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Supplementary Note 

 

Garnier et al. cohort description and methods 

The Garnier et al. 2021 (ref.1) cohort consisted of 2,719 sporadic DCM cases - from 5 European 

ancestry sub-populations (France, Germany, Italy, United Kingdom, and the USA) - and 4,440 

controls from 3 European sub-populations (France, Germany and Italy). Sporadic DCM was 

diagnosed by reduced ejection fraction (echocardiography: <45% or MRI: <2 standard 

deviations (SDs) below the age- and sex-adjusted mean) and an enlarged left ventricle end-

diastolic volume/diameter (LVEDD >117% of value predicted from age and body surface area 

on echocardiography, or >2 SDs from the age- and sex-adjusted mean by magnetic resonance 

imaging). Cases required that there was absence of significant coronary artery disease or 

intrinsic valvular disease, documented myocarditis, systemic disease (such as sarcoidosis), 

sustained arterial hypertension, or congenital malformation. Details on all participating case and 

control sets are described in detail elsewhere1, although we give an overview of case criteria in 

the next paragraph. Of note, the German cases originated from Berlin while cases from the 

Meder cohort (described below) were ascertained from Heidelberg2. All patients signed informed 

consent, the study protocol was approved by local ethics committees and complies with the 

Declaration of Helsinki. 

The dataset consisted of several sub-cohorts, that had the following inclusion | exclusion 

criteria. French Cardigene (N=408): LVEDD > 140 ml/m2 on ventriculography or > 34 mm/m2 

on echocardiography LVEF ≤ 40% | Absence of causal factors such as coronary artery disease 

or sustained arterial hypertension, intrinsic valvular disease, documented myocarditis, 

congenital malformation, and insulin-dependent diabetes. French PHRC (N=204): LVEDD > 

117% of predicted value according to age and body surface area on echocardiography LVEF < 

https://paperpile.com/c/ziYd5p/kAJui
https://paperpile.com/c/ziYd5p/kAJui
https://paperpile.com/c/ziYd5p/KohDq
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45% | Absence of causal factors such as coronary artery disease or intrinsic valvular disease, 

documented myocarditis, or congenital malformation. French Eurogene (N=83): LVEDD > 117% 

of predicted value according to age and body surface area on echocardiography LVEF < 45% | 

Absence of causal factors such as coronary artery disease or intrinsic valvular disease, 

documented myocarditis, systemic disease, sustained rapid supraventricular arrhythmia, or 

congenital malformation. Italy Eurogene (N=82): LVEDD > 117% of predicted value according to 

age and body surface area on echocardiography LVEF < 45% | Absence of causal factors such 

as coronary artery disease or intrinsic valvular disease, documented myocarditis, systemic 

disease, sustained rapid supraventricular arrhythmia, or congenital malformation. German 

Eurogene (N=214): LVEDD > 117% of predicted value according to age and body surface area 

on echocardiography LVEF < 45% | Absence of causal factors such as coronary artery disease 

or intrinsic valvular disease, documented myocarditis, systemic disease, sustained rapid 

supraventricular arrhythmia, or congenital malformation. Germany Berlin (N=987): LVEF < 45% 

| Absence of major coronary artery disease, significant valvular heart disease, hypertensive 

heart disease, congenital heart disease, myocarditis or other secondary forms of heart failure. 

UK Royal Brompton (N=109): LVEF < 2sd below and LVEDV > 2sd above the mean normalized 

for age and sex | Absence of active myocarditis or evidence of infiltrative disease or significant 

coronary artery disease. US MAGNet: LVEF < 40% | Absence of hypertension, primary valvular 

disease, or coronary artery disease. 

 

Genotyping, quality control, and analysis were performed as described previously. Genotyping 

was performed with high-density arrays, followed by imputation to the 1000 Genomes reference 

dataset3. Details on genotyping arrays used can be found in Supplementary Table 2 and the 

https://paperpile.com/c/ziYd5p/ITxMb
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previous publication1. In short, quality control was performed in each sub-population separately 

as described in Supplementary Table 2, mainly removing variants with minor allele frequency 

(MAF) <1%, missingness >1%, hardy-weinberg equilibrium test P<0.00001. Subsequently, all 

autosomal SNP data were merged and the same filters were used to identify high-quality 

genotyped SNPs (n = 557,776) shared in all individuals of the discovery cohorts. This procedure 

identified 7 pairs of duplicated individuals, for which only one individual per pair was then kept, 

and 13 individuals with call rate <99% that were later discarded. A further round of QC was 

performed to identify additional genetic outliers. Based on the analysis of the identity-by-state 

distance matrix, 149 additional samples (44 cases and 105 controls) were discarded leaving 

6,980 (2,651 cases and 4,329 controls) individuals for imputation and association analysis. To 

minimize the risk of ambiguous variants (A/T or G/C), these were removed prior to imputation 

analyses leaving 554,257 autosomal variants. In current work, we focus only on the autosomal 

variants. The QCed genotyped samples were then put forward for imputation to the 1000 

Genomes phase 3 version 5 reference panel (Supplementary Table 2) leaving a total of 

47,109,465 autosomal imputed variants of which 8,945,129 had imputation quality greater than 

0.5, were bi-allelic, presented a minor allele frequency (MAF) higher than 0.005 and were then 

kept for association analysis. 

Genome-wide association analyses for DCM were performed using a logistic regression model 

adjusted for sex and genome-wide genotype-derived principal components under the 

assumption of additive allele effects (Supplementary Table 2). 

 

 

 

 

 

https://paperpile.com/c/ziYd5p/kAJui


7 

Meder et al. cohort description and re-analysis methods 

The German cohort of 909 clinical DCM cases and 2120 controls has been described previously 

in Meder et al. 2014 (ref.2). DCM cases were ascertained from Heidelberg Germany, while the 

majority of controls came from PopGen (N=1644) and a minority from KORA (N=476). Dilated 

cardiomyopathy was diagnosed according to previous guidelines of the World Health 

Organization4, where inclusion criteria for cases included at least moderately (left ventricular 

ejection fraction < 45%) reduced left ventricular systolic function (assessed by echocardiography 

or left ventricular angiography) in the absence of a relevant coronary artery disease (CAD). The 

study was conducted in accordance with the principles of the Declaration of Helsinki. Details on 

genotyping and quality control are presented in Supplementary Table 2. All participants of the 

Meder cohort provided written informed consent and the study was approved by the ethics 

committees of the participating study centers. 

In the initial description, the GWAS was performed on genotyping array variants only and no 

correction for ancestral principal components (PCs) was applied. For the current analysis, the 

data were re-analyzed to i) include genome-wide imputation and ii) correct for PCs. The QC 

criteria for variants prior to imputation were: minor allele frequency >= 3% in cases and controls, 

call rate >= 95%, and thresholds for deviation from Hardy-Weinberg equilibrium test were p < 

0.001 in cases and p < 0.05 in controls. The PCA-function of plink version 1.9 (ref.5) was used to 

calculate principal components. Phasing of genotypes was done using SHAPEIT2 (ref.5,6) after 

which imputation was performed using IMPUTE2 (ref.7) with the 1000 Genomes Pilot + HapMap 

3 set as reference (NCBI build b36, Haplotype release date Jun 2010 / Feb 2009). Association 

testing was performed using SNPTEST v2.5-beta4 (frequentist 1, method score, ref.8) and was 

adjusted for age, gender and the first 2 principal components of ancestry. SNPs were filtered for 

minor allele frequency > 1%, call rate >= 95% and thresholds for deviation from HWE were p < 

0.001 in cases and p < 0.05 in controls.  

https://paperpile.com/c/ziYd5p/KohDq
https://paperpile.com/c/ziYd5p/xjYRV
https://paperpile.com/c/ziYd5p/FFhy0
https://paperpile.com/c/ziYd5p/FFhy0+z67by
https://paperpile.com/c/ziYd5p/EPgq2
https://paperpile.com/c/ziYd5p/hcOSg
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Amsterdam UMC Cohort study description and methods 

Cases 

Patients with DCM in the Amsterdam UMC cohort were defined as index patients referred by 

secondary or tertiary cardiologists to the Amsterdam UMC for genetic testing for DCM. The 

diagnosis of DCM was confirmed for all patients by manual examination of the medical chart, with 

a required left ventricular ejection fraction (LVEF) of less than 50% to indicate hypocontractility9. 

Other inclusion criteria included the presence of a DNA sample for genotyping and an age older 

than 18 years. A total of 1,035 cases met these criteria and were selected for further analysis. 

While the dataset on ventricular dimensions (extracted from EHR) was not entirely complete, 

being limited to 53% of the samples, within this group a notable 95% exhibited an enlargement of 

the ventricular chamber that was (stringently) consistent with dilated cardiomyopathy (DCM). This 

was based on the thresholds for the left ventricular end-diastolic volume index (LVEDVi ≥ 75 

ml/m2 for males, LVEDVi ≥ 62 ml/m2 for females) and the left ventricular end-diastolic diameter 

(LVEDD > 58 mm for males, > 52 mm for females). Importantly, in instances where only the left 

ventricular end-diastolic volume (LVEDV) was available without corresponding body surface area  

(BSA) information, the missing data was substituted with a constant value of 2.5 to preclude 

underestimation. Genotyping was performed using the Illumina Global Screening Array. The study 

of DCM patients from Amsterdam UMC was performed under a waiver - approved by the Medical 

Ethical Committee of Amsterdam UMC - allowing genotyping and genome-wide association study 

of individuals affected by cardiovascular disease. 

 

https://paperpile.com/c/ziYd5p/ZU7rb


9 

Controls 

The control group was sourced from the Dutch Twin Register (NTR)10. Since 1987, NTR has been 

accumulating information on twins and triplets, either when  the parents of newborn twins 

voluntarily register or when adult twins and their family participate. Ethical clearance for this study 

has been granted by the Central Ethics Committee on Research Involving Human Subjects at the 

VU University Medical Centre in Amsterdam, which is an Institutional Review Board certified by 

the U.S. Office of Human Research Protections. The approval carries the IRB number IRB-2991 

under Federal-wide Assurance-3703 and includes specific institute codes (94/105, 96/205, 

99/068, 2003/182, 2010/359). All participants, or their parents,  have given their informed consent 

to be part of NTR. For this study we have received data from  unrelated individuals from NTR. 

NTR samples were genotyped using the Illumina Global Screening Array.  

Data collection in the NTR was supported by NWO: Twin-family database for behavior genetics 

and genomics studies (480-04-004); “Spinozapremie” (NWO/SPI 56-464-14192; “Genetic and 

Family influences on Adolescent psychopathology and Wellness” (NWO 463-06-001); “A twin-sib 

study of adolescent wellness” (NWO-VENI 451-04-034); ZonMW “Genetic influences on stability 

and change in psychopathology from childhood to young adulthood” (912-10-020); “Netherlands 

Twin Registry Repository” (480-15-001/674); “Biobanking and Biomolecular Resources Research 

Infrastructure” (BBMRI –NL (184.021.007 and 184.033.111). We acknowledge FP7-HEALTH-F4-

2007, grant agreement no 201413 (ENGAGE), and the FP7/2007-2013 funded ACTION (grant 

agreement no 602768) and the European Research Council (ERC-230374). Part of the 

genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation 

for the National Institutes of Health, Rutgers University Cell and DNA Repository (NIMH U24 

MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes 

of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 

and 1RC2 MH089995). 

https://paperpile.com/c/ziYd5p/1WQML
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Quality control and processing 

All data analyses were conducted on the Dutch National Supercomputer Snellius. Quality control 

(QC) was executed using multiple tools, including Plink v1.9 (ref.5), Plink v2 (ref.11), and R v4.2.0, 

the GENESIS R-package12, KING11,13 and custom scripts in-house.  

We first aligned our data using the HRC-1000G-check-bim.pl program v4.3.0 against the HRC 

reference panel (https://www.well.ox.ac.uk/~wrayner/tools/).  In short, the software adjusts strand, 

position, and allele assignments as needed. SNPs are removed for inconsistencies such as 

mismatched alleles or significant frequency discrepancies with the HRC data. QC was conducted 

on two merged batches of cases and a single batch of controls before merging the datasets for 

subsequent analysis. A batch of cases with GRCh38 build was lifted to the positive strand of 

GRCh37 build prior to merging. 

The initial quality control (QC) for genome-wide association study (GWAS) was executed in a 

multistep process, where first QC was performed in two separate case batches and in the control 

batch. This initial quality control was the same for all case/control batches: SNPs were excluded 

if duplicated, ambiguous (A/T or C/G), had missingness rates >2%, had Hardy-Weinberg 

equilibrium test P<10-6, or had minor allele frequency (MAF) <0.5%. Samples were excluded if 

missingness rates >5%. Will Rayner's tool was used to fix strand issues before merging, resulting 

in 427542 overlapping variants. 1022 cases and 7343 controls remained after initial QC and 

merging. 

Then case and control batches were merged. After merging the case and control batches, we 

performed a second round of QC to prevent discrepancies in quality between batches. In 

particular, we restricted to variants found at high-quality in each of the batches, and filtered out 

variants with significant differential missingness between cases and controls (variants with p<0.01 

were excluded). Furthermore, samples with missingness rates > 2% were removed. 

https://paperpile.com/c/ziYd5p/FFhy0
https://paperpile.com/c/ziYd5p/ztK5B
https://paperpile.com/c/ziYd5p/d4JPh
https://paperpile.com/c/ziYd5p/ztK5B+b9GBu
https://www.well.ox.ac.uk/~wrayner/tools/


11 

For further sample QC procedures we also created a pruned set of genetic variants: The 

genotyped autosomal SNPs on each chromosome were pruned by the PLINK2 software in 2 

iterations, where at first no SNP pairs with r2 > 0.1 were kept within any 250-SNP windows 

followed by a second iteration with r2 > 0.2 within any 50-SNP windows. KING was run on the 

pruned data to generate a genetic relationship matrix, which was used to remove duplicates and 

monozygotic twins. Samples with unresolved genotype-phenotype sex mismatches, or inbreeding 

coefficient |F|>0.2 were also excluded. This procedure left 978 high-quality DCM cases and 7207 

controls. 

Principal component analysis and ancestry inference were then conducted over the pruned 

variants, within the GENESIS R package12 using PC-Relate and PC-Air. Ancestry labels (for 

continental super-populations) were assigned by overlaying samples (all cases and controls) over 

data from the 1000 Genomes Project3. We additionally defined a subset of homogeneous 

European ancestry individuals; in this subset cases and controls were kept if they were visual in-

liers based on inspection of scatter plots of the first two principal components, leaving 783 DCM 

cases and 6978 controls of homogeneous European ancestry.  

Following QC procedures, the genome-wide data (the non-pruned data) for the 978 high-quality 

cases and 7207 high-quality controls were imputed to the TOPMed imputation panel on the 

Michigan Imputation Server. Baseline characteristics for this cohort are presented in 

Supplementary Table 3. 

GWAS 

The genome-wide imputed data were put forward for GWAS, which was run using REGENIE 

v3.1.1 (ref.14) restricting to the subset of homogeneous European ancestry samples (783 cases, 

6978 controls). Non-pruned high-quality variants from the genotyping array were used for null-

model fitting in step 1. In both step 1 and 2, we adjusted for sex and PC1-10. An approximate 

https://paperpile.com/c/ziYd5p/d4JPh
https://paperpile.com/c/ziYd5p/ITxMb
https://paperpile.com/c/ziYd5p/flppJ
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Firth’s correction was used for variants reaching nominal P<0.05 in an initial test; standard errors 

were computed by back-correcting from the Firth’s beta and Firth’s P-value. 

PRS analyses 

As described in the main Methods, we performed PRS analyses in the Amsterdam cohort, by 

using summary statistics from GWAS-DCM and MTAG-DCM, after excluding the Amsterdam 

cohort from these GWAS and MTAG analyses. For all PRS analyses, we used the full set of 978 

cases and 7207 controls (but subsetted in sensitivity analyses to European ancestry individuals). 

We first assessed the predictive capacity of GWAS-DCM and MTAG-DCM scores within i) all 

individuals, ii) individuals of European ancestry, iii) individuals not determined to be of European 

ancestry, iv) individuals with genetically-predicted male sex, v) individuals with genetically-

determined female sex. In all logistic regression analyses, we adjusted for sex and PCs1-10. 

Given that MTAG-DCM showed the best predictive capacity in all settings (and with comparable 

results in the All of Us dataset) we focused on the MTAG-DCM PRS for all following analyses. 

We then aimed to assess the cumulative contribution of common and rare genetic variation to 

clinical DCM. We therefore grouped DCM cases into ‘rare genotype positive’, ‘rare genotype 

negative’ and ‘uncertain rare genotype’, based on genetic testing findings. Of note, all probands 

underwent genetic testing at the department of clinical genetics at Amsterdam UMC; variant 

curations - including classifications into class 5 “pathogenic”, class 4 “likely pathogenic”, class 3 

“variant of uncertain significance (VUS)”, class 2 “likely benign” and class 1 “benign” - were 

performed as part of routine clinical care following current guidelines. We then grouped cases into 

1) ‘genotype positive’ (N=193 cases) if they carried a class 4 or 5 variant in a high-confidence 

DCM gene (high-confidence DCM genes were those with a “strong” or “definitive” relationship 

with DCM based on ClinGen curation15; TTN, LMNA, BAG3, RBM20, TNNC1, DSP, MYH7, FLNC, 

DSP, PLN, TNNT2, SCN5A); 2) ‘genotype negative’ (N=294 cases) if they carried no class 3, 4 

https://paperpile.com/c/ziYd5p/FMxwh
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or 5 variants in any panel genes; and 3) ‘uncertain genotype’ in all other cases. We then assessed 

whether PRS was more strongly associated with ‘genotype negative’ or ‘genotype positive’ DCM, 

by performing logistic regression analyses where DCM cases were restricted only to either group 

(and comparing them to the same general control group). We also assessed whether PRS 

distributions differed between ‘genotype positive’ and ‘genotype negative’ DCM, by plotting PRS 

density plots for both groups. To identify statistical differences in PRS distribution between 

groups, we then performed linear regression analyses within those DCM cases, where we 

modeled PRS as the outcome, with a dummy variable for ‘genotype positive’ vs ‘genotype 

negative’ status as the predictor (adjusting for sex and PCs1-10).  
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FinnGen study description and methods 

FinnGen, launched in 2017, is a public-private partnership research project that combines 

genotype data from newly collected and legacy samples administered by Finnish biobanks 

(https://www.finngen.fi/en) to provide novel insight into human diseases. This study includes 

genotype data from 453,733 individuals included in FinnGen Data Freeze 11. The data were 

linked by unique national personal identification numbers to the national hospital discharge 

registry (available from 1968), the cause of death registry (1969–) and the specialist outpatient 

registry (1998–). 

Newly collected FinnGen samples were genotyped using a FinnGen ThermoFisher Axiom custom 

array (Thermo Fisher Scientific, San Diego, CA, USA), and legacy cohorts were genotyped using 

Illumina and Affymetrix arrays (Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa 

Clara, CA, USA) as detailed previously16. Genotype quality control parameters are presented in 

Supplementary Table 2 Principal component analysis was used to remove samples who were 

not of genotype-inferred Finnish ancestry similarly to the method described previously for Data 

Freeze 5 (ref.16). Genotype imputation was performed using a population-specific SISu v4 

imputation reference panel comprised of 8,557 whole genomes based on the protocol available 

at: https://dx.doi.org/10.17504/protocols.io.xbgfijw.  

We ran GWAS for NI-DCM and NICM, defined by ICD coding (I42.0 for NI-DCM, I42.0 and I50.1 

for NICM). Prevalent and incident cases were combined. Cases were excluded from the analysis 

if they had antecedent codes for acute coronary syndrome (ICD-10 codes I21–I22 or  the ICD-8/9 

code 410 in hospital discharge or cause-of-death registries) and/or revascularization 

(NOSMESCO or Heart Patient procedural codes for coronary artery bypass grafting or coronary 

angioplasty), as previously described17; controls with codes for general heart failure were also 

removed from the analysis. Heart failure was defined using ICD codes from hospital discharge or 

https://www.finngen.fi/en
https://paperpile.com/c/ziYd5p/H0GoL
https://paperpile.com/c/ziYd5p/H0GoL
https://dx.doi.org/10.17504/protocols.io.xbgfijw
https://dx.doi.org/10.17504/protocols.io.xbgfijw
https://paperpile.com/c/ziYd5p/SLLN7
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cause-of-death registries (ICD-10 codes I11.0, I13.0, I13.2, I50; ICD-9 codes 4029B, 428; ICD-8 

codes 42700, 42710, 428 or 7824); KELA medication reimbursement number 201 (“Chronic Heart 

Failure”); or outpatient purchases of furosemide (ATC codes C03CA01 or C03EB01). 

FinnGen GWAS were conducted using REGENIE v 2.2.414, with sex, age at death or end of follow-

up, principal components 1–10, genotyping array, and genotyping batch as fixed-effect 

covariates. An approximate Firth’s correction was used for variants reaching nominal P<0.05 in 

an initial test; standard errors were computed by back-correcting from the Firth’s beta and Firth’s 

P-value.  

  

  

https://paperpile.com/c/ziYd5p/flppJ
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FinnGen Ethics Statement 

Study subjects in FinnGen provided informed consent for biobank research, based on the Finnish 

Biobank Act. Alternatively, separate research cohorts, collected prior the Finnish Biobank Act 

came into effect (in September 2013) and start of FinnGen (August 2017), were collected based 

on study-specific consents and later transferred to the Finnish biobanks after approval by Fimea 

(Finnish Medicines Agency), the National Supervisory Authority for Welfare and Health. 

Recruitment protocols followed the biobank protocols approved by Fimea. The Coordinating 

Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) statement number for 

the FinnGen study is Nr HUS/990/2017. 

The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: 

THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 

THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and 

THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: 

VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution 

(permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 

98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/2020), 

Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020, 

THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, 

THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/14.06.00/2021, 

THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, 

THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/2021, Statistics Finland 

(permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-20) 

TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases 

permission/extract from the meeting minutes on 4th July 2019. 
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The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 

11  include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, 

BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65, Finnish Red Cross 

Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, 

HUS/430/2021 §28, §29,  HUS/150/2022 §12, §13, §14, §15, §16, §17, §18, §23, §58 and §59, 

Auria Biobank AB17-5154 and amendment #1 (August 17 2020) and amendments BB_2021-

0140, BB_2021-0156 (August 26 2021, Feb 2 2022), BB_2021-0169, BB_2021-0179, BB_2021-

0161,  AB20-5926 and amendment #1 (April 23 2020) and it´s modification (Sep 22 2021), 

BB_2022-0262, BB_2022-0256, Biobank Borealis of Northern Finland_2017_1013, 2021_5010, 

2021_5018, 2021_5015, 2021_5015 Amendment, 2021_5023, 2021_5023 Amendment, 

2021_5017, 2022_6001, 2022_6006 Amendment,  BB22-0067, 2022_0262,  Biobank of Eastern 

Finland 1186/2018 and amendment 22§/2020, 53§/2021, 13§/2022, 14§/2022, 15§/2022, 

27§/2022, 28§/2022, 29§/2022, 33§/2022, 35§/2022, 36§/2022, 37§/2022, 39§/2022, 7§/2023, 

Finnish Clinical Biobank Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), 

8§/2021, 9§/2021, §9/2022, §10/2022, §12/2022, 13§/2022, §20/2022, §21/2022, §22/2022, 

§23/2022, 28§/2022, 29§/2022, 30§/2022, 31§/2022, 32§/2022, 38§/2022, 40§/2022, 42§/2022, 

1§/2023, Central Finland Biobank 1-2017, BB_2021-0161, BB_2021-0169, BB_2021-0179, 

BB_2021-0170, BB_2022-0256, and Terveystalo Biobank STB 2018001 and amendment 25 th 

Aug 2020, Finnish Hematological Registry and Clinical Biobank decision 18 th June 2021, Arctic 

biobank P0844: ARC_2021_1001. 
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https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-cohorts-and-arctic-biobank
http://www.bbmri.fi/
https://finbb.fi/
https://site.fingenious.fi/en/


19 

FinnGen banner authors 

    

Full Name Affiliation Role 1 Role 2 

Aarno Palotie Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute of MIT and Harvard; 
Massachusetts General Hospital 

Steering Committee Steering Committee 

Mark Daly Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute of MIT and Harvard; 
Massachusetts General Hospital 

Steering Committee Steering Committee 

Bridget Riley-Gills Abbvie, Chicago, IL, United States Steering Committee Pharmaceutical companies 

Howard Jacob Abbvie, Chicago, IL, United States Steering Committee Pharmaceutical companies 

Coralie Viollet Astra Zeneca, Cambridge, United Kingdom Steering Committee Pharmaceutical companies 

Slavé Petrovski Astra Zeneca, Cambridge, United Kingdom Steering Committee Pharmaceutical companies 

Chia-Yen Chen Biogen, Cambridge, MA, United States Steering Committee Pharmaceutical companies 

Sally John Biogen, Cambridge, MA, United States Steering Committee Pharmaceutical companies 

George Okafo Boehringer Ingelheim, Ingelheim am Rhein, 
Germany 

Steering Committee Pharmaceutical companies 

Robert Plenge Bristol Myers Squibb, New York, NY, United 
States 

Steering Committee Pharmaceutical companies 

Joseph Maranville Bristol Myers Squibb, New York, NY, United 
States 

Steering Committee Pharmaceutical companies 

Mark McCarthy Genentech, San Francisco, CA, United States Steering Committee Pharmaceutical companies 

Rion Pendergrass Genentech, San Francisco, CA, United States Steering Committee Pharmaceutical companies 

Jonathan Davitte GlaxoSmithKline, Collegeville, PA, United 
States 

Steering Committee Pharmaceutical companies 

Kirsi Auro GlaxoSmithKline, Espoo, Finland Steering Committee Pharmaceutical companies 

Simonne Longerich Merck, Kenilworth, NJ, United States Steering Committee Pharmaceutical companies 

Anders Mälarstig Pfizer, New York, NY, United States Steering Committee Pharmaceutical companies 

Anna Vlahiotis Pfizer, New York, NY, United States Steering Committee Pharmaceutical companies 

Katherine Klinger Translational Sciences, Sanofi R&D, 
Framingham, MA, USA  

Steering Committee Pharmaceutical companies 

Clement Chatelain Translational Sciences, Sanofi R&D, 
Framingham, MA, USA  

Steering Committee Pharmaceutical companies 

Jorg Blankenstein Translational Sciences, Sanofi R&D, 
Framingham, MA, USA  

Steering Committee Pharmaceutical companies 

Karol Estrada Maze Therapeutics, San Francisco, CA, United 
States 

Steering Committee Pharmaceutical companies 

Robert Graham Maze Therapeutics, San Francisco, CA, United 
States 

Steering Committee Pharmaceutical companies 

Dawn Waterworth Janssen Research & Development, LLC, Spring 
House, PA, United States 

Steering Committee Pharmaceutical companies 

Chris O´Donnell Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Steering Committee Pharmaceutical companies 

Nicole Renaud Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Steering Committee Pharmaceutical companies 



20 

Tomi P. Mäkelä HiLIFE, University of Helsinki, Finland, Finland Steering Committee University of Helsinki & 
Biobanks 

Jaakko Kaprio Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Minna Ruddock Arctic biobank / University of Oulu Steering Committee University of Helsinki & 
Biobanks 

Petri Virolainen Auria Biobank / University of Turku / Hospital 
District of Southwest Finland, Turku, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Antti Hakanen Auria Biobank / University of Turku / Hospital 
District of Southwest Finland, Turku, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Terhi Kilpi THL Biobank / Finnish Institute for Health and 
Welfare (THL), Helsinki, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Markus Perola THL Biobank / Finnish Institute for Health and 
Welfare (THL), Helsinki, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Jukka Partanen Finnish Red Cross Blood Service / Finnish 
Hematology Registry and Clinical Biobank, 
Helsinki, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Taneli Raivio Helsinki Biobank / Helsinki University and 
Hospital District of Helsinki and Uusimaa, 
Helsinki 

Steering Committee University of Helsinki & 
Biobanks 

Jani Tikkanen Northern Finland Biobank Borealis / University 
of Oulu / Northern Ostrobothnia Hospital 
District, Oulu, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Raisa Serpi Northern Finland Biobank Borealis / University 
of Oulu / Northern Ostrobothnia Hospital 
District, Oulu, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Kati Kristiansson Finnish Clinical Biobank Tampere / University of 
Tampere / Pirkanmaa Hospital District, 
Tampere, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Veli-Matti Kosma Biobank of Eastern Finland / University of 
Eastern Finland / Northern Savo Hospital 
District, Kuopio, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Jari Laukkanen Central Finland Biobank / University of 
Jyväskylä / Central Finland Health Care District, 
Jyväskylä, Finland 

Steering Committee University of Helsinki & 
Biobanks 

Marco Hautalahti FINBB - Finnish biobank cooperative Steering Committee University of Helsinki & 
Biobanks 

Outi Tuovila Business Finland, Helsinki, Finland Steering Committee Other Experts/ Non-Voting 
Members 

Jeffrey Waring Abbvie, Chicago, IL, United States Scientific Committee Pharmaceutical companies 

Bridget Riley-Gillis Abbvie, Chicago, IL, United States Scientific Committee Pharmaceutical companies 

Fedik Rahimov Abbvie, Chicago, IL, United States Scientific Committee Pharmaceutical companies 

Ioanna 
Tachmazidou 

Astra Zeneca, Cambridge, United Kingdom Scientific Committee Pharmaceutical companies 

Chia-Yen Chen Biogen, Cambridge, MA, United States Scientific Committee Pharmaceutical companies 

Zhihao Ding Boehringer Ingelheim, Ingelheim am Rhein, 
Germany 

Scientific Committee Pharmaceutical companies 

Marc Jung Boehringer Ingelheim, Ingelheim am Rhein, 
Germany 

Scientific Committee Pharmaceutical companies 

Hanati Tuoken Boehringer Ingelheim, Ingelheim am Rhein, 
Germany 

Scientific Committee Pharmaceutical companies 

Shameek Biswas Bristol Myers Squibb, New York, NY, United 
States 

Scientific Committee Pharmaceutical companies 



21 

Rion Pendergrass Genentech, San Francisco, CA, United States Scientific Committee Pharmaceutical companies 

Jonathan Davitte GlaxoSmithKline, Collegeville, PA, United 
States 

Scientific Committee Pharmaceutical companies 

Neha Raghavan Merck, Kenilworth, NJ, United States Scientific Committee Pharmaceutical companies 

Adriana Huertas-
Vazquez 

Merck, Kenilworth, NJ, United States Scientific Committee Pharmaceutical companies 

Jae-Hoon Sul Merck, Kenilworth, NJ, United States Scientific Committee Pharmaceutical companies 

Anders Mälarstig Pfizer, New York, NY, United States Scientific Committee Pharmaceutical companies 

Xinli Hu Pfizer, New York, NY, United States Scientific Committee Pharmaceutical companies 

Åsa Hedman Pfizer, New York, NY, United States Scientific Committee Pharmaceutical companies 

Katherine Klinger Translational Sciences, Sanofi R&D, 
Framingham, MA, USA  

Scientific Committee Pharmaceutical companies 

Robert Graham Maze Therapeutics, San Francisco, CA, United 
States 

Scientific Committee Pharmaceutical companies 

Dawn Waterworth Janssen Research & Development, LLC, Spring 
House, PA, United States 

Scientific Committee Pharmaceutical companies 

Nicole Renaud Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Scientific Committee Pharmaceutical companies 

Ma´en Obeidat Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Scientific Committee Pharmaceutical companies 

Jonathan Chung Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Scientific Committee Pharmaceutical companies 

Jonas Zierer Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Scientific Committee Pharmaceutical companies 

Mari Niemi Novartis Institutes for BioMedical Research, 
Cambridge, MA, United States 

Scientific Committee Pharmaceutical companies 

Samuli Ripatti Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Johanna Schleutker Auria Biobank / Univ. of Turku / Hospital District 
of Southwest Finland, Turku, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Markus Perola THL Biobank / Finnish Institute for Health and 
Welfare (THL), Helsinki, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Mikko Arvas Finnish Red Cross Blood Service / Finnish 
Hematology Registry and Clinical Biobank, 
Helsinki, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Olli Carpén Helsinki Biobank / Helsinki University and 
Hospital District of Helsinki and Uusimaa, 
Helsinki 

Scientific Committee University of Helsinki & 
Biobanks 

Reetta Hinttala Northern Finland Biobank Borealis / University 
of Oulu / Northern Ostrobothnia Hospital 
District, Oulu, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Johannes Kettunen Northern Finland Biobank Borealis / University 
of Oulu / Northern Ostrobothnia Hospital 
District, Oulu, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Arto Mannermaa Biobank of Eastern Finland / University of 
Eastern Finland / Northern Savo Hospital 
District, Kuopio, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Katriina Aalto-
Setälä 

Faculty of Medicine and Health Technology, 
Tampere University, Tampere, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Mika Kähönen Finnish Clinical Biobank Tampere / University of 
Tampere / Pirkanmaa Hospital District, 
Tampere, Finland 

Scientific Committee University of Helsinki & 
Biobanks 

Jari Laukkanen Central Finland Biobank / University of 
Jyväskylä / Central Finland Health Care District, 
Jyväskylä, Finland 

Scientific Committee University of Helsinki & 
Biobanks 



22 

Johanna Mäkelä FINBB - Finnish biobank cooperative Scientific Committee University of Helsinki & 
Biobanks 

Reetta Kälviäinen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Neurology Group 

Valtteri Julkunen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Neurology Group 

Hilkka Soininen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Neurology Group 

Anne Remes Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Neurology Group 

Mikko Hiltunen University of Eastern Finland, Kuopio, Finland Clinical Groups Neurology Group 

Jukka Peltola Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Neurology Group 

Minna Raivio Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Neurology Group 

Pentti Tienari Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Neurology Group 

Juha Rinne Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Neurology Group 

Roosa Kallionpää Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Neurology Group 

Juulia Partanen Institute for Molecular Medicine Finland, HiLIFE, 
University of Helsinki, Finland 

Clinical Groups Neurology Group 

Adam Ziemann Abbvie, Chicago, IL, United States Clinical Groups Neurology Group 

Nizar Smaoui Abbvie, Chicago, IL, United States Clinical Groups Neurology Group 

Anne Lehtonen Abbvie, Chicago, IL, United States Clinical Groups Neurology Group 

Susan Eaton Biogen, Cambridge, MA, United States Clinical Groups Neurology Group 

Heiko Runz Biogen, Cambridge, MA, United States Clinical Groups Neurology Group 

Sanni Lahdenperä Biogen, Cambridge, MA, United States Clinical Groups Neurology Group 

Shameek Biswas Bristol Myers Squibb, New York, NY, United 
States 

Clinical Groups Neurology Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Neurology Group 

Edmond Teng Genentech, San Francisco, CA, United States Clinical Groups Neurology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Neurology Group 

Fanli Xu GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Neurology Group 

David Pulford GlaxoSmithKline, Stevenage, United Kingdom Clinical Groups Neurology Group 

Kirsi Auro GlaxoSmithKline, Espoo, Finland Clinical Groups Neurology Group 

Laura Addis GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Neurology Group 

John Eicher GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Neurology Group 

Qingqin S Li Janssen Research & Development, LLC, 
Titusville, NJ 08560, United States 

Clinical Groups Neurology Group 

Karen He Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Neurology Group 

Ekaterina 
Khramtsova 

Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Neurology Group 

Neha Raghavan Merck, Kenilworth, NJ, United States Clinical Groups Neurology Group 

Martti Färkkilä Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Gastroenterology Group 

Jukka Koskela Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Gastroenterology Group 

Sampsa 
Pikkarainen 

Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Gastroenterology Group 

Airi Jussila Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Gastroenterology Group 

Katri Kaukinen Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Gastroenterology Group 



23 

Timo Blomster Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Gastroenterology Group 

Mikko Kiviniemi Northern Savo Hospital District, Kuopio, Finland Clinical Groups Gastroenterology Group 

Markku Voutilainen Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Gastroenterology Group 

Mark Daly Institute for Molecular Medicine, Finland 
(FIMM), HiLIFE, University of Helsinki, Helsinki, 
Finland; Broad Institute of MIT and Harvard; 
Massachusetts General Hospital 

Clinical Groups Gastroenterology Group 

Jeffrey Waring Abbvie, Chicago, IL, United States Clinical Groups Gastroenterology Group 

Nizar Smaoui Abbvie, Chicago, IL, United States Clinical Groups Gastroenterology Group 

Fedik Rahimov Abbvie, Chicago, IL, United States Clinical Groups Gastroenterology Group 

Anne Lehtonen Abbvie, Chicago, IL, United States Clinical Groups Gastroenterology Group 

Tim Lu Genentech, San Francisco, CA, United States Clinical Groups Gastroenterology Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Gastroenterology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Gastroenterology Group 

Linda McCarthy GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Gastroenterology Group 

Amy Hart Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Gastroenterology Group 

Meijian Guan Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Gastroenterology Group 

Jason Miller Merck, Kenilworth, NJ, United States Clinical Groups Gastroenterology Group 

Kirsi Kalpala Pfizer, New York, NY, United States Clinical Groups Gastroenterology Group 

Melissa Miller Pfizer, New York, NY, United States Clinical Groups Gastroenterology Group 

Xinli Hu Pfizer, New York, NY, United States Clinical Groups Gastroenterology Group 

Kari Eklund Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Rheumatology Group 

Antti Palomäki Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Rheumatology Group 

Pia Isomäki Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Rheumatology Group 

Laura Pirilä Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Rheumatology Group 

Oili Kaipiainen-
Seppänen 

Northern Savo Hospital District, Kuopio, Finland Clinical Groups Rheumatology Group 

Johanna 
Huhtakangas 

Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Rheumatology Group 

Nina Mars Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Rheumatology Group 

Jeffrey Waring Abbvie, Chicago, IL, United States Clinical Groups Rheumatology Group 

Fedik Rahimov Abbvie, Chicago, IL, United States Clinical Groups Rheumatology Group 

Apinya 
Lertratanakul 

Abbvie, Chicago, IL, United States Clinical Groups Rheumatology Group 

Nizar Smaoui Abbvie, Chicago, IL, United States Clinical Groups Rheumatology Group 

Anne Lehtonen Abbvie, Chicago, IL, United States Clinical Groups Rheumatology Group 

Coralie Viollet AstraZeneca, Cambridge, United Kingdom Clinical Groups Rheumatology Group 

Marla Hochfeld Bristol Myers Squibb, New York, NY, United 
States 

Clinical Groups Rheumatology Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Rheumatology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Rheumatology Group 

Jorge Esparza 
Gordillo 

GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Rheumatology Group 
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Kirsi Auro GlaxoSmithKline, Espoo, Finland Clinical Groups Rheumatology Group 

Dawn Waterworth Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Rheumatology Group 

Fabiana Farias Merck, Kenilworth, NJ, United States Clinical Groups Rheumatology Group 

Kirsi Kalpala Pfizer, New York, NY, United States Clinical Groups Rheumatology Group 

Nan Bing Pfizer, New York, NY, United States Clinical Groups Rheumatology Group 

Xinli Hu Pfizer, New York, NY, United States Clinical Groups Rheumatology Group 

Tarja Laitinen Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Pulmonology Group 

Margit Pelkonen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Pulmonology Group 

Paula Kauppi Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Pulmonology Group 

Hannu 
Kankaanranta 

University of Gothenburg, Gothenburg, Sweden/ 
Seinäjoki Central Hospital, Seinäjoki, Finland/ 
Tampere University, Tampere, Finland 

Clinical Groups Pulmonology Group 

Terttu Harju Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Pulmonology Group 

Riitta Lahesmaa Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Pulmonology Group 

Nizar Smaoui Abbvie, Chicago, IL, United States Clinical Groups Pulmonology Group 

Coralie Viollet AstraZeneca, Cambridge, United Kingdom Clinical Groups Pulmonology Group 

Susan Eaton Biogen, Cambridge, MA, United States Clinical Groups Pulmonology Group 

Hubert Chen Genentech, San Francisco, CA, United States Clinical Groups Pulmonology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Pulmonology Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Pulmonology Group 

Joanna Betts GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Pulmonology Group 

Kirsi Auro GlaxoSmithKline, Espoo, Finland Clinical Groups Pulmonology Group 

Rajashree Mishra GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Pulmonology Group 

Majd Mouded Novartis, Basel, Switzerland Clinical Groups Pulmonology Group 

Debby Ngo Novartis, Basel, Switzerland Clinical Groups Pulmonology Group 

Teemu Niiranen Finnish Institute for Health and Welfare (THL), 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Felix Vaura Finnish Institute for Health and Welfare (THL), 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Veikko Salomaa Finnish Institute for Health and Welfare (THL), 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Kaj Metsärinne Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Jenni Aittokallio Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Mika Kähönen Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Cardiometabolic Diseases 
Group 

Jussi Hernesniemi Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Cardiometabolic Diseases 
Group 

Daniel Gordin Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Juha Sinisalo Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Marja-Riitta 
Taskinen 

Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Tiinamaija Tuomi Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 
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Timo Hiltunen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Jari Laukkanen Central Finland Health Care District, Jyväskylä, 
Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Amanda Elliott Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute, Cambridge, MA, USA and 
Massachusetts General Hospital, Boston, MA, 
USA 

Clinical Groups Cardiometabolic Diseases 
Group 

Mary Pat Reeve Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Sanni Ruotsalainen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Cardiometabolic Diseases 
Group 

Dirk Paul Astra Zeneca, Cambridge, United Kingdom Clinical Groups Cardiometabolic Diseases 
Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Cardiometabolic Diseases 
Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Cardiometabolic Diseases 
Group 

Audrey Chu GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Cardiometabolic Diseases 
Group 

Kirsi Auro GlaxoSmithKline, Espoo, Finland Clinical Groups Cardiometabolic Diseases 
Group 

Dermot Reilly Janssen Research & Development, LLC, 
Boston, MA, United States 

Clinical Groups Cardiometabolic Diseases 
Group 

Mike Mendelson Novartis, Boston, MA, United States Clinical Groups Cardiometabolic Diseases 
Group 

Jaakko Parkkinen Pfizer, New York, NY, United States Clinical Groups Cardiometabolic Diseases 
Group 

Melissa Miller Pfizer, New York, NY, United States Clinical Groups Cardiometabolic Diseases 
Group 

Tuomo Meretoja Department of Breast Surgery, Helsinki 
University Hospital Comprehensive Cancer 
Center and University of Helsinki, Helsinki, 
Finland 

Clinical Groups Oncology Group 

Heikki Joensuu Department of Oncology, Helsinki University 
Hospital Comprehensive Cancer Center and 
University of Helsinki, Helsinki, Finland 

Clinical Groups Oncology Group 

Olli Carpén Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Oncology Group 

Johanna Mattson Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Oncology Group 

Eveliina Salminen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Oncology Group 

Annika Auranen Pirkanmaa Hospital District , Tampere, Finland Clinical Groups Oncology Group 

Peeter Karihtala Department of Oncology, Helsinki University 
Hospital Comprehensive Cancer Center and 
University of Helsinki, Helsinki, Finland 

Clinical Groups Oncology Group 

Päivi Auvinen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Oncology Group 

Klaus Elenius Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Oncology Group 

Johanna Schleutker Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Oncology Group 

Esa Pitkänen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Oncology Group 
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Nina Mars Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Oncology Group 

Mark Daly Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute of MIT and Harvard; 
Massachusetts General Hospital 

Clinical Groups Oncology Group 

Relja Popovic Abbvie, Chicago, IL, United States Clinical Groups Oncology Group 

Jeffrey Waring Abbvie, Chicago, IL, United States Clinical Groups Oncology Group 

Bridget Riley-Gillis Abbvie, Chicago, IL, United States Clinical Groups Oncology Group 

Anne Lehtonen Abbvie, Chicago, IL, United States Clinical Groups Oncology Group 

Margarete Fabre AstraZeneca, Cambridge, United Kingdom Clinical Groups Oncology Group 

Jennifer Schutzman Genentech, San Francisco, CA, United States Clinical Groups Oncology Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Oncology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Oncology Group 

Diptee Kulkarni GlaxoSmithKline, Brentford, United Kingdom Clinical Groups Oncology Group 

Kirsi Auro GlaxoSmithKline, Espoo, Finland Clinical Groups Oncology Group 

Alessandro Porello Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Oncology Group 

Andrey Loboda Merck, Kenilworth, NJ, United States Clinical Groups Oncology Group 

Heli Lehtonen Pfizer, New York, NY, United States Clinical Groups Oncology Group 

Stefan McDonough Pfizer, New York, NY, United States Clinical Groups Oncology Group 

Sauli Vuoti Janssen-Cilag Oy, Espoo, Finland Clinical Groups Oncology Group 

Kai Kaarniranta Northern Savo Hospital District, Kuopio, 
Finland; Department of Molecular Genetics, 
University of Lodz, Lodz, Poland 

Clinical Groups Opthalmology Group 

Joni A Turunen Helsinki University Hospital and University of 
Helsinki, Helsinki, Finland; Eye Genetics Group, 
Folkhälsan Research Center, Helsinki, Finland 

Clinical Groups Opthalmology Group 

Terhi Ollila Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Opthalmology Group 

Hannu Uusitalo Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Opthalmology Group 

Juha Karjalainen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Opthalmology Group 

Esa Pitkänen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Opthalmology Group 

Mengzhen Liu Abbvie, Chicago, IL, United States Clinical Groups Opthalmology Group 

Heiko Runz Biogen, Cambridge, MA, United States Clinical Groups Opthalmology Group 

Stephanie Loomis Biogen, Cambridge, MA, United States Clinical Groups Opthalmology Group 

Erich Strauss Genentech, San Francisco, CA, United States Clinical Groups Opthalmology Group 

Natalie Bowers Genentech, San Francisco, CA, United States Clinical Groups Opthalmology Group 

Hao Chen Genentech, San Francisco, CA, United States Clinical Groups Opthalmology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Opthalmology Group 

Kaisa Tasanen Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Dermatology Group 

Laura Huilaja Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Dermatology Group 

Katariina Hannula-
Jouppi 

Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Dermatology Group 

Teea Salmi Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Dermatology Group 

Sirkku Peltonen Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Dermatology Group 
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Leena Koulu Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Dermatology Group 

Nizar Smaoui Abbvie, Chicago, IL, United States Clinical Groups Dermatology Group 

Fedik Rahimov Abbvie, Chicago, IL, United States Clinical Groups Dermatology Group 

Anne Lehtonen Abbvie, Chicago, IL, United States Clinical Groups Dermatology Group 

David Choy Genentech, San Francisco, CA, United States Clinical Groups Dermatology Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Dermatology Group 

Dawn Waterworth Janssen Research & Development, LLC, Spring 
House, PA, United States 

Clinical Groups Dermatology Group 

Kirsi Kalpala Pfizer, New York, NY, United States Clinical Groups Dermatology Group 

Ying Wu Pfizer, New York, NY, United States Clinical Groups Dermatology Group 

Pirkko Pussinen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Odontology Group 

Aino Salminen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Odontology Group 

Tuula Salo Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Odontology Group 

David Rice Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Odontology Group 

Pekka Nieminen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Odontology Group 

Ulla Palotie Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Odontology Group 

Maria Siponen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Odontology Group 

Liisa Suominen Northern Savo Hospital District, Kuopio, Finland Clinical Groups Odontology Group 

Päivi Mäntylä Northern Savo Hospital District, Kuopio, Finland Clinical Groups Odontology Group 

Ulvi Gursoy Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Odontology Group 

Vuokko Anttonen Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Odontology Group 

Kirsi Sipilä Research Unit of Oral Health Sciences Faculty 
of Medicine, University of Oulu, Oulu, Finland; 
Medical Research Center, Oulu, Oulu University 
Hospital and University of Oulu, Oulu, Finland 

Clinical Groups Odontology Group 

Rion Pendergrass  Genentech, San Francisco, CA, United States Clinical Groups Odontology Group 

Hannele Laivuori Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Venla Kurra Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Laura Kotaniemi-
Talonen 

Pirkanmaa Hospital District, Tampere, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Oskari Heikinheimo Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Ilkka Kalliala Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Lauri Aaltonen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Varpu Jokimaa Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Johannes Kettunen Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Marja Vääräsmäki Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 
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Outi Uimari Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Laure Morin-
Papunen 

Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Maarit Niinimäki Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Terhi Piltonen Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Katja Kivinen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Elisabeth Widen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Taru Tukiainen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Mary Pat Reeve Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Mark Daly Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute of MIT and Harvard; 
Massachusetts General Hospital 

Clinical Groups Women’s Health and 
Reproduction Group 

Niko Välimäki University of Helsinki, Helsinki, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Eija Laakkonen University of Jyväskylä, Jyväskylä, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Jaakko Tyrmi University of Oulu, Oulu, Finland / University of 
Tampere, Tampere, Finland 

Clinical Groups Women’s Health and 
Reproduction Group 

Heidi Silven University of Oulu, Oulu, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Eeva Sliz University of Oulu, Oulu, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Riikka Arffman University of Oulu, Oulu, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Susanna Savukoski University of Oulu, Oulu, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Triin Laisk Estonian biobank, Tartu, Estonia Clinical Groups Women’s Health and 
Reproduction Group 

Natalia Pujol Estonian biobank, Tartu, Estonia Clinical Groups Women’s Health and 
Reproduction Group 

Mengzhen Liu Abbvie, Chicago, IL, United States Clinical Groups Women’s Health and 
Reproduction Group 

Bridget Riley-Gillis Abbvie, Chicago, IL, United States Clinical Groups Women’s Health and 
Reproduction Group 

Rion Pendergrass Genentech, San Francisco, CA, United States Clinical Groups Women’s Health and 
Reproduction Group 

Janet Kumar GlaxoSmithKline, Collegeville, PA, United 
States 

Clinical Groups Women’s Health and 
Reproduction Group 

Kirsi Auro GlaxoSmithKline, Espoo, Finland Clinical Groups Women’s Health and 
Reproduction Group 

Iiris Hovatta University of Helsinki, Finland Clinical Groups Depression group 

Chia-Yen Chen Biogen, Cambridge, MA, United States Clinical Groups Depression group 

Erkki Isometsä Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups Depression group 

Hanna Ollila Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups Depression group 
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Jaana Suvisaari Finnish Institute for Health and Welfare (THL), 
Helsinki, Finland 

Clinical Groups Depression group 

Antti Mäkitie Department of Otorhinolaryngology - Head and 
Neck Surgery, University of Helsinki and 
Helsinki University Hospital, Helsinki, Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Argyro Bizaki-
Vallaskangas 

Pirkanmaa Hospital District, Tampere, Finland Clinical Groups ENT (ear, nose and throath) 
Group 

Sanna Toppila-
Salmi 

University of Eastern Finland and Kuopio 
University Hospital, Department of 
Otorhinolaryngology, Kuopio, Finland and 
Department of Allergy, Helsinki University 
Hospital and University of Helsinki, Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Tytti Willberg Hospital District of Southwest Finland, Turku, 
Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Elmo Saarentaus Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Antti Aarnisalo Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Eveliina Salminen Hospital District of Helsinki and Uusimaa, 
Helsinki, Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Elisa Rahikkala Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Johannes Kettunen Northern Ostrobothnia Hospital District, Oulu, 
Finland 

Clinical Groups ENT (ear, nose and throath) 
Group 

Kristiina Aittomäki Department of Medical Genetics, Helsinki 
University Central Hospital, Helsinki, Finland 

Clinical Groups POI (premature ovarian 
failure) Group 

Fredrik Åberg Transplantation and Liver Surgery Clinic, 
Helsinki University Hospital, Helsinki University, 
Helsinki, Finland 

Clinical Groups LiverScore Group 

Mitja Kurki Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute, Cambridge, MA, United States 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Samuli Ripatti Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Mark Daly Institute for Molecular Medicine, Finland 
(FIMM), HiLIFE, University of Helsinki, Helsinki, 
Finland; Broad Institute of MIT and Harvard; 
Massachusetts General Hospital 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Juha Karjalainen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Aki Havulinna Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Finnish Institute for Health and Welfare (THL), 
Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Juha Mehtonen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Priit Palta Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Shabbeer Hassan Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Pietro Della Briotta 
Parolo 

Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Wei Zhou Broad Institute, Cambridge, MA, United States FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Mutaamba Maasha Broad Institute, Cambridge, MA, United States FinnGen Analysis 
working group 

FinnGen Analysis working 
group 
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Shabbeer Hassan Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Susanna Lemmelä Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Manuel Rivas University of Stanford, Stanford, CA, United 
States 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Aarno Palotie Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Aoxing Liu Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Arto Lehisto Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Andrea Ganna Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Vincent Llorens Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Hannele Laivuori Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Taru Tukiainen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Mary Pat Reeve Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Henrike Heyne Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Nina Mars Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Joel Rämö Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Elmo Saarentaus Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Hanna Ollila Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Satu Strausz Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Tuula Palotie University of Helsinki and Hospital District of 
Helsinki and Uusimaa, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Kimmo Palin University of Helsinki, Helsinki, Finland FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Javier Garcia-
Tabuenca 

University of Tampere, Tampere, Finland FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Harri Siirtola University of Tampere, Tampere, Finland FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Tuomo Kiiskinen Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Jiwoo Lee Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute, Cambridge, MA, United States 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Kristin Tsuo Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute, Cambridge, MA, United States 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Amanda Elliott Institute for Molecular Medicine Finland (FIMM), 
HiLIFE, University of Helsinki, Helsinki, Finland; 
Broad Institute, Cambridge, MA, USA and 
Massachusetts General Hospital, Boston, MA, 
USA 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 
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Kati Kristiansson THL Biobank / Finnish Institute for Health and 
Welfare (THL), Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Mikko Arvas Finnish Red Cross Blood Service / Finnish 
Hematology Registry and Clinical Biobank, 
Helsinki, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Kati Hyvärinen Finnish Red Cross Blood Service, Helsinki, 
Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Jarmo Ritari Finnish Red Cross Blood Service, Helsinki, 
Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Olli Carpén Helsinki Biobank / Helsinki University and 
Hospital District of Helsinki and Uusimaa, 
Helsinki 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Johannes Kettunen Northern Finland Biobank Borealis / University 
of Oulu / Northern Ostrobothnia Hospital 
District, Oulu, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Katri Pylkäs University of Oulu, Oulu, Finland FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Eeva Sliz University of Oulu, Oulu, Finland FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Minna Karjalainen University of Oulu, Oulu, Finland FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Tuomo Mantere Northern Finland Biobank Borealis / University 
of Oulu / Northern Ostrobothnia Hospital 
District, Oulu, Finland 

FinnGen Analysis 
working group 

FinnGen Analysis working 
group 

Eeva Kangasniemi Finnish Clinical Biobank Tampere / University of 
Tampere / Pirkanmaa Hospital District, 
Tampere, Finland 
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UK Biobank study description and methods 

The UK Biobank is a large population-based prospective cohort study from the United Kingdom 

with rich phenotypic and genetic data on 500,000 individuals aged 40–69 at enrollment18. 

Available genetic data currently include genome-wide imputed data for almost all participants18. 

Briefly, genotyping was performed using Affymetrix UK Biobank Axiom (450,000 samples) and 

Affymetrix UK BiLEVE axiom (50,000 samples) arrays. Subsequently, the genetic data were 

imputed to the Haplotype Reference Consortium panel and UK10K + 1000 Genomes panels 

(version 3 imputed data). We removed any samples that had withdrawn their consent, samples 

that were outliers for heterozygosity or missingness, individuals with putative sex chromosome 

aneuploidy and individuals with a mismatch between self-reported and genetically inferred sex, 

as determined by central quality-control. Use of the UK Biobank was performed under application 

number 17488.  

We ran GWAS for NI-DCM and NICM, defined by ICD coding (ICD10 I42.0 for NI-DCM; ICD10 

I42.0, ICD10 I50.1 or ICD9 4281 for NICM). Prevalent and incident cases were combined. Cases 

were excluded from the analysis if they had antecedent codes for acute coronary syndrome and/or 

revascularization, as previously described17; controls with codes for general heart failure (as 

defined in 19) were also removed from the analysis.  

We used REGENIE14 v3.1.1 to run the GWAS. Variants from the genotyping array were used for 

null-model fitting in step 1. In both step 1 and 2, we adjusted for age, age^2, sex, PC1-4, and PCS 

among PC5-20 if associated with either NI-DCM or NICM at nominal significance (P<0.05 among 

unrelated samples). An approximate Firth’s correction was used for variants reaching nominal 

P<0.05 in an initial test; standard errors were computed by back-correcting from the Firth’s beta 

and Firth’s P-value. 

https://paperpile.com/c/ziYd5p/gfMkZ
https://paperpile.com/c/ziYd5p/gfMkZ
https://paperpile.com/c/ziYd5p/SLLN7
https://paperpile.com/c/ziYd5p/6JpDx
https://paperpile.com/c/ziYd5p/flppJ
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Massachusetts General Brigham Biobank study description and 

methods 

The Massachusetts General Brigham Biobank (MGB) is an ongoing observational biobank 

enrolling participants from a multicenter health system in Massachusetts, USA20. Participants are 

enrolled with broad-based consent collected by local research coordinators, either as part of a 

collaborative research study or electronically through a patient portal21. Demographic data, blood 

samples and surveys are collected at baseline and linked to electronic health record data. All 

adult patients provided informed consent to participate. A small number of children were enrolled 

with IRB-approved assent forms; upon reaching 18 years of age all enrolled children had to 

provide consent or were removed from the study. The Human Research Committee of MGB 

approved the Biobank protocol (2009P002312).  

  

All samples were genotyped using the GlobalScreeningArray version 1. The genotype array data 

underwent stringent QC. Variant QC consisted of removal of variants with allele count <2, 

missingness >2%, Hardy Weinberg equilibrium test P-value <1e-6 (in each continental super-

population), and those with discordant frequencies as compared to gnomAD (X^2 statistic >300; 

applied in each continental super-population). Sample QC consisted of removal of outliers for 

heterozygosity or missingness, removal of samples with a mismatch between inferred and self-

reported sex, and removal of samples with a mismatch between exome sequencing and array 

calls. Principal component analysis and relatedness inference were performed using PC-Relate22 

and PC-Air23, while ancestry labels (for continental super-populations) were learned from a k-

nearest-neighbor model trained on 1000Genomes project data3. Following these stringent QC 

procedures, data were subsequently genome-wide imputed to the TOPMed imputation panel (r2) 

on the Michigan Imputation Server (submitted by batch)24. 

https://paperpile.com/c/ziYd5p/KGQEc
https://paperpile.com/c/ziYd5p/bxG1Y
https://paperpile.com/c/ziYd5p/ymnqs
https://paperpile.com/c/ziYd5p/61KKN
https://paperpile.com/c/ziYd5p/ITxMb
https://paperpile.com/c/ziYd5p/RpsHW
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We ran GWAS for NI-DCM and NICM, defined by ICD coding (I42.0 for NI-DCM, I42.0 and I50.1 

for NICM). Prevalent and incident cases were combined. Cases were excluded from the analysis 

if they had coronary disease (irrespective of timing), as defined centrally by the biobank. Controls 

with codes for general heart failure (as defined in 19) were also removed from the analysis.  

We used REGENIE14 v3.1.1 to run the GWAS. Variants from the genotyping array were used for 

null-model fitting in step 1. In both step 1 and 2, we adjusted for age, age^2, sex, PC1-4, and PCS 

among PC5-20 if associated with either NI-DCM or NICM at nominal significance (P<0.05 among 

unrelated samples). An approximate Firth’s correction was used for variants reaching nominal 

P<0.05 in an initial test; standard errors were computed by back-correcting from the Firth’s beta 

and Firth’s P-value. 

UK Biobank is generously supported by its founding funders the Wellcome Trust and UK Medical 

Research Council, as well as the British Heart Foundation, Cancer Research UK, Department of 

Health, Northwest Regional Development Agency and Scottish Government. 

  

https://paperpile.com/c/ziYd5p/6JpDx
https://paperpile.com/c/ziYd5p/flppJ
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All of Us Research Program description and methods 

Sequencing and quality control 

Each Genome Center performed quality control (QC) of the specimens obtained from the All of 

Us Biobank. Sample preparation and normalization and DNA library construction have been 

reported previously25, after which samples underwent whole genome sequencing (WGS). Details 

on sequencing, variant calling and quality control are described in the program’s genomic data 

quality report [https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-

Genomic-Quality-Report-]. In brief, processing consisted of an initial per-sample QC, including 

fingerprint concordance (array vs. WGS data), sex concordance (genetically determined vs. self-

reported), cross-individual contamination rate and coverage to detect major errors, such as 

sample swaps or contamination. Participants who failed these tests were removed from the 

release. The WGS variants were then called jointly to reduce systematic biases. Additional 

sample QC procedures were then performed on the joint callsets, including hard threshold 

flagging (e.g., number of SNPs: < 2.4M and > 5.0M) and population outlier flagging. Variants QC 

was performed after sample QC, flagging specific variants in the callset. Processes included hard 

threshold filters (e.g., ExcessHet, QUAL score) and Allele-Specific Variant Quality Score 

Recalibration (AS-VQSR or VQSR).  

 

For PRS analyses, we focussed on the v7 short-read ACAF dataset with split variants (ie multi-

allelic variants were split to represent separate bi-allelic variants). On this dataset, we performed 

additional QC steps at the genotype and variant level. Specifically, we restricted genotypes to 

those that passed the central QC procedures (ie, FT==PASS) and have a Genotype Quality value 

> 20. We then filtered out variants that were monomorphic or had call rates <95%.  

 

https://paperpile.com/c/ziYd5p/jsg1E
https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Genomic-Quality-Report-
https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Genomic-Quality-Report-
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For analyses of rare genetic variants, we used the v7 short-read exome dataset with split variants. 

On this dataset, we performed additional QC steps at the genotype and variant level. Specifically, 

we restricted to genotypes that passed central QC procedures (ie, FT==PASS) and had Genotype 

Quality value >20; we then filtered out variants that were monomorphic or had call rates <90%. 

Based on these variants, we defined carriers of rare pathogenic or likely pathogenic variants 

based on the following criteria: variants i) that were protein-coding variants within ClinGen 

strong/definitive genes for DCM (BAG3, DES, TNNT2, FLNC, PLN, LMNA, MYH7, RBM20, 

SCN5A, TNNC1, TTN and DSP), ii) had minor allele frequency <0.1% in the dataset and <0.1% 

in each major continental super-population in gnomAD exomes v2 (ref.26), iii) were reported in 

ClinVar as likely pathogenic (LP) or pathogenic (P) (following previous ClinVar filtering 

procedures27,28; pull updated in April 2023), and iv) were reported in ClinVar with a phenotypic 

assertion of DCM. In addition, we included rare predicted loss-of-function (LOF) variants 

(determined by LOFTEE; https://github.com/konradjk/loftee) for a subset of genes (BAG3, FLNC, 

LMNA, TTN and DSP) restricting to rare high-confidence LOF variants with no flags and restricting 

to canonical transcripts (BAG3, FLNC, LMNA and DSP) or cardiac-expressed exons (TTN).  

 

For additional sample QC, we removed flagged participants (population outliers), possible 

duplicates, samples with a call rate of < 90%, and individuals with missing genetically-determined 

sex, resulting in 242,902 participants in the current analysis dataset. Based on central relatedness 

inference, we then further restricted all analyses to samples with complete EHR linkage and who 

were genetically unrelated, leaving 195,533 samples. 

 

Principal component analysis 

All of Us applied the analysis pipeline using the gnomAD v3.1 release 

[https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-new-content-methods-

https://paperpile.com/c/ziYd5p/Bn7oz
https://paperpile.com/c/ziYd5p/Zkar0+iHmvO
https://github.com/konradjk/loftee
https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-new-content-methods-annotations-and-data-availability/
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annotations-and-data-availability/] to calculate principal components (PCs) of ancestry and assign 

ancestry labels. Specifically, AoU first identified 150,229 high-quality sites that can be called 

accurately in both the Human Genome Diversity Project (HGDP) and 1000 Genomes (1000G) 

dataset (training sample) and the All of Us dataset. High-quality sites were defined as autosomal, 

bi-allelic single nucleotide variants (SNVs) with a minor allele frequency > 0.1% and a call rate > 

99%. These sites were then LD-pruned with a cut-off of r2 = 0.1. All of Us centrally calculated the 

first 16 PCs in the training sample (HGDP and 1000G, using the hwe_normalized_pca() Hail 

function) with high-quality SNVs and projected the All of Us samples into the PCA space to 

generate the first 16 PCs. The number of PCs was determined in the gnomAD resource that the 

first 16 PCs captured global ancestry variation well. A clear drop in information content was 

observed for higher PCs. 

 

Ancestry assignments 

To assign ancestry categories to the WGS participants, All of Us trained a random forest classifier 

on the HGDP and 1000G samples with known ancestry labels using the 16 PCs and applied the 

model to the AoU sample. Therefore, available ancestry categories were those used in the 

gnomAD, HGDP and 1000G resources, including African, Latino/Native American/Ad Mixed 

American, East Asian, Middle Eastern, European, Other, and South Asian. Ancestry categories 

were assigned to participants based on the probability generated by the random forest model. A 

cut-off of 75% was used, and all remaining samples were assigned to the "Other" group. To 

assess the accuracy of the predictions, AoU calculated a concordance metric between the self-

reported ethnicity and the ancestry predictions, and reported an estimate of 0.915 

[https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Genomic-

Quality-Report-]. 

   

https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-new-content-methods-annotations-and-data-availability/
https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Genomic-Quality-Report-
https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Genomic-Quality-Report-


41 

Phenotype definitions 

NI-DCM and NICM were defined using International Classifications of Disease (ICD) 10 codes: 

I42.0 “Dilated cardiomyopathy” for NI-DCM; I42.0 “Dilated cardiomyopathy” or I50.1 “Left heart 

failure” for NICM. For both phenotypes cases were excluded if they had antecedent codes for 

acute coronary events and/or revascularization procedures: Exclusions were based on ICD10-

CM codes I21 (and all subgroupings), I22 (and all subgrouping), I23 (and all subgrouping), I24 

(and all subgrouping), I25.2; ICD9-CM codes 410 (and all subgrouping), I411 (and all 

subgrouping), I412 (and all subgrouping); Current Procedure Terminology (CPT) codes 33510, 

33511, 33512, 33533, 33534, 33535, 33536, 92920, 92921, 92924, 92925, 92928, 92933, 92934, 

92937, 92938, 92941, 92943, 92944, 92973, 92975.   

 

For broad heart failure we used the central All of Us defined “Heart failure” phenotype. Systolic 

heart failure was defined using ICD10-CM codes: I50.2 “Systolic congestive heart failure”, and 

subcodes I50.20 “Unspecified systolic heart failure”, I50.21 “Acute systolic (congestive) heart 

failure”, I50.22 “Chronic systolic (congestive) heart failure, and I50.23 “Acute on chronic systolic 

(congestive) heart failure”. Hypertension was defined using SNOMED codes 1201005 “Benign 

essential hypertension”, 59621000 “Essential hypertension”, 63287004 “Benign essential 

hypertension in obstetric context”, 72022006 “Essential hypertension in obstetric context”, 

78808002 “Essential hypertension complicating AND/OR reason for care during pregnancy”, 

78975002 “Malignant essential hypertension”;   using ICD9-CM codes: 401 “Essential 

hypertension”, 401.0 “Malignant essential hypertension”, 401.1 “Benign essential hypertension”, 

401.9 “Unspecified essential hypertension”; and using ICD10-CM code: I10 “Essential (primary) 

hypertension”. Acute myocardial infarction was defined using SNOMED codes 401303003 “Acute 

ST segment elevation myocardial infarction”, 401314000 “Acute non-ST segment elevation 

myocardial infarction”, 54329005 “Acute myocardial infarction of anterior wall”, 57054005 “Acute 
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myocardial infarction”, 65547006 “Acute myocardial infarction of inferolateral wall”, 70211005 

“Acute myocardial infarction of anterolateral wall”, 70422006 “Acute subendocardial infarction”, 

76593002 “Acute myocardial infarction of inferoposterior wall”; ICD9-CM codes: 410 “Acute 

myocardial infarction”, 410.0 (and subcodes 410.0, 410.00, 410.01, 410.02, 410.1, 410.10, 

410.11, 410.12, 410.20, 410.21, 410.22, 410.3, 410.30, 410.31, 410.32, 410.4, 410.42, 410.5, 

410.50, 410.51, 410.52, 410.70, 410.71, 410.72, 410.8, 410.80, 410.81, 410.9, 410.91, 410.92); 

and ICD10-CM codes I21 “Acute myocardial infarction” (and subcodes I21.01, I21.02, I21.09, 

I21.11, I21.19, I21.21, I21.29, I21.3, I21.4, I21.9), I23.1 “Atrial septal defect as current 

complication following acute myocardial infarction”, I23.3 “Rupture of cardiac wall without 

hemopericardium as current complication following acute myocardial infarction”, I23.6 

“Thrombosis of atrium, auricular appendage, and ventricle as current complications following 

acute myocardial infarction”, and I23.8 “Other current complications following acute myocardial 

infarction”  
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Processing of summary statistics for molecular trait MR and 

colocalization 

INDELS and ambiguous variants were removed; all variants were lifted to GRCh37 using 

liftOver; variants were restricted to those with at least 70% of total cases (GWAS-DCM) or at 

least 70% of total effective sample size (MTAG-DCM) contributing to the outcome GWAS; 

variants were restricted to those found in both the exposure and outcome dataset; and variants 

were restricted to those found in the LD reference - a reference built from high-quality hard-

called imputed data from 5k random European UK Biobank participants. 
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Processing of summary statistics for MR analysis 

For any given MR comparison, we first harmonized summary statistics by i) lifting over to 

GRCh37 if on a different build, ii) removing ambiguous variants and indels, iii), removing 

variants with <70% of the total case numbers contributing to the DCM GWAS, iv) removing 

variants with MAF<1% in either study (if present in the summary statistics), v) removing variants 

with imputation accuracy <0.3 in either study (if present in the summary statistics), vi) aligning 

effect and reference alleles, and vii) restricting to variants also present in the LD reference (built 

from 5k random European ancestry samples from UKB). After the harmonization, prior to MR, 

variants were filtered and pruned based on genome-wide significance (P<5e-8) and r^2 <0.0005 

taking 10Mb windows. 
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Assessment of NI-DCM and NICM phenotypes from biobank data 

We aimed to assess the validity of our biobank-based non-ischemic DCM (NI-DCM) phenotype. 

For our strict NI-DCM phenotype - from a meta-analysis of FinnGen, UK Biobank and MGB - we 

observed comparable heritability estimates (h2
SNP, liability=14.1%, SE=1.6%; by LDSC29) as 

compared to the GWAS meta-analysis of clinically ascertained DCM cases (h2
SNP, liability=16.4%, 

SE=1.8%) (Supplementary Table 4). Furthermore, biobank-ascertained NI-DCM was strongly 

genetically correlated with clinically ascertained DCM (rg = 0.73, SE=0.07, by bivariate LD score 

regression [LDSC29,30]; Supplementary Table 5). It should be noted that this genetic correlation 

is likely attenuated by a somewhat divergent LD structure between both meta-analyses - given 

the isolated structure of Finland as compared to non-Finnish Europeans16. Indeed, when 

comparing the clinical Garnier et al. dataset to a meta-analysis of UKB and MGB, we found an 

even higher point estimate for the genetic correlation between biobank-based NI-DCM and 

clinically-ascertained DCM (rg = 0.82, SE=0.22, P=0.0002). Taken together, these analyses 

provide strong genetic support for our strict, biobank-based phenotypic construct of DCM. 

 

For comparison with our NI-DCM construct, we also evaluated a more permissive, biobank-

based disease definition of non-ischemic cardiomyopathy (NICM)—meant to capture LV 

dysfunction in the absence of antecedent ischemic heart disease17—as pursued in prior GWAS 

of DCM from biobank populations. As compared to the NI-DCM phenotype, we observed a 

substantially lower heritability estimate with the NICM phenotype (h2
SNP, liability=6.9%, SE=0.7%) 

and fewer significant loci (21 vs 26), despite substantially more cases (N=13,478) 

(Supplementary Table 4 and Extended Data Figure 1). These results highlight that a more 

stringent DCM phenotype may reveal a stronger genetic/heritable component. Therefore, for our 

biobank-based analyses, we proceeded with the strict NI-DCM phenotype. 

  

https://paperpile.com/c/ziYd5p/6nmo
https://paperpile.com/c/ziYd5p/6nmo+NJmQ
https://paperpile.com/c/ziYd5p/H0GoL
https://paperpile.com/c/ziYd5p/SLLN7
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Novelty of significant loci 

We then evaluated the novelty of loci identified in our GWAS and MTAG analysis. In GWAS-

DCM, of 38 distinct loci, we identified 27 loci that were not identified in previously-published 

DCM GWAS papers (Extended Data Figure 3). We then queried two published GWAS papers 

for DCM-relevant traits, including i) a study of DCM-relevant LV functional traits (LVEF, LVESVi, 

LVEDVi, and SVi) by Pirruccello et al.31 and ii) a study of general HF (including a GWAS and 

MTAG analysis) by Levin et al.32 Of the 27 novel loci, 12 were also not identified in these 

relevant traits (Supplementary Table 8). 

In MTAG-DCM, of 65 significant loci, we identified 50 loci not identified in previously-published 

GWAS papers for DCM (Extended Data Figure 3). Of these novel loci, 24 were also not 

identified for DCM-relevant LV functional traits and general HF, in the studies by Pirruccello et 

al. and Levin et al. (Supplementary Table 12). 
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Assessment of pleiotropy for significant loci 

We aimed to identify pleiotropic effects for the lead variants identified in our GWAS-DCM and 

MTAG-DCM analyses (Supplementary Tables 34-38). First, we queried the Cardiovascular 

Disease Knowledge Portal (CVDKP; https://cvd.hugeamp.org/) to identify pleiotropic 

associations for relevant cardiovascular diseases and quantitative traits. At the suggestive 

significance level set by the portal, 33 of 38 GWAS-DCM loci showed potential pleiotropic 

associations with relevant traits (Supplementary Tables 34 and 38), which include cardiac MRI 

traits, ECG traits, HF, atrial fibrillation, and heart rate. In contrast, only two loci showed 

pleiotropic effects on coronary artery disease, of which one had a discordant effect between 

DCM and coronary disease (ADAMTS7). Similarly, of 65 MTAG-DCM loci, 40 loci showed 

potential pleiotropic associations with relevant traits (excluding MRI traits; Supplementary 

Tables 36 and 38); only three loci showed pleiotropic effects on coronary artery disease (again 

including the discordant ADAMTS7 locus). 

The above look-up was based on the CVDKP, which is focused on cardiovascular traits. As 

such, this pleiotropy look-up was naturally biased towards potentially relevant traits, and would 

miss important pleiotropic associations outside of the cardiovascular system. We therefore 

performed a second look-up using a publicly-available phenome-wide disease analysis 

(PheWAS) from the UK Biobank (Supplementary Tables 35 and 37). Reassuringly, the vast 

majority of suggestive associations involved arrhythmia, conduction disease, hypertension, 

heart failure, and related cardiovascular diseases; there were only limited suggestive 

associations in other organ systems. These findings show that the phenotypic consequences of 

our DCM loci largely involve the cardiovascular system; furthermore, these results support the 

validity of DCM loci.   

  

https://cvd.hugeamp.org/
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Replication analyses 

We aimed to assemble a large replication cohort to validate the findings from our discovery 

analyses. To this end, we combined data from a parallel GWAS effort for DCM from the Heart 

Failure Molecular Epidemiology for Therapeutic Targets (HERMES) consortium33, data from the 

Million Veteran Program (MVP), and data from the All of Us Research Program. In our approach, 

we were careful to include only samples that were not already included in our discovery datasets 

(as outlined in more detail for each dataset below), which yielded a replication meta-analysis of 

up to 13,258 cases and 1,435,678 controls.  

HERMES 

In a parallel effort, the HERMES consortium recently released a manuscript describing a 

European-ancestry GWAS meta-analysis for DCM. This effort included both ‘hard DCM’ cases 

and ‘broad’ DCM cases (defined as LV systolic dysfunction in absence of a number of secondary 

causes), totalling 14,255 cases and 1,199,156 controls. We refer to the associated preprint for 

details on genotyping, phenotyping and GWAS analyses33. We note that a substantial number of 

‘hard DCM’ datasets from HERMES also contributed to the present GWAS-DCM. Therefore, to 

remove the possibility of overlapping samples, the HERMES meta-analyses were rerun restricting 

to non-overlapping datasets. These included BioVU, CHB, deCODE, DiscovEHR-GSA, 

DiscovEHR-Omni, EstBiobank, GoDARTS-ILLUMINA, PIVUS, ULSAM, DCM-UCL, and GEL. 

The datasets were combined using an inverse-variance-weighted fixed-effects meta-analysis, 

totalling up to 8,480 cases and 756,404 controls. The lead variants from GWAS-DCM and MTAG-

DCM were extracted from this meta-analysis.  

 

https://paperpile.com/c/ziYd5p/ndAa
https://paperpile.com/c/ziYd5p/ndAa
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MVP 

Cohort description 

The Veterans Affairs Million Veteran Program (MVP) started recruiting US military veterans from 

63 Veterans Affairs (VA) facilities across the United States in 2011 (ref.34). Veterans aged 18 

years and older are recruited into MVP where participants are linked to VA electronic health 

records (EHR), complete a questionnaire, and submit a blood sample at enrollment. The EHR 

includes information on inpatient International Classification of Disease (ICD) diagnosis codes, 

Current Procedural Terminology (CPT) procedure codes, and clinical laboratory measurements. 

Genotyping and quality control in MVP has been reported previously35,36 and are summarized in 

detail below 

 

Genotyping and quality control 

Specimen collection and genotype quality control have been described in detail before35,36. In 

brief, blood specimens were collected at recruitment sites across the country then shipped within 

24 hours to the VA Central Biorepository in Boston, MA for processing and storage. Study 

participants were genotyped using a customized Affymetrix Axiom biobank array (the MVP 1.0 

Genotyping Array), containing 723,305 variants.  Duplicate samples were excluded from the 

genetic analysis. Additional exclusion criteria included: samples with observed heterozygosity 

greater than the expected heterozygosity, missing genotype call rate greater than 2.5%, and 

incongruence between sex inferred from genetic information and gender extracted from 

phenotype data. Probes with high missingness (>20%), those that were monomorphic, or those 

with a Hardy Weinberg Equilibrium p<1x10-06 in both the overall cohort and within one of the 3 

major harmonized race/ethnicity and genetic ancestry (HARE)37 race or ethnicity groups (non-

Hispanic White, non-Hispanic Black, or Hispanic/Latino). See below for HARE methods.  
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KING13 was used to measure relatedness between individuals in the sample. ADMIXTURE38 was 

used to calculate loadings on five 1000Genomes reference populations3 representing the majority 

of ancestry within the United States - GBR (British), PEL (Peruvian), YRI (Yoruba/Nigerian), CHB 

(Han Chinese), and LWK (Luhya/Kenyan). Pre-analysis QC was performed to remove SNPs that 

were rare (MAF < 1%), had high missingness (> 5%), or had excess heterozygosity (Fst < -0.1). 

SNPs that passed filters were then merged with the 1000 Genomes phase 3 reference panel3, 

removing SNPs that were not shared in both filesets. LD pruning was performed using the 'indep-

pairwise' command in PLINK version 1.9, with window = 1000, shift = 50, and r2 = 0.05, and 

excluding loci with complicated LD structure (i.e. MHC and KIR). Principal components (PCs) 

were computed using plink2 (ref.11).  

 

The HARE approach, developed by MVP, was used to assign individuals to populations or 

groups37. This machine learning algorithm leverages information from both the self-identified 

race/ethnicity data from the survey and data from the genome-wide array to create respective 

variables for downstream analyses. HARE categorized Veterans into four mutually exclusive 

groups: (1) non-Hispanic White, (2) non-Hispanic Black, (3) Hispanic or Latino, or (4) Asian. High 

concordance was observed between HARE-defined non-Hispanic White and non-Hispanic Black 

populations, and genetically inferred European and African ancestry populations, respectively. 

 

Imputation to TOPMed Imputation Panel 

Genetic imputation was performed to the TOPMed reference panel24. Pre-phasing was performed 

using SHAPEIT4 (v 4.1.3; ref.39) using 20MB chunks and 5MB overlap, and Minimac4 (ref.40) 

software was used for imputation using 20MB chunks with 3MB overlap between chunks. 

 

Genetically Inferred Ancestry (GIA) definition 

https://paperpile.com/c/ziYd5p/b9GBu
https://paperpile.com/c/ziYd5p/ITxMb
https://paperpile.com/c/ziYd5p/ITxMb
https://paperpile.com/c/ziYd5p/ztK5B
https://paperpile.com/c/ziYd5p/RpsHW
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To estimate ancestry, we obtained a reference dataset from the 1000 Genomes Project and used 

the smartpca module in the EIGENSOFT package (https://github.com/DReichLab/EIG) to project 

the PC loadings from a group of unrelated individuals in the reference dataset. We merged this 

dataset with the MVP dataset and ran smartpca to project the PCA loadings from the reference 

dataset. We trained a random forest classifier using continental ancestry meta-data based on the 

top 10 principal components from the reference training data to define genetically inferred 

ancestry. We then applied this random forest to the predicted MVP PCA data and assigned 

ancestries to individuals with a probability greater than 50%. Those with a probability less than 

50% for any particular ancestry group were excluded from the study. The final GIA population 

classifications were (1) African (AFR), (2) Admixed American (AMR), (3) East Asian (EAS), (4) 

European (EUR), or (5) South Asian (SAS). 

 

Cardiomyopathy Phenotyping 

NI-DCM cases and controls were defined using International Classification of Diseases, 9th or 

10th Revision (ICD-9; ICD-10) billing codes. In MVP, the version 21.1 clinical data freeze was 

used, which contains EHR data up to September 30, 2021. Cases were defined by the presence 

of ‘dilated cardiomyopathy’ code (I42.0) excluding individuals with prior ischemic cardiomyopathy 

(I25.5) or coronary artery disease (CAD; I21-I24, I25.2, 410-412), or presence of a CAD code with 

30 days after their first DCM code. Controls were defined by a lack of DCM code then individuals 

were excluded if they ever had codes for heart failure, hypertrophic cardiomyopathy (I42.1, I42.2, 

425.1), alcoholic cardiomyopathy (I42.6, 425.5), peripartum cardiomyopathy (O90.3, 674.5), 

secondary cardiomyopathy (425.9), or drug induced cardiomyopathy (I42.7). Date of first event 

was defined as the date of the occurrence of the first code. This left a total of 3,964 cases (1,239 

AFR, 223 AMR, 2,502 EUR) and 522,610 controls (99,878 AFR, 53,475 AMR, 369,257 EUR) for 

GWAS analysis. 

 

https://github.com/DReichLab/EIG
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GWAS 

A case-control genome-wide association analysis (GWAS) for DCM was performed within each 

GIA group using REGENIE, then combined in an inverse variance weighted meta-analysis using 

GWAMA. Only AFR, AMR, and EUR had enough cases for analysis. A mixed model approach 

was implemented with adjustment for age at study enrollment, biological sex, and the first 10 

genetic PCs. The lead variants from GWAS-DCM and MTAG-DCM were extracted from this meta-

analysis.    

 

All of Us 

Details on sequencing and DCM phenotyping in the All of Us Research Program are described 

earlier in this document. For purposes of replication, we ran a GWAS analysis for our NI-DCM 

phenotype. Since the MGB health system contributed some samples to All of Us, we took a 

restrictive approach to minimize the potential for sample overlap between discovery and 

replication. In particular, we removed any sample in All of Us with a ZIP code from Massachusetts. 

This procedure left 815 NI-DCM cases, and 156,209 controls. We then used REGENIE v3.2.2 to 

perform a GWAS for the NI-DCM phenotype, using an approximate Firth’s regression model. The 

lead variants from GWAS-DCM and MTAG-DCM were extracted from this multi-ancestry analysis. 

 

Meta-analysis and quality-control 

To combine data from the several replication cohorts, we performed an inverse-variance-weighted 

fixed-effects meta-analysis. This meta-analysis included up to 13,258 cases and 1,435,678 

controls. We then filtered these results based on several criteria. First, we retained variants with 

MAF>1% in the replication meta-analysis and with at least 1000 cases contributing to the 

replication meta-analysis. Second, per locus, we restricted to the single strongest lead variant in 
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discovery. This procedure left qualifying replication results for 36/38 GWAS-DCM loci and for 

64/65 MTAG-DCM loci. P-values were computed as one-sided P-values taking into account the 

direction of effect in discovery. 

 

We first assessed the calibration of effect sizes between replication and discovery. When 

restricting to previously-established DCM loci, we found that effect sizes in replication were 

attenuated to ~0.5 of the GWAS-DCM discovery effect sizes. For MTAG-DCM, previously-

established loci were attenuated to ~0.56 of discovery. Similar calibration was seen also when 

assessing all loci (Extended Data Figure 4). The attenuation of effect sizes is likely a reflection 

of i) the broader case definition used in most of the HERMES cohorts - for which we established 

a substantially lower heritability estimate - and ii) the older age of DCM cases included in MVP. 

Other contributory factors may be the inclusion of several non-European ancestry samples from 

MVP and AoU, and Winner’s curse inflating effect sizes in discovery. These last points do not 

seem substantial, however, as restriction to European ancestry samples did not meaningfully alter 

effect sizes, and effect size calibration was highly similar between known and novel loci on 

average. 

 

Power calculations 

We then computed the expected power in replication. To this end, we computed the effective 

sample size for each variant in each contributing dataset, computed using the formula 4/(1/cases 

+ 1/controls), and then computed the meta-analysis effective sample size as the sum of these 

values. We then used the function genpwr.calc() in R package genpwr to compute power for each 

variant. We used the effective sample size in replication, the minor allele frequency in replication, 

and the ‘attenuated’ effect sizes based on discovery as input; we computed power assuming a 

logistic additive model. The attenuated effect sizes were computed based on the effect size 
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attenuation based on previously-established DCM loci only. Power was computed at the ‘nominal’ 

level (one-sided alpha=0.05) and at the Bonferroni-corrected level (one-sided alpha=0.05/number 

of testable loci). To then calculate the total number of expected replicating loci, we took the sum 

of the power values across loci. Assuming all discovery loci are true and assuming homogeneous 

effect size attenuation across loci, we estimated that we had power to replicate ~35.6 / 36 GWAS-

DCM loci at the nominal level, and ~31.8 / 36 loci at the Bonferroni-corrected level. When 

considering only novel loci, we had power to detect ~24.6 / 25 GWAS-DCM loci at the nominal 

level and at ~21.7 / 25 loci at the Bonferroni-corrected level. For MTAG-DCM, we calculated that 

we had power to replicate ~60.4 / 64 loci at the nominal level and ~43.2 / 64 loci at the Bonferroni-

corrected level. When considering only MTAG loci that were not identified in GWAS-DCM, we 

calculated that we had power to replicate ~28 / 31 loci at the nominal level and ~19.1 / 31 loci at 

the Bonferroni-corrected level.    

 

Replication rates and results 

For GWAS-DCM, we found that 36/36 (100%) of loci were concordant in direction of effect, 33/36 

loci reached the nominal significance level (92%), and 26/36 loci (72%) were replicated at the 

Bonferroni-corrected level (Extended Data Figure 4). When considering only novel loci, 23/25 

reached the nominal level (92%) and 18/25 reached the Bonferroni-corrected level (72%). Of non-

replicating loci (P>0.05) two were near Mendelian cardiomyopathy genes (PLN and FHOD3). We 

posit that differences in genetic architecture (eg, tagging of causal variants) might underlie the 

difference, although this can not be proven at this time. The third non-replicating locus was near 

PPP1R3C. 

 

For MTAG-DCM, we found that 62/64 loci (97%) were concordant in direction of effect, 56/64 

(88%) reached the nominal level, and 36/64 (56%) reached the Bonferroni-corrected level 
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(Extended Data Figure 4). When considering only loci not already identified in GWAS-DCM, we 

found that 25/31 (81%) reached the nominal level, and 16/31 (52%) reached the Bonferroni-

corrected significance level. Of note, the observed replication rates for MTAG-DCM were only 

slightly lower than what could be expected based on our power calculations. Of discordant loci, 

one was near CSRP3 (a Mendelian cardiomyopathy gene) and one near IGFBP3. 

 

Overall, the replication analyses demonstrate a substantial replicability of our initial GWAS-DCM 

findings. Secondly, the replication analyses provide reassurance of our MTAG approach to 

identify genetic signals for DCM.   
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Cell type enrichment analysis using the Chaffin et al. snRNAseq 

dataset 

Using the snRNA-seq data obtained from Chaffin et al., 2022 (ref.41), we performed several 

analyses focused on cell type enrichment. The dataset consisted of LV samples from 11 DCM 

patients, 16 non-failing controls and 15 HCM patients. In terms of analyses, we i) generated cell 

type-specific annotations for enrichment testing using stratified linkage disequilibrium score 

regression (s-LDSC)42 and ii) generated ‘disease-dependent’ cell type annotations for enrichment 

testing using s-LDSC.  

 

Cell type specific gene programs 

Based on the Chaffin et al. dataset, we defined cell type-specific gene expression profiles by 

collapsing nuclei into 17 major cell types from the human left ventricle. We then identified 

differentially expressed genes in each cell type compared to all other cell types. To control for the 

inherent correlation of nuclei from the same individual, we created a pseudo-bulk expression 

profile after summing gene expression counts across all nuclei for each combination of individual 

and cell type. Individual and cell type combinations with fewer than 50 nuclei were omitted and 

lowly expressed genes were removed using the function filterByExpr() in edgeR43. Gene 

expression was normalized with DESeq244 and differential expression testing was performed 

using limma-voom45. Using a  design matrix  ~0 + cell_type + individual, we extracted an explicit 

contrast comparing expression in each cell type to all other cell types. For each cell type, we 

defined the cell type-specific profile as the top 10% most upregulated genes based on the t-

statistic from the differential expression test.  
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s-LDSC analysis of cell type specific gene programs 

We annotated SNPs within a 100 Kb window on either side of the transcribed region for each set 

of cell type specific genes, as in Finucane et al, 2018 (ref.46). Gene coordinates were based on 

the GRCh38 gene reference used in the snRNAseq data analysis. Using these annotations, we 

tested for cell type enrichment using s-LDSC, controlling for an annotation derived from all genes 

tested for differential expression and the baseline annotations from Finucane et al., 2015 (ref.42). 

As recommended, we report one-sided P-values from the tau ‘coefficient’ - which is conditional 

on all other annotations included in the model - and not the ‘enrichment’ statistic. As LD reference, 

we used the previously derived 1000 Genomes European ancestry LD reference provided with 

the software. To account for the 17 cell types tested for GWAS-DCM and MTAG-DCM, we applied 

a Bonferroni significance cutoff by setting significance at 0.05/17=0.0029. 

 

s-LDSC analysis of disease-dependent gene programs 

As described below for the Reichart dataset, we also performed an analysis of disease-dependent 

gene programs using the Chaffin et al. dataset (ref.41). We took the results from the differential 

expression analysis as described previously41 (using CellBender-adjusted expression counts), 

and considered genes with |logFC| > 0.5 and an FDR-adjusted P < 0.05 as ‘disease-dependent’ 

genes in the given cell type. We annotated SNPs within +/-100KB from each gene identified for 

each cell type and ran s-LDSC to identify GWAS heritability enrichment of these annotations, 

adjusting for baseline annotations from Finucane et al. 2015 (ref.42) and a set of annotations 

derived from all genes tested for differential expression in the given cell type. As recommended 

by Finucane et al., we report test statistics and corresponding P-values from the tau ‘coefficient’ 

- which is conditional on all other annotations in the model - and not the ‘enrichment’ statistic 

(which is not conditional on the other annotations).  
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Cell type enrichment and differential expression analyses in the 

Reichart et al. snRNAseq dataset 

Using the snRNA-seq data obtained from Reichart et al., 2022 (ref.47), we performed several 

analyses focused on cell type enrichment and differential expression. The dataset consisted of 

samples from several anatomical locations (including several locations across the left and right 

ventricle) from 61 cardiomyopathy patients - of which 52 with DCM - and 18 non-failing controls. 

In terms of analyses, we i) generated cell type-specific annotations for enrichment testing using 

stratified linkage disequilibrium score regression (s-LDSC)42, ii) generated differential expression 

data comparing left ventricles from DCM patients with non-failing control left ventricles, and iii) 

generated ‘disease-dependent’ cell type annotations for enrichment testing using s-LDSC.  

 

Cell type specific gene programs 

First, to test for enrichment of cell type specific gene programs in our GWAS/MTAG data, we 

generated a list of cell type specific genes. We removed nuclei labeled as ‘native’ or ‘lowQC’ prior 

to estimating cell type specific genes. We then performed ‘pseudo-bulk’ aggregation by summing 

gene counts across nuclei for each donor/tissue region combination, by cell type. We only 

retained a given donor/tissue region combination if they had at least 50 nuclei of that cell type. 

Lowly expressed genes identified with the filterByExpr() function in edgeR were removed. We 

normalized the pseudo-bulk expression with DESeq2 and fit the differential expression model 

~0+cell_type+donor_tissue using limma-voom. Notably, we included a covariate for the 

donor/tissue region combination because each donor/tissue region will be represented across 

most cell types. We then extracted contrasts comparing gene expression in each focal cell type 

to all other cell types.  
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s-LDSC analysis of cell type specific gene programs 

To generate annotations for s-LDSC, we sorted all genes tested for each cell type by t-statistic 

and selected the top 10% of genes to represent each cell type, as in Finucane et al, 2018 (ref.46). 

We annotated any SNP within +/-100KB of the genes for each cell type as ‘cell type specific’ 

SNPs. Using these annotations, we tested for cell type enrichment using s-LDSC, controlling for 

an annotation derived from all genes tested for differential expression and the baseline 

annotations from Finucane et al., 2015 (ref.42). As recommended by Finucane et al., we report 

test statistics and corresponding one-sided P-values from the tau ‘coefficient’ - which is 

conditional on all other annotations included in the model - and not the ‘enrichment’ statistic (which 

is not conditional on other annotations). To account for the 9 cell types tested for GWAS-DCM 

and MTAG-DCM, we applied a Bonferroni significance cutoff by setting significance at 

0.05/9=0.0.0056.  

 

Differential expression analysis of DCM versus controls 

Second, we generated a list of differentially expressed genes between dilated cardiomyopathy 

(DCM) cases and normal controls by cell type. We first restricted our analysis to samples from 

the left ventricle (LV) and removed any nuclei flagged as low quality. Next, for a given cell type, 

we summed transcriptional counts across all nuclei from each donor of origin. Of note, we only 

generated a ‘pseudo-bulk’ profile for a donor if they had more than 20 nuclei of the given cell type. 

We then removed mitochondrial genes, ribosomal genes, and any gene that was found in <1% of 

nuclei from both DCM nuclei and control nuclei. We further removed lowly expressed genes using 

the function filterByExpr() from edgeR. We normalized the expression data using DESeq2 

normalization, and then tested for differential expression between DCM cases (Nmax=52) and non-
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failing controls (Nmax=18) using limma-voom with the model of ~1 + disease + sex. Multiple testing 

correction was performed using the Benjamini-Hochberg procedure.  

 

s-LDSC analysis of disease-dependent gene programs 

In contrast to the cell type specific gene programs defined by high cell type specificity of 

expression, we then also generated ‘disease-dependent’ gene programs for cell types. Disease-

dependent gene programs consist of genes that are differentially expressed between the disease 

state and the healthy state, and therefore may consist partly of genes that are not expressed to a 

high degree in the given cell type or may not be cell type-specific. Such programs may capture 

disease-response mechanisms, rather than disease initiation mechanisms48. To generate 

disease-dependent cell type annotations of s-LDSC, we used the results from the differential 

expression analysis described above, and considered genes with |logFC| > 0.5 and an FDR-

adjusted P < 0.05 as ‘disease-dependent’ genes in the given cell type. Of note, only 3 genes were 

identified in adipocytes with this procedure, and therefore we excluded adipocytes for the s-LDSC 

analysis. We annotated SNPs within +/-100KB from each gene identified for each cell type and 

ran s-LDSC to identify GWAS heritability enrichment of these annotations, adjusting for baseline 

annotations from Finucane et al. 2015 (ref.42) and a set of annotations derived from all genes 

tested for differential expression in the given cell type. As recommended by Finucane et al., we 

report test statistics and corresponding P-values from the tau ‘coefficient’ - which is conditional 

on all other annotations in the model - and not the ‘enrichment’ statistic (which is not conditional 

on the other annotations). 
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Harmonization of cell types across single cell datasets to 

construct LV expression patterns 

 

We used three single cell datasets of heart to construct expression patterns for genes identified 

from our GWAS-DCM and MTAG-DCM. These datasets included Chaffin et al.41 , Reichart et al.47 

, and Koenig et al.49. To harmonize cell type data across datasets, we used the available cell type 

and/or cell state annotations to collapse or split cell types into ‘harmonized’ cell types. In the 

Reichart dataset, nuclei with cell state ‘PC1’, ‘PC2’ or ‘PC3’ were collapsed into ‘Pericytes’; nuclei 

with cell state ‘SMC1.1’, ‘SMC1.2’, or ‘SMC2’ were collapsed into ‘VSMC’; nuclei with cell state 

‘EC7’ were assigned ‘Endocardial’; nuclei with cell state ‘Meso’ were assigned ‘Epicardial’; nuclei 

with cell state ‘EC8’ were assigned ‘Lymphatic endothelial’; nuclei with cell state ‘EC1.0’, ‘EC2.0’, 

‘EC5.0’, or ‘EC6.0’ were assigned ‘Cardiac endothelial’. In the Koenig dataset, cells/nuclei with 

cell type ‘NK/T Cells’ or ‘B Cells’ were collapsed into ‘Lymphocyte’. In the Chaffin dataset, 

‘Cardiomyocyte_I’, ‘Cardiomyocyte_II’, and ‘Cardiomyocyte_III’ were collapsed into 

‘Cardiomyocyte’; ‘Endothelial_I’, ‘Endothelial_II’, and ‘Endothelial_III’ were collapsed into ‘Cardiac 

Endothelial’; ‘Fibroblast_I’, ‘Fibroblast_II’ and ‘Activated_fibroblast’ were collapsed into 

‘Fibroblast’; ‘Pericyte_I’ and ‘Pericyte_II’ were collapsed into ‘Pericyte’; and ‘Macrophage’ and 

‘Proliferating_macrophage’ were collapsed into ‘Myeloid’.  
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Comparison with results from Zheng et al. 

Genes prioritized in overlapping loci 

Similar to our study, Zheng et al. performed a GWAS and MTAG for DCM, followed by gene 

prioritization through integration of several lines of evidence33. Of our 38 significant loci in GWAS-

DCM, 20 overlapped genome-wide significant loci from GWAS for NICM/DCM reported by Zheng 

et al., while a total of 27 overlapped loci reported by the authors at more inclusive discovery 

thresholds (ie, DCM-Broad analyses at FDR1%, DCM-Strict analyses at genome-wide 

significance, or MTAG analyses at genome-wide significance33). Details on locus overlap is 

described in Supplementary Table 39. Across the 27 overlapping loci, gene prioritization from 

both studies nominated the exact same gene as the most likely causal gene in ~67% of the time, 

while ~19% of loci were partially concordant (ie, Zheng et al. described multiple genes with equal 

prio scores, one of which was concordant with our prioritized gene), and ~15% of loci were 

discordant. Of note, this intersection analysis considers all loci, even those with no gene highly-

prioritized by our definitions. Therefore, we then restricted the comparison to loci with highly 

prioritized genes in both studies (ie, >=2.5 points and prioritized in our study AND >=3 points in 

Zheng et al. without ties). Strikingly, among 16 overlapping loci with ‘strong prioritization’ in both 

studies, the nominated gene was concordant in 94% of the time; only one locus was discordant 

(with CRIM1 prioritized in our study and STRN prioritized in Zheng et al; Supplementary Table 

39). When focusing on the 65 loci from our MTAG-DCM, 46 overlapped any of the significant loci 

from Zheng et al., with similar convergence of prioritization. Of all overlapping loci, ~72% 

nominated the same causal gene, ~13% showed partial concordance, and in ~15% of loci the 

most strongly prioritized gene differed between the two studies (Supplementary Table 40). More 

importantly, when restricting to loci where both studies strongly prioritized a gene, ~96% were 

concordant (again, only the CRIM1 locus was discordant).  
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Interestingly, we note that both CRIM1 and STRN are differentially expressed across several cell 

types in the single cell comparison of DCM LVs versus non-failing LVs. Furthermore, in our 

analyses (in both GWAS-DCM and MTAG-DCM) we identified two lead variants in this locus, of 

which one closer to CRIM1 and one closer to STRN. These findings entertain the possibility that 

both genes have a causal role in DCM biology, although this would require functional validation.  

 

Overall, the locus comparison results highlight a strong consistency in gene prioritization between 

our study and Zheng et al., in particular for genes identified with high prioritization scores. 

 

Cell type enrichments 

In the current study, we identified significant enrichment for DCM heritability only in cardiomyocyte 

gene programs. Zheng et al. additionally reported significant enrichment for several other cell 

types (eg. fibroblasts, mural cells). To understand the source of these discrepancies, we 

compared the similarities and differences between the two studies in more detail. Similar to our 

study, Zheng et al. performed cell type enrichment analyses by integrating results from their DCM 

GWAS data with snRNAseq data of the heart33. The authors re-processes the Reichart dataset47 

to serve as their expression set, and utilized an analytical pipeline similar to our cell type 

enrichment pipeline. Using cell type-specific gene programs - similar to our findings - the authors 

report significant enrichment of DCM heritability only in cardiomyocytes33. In contrast, the authors 

additionally report significant enrichment for several other cell types (eg. fibroblasts, mural cells) 

when using ‘disease-dependent’ gene programs. In disease-dependent gene program analyses 

(details on methods described in a previous Supplementary Note above), we did not uncover 

robust enrichments for any cell type at Bonferroni significance. At nominal significance, only 
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cardiomyocytes showed a (weak) consistent signal (P=0.04 in the Reichart dataset with positive 

coefficient in the Chaffin dataset). 

 

Initially, we considered several potential explanations for this discrepancy. First, the cases 

included in the GWAS by Zheng et al. were only partially overlapping with our cases (including up 

to ~10k non-overlapping cases included in their effort). Perhaps more importantly, several of the 

included cohorts in Zheng et al. utilized a wider case definition - ie, any systolic dysfunction in 

absence of secondary causes. As such, the underlying GWAS data may have been inherently 

different between both studies. Nevertheless, we should note that the top loci from both studies 

show strong convergence, and the genetic correlations with cardiac endophenotypes were 

comparable between both efforts. For these reasons, we considered it less likely that the 

differences in the underlying GWAS data entirely explained the divergent cell type enrichment 

results, it may have contributed to an extent. 

 

Second, we considered that differences in the construction of ‘disease-dependent’ gene programs 

from the snRNAseq data may have caused different results. Analytically, the approaches between 

both studies were highly similar. Zheng et al. used the Reichart dataset47, which was also one of 

the two datasets used in our study. The authors used a similar pipeline to define  ‘disease-

dependent’ gene programs - including similar DCM/non-failing sample definitions, use of pseudo-

bulking for DE-testing, and similar cutoffs for logFC and P-value in DE testing. One difference 

was that Zheng et al. re-processed the expression counts using CellBender to remove potentially 

remaining background noise, while we used the counts as provided by Reichart et al. We 

nevertheless note that CellBender was used to adjust count data in the Chaffin dataset41 - where 

we also did not identify any significant enrichments for disease-dependent programs in our 

analyses. 
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Third, we considered that analytical differences in the statistical enrichment pipeline may have 

caused different results. Overall, the enrichment pipelines between both studies were reasonably 

comparable. Zheng et al. used parts of the sc-linker pipeline to perform their analyses48; sc-linker 

uses s-LDSC for enrichment testing46, which is also the tool used by us for enrichment testing of 

cell type programs. We note that sc-linker uses activity-by-contact (ABC) mapping to link genes 

to genomic regions48, while we used a more simple approach based on close proximity to gene 

bodies46. We note, however, that our approach yielded similar - or even stronger - enrichments 

for cell type-specific cardiomyocyte programs, which would indicate that this technical difference 

needn’t be substantial. Nevertheless, as compared to cell type-specific gene programs, it is 

possible that ABC mapping is more important for disease-dependent programs (for which genes 

may be more distally regulated). Overall, the genomic mapping approach may have contributed 

to some extent to the different cell type enrichment results. 

 

Critically, we found that Zheng et al. used a different statistic for hypothesis testing than used in 

our work. Specifically, the authors reported the ‘enrichment’ statistic or Ec. In contrast, we 

performed all hypothesis testing based on the ‘enrichment coefficient’ or Tau_C. When using the 

enrichment statistic instead of the coefficient, we recapitulate many of the significant findings 

reported in Zheng et al., including a pattern where a large proportion of  disease-dependent gene 

programs reach nominal P<0.05 (Supplementary Figure 13). Within the s-LDSC and sc-linker 

frameworks, there are 4 major output statistics that involve/describe enrichment of heritability46,48. 

The simplest is the ‘enrichment’ or Ec statistic, which is the proportion of total heritability captured 

by the functional annotation of interest, divided by the proportion of SNPs included in the given 

annotation; this statistic is not conditional on other annotations/features fed into the s-LDSC 

model. The ‘coefficient’ or Tau_C is the regression coefficient from s-LDSC, which captures an 

‘adjusted’ enrichment parameter conditional on the other annotations fed into s-LDSC. In our 

work, all coefficients are conditional on the baseline model (which incorporates annotations for 
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functional regions, including coding regions, enhancer regions, UTRs, etc); additionally, for 

disease-dependent programs, we included an annotation for all genes that could be assessed in 

differential expression testing (to account for the correct background of genes in the tissue). A 

third s-LDSC statistic is the Tau_C* , which is simply a re-scaled standardized Tau_C statistic to 

represent an effect size per standard deviation of the underlying annotation. The final enrichment 

statistic is the ‘enrichment score’ or E-score, which was newly proposed as part of the sc-linker 

framework46. E-score essentially represents the difference between the Ec statistic for a given 

annotation and the background enrichment of all protein-coding genes with the relevant genomic-

mapping in the given tissue. For cell type enrichment, the developers of s-LDSC previously 

recommended using Tau_C (or Tau_C*) conditional on at least the baseline model for hypothesis 

testing42,46, as this statistic corrects for the inherent enrichment of important genomic regions one 

might expect in GWAS. Since the publication of sc-linker, the developers recommend using E-

score as an alternative48, since it is corrected for the background of protein-coding regions while 

potentially yielding more power than Tau_C. Overall, one might conclude that Ec is the most 

‘liberal’ statistic for enrichment testing (although prone to inflated type 1 error in cell type analyses; 

ref.42), while Tau_C is the most ‘conservative’ statistic when conditioned on the baseline model 

and an appropriate background of genes42. In their study, Zheng et al. used the ‘enrichment’ 

statistic or Ec, and we could indeed recapitulate several of their findings by performing hypothesis 

testing on Ec (Supplementary Figure 13). Importantly, these enrichments could not be 

recapitulated by us when conditioning on the baseline model and the appropriate background of 

genes (ie, when using Tau_C).  

 

Taken together, the differing results from cell type enrichment analyses - of disease-dependent 

gene programs - may be partly explained by the reporting of a different enrichment statistic. 

Nevertheless, other technical differences likely contributed to some extent too - including a slightly 

different phenotype in GWAS and the use of a more simple genomic mapping approach in our 

https://paperpile.com/c/ziYd5p/GW5B
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work. In all, across the GWAS studies, consistent evidence was found only for cardiomyocytes. 

For these reasons, we recommend that - outside of cardiomyocytes - enrichments in other cell 

types should be treated as interesting, but preliminary, at this stage. 

 

Polygenic score prediction 

Similar to our study, Zheng et al. report strong prediction of DCM using a PRS constructed from 

their GWAS. The authors tested their PRS in the UK Biobank, and reported prediction effect sizes 

of 1.76 OR increment per SD of PRS (95% CI 1.64 to 1.90). To more directly compare results, we 

then also tested our PRS within the UK Biobank, using the same dataset described in our GWAS 

and further restricting to samples with i) high-quality exome sequencing and genotyping array 

data available, ii) European genetic ancestry50, iii) who were not related at a third degree or closer, 

and iv) who were not included within the first 45k participants with cardiac MRI data (since these 

samples contributed to the MTAG analyses). This procedure left 793 NI-DCM cases and 325313 

controls. We then reran our main GWAS-DCM excluding UK Biobank, and constructed a new 

PRS using PRScs as described in our main methods51. Using this GWAS-DCM score (which was 

standardized to mean 0 and unit variance, and out of which the first 12 PCs were regressed), we 

then assessed the association with NI-DCM, adjusting for sex, age, age^2, PC1-12 and the 

genotyping array. Similarly, we re-ran the MTAG analysis using the GWAS-DCM[exclUKB] as 

base GWAS, and created MTAG-DCM[exclUKB] scores. The GWAS-DCM[exclUKB] score was 

strongly associated with NI-DCM in this dataset, with an OR increment per SD of PRS of 1.64 

(95%CI 1.53 to 1.76), as was our MTAG-DCM[exclUKB] score at an OR increment per SD of PRS 

of 1.91 (95%CI 1.78 to 2.05). To compare more directly with the Zheng et al. PRS, we then 

downloaded their scoring files from the PGS catalog 

(GWAS:https://www.pgscatalog.org/score/PGS004861/ and MTAG: 

https://www.pgscatalog.org/score/PGS004861/), and scored the same samples using both 

https://www.pgscatalog.org/score/PGS004861/
https://www.pgscatalog.org/score/PGS004861/
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scoring files. We found that the GWAS (OR per SD 1.61; 95%CI 1.53 to 1.76) and MTAG scores 

(OR per SD 1.83; 95%CI 1.70 to 1.98) from the authors did well in prediction of NI-DCM, although 

slightly less well than the scores from our GWAS and MTAG, respectively. Using other metrics 

for prediction accuracy - including the variance explained, the AUC, and the AUPRC - similar 

patterns were observed (Supplementary Table 41). We note that we observed a slightly larger 

effect size for the Zheng et al. scores than reported by the authors; we posit that this difference 

is a reflection of the more stringent phenotype definition (ie, NI-DCM as compared to ‘any’ DCM).     

 

Therefore, within the UK Biobank, the Zheng et al. PRSs seem to perform somewhat less well 

than the PRSs constructed from our data - although the confidence intervals were still 

overlapping. We therefore additionally assessed the Zheng et al. PRSs in the European subset 

of the All of Us dataset and within the Amsterdam dataset. In these datasets, we found that our 

GWAS-DCM and MTAG-DCM scores consistently achieved higher effect sizes, AUCs, and 

variances explained than the GWAS and MTAG scores from Zheng et al., respectively 

(Supplementary Table 41). The only exception was for AUPRC values in the All of Us dataset, 

which were marginally higher for the Zheng et al. scores.      

 

Overall, the above results show that both studies produce scores that strongly predict NI-DCM 

and can transfer to datasets from different countries. The slightly better prediction of our PRS - 

despite considerably smaller case numbers - might reflect the higher specificity of our underlying 

phenotype. This would be consistent with the larger number of significant loci identified in our 

study. Alternatively, we note that Zheng et al. used ~700k variants for their PRS (as per PGS 

catalog), while our PRS was built using ~1.1M variants. The higher genome coverage might have 

contributed somewhat to a better prediction power using our PRS. Taken together, both studies 

produce strongly predictive PRS for DCM, with our PRS showing slightly better prediction of DCM 

in European ancestry.  
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Causal consequences of DCM liability 

In our Mendelian randomization (MR) screen, we identified two potentially causal consequences 

of DCM liability, namely heart failure (HF) and platelet volume. The potentially causal effect of 

DCM liability on platelet volume was disputed by our sensitivity analyses. In particular, the link 

did not reach significance when using MR-Egger regression (Supplementary Table 27). For 

these reasons, we posit that this link likely represents a false-positive. Of note, the potentially 

causal link between DCM liability and HF did pass all sensitivity analyses and filters. In 

particular, CAUSE identified a strong causal effect of DCM liability on HF risk (g=0.06, 95%CI 

[0.04, 0.09]; Figure 5a; Supplementary Figure 11). This finding might reflect that a subset of 

HF cases have DCM, or that DCM genetics is causative of systolic HF more broadly, as 

investigated further in our PRS analyses.    
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Supplementary Tables 

The Supplementary Tables can be found in the accompanying Excel file.  
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Supplementary Figures and Figure Legend 

 

 

 

Supplementary Figure 1: Quantile-quantile plots of contributing studies to 

the meta-analyses of NI-DCM, NICM and clinical DCM. 

Each panel shows the quantile-quantile plot for a given GWAS in a given dataset. In each 

quantile-quantile plot, the x-axis represents the expected -log10 of the P-value of variants under 

the null hypothesis, while the y-axis represents the observed -log10 of the P-value in the 

GWAS. The red line shows the expected calibration under the null hypothesis. The genomic 

inflation factor lambda (computed as the observed X^2 statistic at the median over the expected 

under the null) are shown in the top left of each panel, where the lambda was computed over all 

plotted variants. Variants are filtered to those that passed filters for inclusion into the overall 
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meta-analyses (Methods). P-values are derived from various logistic regression models; 

reported P-values are two-sided and unadjusted for multiple testing. Note: GWAS, genome-wide 

association study; NI-DCM, nonischemic dilated cardiomyopathy in a biobank dataset; NICM, 

nonischemic cardiomyopathy in a biobank dataset; DCM; dilated cardiomyopathy. 
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Supplementary Figure 2: Manhattan plots for biobank datasets and newly-

analyzed clinical datasets for NI-DCM / clinical DCM 

Each panel shows a Manhattan for GWAS of (NI-)DCM in a dataset, where each dot represents 

a single tested variant, the x-axis shows genomic coordinates for those variants (chromosome, 

and position on chromosome), while the y-axis shows the -log10 of the P-value from GWAS. 
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The red line indicates the conventional genome-wide significance level (alpha=5x10-8). Loci 

reaching above the significance line are annotated with a gene name, where the annotated 

gene is harmonized with the locus name from our main GWAS (ie, highest prioritized gene in 

locus from GWAS-DCM/MTAG-DCM) for easy comparisons; sometimes an additional gene is 

highlighted to serve easier comparison to previously-published GWAS; if a locus was not 

identified in GWAS-DCM/MTAG-DCM, the closest protein-coding gene is used.  Results here 

are from the biobank cohorts and from a newly analyzed clinical dataset (Amsterdam UMC 

dataset). P-values are derived from various logistic regression models; reported P-values are 

two-sided and unadjusted for multiple testing. Note: GWAS, genome-wide association study; NI-

DCM, nonischemic dilated cardiomyopathy in a biobank dataset; DCM; dilated cardiomyopathy. 
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Supplementary Figure 3: Manhattan plots for biobank datasets for NICM 

Each panel shows a Manhattan for GWAS of NICM in a dataset, where each dot represents a 

single tested variant, the x-axis shows genomic coordinates for those variants (chromosome, 

and position on chromosome), while the y-axis shows the -log10 of the P-value from GWAS. 

The red line indicates the conventional genome-wide significance level (alpha=5x10-8). Loci 

reaching above the significance line are annotated with a gene name, where the annotated 
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gene is harmonized with the locus name from our main GWAS (ie, highest prioritized gene in 

locus from GWAS-DCM/MTAG-DCM) for easy comparisons; sometimes an additional gene is 

highlighted to serve easier comparison to previously-published GWAS; if locus was not 

identified in GWAS-DCM/MTAG-DCM, the closest protein-coding gene is used. P-values are 

derived from various logistic regression models; reported P-values are two-sided and 

unadjusted for multiple testing. Note: GWAS, genome-wide association study; NICM, 

nonischemic cardiomyopathy 
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Supplementary Figure 4: Matrix of genetic correlations between DCM, 

other cardiomyopathic diseases, and left ventricular traits from cardiac MRI, 

estimated using MTAG.    

These heatmaps represent correlation matrices, showing the genetic correlation between DCM 

(bottom left; based on GWAS-DCM meta-analysis), NICM (based on a biobank meta-analysis), 

HCM (based on a recent meta-analysis52), and 8 cardiac MRI traits (from a recent analysis52). In 

the top panel, the genetic correlations are shown with red indicating a positive value and blue 

indicating a negative value, while in the bottom panel the values are transformed to the absolute 

value for visual purposes. In both, the darker the color, the further the value is from 0. Note: 

MRI, magnetic resonance imaging; GWAS, genome-wide association study; DCM, dilated 

cardiomyopathy; NICM, nonischemic cardiomyopathy from biobank analysis; HCM, hypertrophic 

cardiomyopathy; Ecc, global circumferential strain; Ell, global longitudinal strain; Err, global 

radial strain; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume 

indexed to body-mass-index; LVESVi, left ventricular end-systolic volume indexed to body-

mass-index; LVMi, left ventricular mass indexed to body-mass-index; LVconc; left ventricular 

concentricity; rg, genetic correlation; abs, absolute. 
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Supplementary Figure 5: Tissue enrichment of DCM heritability from bulk 

RNA sequencing data in GTEx v8. 

In both figures, bar charts represent the -log10 of the P-value from the enrichment analysis, with 

the x-axis showing different tissues from GTEx. Tissues reaching the Bonferroni significance 

level are colored red. The dotted line represents the significance cutoff; tissues are ordered by 

their significance level. The top figure shows the results for GWAS-DCM, while the bottom 

shows results for MTAG-DCM. P-values are derived from a hypergeometric test; P-values can 
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be considered one-sided and unadjusted for multiple testing. Note: GWAS, genome-wide 

association study; MTAG, multi-trait analysis GWAS; DCM, dilated cardiomyopathy 

 

Supplementary Figure 6: Genotype cluster plots for the TUBA8 variant 

22:18609493:G:A in FinnGen  

Part a shows signal intensities and assigned genotype clusters based on chip data for 

22:18609493:G:A among 16,026 individuals from the FinnGen study. Part b shows imputed 

genotypes for the same individuals overlaid on the signal intensities from chip data. Part c 

shows exome sequencing calls in a subset of individuals demonstrating concordance with chip 

data. The position of the variant is listed in the GRCh37 build. 
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Supplementary Figure 7: Results from pathway enrichment analysis using 

g:Profiler. 

The top of the figure represents a dot plot with on the x-axis different gene-set categories (ie, 

sources) implemented in g:Profiler, and on the y-axis multiple-testing adjusted one-sided P-

values (on the -log10 scale). Each dot represents a different gene-set from the respective 

categories, which are restricted only to signals reaching multiple testing-adjusted one-sided 

P<0.05. P-values are derived from one-sided Fisher exact tests. Select gene-sets are 

highlighted with numbers. The bottom of the figure represents a table with results for the 

highlighted gene-sets. Note: adj, adjusted; GO:MF, gene ontology molecular function; GO:BP, 

gene ontology biological process; GO:CC, gene ontology cellular component; KEGG, Kyoto 

Encyclopedia of Genes and Genomes; REAC, reactome; WP, WikiPathways; TF, transcription 

factor targets database; MIRNA, the experimentally validated microRNA-target interactions 

database; HPA, Human Phenotype Ontology; CORUM, comprehensive resource of mammalian 

protein complexes; HP, human phenome.    
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Supplementary Figure 8: Plots for Mendelian randomization analyses for 

weight->DCM. 

Part a shows a scatter plot from a Mendelian randomization analysis for the association of body 

weight on risk of DCM (from GWAS-DCM). The x-axis shows the beta coefficients for the 

genetic instruments for body weight (from published GWAS50), while the y-axis shows the 

respective beta coefficients in DCM (from GWAS-DCM). Data are presented as estimated beta 

coefficients +/- standard errors. The Mendelian randomization estimates for the causal effect 

are added for various common methods. The regression parameters are added for the weighted 

median method, and for the MR-Egger method. Ninstruments=733. Part b shows a funnel plot for 

the genetic instruments taking into account the estimated causal effects and their errors. The y-

axis shows the estimated causal effect for each instrument, while the x-axis shows the inverse 

of the error of the estimate. The estimates follow a funnel shape, where the largest spread is 

found for estimates with the largest error, as expected. Part c shows results from the Mendelian 
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randomization analysis using CAUSE. In each plot, the x-axis shows the beta coefficients for the 

genetic instruments for body weight (from published GWAS50), while the y-axis shows the 

respective beta coefficients in DCM (from GWAS-DCM); error bars represent 95% confidence 

intervals. In each plot the size of the dots represents the instrument strength (based on -log10 of 

the exposure trait P-value). The left plot shows results from the ‘sharing’ model where only a 

pleiotropic pathway is modeled; here the black line represents the effect of the pleiotropic 

pathway. The middle plot represents results from the ‘causal’ model, where both a pleiotropic 

(black line) and causal pathway (dotted line) are modeled. The right plot shows the contribution 

of different variants to the ELPD test statistic of CAUSE, with brown indicating more favorable 

for a causal model and blue indicating less favorable for a causal model. The one-sided P-value 

from a Z-test comparing the causal model to the sharing model is added to the plot. 

Ninstruments=2286. Note: MR, mendelian randomization; WM, weighted median; γ (gamma), 

estimated causal effect (slope); Inter, intercept from MR-Egger regression; SE, standard error; 

IV, instrumental variable; eta, estimated effect of a pleiotropic pathway. ELPD, expected log 

pointwise posterior density. 
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Supplementary Figure 9: Plots for Mendelian randomization analyses for 

BMI->DCM. 

Part a shows a scatter plot from a Mendelian randomization analysis for the association of BMI 

on risk of DCM (from GWAS-DCM). The x-axis shows the beta coefficients for the genetic 

instruments for BMI (from published GWAS53), while the y-axis shows the respective beta 

coefficients in DCM (from GWAS-DCM). Data are presented as estimated beta coefficients +/- 

standard errors. The Mendelian randomization estimates for the causal effect are added for 

various common methods. The regression parameters are added for the weighted median 

method, and for the MR-Egger method. Ninstruments=729. Part b shows a funnel plot for the 

genetic instruments taking into account the estimated causal effects and their errors.The y-axis 

shows the estimated causal effect for each instrument, while the x-axis shows the inverse of the 

error of the estimate. The estimates follow a funnel shape, where the largest spread is found for 

estimates with the largest error, as expected. Part c shows results from the Mendelian 

randomization analysis using CAUSE. In each plot, the x-axis shows the beta coefficients for the 

genetic instruments for BMI, while the y-axis shows the respective beta coefficients in DCM 

(from GWAS-DCM); error bars represent 95% confidence intervals. In each plot the size of the 
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dots represents the instrument strength (based on -log10 of the exposure trait P-value). The left 

plot shows results from the ‘sharing’ model where only a pleiotropic pathway is modeled; here 

the black line represents the effect of the pleiotropic pathway. The middle plot represents results 

from the ‘causal’ model, where both a pleiotropic (black line) and causal pathway (dotted line) 

are modeled. The right plot shows the contribution of different variants to the ELPD test statistic 

of CAUSE, with brown indicating more favorable for a causal model and blue indicating less 

favorable for a causal model. The one-sided P-value from a Z-test comparing the causal model 

to the sharing model is added to the plot. Ninstruments=2223. Note: BMI, body-mass-index; MR, 

mendelian randomization; WM, weighted median; γ (gamma), estimated causal effect (slope); 

Inter, intercept from MR-Egger regression; SE, standard error; IV, instrumental variable; eta, 

estimated effect of a pleiotropic pathway. ELPD, expected log pointwise posterior density. 
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Supplementary Figure 10: Plots for Mendelian randomization analyses for 

systolic blood pressure->DCM. 

Part a shows a scatter plot from a Mendelian randomization analysis for the association of 

systolic blood pressure on risk of DCM (from GWAS-DCM). The x-axis shows the beta 

coefficients for the genetic instruments for systolic blood pressure (from published GWAS50), 

while the y-axis shows the respective beta coefficients in DCM (from GWAS-DCM). Data are 

presented as estimated beta coefficients +/- standard errors. Mendelian randomization 

estimates for the causal effect are added for various common methods. The regression 

parameters are added for the weighted median method, and for the MR-Egger method. 

Ninstruments=376. Part b shows a funnel plot for the genetic instruments taking into account the 

estimated causal effects and their errors. The y-axis shows the estimated causal effect for each 

instrument, while the x-axis shows the inverse of the error of the estimate. The estimates follow 

a funnel shape, where the largest spread is found for estimates with the largest error, as 

expected. Part c shows results from the Mendelian randomization analysis using CAUSE. In 

each plot, the x-axis shows the beta coefficients for the genetic instruments for systolic blood 

pressure (from published GWAS50), while the y-axis shows the respective beta coefficients in 
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DCM (from GWAS-DCM); error bars represent 95% confidence intervals. In each plot the size of 

the dots represents the instrument strength (based on -log10 of the exposure trait P-value). The 

left plot shows results from the ‘sharing’ model where only a pleiotropic pathway is modeled; 

here the black line represents the effect of the pleiotropic pathway. The middle plot represents 

results from the ‘causal’ model, where both a pleiotropic (black line) and causal pathway (dotted 

line) are modeled. The right plot shows the contribution of different variants to the ELPD test 

statistic of CAUSE, with brown indicating more favorable for a causal model and blue indicating 

less favorable for a causal model. The one-sided P-value from a Z-test comparing the causal 

model to the sharing model is added to the plot. Ninstruments=1846. Note: SBP, systolic blood 

pressure; MR, mendelian randomization; WM, weighted median; γ (gamma), estimated causal 

effect (slope); Inter, intercept from MR-Egger regression; SE, standard error; IV, instrumental 

variable; eta, estimated effect of a pleiotropic pathway. ELPD, expected log pointwise posterior 

density. 
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Supplementary Figure 11: Plots for Mendelian randomization analyses for 

DCM->heart failure. 

Part a shows a scatter plot from a Mendelian randomization analysis for the association of DCM 

(from GWAS-DCM) on risk of HF (from published GWAS54). The x-axis shows the beta 

coefficients for the genetic instruments for DCM, while the y-axis shows the respective beta 

coefficients in HF. Data are presented as estimated beta coefficients +/- standard errors. The 

Mendelian randomization estimates for the causal effect are added for various common 

methods. The regression parameters are added for the weighted median method, and for the 

MR-Egger method. Ninstruments=37. Part b shows a funnel plot for the genetic instruments taking 

into account the estimated causal effects and their errors. The y-axis shows the estimated 

causal effect for each instrument, while the x-axis shows the inverse of the error of the estimate. 

Part c shows results from the Mendelian randomization analysis using CAUSE. In each plot, the 

x-axis shows the beta coefficients for the genetic instruments for DCM (from GWAS-DCM), 

while the y-axis shows the respective beta coefficients in HF (from published GWAS52); error 

bars represent 95% confidence intervals. In each plot the size of the dots represents the 

instrument strength (based on -log10 of the exposure trait P-value). The left plot shows results 

https://paperpile.com/c/ziYd5p/F2c7u
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from the ‘sharing’ model where only a pleiotropic pathway is modeled; here the black line 

represents the effect of the pleiotropic pathway. The middle plot represents results from the 

‘causal’ model, where both a pleiotropic (black line) and causal pathway (dotted line) are 

modeled. The right plot shows the contribution of different variants to the ELPD test statistic of 

CAUSE, with brown indicating more favorable for a causal model and blue indicating less 

favorable for a causal model. The one-sided P-value from a Z-test comparing the causal model 

to the sharing model is added to the plot. Ninstruments=1050. Note: HF, heart failure; MR, 

mendelian randomization; WM, weighted median; γ (gamma), estimated causal effect (slope); 

Inter, intercept from MR-Egger regression; SE, standard error; IV, instrumental variable; eta, 

estimated effect of a pleiotropic pathway. ELPD, expected log pointwise posterior density. 
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Supplementary Figure 12: Associations between DCM polygenic risk score 

and DCM across various subsets of the Amsterdam UMC dataset.  

This forest plot shows association results for prediction of DCM using PRS, within the 

Amsterdam UMC dataset. Data are presented as odds ratios with 95% confidence intervals. 

PRS were constructed from MTAG-DCM and GWAS-DCM summary statistics after omitting the 

Amsterdam cohort from our meta-analyses. The figure shows results for various subsets of the 

Amsterdam cohort, including All samples, European ancestry only, non-European ancestry, 

males, females, genotype-positive samples, and genotype-negative samples. Data are based 

on – at most – 8185 participants of which 978 DCM cases; please see Supplementary Table 

32 for exact N numbers of each group. Note: GWAS, genome-wide association study; DCM, 

dilated cardiomyopathy; MTAG, multi-trait analysis GWAS; OR, odds ratio; 95%CI, 95% 

confidence interval.  
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Supplementary Figure 13: Results from cell type enrichment analysis using 

disease-dependent gene programs.  

This figure shows bar plots with on the y-axis the -log10 P-value of enrichment statistics, and on 

the x-axis different cell types identified from snRNAseq data. Part a shows results for the 

Chaffin et al. dataset, while part b shows results for the Reichart et al. dataset. In each panel, 

the left plot shows enrichment for GWAS-DCM heritability, while the right plot shows enrichment 

for MTAG-DCM heritability. In these analyses, cell type gene programs were based on genes 

with differential expression between DCM LVs and non-failing LVs. This contrasts with our main 

enrichment analysis, which was based on genes with cell type-specific expression (shown in 

Extended Data Figure 5). In this figure, we additionally show enrichment P-values based on 

two different enrichment parameters: The left part of the figure shows results for the 

‘enrichment’ statistic (Ec), while the right part of the figure shows results for the ‘Tau_C’ 

parameter. Throughout our work, we determine significant cell types based only on the Tau_C 

parameter (see Finucane et al. for more details on the parameters42,46). P-values are one-sided 

and unadjusted for multiple testing.  
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