used as a reference for evaluating the performance of

in vitro genotoxicity tests. For this, we relied on data from in vivo

MN, CA, TGR, comet, and Pig-a assays. The following approaches for

using in vivo genotoxicity data as reference were applied. The first

approach, further referred to as “overall in vivo genotoxicity,”
involved (per chemical) merging of all results for in vivo genotoxicity
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tests (i.e., MN, CA, TGR, comet, and Pig-a). In cases where results for

two or more tests were available, a positive result overruled one or

more negative results. The resulting overall call was used as an overall

reference for the comparison with in vitro data (see Section 2.4 for

the various analyses performed). In the second approach, further

referred to as “endpoint-specific in vivo genotoxicity,” only in vivo

tests that are considered appropriate follow-up tests (according to

current regulations) for each of the three classes of in vitro genotoxi-

city tests were used. Thus, data from the bacterial reverse mutation

test and mammalian cell gene mutation tests were compared to data

from TGR, Pig-a and/or comet, while data from mammalian in vitro

chromosomal damage tests were compared to in vivo chromosomal

damage tests and/or comet assay. The comet assay, which measures

single stranded DNA breaks, is thus used for both in vivo mutation

and chromosome damage categories.

2.3 | Chemical applicability domain

For the evaluation of the performance of the three classes of in vitro

genotoxicity tests a core set of 309 substances was used. This core

set was compiled based on the criterion that data should be available

for all three classes of in vitro genotoxicity tests (bacterial reverse

mutation test, mammalian cell gene mutation test and mammalian

in vitro chromosomal damage test; see also Section 3.1, Figure 1). The

chemical applicability domain of the 309 substances was determined

as follows. Firstly, physico-chemical properties, for example, molecular

weight and logKow, of this core set were compared to those of about

6500 substances tested in the bacterial reverse mutation test (Hansen

et al., 2009). Secondly, physico-chemical properties of the core set

were compared to those of all substances for which in vivo data were

available in the database we constructed (Section 2.1). To highlight

differences in chemical space we plotted several physico-chemical

properties as histograms. The histograms were created using the R

libraries plotly and ggplot2 (version 4.3.1) [Plotly Technologies

Inc., 2015; Wickham, 2016]. To calculate the chemical space, the con-

structed datasets (i.e., Hansen dataset [Hansen et al., 2009], the core

set of 309 substances and the full in vivo set) were combined. All cal-

culations were conducted using the KNIME Analytics Platform (ver-

sion 4.1.2) (Berthold et al., 2008). Morgan fingerprints (radius: 2; 1024

bits) were calculated using the RDKit Fingerprint KNIME node

(Landrum, 2015). The fingerprints were then used for a principal com-

ponent analysis using the PCA node. The first two principal compo-

nents were then plotted using R and colored by the respective

dataset and activity.

2.4 | Mathematical modeling

2.4.1 | Predictivity of in vitro genotoxicity tests

All mathematical modeling was performed in R statistical software

(version 4.2.0); more details are given below. In accordance with the

regulations currently in use for the assessment of the genotoxicity

hazard of substances, we conducted the following analyses:

(a) prediction of genotoxic potential of each of the three classes of

in vitro genotoxicity tests (i.e., bacterial reverse mutation test [Ames],

mammalian cell gene mutation tests, or mammalian in vitro chromo-

somal damage tests); (b) prediction of genotoxic potential using the

bacterial reverse mutation test plus a mammalian cell gene mutation

test (hprt and/or MLA); (c) prediction of genotoxic potential using the

bacterial reverse mutation test plus a mammalian cell gene mutation

test plus a mammalian in vitro chromosomal damage test;

(d) prediction of genotoxic potential using a mammalian cell gene

mutation test and a mammalian in vitro chromosomal damage test

(MNvit and/or CAvit); (e) prediction of genotoxic potential using the

bacterial reverse mutation test plus the MNvit. For these predictions,

the “overall in vivo genotoxicity” call based on the outcome of any of

the in vivo tests was used as a reference call (Section 2.2). Addition-

ally, combinations of tests were compared to in vivo data from appro-

priate follow-up tests (Appendices S1 and S2).

We used a workflow based on a combination of methods previ-

ously described (Aldenberg & Jaworska, 2010; Jaworska et al., 2010).

The methods used include application of Bayes' rule. Bayes' rule,

named after the English statistician Thomas Bayes, describes the

probability of an event, based on combining prior knowledge of

the probability (referred to as the “prior”) with data on conditions that

might be related to the event, to obtain an updated (“posterior”) prob-
ability. In the analysis, the prior knowledge is often expressed in the

form of a prior probability distribution based on the current knowl-

edge about the mean and variance of the model parameters. There

are different approaches to choosing the prior and it should be noted

that using a different prior impacts on the posterior probabilities. In

our analysis, we assumed for genotoxic potential of chemicals sub-

stances having a uniform prior as this is a common approach

(Bernardo & Smith, 2000), that is, a 50:50% probability of a substance

being negative or positive for in vivo genotoxicity.

The calculations performed are described below. An example of

the calculations is provided in Table S2, while the script used for the

F IGURE 1 Number of chemicals with data for the three classes of
in vitro genotoxicity tests: (i) bacterial reverse mutation test;
(ii) mammalian cell gene mutation test; and (iii) mammalian in vitro
chromosome damage test.
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data analysis is available on GitHub (https://github.com/jlapennings/

iwgt_pwoe). First, data for each test combination were taken from the

database. Only substances with data for each of the test classes in

the combination were used for further calculations.

Next, we used logistic regression to model the probability of an

in vivo result, as a function of test combinations:

ln
p InVivoþð Þ
p InVivo�ð Þ

� �
¼ β0þβ1 �Amesþβ2 �MCGMþβ3 �Clast

The input test results were effect-coded: �1 for negative results

and +1 for positive results; the in vivo results as (0,1)-coded data. It

can be noted here that the subsequent calculations can also be per-

formed if input test results are entered as 0/1; we verified that the

final results are identical. However, we prefer to enter input data as

�1/+1 as this makes it explicit if a test results is positive or negative.

The logistic model fit yielded the binomial probability for an

in vivo test result at a given test combination (Table S2, columns J and

K). By multiplying these by the number of data points (column I) for a

given test battery outcome, we obtained the model predictions (col-

umns L and M) for the number of positives and negatives. Conditional

test probabilities (columns N and O) were derived from dividing each

model prediction by the totals for in vivo negatives and positives,

respectively. These values give the probability for a test (combination)

result for a positive or negative substance and therefore generalize

the sensitivity and specificity measures for the quality of a single test.

It should be noted that these sensitivity and specificity measures dif-

fer from the ones traditionally used for genotoxicity testing, where

each test carries equal weight. Here, not every test a priori contrib-

utes equally to a prediction; the weight of each test is determined by

the data in such a way to minimize the overall differences between

the predicted probabilities for being positive (for each substance a

value between 0 and 1) and the actual in vivo calls. From a regulatory

perspective, the value we are most interested in is the probability that

a substance is positive or negative given a certain test combination.

From the application of Bayes' rule, these are the posterior probabili-

ties (columns P and Q); these are calculated by dividing the condi-

tional positive and negative test probability for each combination by

the sum of these two values. Finally, the ratio between the positive

and negative posterior probability is expressed as the likelihood ratio

(LR; column R), which is converted to the predictive weight of evi-

dence (WoE) as WoE = 10*log10(LR). The advantage of a single num-

ber implementing WoE is that we can decompose these WoE

numbers into contributions from the individual tests. That yields valu-

able information, because a priori not every test contributes equally

to a prediction. We chose to express predictive WoE in units of

“deciban,” which goes back to Alan Turing (MacKay, 2004) and corre-

sponds to a change in odds of 100.1, that is, about 1.26-fold. For

example, a WoE value of 2 equals a LR of 1.262. Similarly, a WoE

value of �10 equals a LR of 0.1 (1.26�10). The WoE numbers are

given in column S in Table S2.

It has been shown by Aldenberg and Jaworska (Aldenberg &

Jaworska, 2010) that in the case of a uniform prior the predictive

weight of evidence can also be calculated as:

WoE¼ 4:343 � β0þ β1 �Amesð Þþ β2 �MCGMð Þþ β3 �Clastð Þ
�

� ln InVivoþ=InVivo�ð Þ
�

This equation follows from the logistic model. The predictive

weight of evidence is a numerical measure based on the log-odds of a

positive in vivo result. The log-odds in a logistic model is known to be

the linear predictor, the additional correction term, ln(+/�), follows

from the test probabilities, correcting for the unbalance between

in vivo positives and negatives tested.

Even in a probabilistic estimation procedure we still have parame-

ter uncertainty, due to the model being a simplification of the data as

well as the data being inherently limited. Therefore, we simulated the

posterior distribution of the WoE by re-running the calculations above

on 4000 bootstrap samples. This approach uses a large number of

resamplings of the input data to estimate the uncertainty in the WoE

outcome at each test battery combination. The resulting credibility

limits, given in columns T and U, indicate whether the WoE distribu-

tion at each multiple test result can be considered as decisive. Within

the context of this study, we considered a predictive WoE as decisive

if its absolute value was equal to or greater than 1 and if its 95% cred-

ible interval (CI) does not contain zero.

2.4.2 | Robustness checks

The robustness of the database and its impact on the outcomes of the

analyses performed was tested in different ways. Firstly, we re-ran

the analyses described above, and in this case equivocal data were

not ignored but considered as positive test results. Test results

were combined as described in Table S3. Secondly, calculations were

done with all comet data excluded. Thirdly, various levels of “noise”
were introduced. For each of the four parameters used in logistic

regression (in vivo genotoxicity, bacterial reverse mutation test, mam-

malian cell gene mutation, mammalian in vitro chromosome damage),

part of the values were replaced by randomly drawn values for that

parameter. This was done for 5%, 10%, 15%, and 20% of the data.

Finally, we applied five-fold cross-validation. For this purpose, the

substances were divided into five groups. Each cross-validation used

four out of five groups as a training set to determine WoE values for

the remaining substance group. The output for the five substance

groups was combined to plot Receiver Operating Characteristic (ROC)

curves and calculate the corresponding Area Under the Curve (AUC)

using the R package caTools.

3 | RESULTS

3.1 | Composition of the genotoxicity database

The database compiled for this study comprises 2239 chemical sub-

stances, that is, industrial chemicals, pesticides, biocides, and cosmetic

ingredients as well as pharmaceuticals; collectively these are further

referred to as chemicals. Of these, 1078 chemicals have both in vitro
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and in vivo data for genotoxicity. Of the chemicals with both

in vitro and in vivo data for genotoxicity, about 50% (543/1078 che-

micals) tested positive in at least one in vivo genotoxicity test, while

for the other half (535/1078 chemicals) only negative test results

were identified. The distribution of the chemicals across the different

mammalian in vitro and in vivo genotoxicity tests is depicted in

Figure S1a, b, respectively. For evaluation of the performance of

(combinations of) in vitro genotoxicity tests, we focused on different

classes of in vitro genotoxicity tests (Section 2): (i) bacterial reverse

mutation test (Ames); (ii) mammalian cell gene mutation test (MLA

and/or hprt); and (iii) mammalian in vitro chromosome damage test

(MNvit and/or CAvit). The number of chemicals with data available

for each of the three classes of in vitro genotoxicity tests is shown in

Figure 1.

As shown in Figure 1, a core set of 309 chemicals had data for all

three classes of in vitro genotoxicity tests (bacterial reverse mutation

test, mammalian cell gene mutation test and mammalian in vitro chro-

mosome damage test). Of these 309 substances, the majority is con-

sidered to be environmental chemicals, while approximately 20% of

the substances are considered pharmaceuticals (data not shown). To

obtain better insight into the characteristics of the core set, we inves-

tigated its chemical applicability domain. Comparison of the physico-

chemical properties and the chemical fingerprints to a benchmark

dataset of approximately 6500 substances developed for in silico pre-

diction of bacterial mutagenicity (Hansen et al., 2009) revealed that

the 309 chemicals can be considered representative of chemicals

that are typically subjected to genotoxicity safety assessments

(Figures 2 and S2).

Similarly, we also compared the core set of 309 chemicals to all

chemical substances with in vivo data for genotoxicity in our data-

base, that is, 1078 chemicals. The result of this comparison is shown

in Figure 3. Again, the core set was found to be very similar to the

total set of chemicals with in vivo data. Although PCA coordinates are

based on a large number of chemical fingerprints, it may be of interest

that the smaller cluster at the top in Figure 2 contains substances with

an (aliphatic or aromatic) nitro group, whereas the substances in the

lower cluster lack a nitro group. In Figure 3, division between the clus-

ters on the left and right mostly corresponds to substances that are

aliphatic versus those with one or more aromatic rings, respectively.

3.2 | Predicting genotoxic potential using
(combinations of) in vitro genotoxicity tests

3.2.1 | Using a single class of in vitro genotoxicity
tests for the prediction of genotoxic potential

As a first step we evaluated the performance of each of the classes of

in vitro genotoxicity tests individually, using overall in vivo genotoxi-

city (see Section 2.2 for details) as a reference. For evaluation of the

bacterial reverse mutation test, that is, the Ames test, a dataset of

1022 chemical substances was available: 516 substances with a nega-

tive Ames test result and 506 substances with a positive Ames test

F IGURE 2 Comparison of the chemical applicability domain of
the core set of 309 chemicals versus the chemical applicability domain
of a large benchmark dataset (Hansen et al., 2009). Blue colors:
Chemicals with a negative test result for the bacterial reverse
mutation test; red colors: Chemicals with a positive test result for the
bacterial reverse mutation test. Substances from the dataset by
Hansen et al. are depicted in light-colored circles, while substances
from the core set are depicted in dark-colored triangles.

F IGURE 3 Comparison of the chemical applicability domain of

the core set of 309 chemicals versus the chemical applicability domain
of 1078 chemicals with in vivo data. Blue colors: Chemicals with a
negative test result for the bacterial reverse mutation test; red
colors: Chemicals with a positive test result for the bacterial reverse
mutation test. Substances from the in vivo dataset are depicted in
light-colored circles, while substances from the core set are depicted
in dark-colored triangles.
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result (Table S4). This dataset was used to calculate (in the stepwise

fashion described in Section 2) the weight of evidence (WoE) for pre-

dicting presence or absence of genotoxic potential and the associated

uncertainty when using the Ames test. First, we applied logistic

regression to estimate parameters (coefficients) from the data; these

parameters are used as input for subsequent steps in the calculations.

The estimates were used to calculate the binomial probabilities and

the model predictions, followed by the test probabilities as normalized

model predictions for the respective outcome (positive or negative).

This yielded a sensitivity of 0.632 and a specificity of 0.638 (Table S4,

lower panel), which is comparable to previous analyses (Kirkland

et al., 2011; Kirkland, Zeiger, Madia, Gooderham, et al., 2014).

Next, posterior distributions were calculated, followed by calcu-

lating the predictive WoE, including evaluation of the associated

uncertainty by applying bootstrapping (Section 2 for details). The anal-

ysis revealed that a bacterial reverse mutation test on its own has a

reasonable performance for predicting genotoxic potential of a chemi-

cal substance: the WoE values equal �2.39 (95% CI LL [Credible Inter-

val Lower Limit] = �2.98; 95% CI UL [Upper Limit] = �1.83) and

2.42 (LL = 1.87; UL = 3.02) for a negative and a positive result in the

bacterial reverse mutation test, respectively (Table 1). Generally, WoE

values are considered to be meaningful when exceeding 1 in absolute

value (Aldenberg & Jaworska, 2010). The confidence limits indicate

whether the WoE distribution at each test result can be considered as

decisive. Hence, from a statistical perspective, a negative bacterial

reverse mutation test result can be considered equally reliable as a

positive bacterial reverse mutation test result. A positive test result

gives the same weight to a change from the prior to a posterior proba-

bility as a negative test result.

Similarly, the performance of the mammalian cell gene mutation

test (MLA and/or hprt) was evaluated (Table S5). For the mammalian

cell gene mutation test, the values obtained for sensitivity and speci-

ficity are 0.889 and 0.616, respectively (Table S5, lower panel). These

are comparable to previously reported values (Kirkland et al., 2011;

Kirkland, Zeiger, Madia, & Corvi, 2014). The WoE values for the

prediction of genotoxic potential using a mammalian cell gene muta-

tion test were somewhat higher than those obtained for the bacterial

reverse mutation test, that is, �7.44 (LL = �9.70; UL = �5.75) and

3.64 (LL = 2.90; UL = 4.48) for a negative and a positive result,

respectively (Table 1). However, it must be noted that the mammalian

cell gene mutation test dataset comprised a smaller number of chemi-

cals compared to the dataset from the bacterial reverse mutation test

(i.e., 145 chemicals with a negative test result and 238 chemicals with

a positive test result; Table S5).

For the evaluation of the mammalian in vitro chromosome dam-

age test, a dataset of 808 chemicals was available, with 247 chemicals

with a negative test result and 561 chemicals with a positive test

result (Table S6). The calculations yielded a sensitivity of 0.838 and a

specificity of 0.439 (Table S6, lower panel). The specificity was rela-

tively low, compared to previously published results, while the sensi-

tivity was similar (Kirkland et al., 2011; Kirkland, Zeiger, Madia,

Gooderham, et al., 2014). The WoE value for a negative test result

using a mammalian in vitro chromosome damage test was �4.33

(LL = �5.52; UL = �3.31), while the WoE value for a positive test

result was 1.74 (LL = 1.35; UL = 2.17) (Table 1).

Besides “overall in vivo genotoxicity” data we also used “end-
point-specific in vivo genotoxicity” data as a reference for each of the

three classes of in vitro genotoxicity tests (see Section 2.2). The out-

comes for the individual comparisons for each of the three classes of

in vitro genotoxicity tests are given in Tables S4–S6. Using endpoint-

specific in vivo data as a reference yielded almost identical results to

those obtained when comparing with overall in vivo genotoxicity for

the bacterial mutagenicity test and the in vitro clastogenicity test

(Tables S4 and S6; upper panel versus lower panel), while the perfor-

mance of the mammalian cell gene mutation test was less strong for

predicting in vivo mutagenicity compared to overall in vivo genotoxi-

city (Tables S5, upper panel versus lower panel). It should be noted

that the number of chemicals involved in the endpoint-specific com-

parisons was substantially lower than in the comparisons using overall

in vivo genotoxicity data as a reference.

3.2.2 | Predicting genotoxic potential using
different combinations of different classes of in vitro
genotoxicity tests

Since regulatory safety testing typically considers a combination of

in vitro genotoxicity tests to ensure coverage of the three different

genetic toxicity endpoints, we also analyzed various combinations of

different classes of in vitro genotoxicity tests. In contrast to how sen-

sitivity and specificity values are typically calculated for combinations

of results of genotoxicity tests, our approach takes into account the

contribution (weight) of each test, which is determined through appli-

cation of logistic regression to the data (see Section 2.4). Therefore,

we refrained from comparing our results to sensitivity and specificity

calculations.

The first combination studied was the bacterial reverse mutation

test plus the mammalian cell gene mutation test. For the evaluation of

TABLE 1 Overview of performance of single in vitro genotoxicity
tests.

Test; # chemicalsa
Weight of evidence [95%
CI LL; UL]b

Bacterial reverse mutation test (Ames);

n = 1022

Negative: �2.39 [�2.98;

�1.83]

Positive: 2.42 [1.87; 3.02]

Mammalian cell gene mutation test;

n = 383

Negative: �7.44 [�9.70;

�5.75]

Positive: 3.64 [2.90; 4.48]

Mammalian in vitro chromosomal

damage test; n = 808

Negative: �4.33 [�5.52;

�3.31]

Positive: 1.74 [1.35; 2.17]

Note: The colors used are red and green, where red indicates a positive

result and green a negative result.
aNumber of chemicals included in the analysis.
bLL = lower limit, UL = upper limit of 95% credible interval (CI).
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this combination a dataset comprising 362 chemicals was used

(Tables 2 and S7). The predictive WoE value for concordant test

results for both types of tests was strong: �8.38 (95% CI: �11.10;

�6.34) for a negative test result and 4.20 (95% CI: 3.18; 5.40) for a

positive test result (Table 2). In case of contradictory test results, the

evidence indicates that the outcome is essentially determined by

the mammalian cell gene mutation test; the corresponding WoE

values are 2.86 (95% CI: 1.20; 4.73) for a negative bacterial reverse

mutation test plus a positive mammalian cell gene mutation test and

�7.05 (95% CI: �9.73; �4.95) for a positive bacterial reverse muta-

tion test plus a negative mammalian cell gene mutation test. The lim-

ited weight of the bacterial reverse mutation test is also reflected in

the low coefficient value and the non-significance of the associated

probability (estimate β and Pr(>jzj) in Table 2). For the comparison

with endpoint-specific data a dataset comprising 133 chemicals was

available (Table S7; upper panel). The WoE value for concordant test

results for both types of tests remained strong. In the case of a posi-

tive bacterial mutagenicity test plus a negative mammalian cell gene

mutation test, the evidence is in line with the negative mammalian cell

gene mutation test. However, the WoE for a negative bacterial

reverse mutation test plus a positive mammalian cell gene mutation

test was equivocal (Table S7; upper panel).

The next combination that was evaluated involved all three clas-

ses of in vitro genotoxicity tests (Tables 3 and S8). Results from the

analysis of the core dataset of 309 chemicals revealed that the WoE

for concordant test results was strong, with higher WoE values for all-

negative test results (�10.26 [95% CI: �14.46; �7.43]) compared to

all-positive test results (4.24; [95% CI: 3.11; 5.58]). Based on this data-

set, the mammalian cell gene mutation test is observed to carry most

weight, while the bacterial reverse mutation test was assigned almost

no weight (estimate β and Pr(>jzj) in Table 3). This is also reflected in

Figure 4, in which the WoE values for the predictive performance of a

combination of three classes of in vitro genotoxicity tests is depicted.

In the case of discordant results, that is, a positive mammalian cell

gene mutation test but a negative bacterial reverse mutation test and

a negative mammalian in vitro clastogenicity test, the WoE observed

(�0.99 [95% CI: �4.49; 2.07]) was considered equivocal. The same

applies for a positive bacterial reverse mutation test and a positive

mammalian cell gene mutation test but a negative mammalian in vitro

clastogenicity test (WoE = �1.06 [95% CI: �4.70; 2.32]). For the

remaining patterns of test results, the absolute WoE values obtained

were far larger than 1, and thus considered meaningful. The mamma-

lian cell gene mutation test appeared to be the driver of these out-

comes, as reflected in the β estimates and associated probabilities

(Table 3).

Given the strong weight assigned to the two classes of mamma-

lian cell in vitro genotoxicity tests, we also evaluated the combination

of these two classes. The analysis of data for 326 chemicals showed

again a strong WoE for concordant test results, with a higher WoE

value for negative test results compared to positive test results

(Tables 4 and S8). Similar to the combination of three classes of tests,

the mammalian cell gene mutation test derived more weight com-

pared to the mammalian in vitro chromosome damage test. As

reflected by the β estimates and associated probability scores in

Table 4, both classes of tests contribute significantly to the prediction

of genotoxic potential or lack thereof. The WoE was strong for a neg-

ative mammalian cell gene mutation test and a positive mammalian

in vitro chromosome damage test (�5.07 [95% CI: �7.71; �3.09]), but

far from convincing for the reverse situation (�0.50 [95% CI: �3.64;

2.34]; Table 4). The latter result could be perceived as being caused

by the low number of chemicals having this combination of test result

(i.e., 21 out of 326). This is not necessarily true, as exemplified by the

results shown in Table 3. In fact, one of the strengths of our mathe-

matical modeling is that it takes into account all data included in the

dataset.

Finally, we also analyzed the combination of the bacterial reverse

mutation test plus the MNvit, because this combination is specifically

recommended, for example, for food and feed substances (EFSA Sci-

entific Committee, 2011) and cosmetic ingredients (SCCS (Scientific

Committee on Consumer Safety), 2023). The estimated coefficients

indicated that far more weight should be assigned to the MNvit com-

pared to the bacterial reverse mutation test (Tables 5 and S8). The

WoE for concordant test results, based on 236 chemicals, was strong,

as was the WoE for a negative MNvit and a positive bacterial reverse

TABLE 2 Evaluation of the bacterial and mammalian cell mutagenicity test combined.

Bacterial reverse

mutation

Mammalian cell

gene mutation

Negative

in vivo

Positive

in vivo Sum

Likelihood

ratio Weight of evidence [95% CI LL; UL]a

Negative Negative 79 13 92 0.145 �8.38 [�11.10; �6.34]

Negative Positive 29 42 71 1.933 2.86 [1.20; 4.73]

Positive Negative 41 4 45 0.197 �7.05 [�9.73; �4.95]

Positive Positive 44 110 154 2.630 4.20 [3.18; 5.40]

Total 193 169 362

Bacterial reverse mutation Mammalian cell gene mutation

Estimate β 0.15 1.29

Pr(>jzj) 0.24 2.2E�17

Note: The colors used are red and green, where red indicates a positive result and green a negative result.
aLL = lower limit, UL = upper limit of 95% credible interval.
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mutation test, which, like the double negative, signaled the absence

of a genotoxicity potential in vivo (Table 5). In the case of a positive

MNvit and a negative bacterial reverse mutation test, however, the

results should be interpreted with care, given that the WoE for this

pattern of results was equivocal (1.28 [95% CI: �0.24; 3.03];

Table 5).

3.3 | Robustness checks

For the type of analyses presented above, characteristics of the data-

sets used may have a significant impact on the outcomes. Datasets

that differ strongly in their make-up, for example by each comprising

data for a very specific class of chemicals, may yield results that are

far from representative for the universe of chemicals. Therefore, we

investigated the robustness of the database and its impact on the out-

comes of the analyses (see Section 2 for details). Rather than exclud-

ing equivocal data from the analyses (as was done for the analyses

presented in Section 3.2), equivocal data were considered as positive

test results, based on the rationale that for chemicals with an equivo-

cal call genotoxic hazard cannot be excluded. Inclusion of equivocal

data as positive did not change our findings: for each of the analyses

performed, the results obtained were similar to when excluding equiv-

ocal data (Table S9). Next, we analyzed the data with all comet data

excluded. This was done because the comet assay is an indicator test

for genotoxicity, meaning that it does not detect gene mutation, clas-

togenicity or aneugenicity directly. The damage inflicted may result in

a permanent lesion of the DNA, for example, a gene mutation, but it

may also be repaired. Exclusion of the comet data did not appear to

impact on the outcomes (i.e., weight of evidence and associated confi-

dence intervals) of the analyses (Table S10); however, it should be

noted that the number of chemicals with relevant available results

was considerably smaller and we can therefore not draw a firm con-

clusion. Another approach employed for evaluating robustness was to

introduce various levels of “noise” to the database by randomly

changing a positive test result into a negative test result and vice

versa. Re-analysis of the data revealed that adding up to 20% noise

did not affect the overall conclusions (Table S11). Finally, we applied

five-fold cross-validation. The resulting Receiver Operating Character-

istic (ROC) curves and the corresponding Area Under the Curve (AUC)

are shown in Figure 5. It should be noted that the sensitivity and

TABLE 3 Evaluation of three classes of in vitro genotoxicity tests combined.

Bacterial reverse

mutation

Mammalian cell

gene mutation

Mammalian in vitro

chromosomal damage

Negative

in vivo

Positive

in vivo Sum

Likelihood

ratio

Weight of evidence

[LL; UL]a

Negative Negative Negative 47 6 53 0.094 �10.26 [�14.46; �7.43]

Negative Negative Positive 23 7 30 0.319 �4.96 [�8.07; �2.46]

Negative Positive Negative 9 4 13 0.796 �0.99 [�4.49; 2.07]

Negative Positive Positive 16 32 48 2.695 4.31 [2.37; 6.65]

Positive Negative Negative 13 1 14 0.093 �10.32 [�14.96; �6.90]

Positive Negative Positive 20 2 22 0.314 �5.03 [�7.94; �2.66]

Positive Positive Negative 5 2 7 0.783 �1.06 [�4.70; 2.32]

Positive Positive Positive 34 88 122 2.654 4.24 [3.11; 5.58]

Total 167 142 309

Bacterial reverse mutation Mammalian cell gene mutation Mammalian in vitro chromosomal damage

Estimate β �0.01 1.07 0.61

Pr(>jzj) 0.96 2.1E�10 1.4E�3

Note: The colors used are red and green, where red indicates a positive result and green a negative result.
aLL = lower limit, UL = upper limit of 95% credible interval.

F IGURE 4 Predictive performance of a combination of three
classes of in vitro genotoxicity tests, that is, the bacterial reverse
mutation test (Ames), the mammalian cell gene mutation test (MCGM)
and the mammalian in vitro clastogenicity test (Clast). Predictive
performance is expressed as weight of evidence (WoE) values.
Analyses were performed for a core set of 309 chemicals, using
overall in vivo genotoxicity data as a reference. N = negative;
P = positive.
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specificity used in this analysis are similar to those from the analyses

presented in previous sections. Conceptually, they are similar to those

that are traditionally used for genotoxicity testing. However, in the

analyses presented here and in previous sections, not all tests are nec-

essarily attributed equal weights and the weight of each test is deter-

mined by the data. The cross-validation analysis confirmed the

previous observation that individual classes of genotoxicity tests using

mammalian cells have especially good sensitivity, but are less strong in

terms of specificity. Combining a mammalian cell gene mutation test

with a mammalian in vitro chromosome damage test substantially

improves the performance compared to using a single mammalian cell

test. Adding the bacterial reverse mutation test to this combination,

however, does not further improve the prediction, as reflected in the

AUC (0.753 versus 0.754 for three classes of in vitro genotoxicity

tests and mammalian cell tests only, respectively; Figure 5).

4 | DISCUSSION AND CONCLUSION

In the present manuscript, we applied mathematical modeling to a

genotoxicity database to evaluate the performance of the in vitro test

battery to predict in vivo genotoxicity. In other words, the results

obtained from in vivo genotoxicity tests were used as a reference. To

the best of our knowledge, this is the first time that this approach has

been employed for the evaluation of in vitro genotoxicity test to pre-

dict genotoxicity; previous work was focused on the prediction of car-

cinogenicity (Kim & Margolin, 1994; Rosenkranz et al., 1985). Of

course, as with all such exercises, the composition of the database

used is bound to have an impact on the outcomes of the analyses per-

formed (Burgoon et al., 2023). Therefore, we used well-known data-

sets on genotoxicity as a basis for the creation of our database. More

specifically, we mainly relied on publicly available datasets that have

previously been used for evaluating the predictive value of in vitro

tests used in the standard battery for genotoxicity (Kirkland

et al., 2005; Kirkland et al., 2011; Kirkland, Zeiger, Madia, & Corvi,

2014; Kirkland, Zeiger, Madia, Gooderham, et al., 2014; Madia

et al., 2020a; Madia et al., 2020b). We did not analyze the full data-

base in terms of the chemicals categories of intended use

(e.g., industrial chemicals, cosmetic ingredients, plant protection prod-

ucts). Therefore, it could very well be that some classes of chemicals

(intended use, chemical properties) are somewhat over- or underrep-

resented. A screen of the core set of 309 chemicals, that was used for

TABLE 4 Evaluation of the two classes of mammalian in vitro genotoxicity tests combined.

Mammalian cell

gene mutation

Mammalian in vitro

chromosomal damage

Negative

in vivo

Positive

in vivo Sum

Likelihood

ratio

Weight of evidence [95% CI

LL; UL]a

Negative Negative 61 8 69 0.105 �9.78 [�13.62; �7.16]

Negative Positive 47 10 57 0.311 �5.07 [�7.71; �3.09]

Positive Negative 14 7 21 0.891 �0.50 [�3.64; 2.34]

Positive Positive 52 127 179 2.636 4.21 [3.32; 5.26]

Total 174 152 326

Mammalian cell gene mutation Mammalian in vitro chromosomal damage

Estimate β 1.07 0.54

Pr(>jzj) 7.7E–12 2.2E–03

Note: The colors used are red and green, where red indicates a positive result and green a negative result.
aLL = lower limit, UL = upper limit of 95% credible interval.

TABLE 5 Evaluation of the bacterial reverse mutation (Ames) test and the in vitro micronucleus (MNvit) test combined.

Bacterial reverse mutation MNvit Negative in vivo Positive in vivo Sum Likelihood ratio Weight of evidence [95% CI LL; UL]a

Negative Negative 28 15 43 0.353 �4.52 [�6.72; �2.47]

Negative Positive 18 58 76 1.341 1.28 [�0.24; 3.03]

Positive Negative 6 10 16 0.419 �3.78 [�6.64; �1.24]

Positive Positive 27 74 101 1.591 2.02 [0.62; 3.67]

Total 79 157 236

Bacterial reverse mutation MNvit

Estimate β 0.09 0.67

Pr(>jzj) 0.57 4.2E–05

Note: The colors used are red and green, where red indicates a positive result and green a negative result.
aLL = lower limit, UL = upper limit of 95% credible interval.
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the evaluation of the three classes of in vitro genotoxicity tests com-

bined (Table 3), revealed that its majority consists of (industrial) che-

micals, followed by pharmaceuticals (�20%), agrochemicals (�10%)

and other types of substances. Comparison of the chemical applicabil-

ity domain of this core set to a much larger set of substances (Hansen

et al., 2009) revealed that the core set is quite representative of the

substances that are typically reviewed for genotoxicity hazard identifi-

cation. Additionally, we employed various approaches to test the

robustness of our database and these analyses confirmed that it is

unlikely that the findings obtained are strongly biased by the dataset

used. Hence, we consider it justified to conclude that the database is

well-suited for the purposes of our study.

As part of the 8th IWGT held in Ottawa, Canada, in August 2022,

all available information on the database and the various analyses per-

formed (as described in the previous sections) was presented to the

“Predictivity of In Vitro Genotoxicity Testing” working group for dis-

cussion. The working group discussed the presented information and

delineated six consensus statements. These are described below.

Firstly, the analyses for the individual tests were presented and

discussed. Based on the findings obtained (summarized in Table 1) the

working group concluded: “All three types of genotoxicity tests ana-

lyzed, i.e., the bacterial reverse mutation test (Ames), the mammalian cell

gene mutation test, and the mammalian in vitro chromosome damage

test, are individually predictive for what they are supposed to predict:

genotoxic potential (or lack thereof) of a chemical. The analyses per-

formed also showed that genotoxicity tests with mammalian cells are bet-

ter in predicting absence of genotoxic potential than in predicting

presence of genotoxic potential.” This is reflected by the stronger

weights of evidence for negative predictions compared to positive

predictions (Tables 1 and S4–S6).

Regarding the use of combinations of tests, it was an unexpected

finding that the bacterial reverse mutation test, when part of a test

battery, did not significantly change the prediction for any of the ana-

lyses performed. This observation holds true when the bacterial

reverse mutation test is combined with the MNvit (Table 5), but espe-

cially when used in combination with a mammalian cell gene mutation

test and a mammalian in vitro chromosome damage test (Table 3). This

remarkable finding was one of the drivers for further analysis of the

composition of the database and its robustness. Given the outcomes

of these additional analyses the majority of the working group con-

cluded the following: “When using a battery of three genotoxicity tests,

i.e., a bacterial reverse mutation test (Ames), a mammalian cell gene

mutation test, and a mammalian in vitro clastogenicity test, the results of

the bacterial reverse mutation test will not contribute much to the final

call on genotoxic potential.” It should be noted that this statement does

not apply when the bacterial reverse mutation test is used as a stand-

alone test. The latter is important given that under some regulations

for chemicals (e.g., REACH 1–10 tpa [European Commission, 2008] or

impurities in pharmaceuticals [ICH, 2023]) results from the bacterial

reverse mutation test are the only experimental data requested.

Therefore, the working group felt the need to stress this point in the

following statement: “In case only bacterial reverse mutation test data

are available for the assessment of genotoxic potential, these do bear

weight of evidence and thus can be used.” The discussions held in the

context of the 8th IWGT also included the issue of two versus three

tests (Kirkland et al., 2005, 2011). Given the limited contribution of

the bacterial reverse mutation test to the prediction of genotoxic

potential when used in combination with one or more mammalian cell

tests, plus the fact that a combination of tests should cover the differ-

ent endpoints in genetic toxicity, the working group concluded: “For a
battery comprising two genotoxicity tests, a combination of two mamma-

lian cell tests is highly preferred because of their overall high predictive

value. However, in the case of a positive mammalian cell gene mutation

and a negative chromosomal damage test, the result has little predictive

value; this will not be improved by adding a bacterial reverse muta-

tion test.”
Regarding the methodology used, the working group concluded:

“The mathematical modelling applied is a valuable approach for assessing

the predictive value of combinations of toxicity tests.” Furthermore, this

approach can also be used to inform which test to use next, in addi-

tion to existing data. In the context of the ongoing paradigm shift in

regulatory toxicology and the advances made in the area of next-

generation risk assessment, we consider these important findings.

However, the working group also noted that “database(s) required for

such analyses should be carefully developed and interpretation of the

results should be done with caution.” For decades now, the bacterial

reverse mutation test has played a central role in genotoxic chemical

hazard identification. The relative simplicity of the assay, its wide-

spread use, and its key position in regulatory guideline-recommended

batteries have all contributed to this. As a practical matter, genotoxi-

city assays have generally been executed in tiers, with the bacterial

reverse mutation test being one of the earliest, if not the very first,

F IGURE 5 Receiver operating characteristic (ROC) curves and the
corresponding Area under the curve (AUC) for a five-fold cross-
validation performed for the individual classes of in vitro genotoxicity
tests (bacterial reverse mutation (Ames) in black; mammalian cell gene
mutation (MCGM) in red; mammalian in vitro clastogenicity (Clast) in
green), a combination of all three classes (light blue), and mammalian
in vitro tests only (dark blue).
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benchtop assay. For most product classes, a mutagenicity signal is a

severe product liability that is challenging to overcome. Thus, it is rea-

sonable to suspect that early in development bacterial reverse muta-

tion test results have influenced the composition of the database

studied here. Similarly, the fact that MLA detects both gene mutation

and chromosomal damage, but for this analysis was considered a

mutation endpoint, may have had some impact on the results. In ways

that are challenging to predict, this may have biased the database we

used, and consequently the results of our mathematical modeling

exercises, and therefore their generalizability to new, previously

untested chemicals. We performed several tests on the robustness of

the database used for the analyses presented here, and the forthcom-

ing results do not indicate a strong bias.

Regarding the prior, we consider the use of a 50:50 probability

for a chemical being in vivo negative or positive justified, given that of

the chemicals with both in vitro and in vivo data in our database about

50% tested positive in at least one in vivo genotoxicity test. For a dif-

ferent database, a different prior might be applicable. In Table S12 we

illustrate how using a different prior can affect the WoE outcomes.

The top panel shows calculations done for the prior ratio of 1, that is,

a 50:50 probability for a substance being in vivo negative or positive,

respectively, as used as a default in this manuscript. The second panel

shows the same calculations using a 60:40 negative/positive prior

ratio and the third panel uses a 40:60 prior ratio. WoE values are

somewhat lower and higher, respectively, but the overall calls for a

positive/negative/equivocal prediction do not change.

The various discussions held at the 8th IWGT also brought for-

ward the recommendations to look into the chemical applicability

domain of the core set of 309 chemicals and to apply cross-validation

with the aim to investigate the robustness of the predictions made.

Both recommendations have been taken into account by the working

group following IWGT. Another recommendation was to verify the

outcomes of our analyses using different dataset(s). We fully support

this recommendation; however, this was considered out of scope for

the present study. In case such a new dataset would be constructed,

we suggest to also include data for tests that have been conducted

more recently and are therefore likely to comply with current OECD

guidelines, while many of the tests in the datasets used herein were

from old studies and many did not comply with current testing recom-

mendations. Preferably, model validation techniques should be con-

sidered for such exercise (Harrell, 2015). Also, we suggest to include

data for tests that are not part (yet) of the standard battery for geno-

toxicity, e.g. MultiFlow (Bryce et al., 2017; Dertinger et al., 2019) or

ToxTracker (Hendriks et al., 2012, 2016). This would allow for a wider

discussion on the preferred composition of a standard battery of

in vitro tests for genotoxic potential. Such discussions should be initi-

ated sooner rather than later with representatives of relevant organi-

zations, in order to ensure that different stakeholders benefit from

the relevant insights from the current and future analyses.
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