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ABSTRACT: Background: Deep brain stimula-
tion is a treatment for advanced Parkinson’s disease
and currently tuned to target motor symptoms during
daytime. Parkinson’s disease is associated with multiple
nocturnal symptoms such as akinesia, insomnia, and
sleep fragmentation, which may require adjustments of
stimulation during sleep for best treatment outcome.
Objectives: There is a need for a robust biomarker to
guide stimulation titration across sleep stages. This

study aimed to investigate whether evoked resonant
neural activity (ERNA) is modulated by sleep.
Methods: We recorded local field potentials from the
subthalamic nucleus of four Parkinson’s patients with
externalized electrodes while applying single stimula-
tion pulses to investigate the effect of sleep on ERNA.
Results: We found that ERNA features change with
wakefulness and sleep stages and are correlated with
canonical frequency bands and heart rate.
Conclusions: Given that ERNA modulates with sleep,
it could be used as a robust marker for automatic
stimulation titration during sleep. © 2024 The Author
(s). Movement Disorders published by Wiley Periodi-
cals LLC on behalf of International Parkinson and
Movement Disorder Society.
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Sleep disturbances, including fragmented sleep and
insomnia, are common in Parkinson’s disease (PD).1 Deep
brain stimulation (DBS) of the subthalamic nucleus (STN)
is an effective therapy for PD, but DBS settings that are
tuned to improve daytime motor function and deal with
daytime motor fluctuation might not be optimal for sleep.
Recently it has been suggested that reducing stimulation
intensity during non-rapid eye movement (NREM) sleep
may increase low frequency activities (slow waves) during
sleep and potentially improve sleep quality.2 In addition,
β-triggered adaptive DBS may need to adjust the β thresh-
old to capture pathological activities during NREM sleep,
as average β power is reduced during this sleep stage.
These studies highlight the importance of decoding sleep
stages to further improve the efficacy of DBS during
sleep.3,4 DBS has been found to evoke resonant neural
activity (ERNA) in the STN and globus pallidus internus
(GPi).5-7 This oscillatory response to stimulation has an
especially prominent amplitude in the dorsal subregion of
the STN, is associated with clinical outcomes, and is a
promising biomarker for lead localization.6 Here, we
report for the first time that ERNA tracks sleep onset and
sleep stage transitions, which may enhance and simplify
automatic DBS titration at night.

Methods
Consent, Regulatory Approval and Patient

Selection
This protocol was approved by the Health Research

Authority United Kingdom (UK) and the local Research
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Ethics Committee (IRAS: 46576). Four patients with idio-
pathic PD undergoing bilateral STN-DBS surgery were
recruited for local field potential (LFP) recording at
King’s College Hospital National Health Service (NHS)
Foundation Trust, London or St. George’s University
Hospital NHS Foundation Trust, London. Written
informed consent was obtained in line with the Declara-
tion of the Principles of Helsinki. Patients were selected
by an interdisciplinary team as described before.8 The
average age at recording was 63 � 3.34 years (mean �
standard error of the mean) with average disease duration
of 17.25 � 4.31 years. Clinical details are summarized in
Supplementary Table S1.

Surgery and Lead Localization
The surgical target was the STN. DBS systems from

two companies were implanted: Medtronic Neurological
Division (Minneapolis, MN) (octopolar directional
leads, SenSight model 33005) or Boston Scientific
(Marlborough, MA) (octopolar directional leads, Vercise
model DB-2202). Electrodes were implanted as described
before,8 connected to temporary lead extensions and
externalized through the temporal or frontal scalp.

Stimulation and Data Recording
Recordings were performed on dopaminergic medi-

cation, 4 to 6 days postoperatively, when leads were
externalized. Monopolar stimulation was delivered
using a European conformity (CE)-marked ISIS
neurostimulator (Inomed Neurocare, Emmendingen,
Germany) and referenced to a self-adhesive electrode
attached to the patients’ back. Stimuli comprised
symmetric, constant-current, biphasic pulses (60 μs,
negative phase first). LFPs were amplified and sampled
at 4096 Hz in unipolar mode using a multichannel
amplifier (TMSi Saga, TMSi International, Oldenzaal,
The Netherlands), with common mode rejection (with
each LFP recording channels being referenced to the
average of all unipolar recording channels) and
custom-written recording software written in C++.

Experimental Paradigm
We first performed contact testing by delivering

25 single pulses at 4 mA spaced 2 to 2.5 seconds apart
to all LFP channels in sequence while recording from
all other channels. The channel that elicited largest
ERNA amplitudes was chosen for stimulation. We
recorded LFPs during sleep and spontaneous naps.
Sleep recordings were conducted with patients 1 and

2 in the evening (between 6 PM and 10 PM). The two
patients were lying on a recliner armchair and bed,
respectively, in a dark room with minimal noise and
encouraged to fall asleep naturally. Single stimulation
pulses were delivered every 2 to 2.5 seconds with con-
comitant LFP, electroencephalography (EEG) (Fz, F3,

Cz, C3, Pz, and P3), electro-oculography (EOG) (hori-
zontal and vertical), electrocardiography (ECG), elec-
tromyography (EMG) (submental), and accelerometer
(upper and lower limb) recordings.
Nap recordings from patients 3 and 4 were con-

ducted in the afternoon (between 2 PM and 5 PM) when
patients were comfortably seated in an armchair.
Patients fell asleep spontaneously without instructions
and were woken up twice (patient 3) and once (patient
4). Single stimulation pulses were delivered every 2 to
2.5 seconds with concomitant LFP, and EEG (Cz, C3,
C4, CPz, CP3, and CP4). All participants confirmed
that they fell asleep during testing, which was consistent
with clinical observation.
As N1 is generally difficult to distinguish from wake-

fulness and physiologically distinct from other NREM
stages, and REM sleep was detected only briefly if at all
because of our relatively short recordings, we focused
our analysis on N2 and N3 stages versus wakefulness,
as in a recent study.9

Signal Processing
Data analysis was performed in MATLAB (version

2023b, The MathWorks, Natick, MA) and Python.

Signal Processing: LFP Analysis

Spectral power was estimated from the same contact
used for recording ERNA, by applying continuous
wavelet transform (10 wavelet cycles) for the following
frequency bands: Δ (1–4 Hz), θ (5–7 Hz), α (8–12 Hz), ς
(13–16 Hz) (also referred to as low-β in some literature),
β (13–30 Hz), and γ (31–40 Hz). Spectral power was
normalized to the average power between 1 and 40 Hz.
ERNA features (amplitude, latency, duration, and

width as shown in Fig. 1A) were extracted using similar
methods as reported in previous studies10,11 (more
details in Supplementary Methods S1).

Signal Processing: Hypnograms

We removed stimulation artefacts in the EEG record-
ings and interpolated the missing signal. Subsequently, the
YASA toolbox was used for sleep stage labeling,12 which
outputs a classification for each 30-second epoch. In
patients 1 and 2, one EOG, a submental EMG, and one
EEG contact were used as inputs for YASA. In patients
3 and 4, one single EEG channel was used as input (more
details in the Supplementary Methods Data S1).

Statistics
A Shapiro–Wilk test was used to assess normality

and subsequently we performed a two-sample t test or
Wilcoxon rank sum test. When correlations are reported,
we performed a Spearman rank correlation, and P-values
are reported after false discovery rate correction.
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Decoding Sleep Stages
Simple binary classifiers (logistic regression and

support vector machine) were used to detect NREM

sleep from wake using either ERNA features or
spectral features extracted from STN LFPs. The
approach to test the classification performance of these

FIG. 1. Evoked resonant neural activity (ERNA) and spectral local field potential (LFP) power modulation during sleep. (A) ERNA waveform during wake-
fulness and N2/N3 non-rapid eye movement (NREM) sleep in patient 1 (mean � standard deviation). (B–E) ERNA features, sleep stages, spectral LFP
power bands and heart rate (in B + C) are shown during sleep/nap for patients 1 to 4. Yellow rectangles in (C) and (E) denote movement artefacts,
which were excluded from the analysis. Vertical lines in (D) and (E) denote the moment when patients were woken up. In (A) red lines indicate awake
stages and blue lines indicate N2/N3 sleep stages. In (B–E) red lines indicate awake stages and green lines indicate sleep. [Color figure can be viewed
at wileyonlinelibrary.com]
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different features is described in Supplementary
Methods Data S1.

Results
ERNA Is Modulated by Sleep Onset, Transition

between Sleep Stages and Awakening
In patient 1, we recorded a full sleep cycle (Fig. 1B)

and found that ERNA amplitude (P < 0.001; Cohen’s
d = 1.19) and duration (P < 0.001; d = 1.11) decrease
from awake to N2/N3, whereas latency (P = 0.007;
d = 0.56) and width (P < 0.001; d = 1.35) increase
(Fig. 2A). ERNA amplitude and duration were posi-
tively correlated with θ to γ power, heart rate and sleep
stages, with inverse relationships for latency and width
(all P < 0.001).
In patient 2, we recorded the first �33 minutes of a

sleep cycle (Fig. 1C) and found similar ERNA changes:
amplitude (P = 0.027; d = 0.80) and duration (P < 0.001;
d = 1.32) decreased from awake to N2/N3, latency
(P = 0.002; d = 0.99) and width (P = 0.036; d = 0.93)
increased (Fig. 2B). Although Δ activity increased from
awake to N2/N3 (P < 0.001; d = 2.00), classical β
(P = 0.71; d = 0.19) and γ (P = 0.90; d = 0.07) power
suppression was not observed in this patient manifesting
as negative correlations between these frequencies and
ERNA amplitude (all P < 0.001). This may explain why
EEG-based sleep stage identification did not yield consis-
tent labelling.
In patients 3 and 4 (Fig. 1D,E), ERNA changed with

the identified sleep stages: amplitude (patient 3:
P = 0.003; d = 5.98; patient 4: P < 0.001; d = 2.70)
and duration (patient 3: P = 0.003; d = 5.31; patient
4: P = 0.006; d = 1.97) decrease from awake to
N2/N3 (Fig. 2C,D), whereas latency increases (patient
3: P = 0.003; d = 3.72; patient 4: P = 0.002;
d = 2.50) and width remained unchanged (patient 3:
P = 0.56; d = 0.36; patient 4: P = 0.23; d = 0.33).
Positive relationships were observed between ERNA
amplitude, duration and α to γ activity and negative
relationships between ERNA amplitude, duration and
Δ and θ power (all P < 0.001). Of note, cued awaken-
ings resulted in immediate marked changes of ERNA
(see Video S1) and spectral power supporting their
modulation by the sleep/wake cycle.

ERNA Is a Candidate for Classifying NREM
Versus Wakefulness

We find ERNA-derived features are promising
candidates for sleep stage classification, where the ampli-
tude achieves good performance on average (area under
curve [AUC] = 97.2%, accuracy = 91.2%). Simple
machine learning classification algorithms (support vec-
tor machine and logistic regression) using ERNA

amplitude alone outperformed (AUC = +5.7%,
accuracy = +4.1%) the model using a combination of
spectral features (AUC = 91.5%, accuracy = 87.1%) for
decoding NREM sleep versus wake (Supplementary
Fig. S1).

Discussion

This is the first study that shows STN ERNA modula-
tion during sleep suggesting that ERNA is a promising
candidate for sleep stage classification.

Mechanism Underlying ERNA Modulation
during Sleep

ERNA has been suggested to result from inhibitory-
excitatory reciprocal connections between the external
globus pallidus (GPe) and STN.8,13 Furthermore, ERNA
was shown to align with rhythmic inhibitory synaptic
input to STN from prototypic GPe neurons with ERNA
amplitude being positively correlated with the potency
of inhibition.14,15 GPe neurons in turn were shown to
decrease firing activity during slow wave sleep, which is
consistent with the lower ERNA amplitudes during
NREM sleep observed here.16

Practical Use of ERNA for Adaptive DBS
during Sleep

Sleep-aware adaptive DBS paradigms in which the
parameters in the control algorithms are modulated
based on the decoded sleep stages may be important
to improve the efficacy of DBS for nocturnal symp-
toms of PD. However, a reliable biomarker for
sleep is required before this approach can be
implemented. Spectral features in EEGs or LFPs, such
as β activity, change inconsistently during sleep com-
plicating their use for sleep stage decoding.17 They
are also subject to movement artefacts, stimulation
artefacts, and large cross-patient variations. In com-
parison, ERNA comes with the advantage of high
signal-to-noise ratio, robustness against movement
and stimulation artefacts, and computational simplic-
ity because it does not rely on real-time time-
frequency decomposition.

Limitations and Future Work
Results reported here are recorded when patients

are on dopaminergic medication during acute lead
externalization, it is not fully known how ERNA
modulates with sleep during the off state and in
chronically implanted patients. Additionally, the
sleep recordings are brief and may be more accu-
rately characterized as daytime naps. There was also
not enough data to investigate if we can differentiate
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FIG. 2. Evoked resonant neural activity (ERNA) and spectral local field potential (LFP) features differ between wakefulness and non-rapid eye movement
(NREM) sleep. (A–D) ERNA features and spectral LFP power bands change between wakefulness and N2/N3 NREM sleep in patients 1–4. [Color figure
can be viewed at wileyonlinelibrary.com]
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REM from NREM or awake. Further limitations
include the small sample size and slight variations in
the recording setup. Future studies with whole night
sleep could investigate the effect of other processes
on ERNA characteristics, such as the circadian
rhythm, or REM sleep.
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