ORBITA-2 Physiology Stratified Analysis Supplemental Material

Table of Contents

TRIAL CONDUCT	7
ORBITA-2 INVESTIGATORS	7
TABLE S1: TRIAL SITES	9
TRIAL STEERING COMMITTEE	11
TRIAL MANAGEMENT GROUP	11
Data and Safety Monitoring Board	12
STATISTICAL WORKING GROUP	12
WRITING COMMITTEE	12
Core Laboratories	13
Stress Echocardiography Core Laboratory	13
Angiography Core Laboratory	13
SUPPLEMENTARY METHODS	14
Inclusion and Exclusion Criteria	14
DERIVATION OF THE ORDINAL SCALE PRIMARY ENDPOINT	15
Supplementary Table S2: Derivation of the ordinal scale primary endpoint	15
SMARTPHONE APPLICATION DESCRIPTION	18
Supplementary Figure S1: Screenshots from the ORBITA-2 smartphone application	19
MEDICATION PRESCRIBING STANDARD OPERATING PROCEDURE FOR ORBITA-2.	20
Supplementary Table S3: Antianginal medication quantification	21
MECHANISMS OF BLINDING AND BLINDING INDEX	22
Supplementary Table S4: DITTO blinding framework	22
Blinding index assessment	23
SUPPLEMENTARY RESULTS	24
SUPPLEMENTARY FIGURE S2: STUDY CONSORT DIAGRAM	24
SUPPLEMENTARY TABLE S5: PHYSIOLOGY GROUP RESULTS TABLE – EFFECT OF PCI COMPARED TO PLACEBO	24
SUPPLEMENTARY RESULTS – FFR	28
Suddiensentary Table S6. EED straticied effect of DCI over diagraphic to symptom characteristics	20
SUPPLEIMENTART TABLE SULTS EICHDE S2: EED AND IED STDATIEIED EEEECT OF DCI ON ANGINA SYMPTOM SCORE IN THE OVERAL	20 1
COULD DATIENTS WITH POSE ANGINA AND DATIENTS WITH POSE NONANGINA	.L 20
	30 31
Supplementary figure SA: result: anging symptom score	31
Supplementary figure 54: result: angina symptom score for Rose anging and Rose nonanging	31
DAILY ANGINA EPISODES	32
Supplementary figure S6: result: daily anging enisodes	
Supplementary figure 55 result: daily angina episodes for Rose anging and Rose nonanging	32
CCS class	<u>22</u> 33
Supplementary figure S8: result: CCS class for Rose anging and Rose nonanging	33
Supplementary figure S9: Regression model and coefficients for CCS class	33
Supplementary figure S10: Regression model and coefficients for CCS class for Rose angina and Rose	200
nonangina	34
Supplementary figure S11: coefficient density plots: CCS class	35
Supplementary figure S12: coefficient density plots: CCS class for Rose angina and Rose nonangina	36
Supplementary figure S13: chain plot of MCMC draws for CCS class	37
Supplementary figure S14: chain plot of MCMC draws for CCS class for Rose angina and Rose nonar	gina 20
Supplementary figure \$15: result: \$40 anging frequency for Rose anging and Rose nonanging	ور ۲۵
supplementary jigale site result of a angina jiequency jor hose angina ana hose honangina	

Supplementary figure S16: Regression model and coefficients for SAQ angina frequency	39
Supplementary figure S17: Regression model and coefficients for SAQ angina frequency for Rose and	gina
and Rose nonangina	40
Supplementary figure S18: coefficient density plots: SAQ angina frequency	41
Supplementary figure S19: coefficient density plots: SAQ angina frequency for Rose angina and Rose	?
nonangina	42
Supplementary figure S20: chain plot of MCMC draws for SAQ angina frequency	43
Supplementary figure S21: chain plot of MCMC draws for SAQ angina frequency for Rose angina an	d Rose
nonangina	44
SAQ PHYSICAL LIMITATION	45
Supplementary figure S22: result: SAQ physical limitation	45
Supplementary figure S23: result: SAQ physical limitation for Rose angina and Rose nonangina	45
Supplementary figure S24: Regression model and coefficients for SAQ physical limitation	46
Supplementary figure S25: Regression model and coefficients for SAQ physical limitation for Rose an	gina
and Rose nonangina	47
Supplementary figure S26: coefficient density plots: SAQ physical limitation	48
Supplementary figure S27: coefficient density plots: SAQ physical limitation for Rose angina and Ros	е
nonangina	49
Supplementary figure S28: chain plot of MCMC draws for SAQ physical limitation	50
Supplementary figure S29: chain plot of MCMC draws for SAQ physical limitation for Rose angina ar	nd
Rose nonangina	51
SAQ QUALITY OF LIFE	52
Supplementary figure S30: result: SAQ quality of life	52
Supplementary figure S31: result: SAQ quality of life for Rose angina and Rose nonangina	52
Supplementary figure S32: Regression model and coefficients for SAQ quality of life	53
Supplementary figure S33: Regression model and coefficients for SAQ quality of life for Rose angina	and
Rose nonangina	53
Supplementary figure S34: coefficient density plots: SAQ quality of life	54
Supplementary figure S35: coefficient density plots: SAQ quality of life for Rose angina and Rose	
nonangina	55
Supplementary figure S36: chain plot of MCMC draws for SAQ quality of life	56
Supplementary figure S37: chain plot of MCMC draws for SAQ quality of life for Rose angina and Ro	se
nonangina	57
SAQ TREATMENT SATISFACTION	58
Supplementary figure S38: result: SAQ treatment satisfaction	58
Supplementary figure S39: result: SAQ treatment satisfaction for Rose angina and Rose nonangina_	58
Supplementary figure S40: Regression model and coefficients for SAQ treatment satisfaction	59
Supplementary figure S41: Regression model and coefficients for SAQ treatment satisfaction for Ros	e =-
angina and Rose nonangina	59
Supplementary figure S42: coefficient density plots: SAQ treatment satisfaction	60
Supplementary figure S43: coefficient density plots: SAQ treatment satisfaction for Rose angina and	Rose
nonangina	61
Supplementary figure S44: chain plot of MCMC draws for SAQ treatment satisfaction	62
Supplementary figure S45: chain plot of MCMC draws for SAQ treatment satisfaction for Rose angin	a and
Rose nonangina	63
SAQ ANGINA STABILITY	64
Supplementary figure S46: result: SAQ angina stability	64
Supplementary figure S47: result: SAQ angina stability for Rose angina and Rose nonangina	64
Supplementary figure S48: Regression model and coefficients for SAQ angina stability	65
Supplementary figure S49: Regression model and coefficients for SAQ angina stability for Rose angin	ia ana
Kuse nunangina	65
Supplementary figure 550: coefficient density plots: SAQ angina stability	66
supplementary figure 551: coefficient density plots: SAQ angina stability for Rose angina and Rose	~ 7
nonangina	6/
Supplementary jigure 552: chain plot of MCMC draws for SAQ angina stability	68 Pocc
supplementary jigure 555: chain plot of ivicivic araws for SAQ angina stability for Kose angina and i	1050
	09

DOBUTAMINE STRESS ECHOCARDIOGRAPHY (DSE) SCORE	70
Supplementary figure S54: result: DSE score for Rose angina and Rose nonangina	70
Supplementary figure S55: Regression model and coefficients for DSE score	70
Supplementary figure S56: Regression model and coefficients for DSE score for Rose anging nonangina	ז and Rose 71
Supplementary figure S57: coefficient density plots: DSE score	72
Supplementary figure S58: coefficient density plots: DSE score for Rose angina and Rose no	nangina 73 74
Supplementary figure S59: chain plot of MCMC draws for DSE score for Rose angina and Ro	, , , , , , , , , , , , , , , , ,
	75
Supplementary figure S60: result: EQ-5D-51 index value	70
Supplementary figure S61: result: EQ-5D-5L index value for Rose anging and Rose nonangi	70 ng 76
Supplementary figure S62: Regression model and coefficients for FO-5D-5L index value	77
Supplementary figure S62: Regression model and coefficients for EQ-5D-5L index value for and Rose nonanaina	Rose angina 77
Supplementary figure S64: coefficient density plots: EQ-5D-5L index value	78
Supplementary figure S65: coefficient density plots: EQ-5D-5L index value for Rose angina on nonanaina	and Rose 79
Supplementary figure S66: chain plot of MCMC draws for EQ-5D-5L index value	80
Supplementary figure S67: chain plot of MCMC draws for EQ-5D-5L index value for Rose an	igina and Rose
FO-5D-51 VISUAL ANALOGUE SCALE	82
Supplementary figure S68: result: EO-5D-5L visual analogue scale	82
Supplementary figure S69: result: EQ-5D-5L visual analogue scale for Rose anaina and Rose	0= e nonanaina 82
Supplementary figure S70: Regression model and coefficients for EQ-5D-5L visual analogue	scale 83
Supplementary figure S71: Regression model and coefficients for EQ-5D-5L visual analogue angina and Rose nonangina	scale for Rose 83
Supplementary figure S72: coefficient density plots: EQ-5D-5L visual analogue scale	84
Supplementary figure S73: coefficient density plots: EQ-5D-5L visual analogue scale for Ros Rose nonanaina	e angina and 85
Supplementary figure S74: chain plot of MCMC draws for EQ-5D-5L visual analogue scale	86
Supplementary figure S75: chain plot of MCMC draws for EQ-5D-5L visual analogue scale f	or Rose anaina
and Rose nonangina	87
TREADMILL EXERCISE TIME	88
Supplementary figure S76: result: treadmill exercise time for Rose angina and Rose nonang	
Supplementary figure S77: Regression model and coefficients for treadmill exercise time	88
Supplementary figure S78: Regression model and coefficients for treadmill exercise time fo	r Rose angina
and Rose nonangina	89
Supplementary figure S79: coefficient density plots: treadmill exercise time	90
Supplementary figure S80: coefficient density plots: treadmill exercise time for Rose angina	i and Rose
Supplementary figure S21: chain plot of MCMC draws for treadmill eversise time	91 02
Supplementary figure S81: chain plot of MCMC draws for treadmill exercise time for Pose of	92
Rose nonangina	93
SUPPLEMENTARY RESULTS - IFR	94
SUPPLEMENTARY TABLE S7: IFR-STRATIFIED EFFECT OF PCI OVER PLACEBO ACCORDING TO SYMPTOM CHARACTEF	RISTICS 94
ANGINA SYMPTOM SCORE	96
Supplementary figure S83: result: angina symptom score	96
Supplementary figure S84: result: angina symptom score for Rose angina and Rose nonang	ina96
Daily angina episodes	97
Supplementary figure S85: result: daily angina episodes	97
Supplementary figure S86: result: daily angina episodes for Rose angina and Rose nonangi	na97
CLS CLASS	98
Supplementary figure S87: result: CCS class for Kose angina and Kose nonangina	98
Supplementary jigate soo. Regression model and coefficients for CCS class	98

Supplementary figure S89: Regression model and coefficients for CCS class for Rose angina and Rose 99 nonangina 100 Supplementary figure S91: coefficient density plots: CCS class for Rose angina and Rose nonangina 101 Supplementary figure S92: chain plot of MCMC draws for CCS class 102 Supplementary figure S93: chain plot of MCMC draws for CCS class for Rose angina and Rose nonangina ______103 SAQ ANGINA FREQUENCY 104 Supplementary figure S94: result: SAQ angina frequency for Rose angina and Rose nonangina______104 Supplementary figure S95: Regression model and coefficients for SAQ angina frequency 104 Supplementary figure S96: Regression model and coefficients for SAQ angina frequency for Rose angina 105 106 Supplementary figure S98: coefficient density plots: SAQ angina frequency for Rose angina and Rose 107 nonanaina Supplementary figure S99: chain plot of MCMC draws for SAQ angina frequency______108 Supplementary figure S100: chain plot of MCMC draws for SAQ angina frequency for Rose angina and Rose nonangina______109 SAQ PHYSICAL LIMITATION 110 Supplementary figure S101: result: SAQ physical limitation 110 Supplementary figure S102: result: SAQ physical limitation for Rose angina and Rose nonangina 110 Supplementary figure S103: Regression model and coefficients for SAQ physical limitation 111 Supplementary figure S104: Regression model and coefficients for SAQ physical limitation for Rose angina and Rose nonangina111Supplementary figure S105: coefficient density plots: SAQ physical limitation112 Supplementary figure S106: coefficient density plots: SAQ physical limitation for Rose angina and Rose nonanaina 113 Supplementary figure S107: chain plot of MCMC draws for SAQ physical limitation 114 Supplementary figure S108: chain plot of MCMC draws for SAQ physical limitation for Rose angina and Rose nonangina______115 SAQ QUALITY OF LIFE 116 Supplementary figure 109: result: SAQ quality of life_____ 116 Supplementary figure 110: result: SAQ quality of life for Rose angina and Rose nonangina 116 Supplementary figure S111: Regression model and coefficients for SAQ quality of life 117 Supplementary figure S112: Regression model and coefficients for SAQ quality of life for Rose angina and

 κose nonangina
 117

 Supplementary figure S113: coefficient density plots: SAQ quality of life
 118

Supplementary figure S114: coefficient density plots: SAQ quality of life for Rose angina and Rose

 nonangina
 119

 Supplementary figure S115: chain plot of MCMC draws for SAQ quality of life
 120

Supplementary figure 116: chain plot of MCMC draws for SAQ quality of life for Rose angina and Rose _____121 nonangina SAQ TREATMENT SATISFACTION _____122 Supplementary figure 117: result: SAQ treatment satisfaction 122 Supplementary figure 118: result: SAQ treatment satisfaction for Rose angina and Rose nonangina____122 Supplementary figure S119: Regression model and coefficients for SAQ treatment satisfaction_____ 123 Supplementary figure S120: Regression model and coefficients for SAQ treatment satisfaction for Rose angina and Rose nonangina ______123 Supplementary figure S121: coefficient density plots: SAQ treatment satisfaction 124 Supplementary figure S122: coefficient density plots: SAQ treatment satisfaction for Rose angina and Rose nonangina 125 Supplementary figure S123: chain plot of MCMC draws for SAQ treatment satisfaction 126 Supplementary figure S124: chain plot of MCMC draws for SAQ treatment satisfaction for Rose angina and Rose nonangina _____ _127 SAQ ANGINA STABILITY _____ 128 Supplementary figure S125: result: SAQ angina stability 128 Supplementary figure S126: result: SAQ angina stability for Rose angina and Rose nonangina 128

	Supplementary figure S127: Regression model and coefficients for SAQ angina stability	_129
	Supplementary figure S128: Regression model and coefficients for SAQ angina stability for Rose angin	а
	and Rose nonangina	_129
	Supplementary figure S129: coefficient density plots: SAQ angina stability	_130
	Supplementary figure S130: coefficient density plots: SAQ angina stability for Rose angina and Rose	
	nonangina	_131
	Supplementary figure S131: chain plot of MCMC draws for SAQ angina stability	_132
	Supplementary figure S132: chain plot of MCMC draws for SAQ angina stability for Rose angina and F	Rose
	nonangina	_133
Do	DBUTAMINE STRESS ECHOCARDIOGRAPHY (DSE) SCORE	_134
	Supplementary figure S133: result: DSE score for Rose angina and Rose nonangina	_134
	Supplementary figure S134: Regression model and coefficients for DSE score	_134
	Supplementary figure S135: Regression model and coefficients for DSE score for Rose angina and Rose	2
	nonangina	_135
	Supplementary figure S136: coefficient density plots: DSE score	_136
	Supplementary figure S137: coefficient density plots: DSE score for Rose angina and Rose nonangina	_137
	Supplementary figure S138: chain plot of MCMC draws for DSE score	_138
	Supplementary figure S139: chain plot of MCMC draws for DSE score for Rose angina and Rose nonan	gina
		_139
EC	Q-5D-5L INDEX VALUE	_140
	Supplementary figure S140: result: EQ-5D-5L index value	_140
	Supplementary figure S141: result: EQ-5D-5L index value for Rose angina and Rose nonangina	_140
	Supplementary figure S142: Regression model and coefficients for EQ-5D-5L index value	_141
	Supplementary figure S143: Regression model and coefficients for EQ-5D-5L index value for Rose angi	na
	and Rose nonangina	_141
	Supplementary figure S144: coefficient density plots: EQ-5D-5L index value	_142
	Supplementary figure S145: coefficient density plots: EQ-5D-5L index value for Rose angina and Rose	
	nonangina	_143
	Supplementary figure S146: chain plot of MCMC draws for EQ-5D-5L index value	_144
	Supplementary figure S146: chain plot of MCMC draws for EQ-5D-5L index value for Rose angina and	
	Rose nonangina	_145
EC	Q-5D-5L visual analogue scale	_146
	Supplementary figure S147: result: EQ-5D-5L visual analogue scale	_146
	Supplementary figure S148: result: EQ-5D-5L visual analogue scale for Rose angina and Rose nonangi	na
		_146
	Supplementary figure S149: Regression model and coefficients for EQ-5D-5L visual analogue scale	_147
	Supplementary figure S150: Regression model and coefficients for EQ-5D-5L visual analogue scale for	
	Rose angina and Rose nonangina	_147
	Supplementary figure S151: coefficient density plots: EQ-5D-5L visual analogue scale	_148
	Supplementary figure S152: coefficient density plots: EQ-5D-5L visual analogue scale for Rose angina	and
	Rose nonangina	_149
	Supplementary figure S153: chain plot of MCMC draws for EQ-5D-5L visual analogue scale	_150
	Supplementary figure S154: chain plot of MCMC draws for EQ-5D-5L visual analogue scale for Rose	
	angina and Rose nonangina	_151
TR	EADMILL EXERCISE TIME	_152
	Supplementary figure S155: result: treadmill exercise time for Rose angina and Rose nonangina	_152
	Supplementary figure S156: Regression model and coefficients for treadmill exercise time	152
	Supplementary figure S157: Regression model and coefficients for treadmill exercise time for Rose and	gina
	and Rose nonangina	153
	Supplementary figure S158: coefficient density plots: treadmill exercise time	154
	Supplementary figure S159: coefficient density plots: treadmill exercise time for Rose anaina and Rose	2
	nonangina	155
	Supplementary figure S160: chain plot of MCMC draws for treadmill exercise time	156
	Supplementary figure S161: chain plot of MCMC draws for treadmill exercise time for Rose anaina and	d
	Rose nonangina	157
Su	IPPLEMENTARY FIGURE S162: CONSORT CHECKLIST	

Trial Conduct

ORBITA-2 Investigators

Imperial College London

Christopher Rajkumar, Michael Foley, Fiyyaz Ahmed-Jushuf, Florentina Simader, Sashiananthan Ganesananthan, Danqi Wang, Muhammad Mohsin, Rachel Pathimagaraj, Brian Wang, Krzysztof Macierzanka, Ricardo Petraco, Ramzi Khamis, Graham Cole, James Howard, Jamil Mayet, Darrel Francis, Matthew Shun-Shin, Rasha Al-Lamee

Imperial College London Healthcare NHS Trust

Arif Kokhar, Aisha Gohar, Ioannis Lampadakis, Henry Seligman, Sukhjinder Njjer, Sayan Sen, Punit Ramrakha, Raffi Kaprielian, Iqbal Malik, Masood Khan, Amarjit Sethi, Rodney Foale

Mid and South Essex NHS Foundation Trust

Thomas Keeble, Kare Tang, John Davies, Reto Gamma, Gerald Clesham, Jason Dungu, Alamgir Kabir, Shah Mohd Nazri

University Hospitals of Dorset NHS Foundation Trust

Peter O'Kane, Jonathan Hinton, Jehangir Din

Barking Havering and Redbridge University Hospitals NHS Trust Alexandra Nowbar

Royal Free London NHS Foundation Trust

Tushar Kotecha

Portsmouth Hospitals University NHS Trust

Peter Haworth

St George's University Hospitals NHS Foundation Trust

James Spratt, Rupert Williams, Claudia Cosgrove, Pitt Lim

Worcestershire Acute Hospitals NHS Trust

Helen Routledge, Lal Mughal, Jasper Trevelyan

Salisbury NHS Foundation Trust

Manas Sinha

University Hospital Southampton NHS Foundation Trust

Nick Curzen, James Wilkinson, Rohit Sirohi, Alison Calver, John Rawlins, Richard Jabbour

Royal Berkshire NHS Foundation Trust

Neil Ruparelia

West Hertfordshire Hospitals NHS Trust Joban Sehmi

Cardiff and Vale University Health Board

Tim Kinnaird

Sandwell and West Birmingham Hospitals NHS Trust Fairoz Abdul

Royal Brompton and Harefield NHS Foundation Trust Vasileios Panoulas

Barts Health NHS Trust Afzal Sohaib

Queen Mary University of London David Collier

Vanderbilt University School of Medicine Frank E Harrell Jr

Table S1: Trial Sites

Centre	Principal Investigator	Coinvestigators	Support team	Patients enrolled
Hammersmith Hospital (Imperial College Healthcare NHS Trust)	Dr Rasha Al- Lamee	Professor Darrel Francis Dr Sayan Sen Dr Sukhjinder Nijjer Dr Punit Ramrakha Dr Raffi Kaprielian Dr Iqbal Malik Dr Amarjit Sethi Dr Masood Khan Dr Ramzi Khamis Dr Rodney Foale Dr Christopher Rajkumar Dr Michael Foley Dr Fiyyaz Ahmed-Jushuf Dr Henry Seligman	Denise Rouse Hawa Amadu	163
Essex Cardiothoracic Centre (Mid and South Essex NHS Foundation Trust)	Dr Thomas Keeble	Dr John Davies Dr Gerald Clesham Dr Reto Gamma Dr Jason Dungu Dr Kare Tang Dr Shah Modh Nazri Dr Alamgir Kabir	Raiji Koothoor Michael Galinato Craig Robertson Joanne Turton Ellie Gudde Joanne Hall Karen Lyons	70
Royal Bournemouth Hospital (University Hospitals of Dorset NHS Foundation Trust)	Dr Peter O'Kane	Dr Jehangir Din Dr Jonathan Hinton	Stephanie Horler Annette Fraine Tanith Changuion	55
Queen Alexandra Hospital (Portsmouth Hospitals University NHS Trust)	Dr Peter Haworth	-	Charlotte Turner	32
St George's Hospital (St George's University Hospitals NHS Foundation Trust)	Professor James Spratt	Dr Rupert Williams Dr Claudia Cosgrove Dr Pitt Lim	Stavroula Kazagli Giovanna Bonato	25
Worcestershire Royal Hospital (Worcestershire Acute Hospitals NHS Trust)	Dr Helen Routledge	Dr Lal Mughal Dr Jasper Trevelyan	Angela Doughty	23
Royal Free Hospital (Royal Free London NHS Foundation Trust)	Dr Tushar Kotecha	-	Nina Arnold Felicity Picton Tarik Mustafa Leoni Bryan Alejandra Perez Rodriguez Valene Cadden	21
Southampton General Hospital (University Hospital Southampton NHS Foundation Trust)	Professor Nick Curzen	Dr James Wilkinson Dr Alison Calver Dr Rohit Sirohi Dr John Rawlins Dr Richard Jabbour	Karen Banks Zoe Nicholas	15
Royal Berkshire Hospital (Royal Berkshire NHS Foundation Trust)	Associate Professor Neil Ruparelia	-	Mark Brunton	11
Salisbury District Hospital (Salisbury NHS Foundation Trust)	Dr Manas Sinha	-	Fiona Trim	10
University Hospital of Wales (Cardiff and Vale University Health Board)	Professor Tim Kinnaird	-	Elizabeth Hodges Elizabeth Thompson	7

Wycombe Hospital	Dr Ricardo	-	Mari Kononen	6
(Royal Berkshire NHS	Petraco		Josephine Chaplin	
Foundation Trust)				
Birmingham City Hospital	Dr Fairoz Abdul	-	Sibet Joseph	1
(Sandwell and West				
Birmingham Hospitals NHS				
Trust)				
Harefield Hospital	Dr Vasileios	-	-	0
(Royal Brompton and	Panoulas			
Harefield NHS Foundation				
Trust)				
,				

Trial Steering Committee

Dr David Collier (Chair)

Clinical Director; The William Harvey Institute, Queen Mary University of London

Dr Rasha Al-Lamee

Reader and BHF Intermediate Research Fellow; National Heart and Lung Institute, Imperial College London

Dr Afzal Sohaib

Consultant Cardiologist; Barts Health NHS Trust

Mr Patrick McVeigh

Patient Representative

Dr Christopher Rajkumar

Clinical Research Fellow; Imperial College London

Dr Thomas Keeble

Consultant Cardiologist; Essex Cardiothoracic Centre, Mid and South Essex NHS Foundation Trust

Professor Darrel Francis

Professor of Cardiology; National Heart and Lung Institute, Imperial College London

Trial Management Group

- Dr Christopher Rajkumar Clinical Research Fellow; Imperial College London
- Dr Michael Foley Clinical Research Fellow; Imperial College London
- Dr Fiyyaz Ahmed-Jushuf Clinical Research Fellow; Imperial College London

Dr Florentina Simader

Clinical Research Fellow; Imperial College London

Dr Florentina Simader

Clinical Research Fellow; Imperial College London

Dr Rasha Al-Lamee

Reader and BHF Intermediate Research Fellow; National Heart and Lung Institute, Imperial College London

Data and Safety Monitoring Board

The Data and Safety Monitoring Board (DSMB) reviewed all serious adverse events and all changes to antianginal medication.

Dr Neil Chapman (Chair)

Honorary Senior Lecturer, Clinical Pharmacology Consultant; Imperial College London

Dr Vikas Kapil

Clinical Senior Lecturer, Clinical Pharmacology Consultant; Queen Mary University of London

Dr Jaymin Shah

Consultant Cardiologist; London North West University Healthcare NHS Trust

Statistical Working Group

Professor Frank E Harrell, Jr. Professor of Biostatistics; Vanderbilt University School of Medicine

Dr Matthew Shun-Shin

Clinical Senior Lecturer and Consultant Cardiologist; Imperial College London

Dr Rasha Al-Lamee

Reader and BHF Intermediate Research Fellow; National Heart and Lung Institute, Imperial College London

Writing Committee

Dr Christopher Rajkumar

Clinical Research Fellow; Imperial College London

Dr Matthew Shun-Shin

Clinical Senior Lecturer and Consultant Cardiologist; Imperial College London

Professor Darrel Francis

Professor of Cardiology; Imperial College London

Dr Rasha Al-Lamee

Reader and BHF Intermediate Research Fellow; National Heart and Lung Institute, Imperial College London

Core Laboratories

Stress Echocardiography Core Laboratory

Dr Graham Cole

Honorary Senior Lecturer and Consultant Cardiologist; Imperial College London

Dr Joban Sehmi

Consultant Cardiologist; West Hertfordshire Hospitals NHS Trust

Professor Darrel Francis

Professor of Cardiology; Imperial College London

Angiography Core Laboratory

Dr Arif Kokhar Imperial College Healthcare NHS Trust

Dr Aisha Gohar Imperial College Healthcare NHS Trust

Dr Ioannis Lampadakis Imperial College Healthcare NHS Trust

Supplementary Methods

Inclusion and Exclusion Criteria

Inclusion

ORBITA-2 enrolled participants who were deemed eligible for PCI by their clinical teams and met all 3 of the following criteria:

- 1. Angina or angina-equivalent symptoms
- 2. Anatomical evidence of a severe coronary stenosis in at least 1 vessel, either: – Invasive diagnostic coronary angiography indicating ≥70% stenosis

- Computerised tomography coronary angiography (CTCA) indicating severe stenosis

- 3. Evidence of ischaemia, on any of the following tests:
 - Dobutamine stress echocardiography
 - Stress perfusion cardiac magnetic resonance imaging (MRI)
 - Nuclear medicine myocardial perfusion scan

 Invasive pressure wire assessment suggestive of ischaemia, as judged by the interventional cardiologist, at the time of clinical or research coronary angiography

Exclusion

- 1. Age younger than 18
- 2. Acute coronary event in last 6 months
- 3. Previous coronary artery bypass graft surgery
- 4. Significant left main stem coronary disease
- 5. Chronic total occlusion in the target vessel
- 6. Contraindication to percutaneous coronary intervention or drug-eluting stent implantation
- 7. Contraindication to antiplatelet therapy
- 8. Severe valvular disease
- 9. Severe left ventricular systolic impairment (ejection fraction ≤35%)
- 10. Severe respiratory disease (requiring long term oxygen or symptoms deemed by investigator to be more likely attributable to respiratory disease)
- 11. Life expectancy less than 2 years, pregnancy, inability to consent

Derivation of the ordinal scale primary endpoint

The primary endpoint is the angina symptom score measured daily. This is an ordinal clinical outcome scale of angina health status, ranging from 0 to 79. The daily score is derived from the number of episodes of angina reported by a patient on a given day via the smartphone application, the units of antianginal medication prescribed on that day, and high-level category overrides for unblinding due to intolerable angina, acute coronary syndrome, and death. Supplementary Table S2 reports the composition of each level of the primary endpoint.

The total daily dosage of commonly prescribed antianginal medications considered to be 1 unit is reported in Supplementary Table S3. Full details of the primary endpoint have been published previously. (15)

Grade	Number of angina episodes in a day	Units of antianginal medication	Unblinding due to intolerable angina	Acute coronary syndrome	Death
0	0	0	No	No	No
1	1	0	No	No	No
2	2	0	No	No	No
3	3	0	No	No	No
4	4	0	No	No	No
5	5	0	No	No	No
6	6 or more	0	No	No	No
7	0	1	No	No	No
8	1	1	No	No	No
9	2	1	No	No	No
10	3	1	No	No	No
11	4	1	No	No	No
12	5	1	No	No	No
13	6 or more	1	No	No	No
14	0	2	No	No	No
15	1	2	No	No	No
16	2	2	No	No	No
17	3	2	No	No	No
18	4	2	No	No	No

Supplementary Table S2: Derivation of the ordinal scale primary endpoint

19	5	2	No	No	No
20	6 or more	2	No	No	No
21	0	3	No	No	No
22	1	3	No	No	No
23	2	3	No	No	No
24	3	3	No	No	No
25	4	3	No	No	No
26	5	3	No	No	No
27	6 or more	3	No	No	No
28	0	4	No	No	No
29	1	4	No	No	No
30	2	4	No	No	No
31	3	4	No	No	No
32	4	4	No	No	No
33	5	4	No	No	No
34	6 or more	4	No	No	No
35	0	5	No	No	No
36	1	5	No	No	No
37	2	5	No	No	No
38	3	5	No	No	No
39	4	5	No	No	No
40	5	5	No	No	No
41	6 or more	5	No	No	No
42	0	6	No	No	No
43	1	6	No	No	No
44	2	6	No	No	No
45	3	6	No	No	No
46	4	6	No	No	No
47	5	6	No	No	No
48	6 or more	6	No	No	No
49	0	7	No	No	No
50	1	7	No	No	No
51	2	7	No	No	No
52	3	7	No	No	No
53	4	7	No	No	No

54	5	7	No	No	No
55	6 or more	7	No	No	No
56	0	8	No	No	No
57	1	8	No	No	No
58	2	8	No	No	No
59	3	8	No	No	No
60	4	8	No	No	No
61	5	8	No	No	No
62	6 or more	8	No	No	No
63	0	9	No	No	No
64	1	9	No	No	No
65	2	9	No	No	No
66	3	9	No	No	No
67	4	9	No	No	No
68	5	9	No	No	No
69	6 or more	9	No	No	No
70	0	10	No	No	No
71	1	10	No	No	No
72	2	10	No	No	No
73	3	10	No	No	No
74	4	10	No	No	No
75	5	10	No	No	No
76	6 or more	10	No	No	No
77	N/A	N/A	Yes	No	No
78	N/A	N/A	N/A	Yes	No
79	N/A	N/A	N/A	N/A	Yes

.

Smartphone application description

The ORBITA-2 symptom smartphone application requires the participant to define their angina in their own words and then report the number of episodes of this symptom for each day of the trial. It also requires the participant to report for each week if they experienced angina with 2 activities that were set by the participant at enrolment as triggering their symptoms.

The symptom application approach permits not only a quantitative assessment of the time-course of angina evolution during the blinded period, but also a time-to-event analysis of occurrence of first angina episode.

Full details regarding development and use of the application have previously published. (16)

Supplementary figure S1 contains screenshots from the ORBITA-2 symptom application.

Supplementary Figure S1: Screenshots from the ORBITA-2 smartphone application

Medication prescribing standard operating procedure for ORBITA-2.

This medication management SOP was developed in conjunction with the DSMB and has been previously published. (15)

All medication changes will be made by the research team with informed consent from the participant. Decisions will be discussed with primary care practitioners as necessary.

1. Participants not already taking the following medications will be started on:

Dual antiplatelet therapy:

Standard loading doses will be used. Thereafter, aspirin 75 mg once daily with either clopidogrel 75 mg once daily or ticagrelor 90 mg twice daily or prasugrel 5-10 mg once daily, dose adjusted for age and weight, will be administered.

Gastrointestinal (GI) protection:

If at high risk of adverse GI effects (based on previous GI ulceration, age or concomitant medications that increase risk), participants will be started on a proton pump inhibitor, lansoprazole 30mg once daily, in accordance with NICE guidance on gastro- oesophageal reflux disease and dyspepsia in adults (CG184).

Lipid-lowering medication:

Atorvastatin 80 mg once daily will be preferred. If participants are already taking lower dose atorvastatin, simvastatin or pravastatin, this will be changed to atorvastatin 80 mg once daily. If taking rosuvastatin, this will be continued.

2. Other concomitant risk factor modifying medication

Antihypertensives:

Antihypertensives with antianginal properties will be stopped. Participants will be given a blood pressure monitor and asked to perform home readings. Blood pressure control will be monitored by the research team, and if required, antihypertensives will be added. Agents without antianginal properties will be preferred.

3. Antianginal medication

Regular antianginal medications will be stopped on enrolment. All participants will be given glyceryl trinitrate spray to be used when necessary. The need for starting regular antianginals will be determined by participant preference and patient-reported symptoms.

An individualised protocol for potential introduction of antianginal medications will be prepared for each participant by the research team. This protocol will be based on the participant's medical his- tory, heart rate, blood pressure and any medication intolerance. The preferred sequence will be as follows: Bisoprolol, nifedipine MR, isosorbide mononitrate MR, nicorandil, ranolazine.

Antianginals started prior to randomisation will be stopped at randomisation and reintroduced according to participant preference and symptoms as described above, by the blinded research team.

Supplementary Table S3: Antianginal medication quantification

Common antianginal medications were classified as 1 unit based on the following total daily dosages:

Medication	Total daily dose in mg that constitutes 1 unit
Bisoprolol	5
Atenolol	25
Amlodipine	2.5
Nifedipine	20
Isosorbide mononitrate MR	30
Isosorbide mononitrate SR	25
Diltiazem	120
Nicorandil	20
Ranolazine	750
Ivabradine	5

All antianginal medication changes, including cases when it was clinically necessary to prescribe an alternate medication to the above list, were reviewed by the blinded DSMB.

Mechanisms of blinding and blinding index

Placebo optimisation strategies are reported in Supplementary Table S4

Supplementary Table S4: DITTO blinding framework

	r lacebo optimisation strategy in original rital
Sensory Manipulation	Patients received incremental doses of intravenous opiate and benzodiazepine to achieve a deep level of conscious sedation such that the patient was unresponsive to verbal or tactile stimulus, with maintained airway, ventilation and cardiovascular function. Physiological support with oxygenation and intravenous fluids was administered as necessary. Additional steps for sensory manipulation are detailed below.
Visual Masking	Positioning of the patient meant that the operator screen was not visible to them.
Verbal cues	Patients were not able to hear any verbal cues due to sedation and auditory isolation. Treatment allocation was communicated from the research team to the operator away from the patient to prevent inadvertent leakage of information. During placebo procedures, catheter laboratory staff mimicked language used during PCI procedures.
Auditory cues	Auditory isolation and sedation minimised any possible auditory difference between PCI and placebo procedures.
Physical cues	Before the procedure began, patients were counselled that they may experience some pain or shortness of breath during the procedure.
Visual cues	Although subjects were sedated, the operator screen was also positioned so that it was not visible to the patient.
Auditory masking	Patients wore over-the-ear headphones playing music throughout the invasive procedure to provide auditory isolation. These were worn prior to sedation and randomisation to prevent the patient hearing any communication between the clinical team.
Olfactory cues	No olfactory differences occurred between the treatment groups.
Use of devices to optimise blinding	In both the PCI and placebo groups, the catheterisation laboratory table and equipment table were set up for PCI. All patients underwent angiography and pressure studies as part of the randomisation procedure; therefore patients all underwent vascular access using devices which did not differ between treatment groups.
Mimicked Timings	The invasive procedure consisted of angiography and pre- randomisation coronary physiological assessments. This meant that the procedure was significantly longer than a standard diagnostic coronary angiogram. Patients subsequently randomised to placebo remained on the catheter laboratory table for a minimum of 15 additional minutes following randomisation to mimic the time required for PCI. Benzodiazepines utilised for sedated had a secondary effect of amnesia regarding the procedural duration.
Restricting interaction between blinded and unblinded personnel	The blinded ward staff managed all patients as if they had undergone PCI for post procedural monitoring and care. The catheter laboratory staff involved in the procedure were not permitted any contact or communication with the patient after handover.
Omission of intervention details in trial paperwork	The unblinded fellow entered the treatment allocation to a pre- allocated page of the online case reporting form to which none of the other members of the research team had access. A blinded fellow performed all the communication with the patient after discharge and performed all the follow-up tests. At the 12-

	week point the blinded fellow contacted the unblinded fellow to confirm that all the assessments had been performed, only at that time did the unblinded fellow communicate the treatment allocation. From that time, the patient, the research team, and the clinical team became unblinded.
Intervention not specified in patient notes	A standardised protocol was used for the management of all documentation in the catheter laboratory in all centres. During the procedure, the nurses documented that the patient had participated in the ORBITA-2 trial. They did not document treatment allocation or any details of PCI in the medical notes. After the procedure, the handover between the catheter laboratory staff and ward nursing staff was carefully managed to include only location of access sites and medication given (which was identical for the two randomised arms, as all patients required heparin for physiological assessment and all patients received sedation). The handover did not indicate the treatment allocation and therefore did not indicate whether a PCI was performed. Additionally, during the handover process patients continued to have auditory isolation with music via headphones.
	The unblinded fellow prepared a standardised discharge letter at the end of the procedure which informed the reader that a blinded procedure had taken place, that this procedure was a coronary angiogram +/- PCI, that all medications should remain unchanged, including continuation of dual antiplatelet therapy, until trial follow- up was complete. The letter stated that they should receive standard post-angioplasty care until full details of the procedure were provided after unblinding at 12 weeks. This standardised letter was approved by the local ethics committee and was given to all patients and their general practitioners on discharge.
Patient billing delayed or withheld	Not applicable in National Health Service (NHS) of United Kingdom
Unblinded operator delivering component of intervention	The unblinded operator who performed the procedure was not permitted to attend to the patient after completion of the interventional procedure. This meant that the unblinded operator was not able to review or have any communication with the patient in recovery. Furthermore, the unblinded operator was not permitted to have any contact with the patient during the 12-week blinded follow-up period, until the patient had completed the trial and been unblinded to treatment allocation.

Blinding index assessment

Our protocol assessed for accidental leakage of information to staff and to patients. The ward clinical staff were asked to guess the treatment allocation at the time of discharge from the blinded procedure. The blinded research staff were asked to guess the treatment allocation from all information available to them at the follow-up visit prior to speaking to the patient.

Patient blinding was assessed at the time of discharge from the randomised blinded procedure. For completeness the same question was also asked when they attended for follow-up but at that time they had the benefit of knowing the symptomatic responses and therefore this was no longer strictly a valid measure of blinding.

Patients and staff were asked to guess one of the following: (1) PCI, (2) Placebo, (3) Don't know. Patients and medical staff were asked to state the certainty of their answers grade 1-5 with 5 being most sure.

Statistical analysis of the blinding index was performed using published methods. (15)

Supplementary Results

Supplementary Figure S2: Study consort diagram

Supplementary Table S5: Physiology group results table – effect of PCI compared to placebo

Primary Endpoint							
	Odds ratio of transitioning to a better clinical state each day with PCI vs placeboProbability of benefit with PCI v placebo						
Angina symptom score Follow-up (Day 84)	OR 1.83, 95%	CrI 1.21 to 2.21	>99.9%				
Components of primary	endpoint						
Angina episodes Follow-up (Day 84)	OR 1.84, 95% CrI 1.51 to 2.24 >99.9%						
Secondary Endpoints							
	PCI Placebo						
Treadmill exercise time							
n	114	103					

Baseline median (s)	6		
Follow-up (s)	726 (690 to 762)	680 (640 to 718)	
Increment (s)	59 (23 to 95)	13 (-27 to 51)	
Benefit of PCI over placebo (s)	4 (6 to	l6 5 88)	98.6%
Canadian Cardiovascula	r Society class		
n	137	135	
Baseline median	, 	2	
Follow-up	0.97 (0.79 to 1.15)	1.66 (1.46 to 1.85)	
Increment	-1.03 (1.21 to – 0.85)	-0.35 (-0.54 to -0.15)	
Benefit of PCI over placebo	-0 (-0.92 t	>99.9%	
SAQ angina frequency			
n	136	134	
Baseline median	60).0	
Follow-up	79.8 (75.6 to 83.9)	65.6 (60.5 to 70.3)	
Increment	19.8 (15.6 to 23.9)	5.6 (0.5 to 10.3)	
Benefit of PCI over placebo	14.1 (9.1 to 19.4)		>99.9%
SAQ physical limitation			
n	129	133	
Baseline median	66		

Follow-up	83.1 (79.5 to 86.8)	74.4 (70.3 to 78.2)		
Increment	16.5 (12.8 to 20.1)	7.8 (3.6 to 11.6)		
Benefit of PCI over placebo	8.7 (4.6 to 12.8)		>99.9%	
SAQ angina stability				
n	135	134		
Baseline median	50	0.0		
Follow-up	61.0 (56.4 to 65.8)	55.9 (51.1 to 61.0)		
Increment	11.0 (6.4 to 15.8)	5.9 (1.1 to 11.0)		
Benefit of PCI over placebo	5 (-0.8 t	5.2 (-0.8 to 10.9)		
SAQ quality of life				
n	135	134		
Baseline median	4	1.7		
Follow-up	61.2 (56.8 to 65.7)	51.3 (46.8 to 55.9)		
Increment	19.5 (15.1 to 24.0)	9.6 (5.1 to 14.2)		
Benefit of PCI over placebo	9 (4.8 to	9.9 (4.8 to 15.0)		
EQ-5D-5L descriptive sy	ystem			
n	135	133		
Baseline median	0.	1		
Follow-up	0.80 (0.77 to 0.83)	0.73 (0.69 to 0.76)		

Increment	0.05 (0.02 to 0.08)	-0.02 (-0.05 to 0.01)	
Benefit of PCI over placebo	0. (0.03 t	>99.9%	
EQ-VAS			
n	136	132	
Baseline median	70).0	
Follow-up	72.7 (69.4 to 75.7)	66.8 (63.2 to 70.3)	
Increment	2.7 (-0.6 to 5.7)	-3.2 (-6.8 to 0.33)	
Benefit of PCI over placebo	5 (2.0 t	99.9%	
Stress echocardiography	score		
n	110	103	
Baseline median	1.		
Follow-up	0.92 (0.68 to 1.20)	1.69 (1.30 to 2.14)	
Increment	-0.88 (-1.11 to -0.60)	-0.11 (-0.49 to 0.34)	
Benefit of PCI over placebo	-0 (-1.15 t	>99.9%	

Supplementary Results – FFR

Supplementary Table S6: FFR-stratified effect of PCI over placebo according to symptom characteristics

	FFR at the 25 th centile	FFR at the 75 th centile	Probability of greater benefit in a patient with a	
FFR	0.46	0.73	lower FFR (Pr)	
Primary	endpoint: angina sym	ptom score at 12 week	S*	
Rose angina				
Odds of improvement	2.86 (2.29 to 3.57)	1.39 (1.11 to 1.73)		
Odds ratio	2. (1.74 t	05 o 2.41)	>99.9%	
Rose nonangina				
Odds of improvement	1.58 (1.19 to 2.08)	0.97 (0.77 to 1.23)		
Odds ratio	1. (1.27 tr	63 o 2.09)	>99.9%	
	Daily angina o	episodes		
Rose angina				
Odds of improvement	3.42 (2.70 to 4.32)	1.65 (1.29 to 2.09)		
Odds ratio	2. (1.76 t	>99.9%		

Rose nonangina			
Odds of improvement	2.03 (1.52 to 2.75)	1.03 (0.81 to 1.31)	
Odds ratio	1.5 (1.55 to	98 o 2.57)	>99.9%

Supplementary results figure S3: FFR and iFR stratified effect of PCI on angina symptom score in the overall group, patients with Rose angina and patients with Rose nonangina

Angina symptom score

Daily angina episodes

Supplementary figure S6: result: daily angina episodes

CCS class

Supplementary figure S8: result: CCS class for Rose angina and Rose nonangina

Supplementary figure S9: Regression model and coefficients for CCS class

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

blrm(formula = num_ccs_fu ~ num_ccs_rand + Treatment * rcs(angio_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_resl.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_resl.blrm.rds"))

Frequencies of Responses

0 1 2 3 4 76 59 83 47 7

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 272 Draws 40000 Chains 4 Time 12.9s p 6	B 0.2 [0.196, 0.206]	g 1.245 [0.976, 1.496] g _p 0.25 [0.215, 0.29] EV 0.196 [0.149, 0.259] v 1.303 [0.75, 1.838] vp 0.049 [0.036, 0.064]	C 0.712 [0.699, 0.721] D _{xy} 0.423 [0.399, 0.442]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
y≥l	1.2200	1.2229	1.3367	-1.3621	3.8906	0.8213	1.00
y≥2	0.0544	0.0576	1.3381	-2.6709	2.5865	0.5174	0.99
y≥3	-1.6471	-1.6419	1.3418	-4.3411	0.9372	0.1078	0.99
y≥4	-4.0932	-4.0819	1.3769	-6.8423	-1.4359	0.0017	0.97
num_ccs_rand	0.9082	0.9070	0.2085	0.4993	1.3162	1.0000	1.02
Treatment=PCI	-6.7721	-6.7490	1.7370	-10.1885	-3.3984	0.0000	0.97
angio_stenosis_ffr	-2.6721	-2.6756	2.5157	-7.7723	2.1337	0.1426	0.99
angio_stenosis_ffr'	0.6985	0.6951	2.8102	-4.7404	6.2425	0.5996	0.99
Treatment=PCI × angio_stenosis_ffr	9.7619	9.7211	3.6170	2.4893	16.6866	0.9971	1.03
Treatment=PCI × angio_stenosis_ffr'	-2.0897	-2.0879	3.9301	-9.7726	5.6466	0.2977	0.99

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S10: Regression model and coefficients for CCS class for Rose angina

and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Prices With Concentration Parameter 0.392 for Intercepts

blrm(formula = num_cck_fw ~ num_ccs_rand + Treatment + rcs(angio_stenosis_ffr, 3) + rose_is_angina_random, data = rose_analysis_d, pcontrast = pcon, iter = 200008, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), loo = FAISE, ppairs = MulL, method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

0 1 2 3 4 69 53 72 44 5

Mixe	Mixed Calibration/	Discrimination	tion Rank Discrim.		
Discrit	Discrimination Indexes	Indexes	Indexes		
Obs 243 Draws 40000 Chains 4 Time 12.9s p 12	B 0.174 [0.169, 0.179]	g 1.435 [1.156, 1.761] gp 0.239 [0.2, 0.284] EV 0.247 [0.169, 0.329] v 1.643 [1.007, 2.402] vp 0.049 [0.033, 0.068]	C 0.725 [0.713, 0.737] D _{xy} 0.45 [0.426, 0.474		

	Mean ß	Median B	S.E.	Lower	Upper	Pr(f>0)	Symmetry
y≥l	-0.9427	-0.9771	2.4703	-5.9584	3.7931	0.3462	1.03
y≥2	-2.1672	-2,1993	2,4742	-7.1287	2.6548	0.1867	1.03
y23	-3.9136	-3.9418	2.4860	-8.8740	0.9510	0.0583	1.02
y24	-6.6665	-6.6877	2.5277	-11.5852	-1.6579	0.0051	1.03
num_ccs_rand	1.0885	1.0871	0.2314	0.6438	1.5498	1.0000	1.02
Treatment=PCI	-7.7618	-7.6533	4.8161	-17.1647	1.7241	0.0494	0.94
angio_stenosis_ffr	1.1978	1.2725	4.6555	-8.2042	10.1526	0.6086	0.97
angio_stenosis_ffr'	-4.6281	-4.6666	4.8608	-14.4195	4.7228	0.1684	1.02
rose_is_angina_random	0.7608	0.7976	2.7961	-4.5753	6.3935	0.6114	0.98
Treatment=PCI × angio_stenosis_ffr	12.0813	11.9129	9.2072	-6.5109	29.5868	0.9083	1.06
Treatment=PCI × angio_stenosis_ffr'	-2.6413	-2.5372	8.3046	-19.1270	13.3679	0.3789	0.96
Treatment=PCI × rose_is_angina_random	3.1026	3.0171	5.2852	-7.3013	13.4598	0.7209	1.05
angio_stenosis_ffr × rose_is_angina_random	-1,4429	-1.5108	5.7880	-12.7231	9.9934	0.3973	1.02
angio_stenosis_ffr' × rose_is_angina_random	3,5957	3.6245	6.4116	-8.8003	16.2706	0.7153	0.99
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	-8.0344	-7,8876	10.3759	-28.0727	12.6094	0.2210	0.96
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	6,2963	6.1984	10,0523	-13.1588	26.2143	0,7339	1.02

Contrasts Given Priors

[1] list(c1 = list(Treatment = "P(aceba"), c2 = list(Treatment = "P(I"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S12: coefficient density plots: CCS class for Rose angina and Rose nonangina

Supplementary figure S13: chain plot of MCMC draws for CCS class
Supplementary figure S14: chain plot of MCMC draws for CCS class for Rose angina and Rose nonangina

SAQ angina frequency

Supplementary figure S15: result: SAQ angina frequency for Rose angina and Rose nonangina

Supplementary figure S16: Regression model and coefficients for SAQ angina frequency

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.233 for Intercepts

Frequencies of Responses

30 40 50 50 70 88 8 20 9 34 35 39 0 20 1 14 90 100 33 77

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 270 Draws 40000 Chains 4 Time 17.8s p 7	B 0.185 [0.18, 0.192]	g 1.502 [1.174, 1.767] gp 0.286 [0.247, 0.32] EV 0.248 [0.186, 0.309] v 1.819 [1.106, 2.549] vp 0.062 [0.046, 0.077]	C 0.729 [0.716, 0.74] D _{xy} 0.459 [0.431, 0.481

	Mean ß	Median B	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
y≥20	3.6816	3.6118	1.6688	0.4156	6.9522	0.9915	1.14
y≥30	0.5374	0.5553	1.2980	-2.0626	3.0079	0.6627	0.99
y≥40	-0.0099	0.0030	1.2938	-2.6077	2.4349	0.5008	0.98
y≥50	-0.8563	-0.8442	1.2964	-3.4148	1.6323	0.2543	0.98
y≥60	-1.1345	-1.1233	1.2953	-3.6789	1.3702	0,1903	0.99
y≥70	-1.9598	-1.9511	1.2995	-4.5644	0.5172	0.0638	0.98
y≥80	-2.6846	-2.6695	1.3039	-5.2739	-0.1805	0.0187	0.99
y≥90	-3.4638	-3.4538	1.3103	-6.0139	-0.8940	0.0035	0.98
y≥100	-4.1595	-4.1488	1.3128	-6.7143	-1,5847	0.0008	0.98
outcome_saq_angina_freq_pre	0.0236	0.0235	0.0132	-0.0023	0.0491	0.9648	1.02
outcome_saq_angina_freq_pre'	0.0211	0.0210	0.0132	-0.0048	0.0468	0.9444	1.01
Treatment=PCI	6.1615	6.1390	1.6964	2.8306	9.4673	0.9999	1.04
angio_stenosis_ffr	0.4294	0.4144	2.5354	-4.5244	5.4449	0.5674	1.02
angio_stenosis_ffr'	1.3117	1.3049	2.8131	-4.3359	6.7012	0.6803	1.01
Treatment=PCI × angio_stenosis_ffr	-8.6188	-8.5806	3,5477	-15.7066	-1,7898	0.0064	0.97
Treatment=PCI × angio_stenosis_ffr'	1.0496	1.0334	3.8613	-6.5470	8.6034	0.6052	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

blrm(formula = outcome_saq_angina_freq_post ~ rcs(outcome_saq_angina_freq_pre, 3) + Treatment * rcs(angio_stemosis_ffr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Supplementary figure S17: Regression model and coefficients for SAQ angina frequency for

Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.253 for Intercepts

blrm(formula = outcome_saq_angina_freq_post ~ rcsloutcome_saq_angina_freq_pre, 3) + Treatment + rcs(angio_stemosis_ffr, 3) + rose_is_angina_random, data = rose_amalysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

28 38 40 58 60 70 88 90 100 14 8 18 7 28 31 36 29 70

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 241 Draws 40000 Chains 4 Time 14.6s p 13	B 0.188 [0.179, 0.199]	g 1.604 [1.28, 1.917] gp 0.297 [0.255, 0.333] EV 0.269 [0.199, 0.332 v 2.063 [1.258, 2.923] vp 0.067 [0.048, 0.083]	C 0.729 [0.713, 0.741] D _{xy} 0.458 [0.427, 0.482]		

	Mean ß	Median B	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
yz30	0.9782	1,0022	2.1023	-3.3063	4,9641	0,6853	0.95
y≥40	0.3760	0.4022	2.0940	-3.7792	4.4449	0.5770	0.95
ya50	-0,4687	-0.4453	2.0931	-4.6806	3.5667	0.4164	0.95
yafi0	-0.7186	-0.6937	2.0935	-4.9522	3.2847	0.3712	0.95
y≥70	-1.5062	-1,4796	2.0957	-5.6570	2.6079	0.2366	0.95
ya:80	-2.2395	-2.2131	2,1007	-6.5205	1.7612	0.1404	0.95
y≥90	-3.0545	-3.0247	2.1049	-7.2257	1.0679	0.0685	0.94
y≥100	-3.7469	-3.7165	2.1076	-7.9309	0.3775	0.0347	0.95
outcome_saq_angina_freq_pre	0.0292	0.0291	0.0141	0.0007	0.0561	0.9817	1.02
outcome_saq_angina_froq_pre'	0.0147	0.0147	0.0142	-0.0135	0.0423	0.8520	1.00
Treatment=PCI	7.5055	7,4661	4.6529	-1.3770	16.9015	0.9480	1.03
angio_stenosis_ffr	-0.5555	-0.6268	4.1935	-8.6881	7.7998	0.4401	1.04
angio_stenosis_fft'	2.0618	2.0785	4.5127	-6.7957	10.8302	0.6786	0.99
rose_is_anginu_random	0.5872	0.5574	2.5512	-4.3707	5.6568	0.5876	1.03
Treatment=PCI × angio_stenosis_ffr	-12.1947	-12.1238	8,9799	-29.9073	5.3715	0.0866	0.97
Treatment=PCI × angio_stenosis_ffr'	5.8536	5.8337	8,3183	-10.4893	22.0678	0,7593	1.02
Treatment=PCI × rose_is_angina_random	-3.1540	-3.1224	5.0983	-13.2596	6.7100	0.2661	0.98
angio_stenosis_ffr × rose_is_angina_random	-1.9429	-1.8816	5.3269	-12.3159	8.5256	0.3586	0.97
angio_stenosis_ffr' x rose_is_angina_random	2.6404	2.6191	6.0881	-9.2490	14.5379	0.6655	1.01
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	8.4656	8.3928	10.0877	-11.2245	28.3741	0.8004	1.02
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	-11.0657	+10.9861	9.9883	-30.6529	8,5791	0.1324	0.98

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PC1"), [2] contrast = expression(c1 - c2), id = 0.042007127000599)

Supplementary figure S18: coefficient density plots: SAQ angina frequency

Supplementary figure S19: coefficient density plots: SAQ angina frequency for Rose angina and Rose nonangina

Coefficient value

Supplementary figure S20: chain plot of MCMC draws for SAQ angina frequency

Supplementary figure S21: chain plot of MCMC draws for SAQ angina frequency for Rose angina and Rose nonangina

SAQ physical limitation

Supplementary figure S22: result: SAQ physical limitation

Supplementary figure S23: result: SAQ physical limitation for Rose angina and Rose nonangina

Supplementary figure S24: Regression model and coefficients for SAQ physical limitation

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.062 for Intercepts

blrm(formula = outcome_saq_pl_post ~ rcs(outcome_saq_pl_pre, 3) + Treatment * rcs[anglo_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path[output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path[output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

2.778 5.556 19.444 22.222 25 27.778 30.556 33.333 36.111 38.889 40.278 41.667 44.444 47.222

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 262 Draws 40000 Chains 4 Time 23s p 7	B 0.168 [0.163, 0.175]	g 2.135 [1.813, 2.427] C g _p 0.344 [0.318, 0.37] D _x EV 0.36 [0.306, 0.42] v 3.752 [2.689, 4.756] vp 0.09 [0.076, 0.105]	0.759 [0.751, 0.763] y 0.517 [0.503, 0.526]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
outcome_sag_pl_pre	0.0994	0.0992	0.0137	0.0728	0.1264	1.0000	1.04
outcome_saq_pl_pre'	-0.0340	-0.0340	0.0149	-0.0638	-0.0057	0.0102	0.98
Treatment=PCI	6.3689	6.3692	1.5723	3.1912	9.3459	1.0000	1.01
angio_stenosis_ffr	1,1657	1.1642	2.2592	-3.1706	5.6603	0.6974	1.00
angio_stenosis_ffr'	1.5778	1.5776	2,5810	-3.5022	6.7014	0.7298	1.00
Treatment=PCI × angio_stenosis_ffr	-10.1239	-10.1287	3.3023	-16.4695	-3.5551	0.0010	1.00
Treatment=PCI × angio_stenosis_ffr'	4.5982	4.5963	3.7712	-2.7924	12.0045	0.8872	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S25: Regression model and coefficients for SAQ physical limitation for

Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.065 for Intercepts

blrm(formula = outcome_saq_pl_post ~ rcs(outcome_saq_pl_pre, 3) + Treatment * rcs(angio_stenosis_ffr, 3) + rose_is_angina_random, dets = rose_sanalysis_d, pcontrast = pcon, iter = 20000, theins = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 233 Draws 40000 Chains 4 Time 22.4s p 13	B 0.173 [0.166, 0.18]	g 2.255 [1.917, 2.574] <i>g</i> 0.356 [0.329, 0.381] EV 0.389 [0.336, 0.45] v 4.114 [2.924, 5.327] vp 0.097 [0.083, 0.111]	C 0.756 [0.746, 0.764] D _{xy} 0.512 [0.493, 0.529

	Mean ß	Median B	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_pl_pre	0.1033	0.1031	0.0148	0.0742	0.1319	1.0000	1.04
outcome_saq_pl_pre'	-0.0391	-0.0389	0.0171	-0.0727	-0.0060	0.0106	0.99
Treatment=PCI	7.9148	7,7847	4,8973	-1.5750	17,7462	0.9524	1.08
angio_stenosis_ffr	-3.2937	-3.2754	4.2293	-11.6006	5.0273	0.2130	1.00
angio_stenosis_ffr	4.5279	4.5339	4,5195	-4,2800	13,4681	0.8442	1.00
rose_is_angina_random	-2.7871	-2.7928	2.5351	-7.8187	2.0846	0.1342	1.00
Treatment=PCI × angio_stenosis_ffr	-14.9676	-14,7411	9,4055	-33.8644	3.3113	0.0512	0.94
Treatment=PCI × angio_stenosis_ffr'	14.0150	13,8805	8,7103	-2.6257	31,9728	0.9482	1.04
Treatment=PCI × rose_is_angina_random	-2.3532	-2.2541	5.2701	-12.7873	8.0069	0.3303	0.93
angio_stenosis_ffr × rose_is_angina_random	5.1384	5.1425	5.2680	-5.1205	15.5296	0.8362	0.99
angio_stenosis_ffr × rose_is_angina_random	-2.1683	-2.1639	5.9498	-14.0126	9.3957	0.3589	1.01
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	8.1825	8.0138	10.3263	-11.3640	29.3767	0.7884	1.05
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	-16.2608	-16.2290	10.1614	-36.6986	3.2864	0.0539	0.98

Contrasts Given Priors

[1] list(cl = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842607127883599)

Supplementary figure S26: coefficient density plots: SAQ physical limitation

Supplementary figure S27: coefficient density plots: SAQ physical limitation for Rose angina and Rose nonangina

10

ó

5

40

20

Coefficient value

Supplementary figure S28: chain plot of MCMC draws for SAQ physical limitation

Supplementary figure S29: chain plot of MCMC draws for SAQ physical limitation for Rose angina and Rose nonangina

SAQ quality of life

Supplementary figure S30: result: SAQ quality of life

Supplementary figure S31: result: SAQ quality of life for Rose angina and Rose nonangina

Supplementary figure S32: Regression model and coefficients for SAQ quality of life

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_gol_post ~ rcs(outcome_saq_gol_pre, 3) * Treatment * rcs(angio_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loa = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

0	8.333	16.667	25	33.333	41.667	58	58.333	62.5	66.667	75	83,333	91.667
3 180	7	9	25	17	28	37	30	1	26	19	31	18
18												

	Mixed Calibration/ Discrimination Indexes	Discrimination Indexes	Rank Discrim. Indexes
Obs 269 Draws 40000	B 0.201 [0.198, 0.205]	g 1.499 [1.227, 1.8] gp 0.291 [0.256, 0.328]	C 0.717 [0.71, 0.724] D _{xy} 0.434 [0.42, 0.448]
Chains 4		EV 0.257 [0.192, 0.319]	
Time 18.2s		v 1.76 [1.176, 2.514]	
p 7		vp 0.064 [0.048, 0.08]	

	Mean ß	Median B	S.E.	Lower	Upper	Pr(β>0)	Symmetry
outcome_saq_gol_pre	0.0522	0.0521	0.0143	0.0246	0.0804	0.9999	1.03
outcome_saq_qol_pre'	-0.0005	-0.0005	0.0160	-0.0317	0.0310	0.4868	0.99
Treatment=PCI	4.0916	4.0878	1.5081	1.1218	7.0134	0.9968	1.00
angio_stenosis_ffr	2.3455	2.3253	2.3961	-2.4156	6.9783	0.8371	1.02
angio_stenosis_ffr'	-0.9552	-0.9486	2.6496	-6.1872	4.1936	0.3588	0.99
Treatment=PCI × angio_stenosis_ffr	-5.2101	-5.1988	3.1999	-11.4329	1.1286	0.0520	1.00
Treatment=PCI × angio_stenosis_ffr'	-1.4603	-1.4779	3.6260	-8.6922	5.6206	0.3422	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S33: Regression model and coefficients for SAQ quality of life for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_qol_post ~ rcs(outcome_saq_qol_pre, 3) + Treatment * rcs(angio_stenosis_ffr, 3) * rose_is_angina_random, data = rose_analysis_d, proortrast = prom, iter = 20000, chains = 4, refresh = 100, progress = file.pathioutput_dir, "interact_res2.progress.txt"), loo = FALSE, posirs = NULL, method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

75 83.333 91.667 17 31 25 33.333 41.667 22 16 24 50 58,333 62.5 66.667 31 25 1 23 0 8.333 16.667 100

: 	Mixed Calibration/ Discrimination Indexes		Discrimination Indexes		Rank Discrim. Indexes
Obs 240	B 0.198 [0.191, 0.204]	8	1.621 [1.349, 1.98]	С	0.72 [0.709, 0.729]
Draws 40000		80	0.304 [0.271, 0.343]	D_{xy}	0.44 [0.418, 0.459]
Chains 4		EV	0.281 [0.221, 0.353]	1	
Time 18.4s	1	y.	2.059 [1.35, 2.952]		
p 13		vp	0.07 (0.054, 0.087)		

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_gol_pre	0.0589	0.0588	0.0154	0.0295	0.0892	1,0000	1.02
outcome_saq_qol_pre'	-0.0081	-0.0080	0.0171	-0.0417	0.0249	0.3195	0.99
Treatment=PCI	6.0283	6.0210	4,4340	-2.8531	14,5867	0.9149	1.00
angio_stenosis_ffr	-1.4560	-1.5040	4,3008	-9.9846	6.9107	0.3631	1.03
angio_stenosis_ffr	3,4522	3.4811	4,4101	-5.2943	12.0156	0.7844	0.99
rose_is_angina_random	-1.7772	-1.7854	2.5297	-6.6525	3.2726	0.2382	1.01
Treatment=PCI × angio_stenosis_ffr	-9.1496	-9.1186	8.5176	-26,0172	7.5274	0.1388	1.00
Treatment=PCI × angio_stenosis_ffr	-0.5632	-0.5525	7.7761	-16.0406	14,5546	0.4702	1.00
Treatment=PCI × rose_is_angina_random	-2.3376	-2.3481	4.7553	-11.8302	6.9716	0.3101	1.01
angio_stenosis_ffr × rose_is_angina_random	3.5156	3.5272	5.2256	-6.3683	14.1263	0.7514	0.99
angio_stenosis_ffr' × rose_is_angina_random	-4,7275	-4.7403	5.7276	-15.7816	6.6832	0.2032	1.00
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	5.3188	5:3511	9,3648	-13.7428	23,2490	0.7166	0.99
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	-1.6363	-1,6927	9.2042	-19.3209	16.9587	0.4279	1.01

Contrasts Given Priors

[1] listic1 = list(Treatment = "Placebo"], c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S34: coefficient density plots: SAQ quality of life

Coefficient value

Supplementary figure S35: coefficient density plots: SAQ quality of life for Rose angina and Rose nonangina

ò

25

-25

Coefficient value

Supplementary figure S36: chain plot of MCMC draws for SAQ quality of life

Supplementary figure S37: chain plot of MCMC draws for SAQ quality of life for Rose angina and Rose nonangina

SAQ treatment satisfaction

Supplementary figure S38: result: SAQ treatment satisfaction

Supplementary figure S39: result: SAQ treatment satisfaction for Rose angina and Rose nonangina

Supplementary figure S40: Regression model and coefficients for SAQ treatment satisfaction

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_ts_post ~ rcs(outcome_saq_ts_pre, 3) * Treatment * rcs(angio_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 1300, progress = file.path(output_dir, "interact_res1.progress.txt"), loa = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

6.25	25	37.5	43,75	50	56.25	62.5	66.667	68.75	75	81.25	87.5	93.75
1	2	1	3	2	8	22	1	12	16	- 44	23	36
100												
98												

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 269 Draws 40000 Chains 4 Time 18.6s p 7	B 0.193 [0.188, 0.199]	 g 1.366 [1.078, 1.631] g_p 0.268 [0.229, 0.307] EV 0.233 [0.166, 0.294] v 1.526 [0.945, 2.112] vp 0.057 [0.042, 0.073] 	C 0.719 [0.708, 0.728] D _{xy} 0.439 [0.416, 0.455]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
outcome_saq_ts_pre	0.0456	0.0454	0.0129	0.0202	0.0710	0.9998	1.01
outcome_saq_ts_pre'	0.0213	0.0212	0.0138	-0.0067	0.0477	0.9387	1.00
Treatment=PC1	3.8692	3,8654	1.5397	0.8661	6.8843	0.9945	1.02
angio_stenosis_ffr	2.6242	2.6292	2.2688	-1.8541	7.0648	0.8777	1.00
angio_stenosis_ffr'	-2.0637	-2.0687	2,5922	-7.1332	2.9755	0.2130	1.00
Treatment=PCI × angio_stenosis_ffr	-5.4722	-5.4783	3.2645	-11.8380	0.9643	0.0464	0.98
Treatment=PCI × angio_stenosis_ffr'	0.9243	0.9402	3.7582	-6.3797	8.3527	0.5968	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S41: Regression model and coefficients for SAQ treatment satisfaction for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = butcome_saq_ts_post ~ rcs(outcome_saq_ts_pre, 3) + Treatment * rcs(angio_sterosis_ffr, 3) * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcn, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), loo = FALSE, ppairs = NUL. method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

6.25 25 37.5 43.75 58 56.25 62.5 66.667 68.75 2 8 18 1 11 75 81.25 87.5 93.75 15 39 21 30 100

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 240 Draws 40000 Chains 4 Time 17.7s p 13	B 0.191 [0.184, 0.199]	 g 1.543 [1.259, 1.895] g_p 0.286 [0.247, 0.327] EV 0.26 [0.193, 0.323] v 1.948 [1.203, 2.768] vp 0.063 [0.048, 0.08] 	C 0.722 [0.708, 0.734] D _{xy} 0.444 [0.417, 0.459]		

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_ts_pre	0.0547	0.0545	0.0137	0.0274	0.0812	1.0000	1.01
outcome_saq_ts_pre'	0.0145	0.0145	0.0152	-0.0151	0.0444	0.8305	1.00
Treatment+PCI	5.5686	5.4289	5.2724	-4.6363	15.9818	0.8569	1.09
angio_stenosis_ffr	-0.2271	-0.1213	4,6941	-9.3122	9.1855	0.4898	0.94
angio_stenosis_ffr'	1.3920	1.3380	4.7840	-7.9495	10.8063	0.6137	1.03
rose_is_angina_random	-2.2264	-2.1790	2.7351	-7.7181	3.0646	0.2054	0.95
Treatment=PCI × angio_stenosis_ffr	-8.9813	-8.7539	10.1480	-29.2599	10.4942	0.1872	0.93
Treatment=PCI × angio_stenosis_ffr	3.4160	3.2824	9.4422	-14.5487	22.4294	0.6375	1.04
Treatment=PCI × rose_is_angina_random	0.1935	0.3347	5,5862	-10,7623	11.0961	0.5235	0.93
angio_stenosis_ffr × rose_is_angina_random	5.5746	5.5015	5.6250	-5.1752	16.9815	0.8422	1.04
angio_stenosis_ffr' × rose_is_angina_random	-7.1326	-7.0982	6.0653	-18.7338	5.1296	0.1183	0.99
Treatment=PCI × angio_stencesis_ffr × rose_is_angina_random	-0.2247	-0.4231	10.9563	-21,8806	20.8723	0.4837	1.05
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	1.6739	1.7507	10.7491	-19.4693	22.6115	0.5655	0.97

Contrasts Given Prints

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), id = 0.842807127883599)

Supplementary figure S42: coefficient density plots: SAQ treatment satisfaction

Supplementary figure S43: coefficient density plots: SAQ treatment satisfaction for Rose angina and Rose nonangina

-30

0

30

60

angio_stenosis_ffr'

Coefficient value

Supplementary figure S44: chain plot of MCMC draws for SAQ treatment satisfaction

Supplementary figure S45: chain plot of MCMC draws for SAQ treatment satisfaction for Rose angina and Rose nonangina

63

SAQ angina stability

Supplementary figure S46: result: SAQ angina stability

Supplementary figure S47: result: SAQ angina stability for Rose angina and Rose nonangina

Supplementary figure S48: Regression model and coefficients for SAQ angina stability

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

blrm(formula = outcome_saq_stab_post ~ rcs[outcome_saq_stab_pre, 3] + Treatment * rcs[amgio_stenosis_ffr, 3], data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refrest = 100, progress = file.path[output_dir, "interact_res1.progress.txt"], loo = FALSE, ppairs = NULL, method = "sampling", file = file.path[output_dir, "interact_res1.blrm.rds"])

Frequencies of Responses

0 25 50 75 100 11 29 135 44 50

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 269 Draws 40000 Chains 4 Time 14s p 7	B 0.124 [0.119, 0.128]	g 0.446 [0.223, 0.644] gp 0.057 [0.026, 0.087] EV 0.024 [0.004, 0.047] v 0.173 [0.021, 0.31] vp 0.003 [0, 0.007]	C 0.551 [0.523, 0.577] D _{xy} 0.103 [0.047, 0.155]		

	Mean ß	Median B	S.E.	Lower	Upper	Pr(β>0)	Symmetry
y≥25	1.8524	1.8473	1.2631	-0.6463	4.2926	0.9295	1.03
y≥50	0.3989	0.3917	1.2425	-2.0548	2.8204	0.6222	1.02
y≥75	-2.0350	-2.0340	1.2560	-4.4386	0.5014	0.0522	1.01
y≥100	-2.9031	-2.8986	1.2618	-5.3973	-0.4371	0.0109	1.00
outcome_saq_stab_pre	0.0034	0.0034	0.0094	-0.0148	0.0218	0.6400	1.02
outcome_saq_stab_pre'	0.0008	0.0008	0.0106	-0.0199	0.0218	0.5298	0.98
Treatment=PCI	1.4002	1.4027	1.5840	-1.7012	4.5010	0.8112	1.00
angio_stenosis_ffr	2.1947	2.2041	2.5767	-2.8832	7.1925	0.8028	0.99
angio_stenosis_ffr'	-2.1403	-2.1452	2.8844	-7.8886	3,3906	0.2293	1.01
Treatment=PCI × angio_stenosis_ffr	-1.7978	-1.8014	3.3824	-8.3988	4,7986	0.2960	1.00
Treatment=PCI × angio_stenosis_ffr'	0.2554	0.2678	3.8898	-7.4591	7.7364	0.5271	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S49: Regression model and coefficients for SAQ angina stability for Rose

angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

blrm(formula = outcome_san_stab_post ~ residutcome_san_stab_pre, 31 + Treatment * residuations.ffr, 3) * rose is angina_random, data = rose_analysis_d, prostrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.pathlowiput_dir, "interact_res2.progress.txt"), ioo = rALSE, ppoirs = NULL, method = "sampling", file = file.pathlowiput_dir, "interact_res2.blrm.rdw"))

Frequencies of Responses

8 25 58 75 100 18 27 118 38 47

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 240 Draws 40000 Chains 4 Time 13.5s p 13	B 0.123 [0.116, 0.129]	g 0.725 [0.489, 0.954] gp 0.093 [0.051, 0.128] EV 0.062 [0.021, 0.107] v 0.455 [0.195, 0.711] vp 0.008 [0.002, 0.016]	C 0.384 [0.557, 0.608] D _{xy} 0.169 [0.314, 0.217]		

- 1973 bi al-2	Mean ß	Median B	S.E.	Lower	Upper	Pr([l>0)	Symmetry
y225	7.4512	7.3926	2.5201	2,5138	12.4203	0.9986	1.06
ya:50	5.9255	5.8689	2.5075	1.0921	10.9725	0.9922	1.06
y275	3.4405	3.3848	2.4943	-1.4980	8,3326	0.9206	1.06
yz100	2.5942	2,5357	2.4909	-2.2599	7.5498	0.8564	1.06
outcome_saq_stab_pre	0.0079	0.0079	0.0102	-0.0124	0.0277	0.7798	1.00
outcome_saq_stab_pre'	-0.0018	-0.0017	0.0116	-0.0244	0.0209	0.4392	1.00
Treatment=PCI	-0.4731	-0.5213	4.7558	-10.0147	8.7377	0.4543	1.03
angio_stenosis_ffr	-8.8361	-8.7188	5,0069	-18.6825	0.9056	0.0359	0.95
ungio_stenosis_ffr	7.6304	7.5250	5.1134	-2,4351	17.5331	0.9355	1.04
rose_is_angina_random	-8.1870	-8,1463	2.9356	-13.9496	-2.4223	0.0025	0.95
Treatment=PCI × angio_stenosis_ffr	1.5979	1.6745	9.2443	-16.8362	19.5334	0.5760	0.97
Treatment=PCI × angio_stencesis_ffr'	-3.8068	-3.8185	8,7554	-21.0269	13,2974	0.3298	1.01
Treatment-PCI x rose_is_angina_random	3.8515	3.8925	5.1149	-6.1378	14.0544	0.7782	0.99
angio_stenosis_ffr x rose_is_angina_random	16.3458	16.2617	6.0798	4.5082	28.2484	0.9970	1.04
angio_stenosis_ffr' × rose_is_angina_random	-15.8519	-15.8049	6.5651	-28.5679	-2.9670	0.0070	0.98
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	-7.2830	-7.3242	10.1641	-27.8207	12.2709	0.2340	1,01
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	8.6861	8.6464	10.2491	-11.3342	28,9225	0.8019	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = B.842887127883599)

Supplementary figure S50: coefficient density plots: SAQ angina stability

Coefficient value

Supplementary figure S51: coefficient density plots: SAQ angina stability for Rose angina and Rose nonangina

Coefficient value

Supplementary figure S52: chain plot of MCMC draws for SAQ angina stability

Supplementary figure S53: chain plot of MCMC draws for SAQ angina stability for Rose angina and Rose nonangina

Post Burn-in Iteration

Dobutamine stress echocardiography (DSE) score

Supplementary figure S54: result: DSE score for Rose angina and Rose nonangina

Supplementary figure S55: Regression model and coefficients for DSE score

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.079 for Intercepts

blrm(formula = orbita_dse_score_fu ~ rcs(orbita_dse_score_rand, 3) + Treatment * rcs(angio_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loa = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

0	0.167	0.333	0.5	8.667	0.833	1	1.167	1.333	1.5	1.667	1.833	2
53	11	17	18	13	11	11	7	18	7	8	1	4
2.167	2.333	2.5	2.667	2.833	3	3.167	3.333	3.5	3.667	4.333	4.667	5
5	3	2	2	5	2	2	3	1	1	1	3	3
5.167	5.667	5.833	6.167	6.333	7.667	9.833	11.333					
1	1	2	1	1	1	1	1					

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 213 Draws 40000 Chains 4 Time 34.5s p 7	B 0.221 [0.216, 0.228]	g 1.284 [0.987, 1.55] gp 0.25 [0.205, 0.286] EV 0.194 [0.139, 0.255] v 1.403 [0.833, 2.042] vp 0.048 [0.035, 0.064]	C 0.669 [0.658, 0.677] D _{xy} 0.339 [0.315, 0.355]		

	Mean B	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
orbita_dse_score_rand	0.4621	0.4619	0.2255	0.0142	0.8993	0.9798	1.01
orbita_dse_score_rand"	-0.2021	-0.2070	0.4961	-1.1621	0.7772	0.3397	1.01
Treatment=PCI	-3.6711	-3.6671	1.6551	-6.9447	-0.4450	0.0133	1.00
angio_stenosis_ffr	-1.7101	-1.7182	2.8414	-7.2052	3.9667	0.2716	1.00
angio_stenosis_ffr'	-3.1794	-3.1641	3.3882	-9.8169	3,4976	0.1739	0.99
Treatment=PCI × angio_stenosis_ffr	3.7392	3.7385	3.5348	-3.3577	10,4681	0.8566	1.01
Treatment=PCI × angio_stenosis_ffr'	3.2813	3.2998	4.2636	-4.9904	11.6070	0.7792	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S56: Regression model and coefficients for DSE score for Rose angina

and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.079 for Intercepts

blrm(formula = ofbita_dse_score_fu ~ rcs(orbita_dse_score_rand, 3) + Treatment * rcs(amgin_itenosis_ffr, 3) * rose_is_anging_random, data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path[output_dir, "interact_res2.progress.txt"), loo = fALSE, posirs = NULL, method = "sampling", file = file.path[output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

0	8.167	0.333	0.5	0.667	0.833	1	1.167	1,333	1.5	1.667	1.833	2
-44	7	15	16	12	18	10	6	9	6	6	1	- 4
2.167	2.333	2.5	2.667	2.833	3	3.167	3.333	3.5	3.667	4.333	4.667	5
5		2	2	5	2	2	2	1	1	1	3	3
5,167	5.667	5,833	6,167	6.333	7.667	9,833	11.333					
200 g	1	2		1	1		(2011) H					

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 188 Draws 40000 Chains 4 Time 39s p 13	B 0.22 [0.21, 0.229]	g 1.379 [1.068, 1.662] _{Rp} 0.26 [0.219, 0.299] EV 0.211 [0.152, 0.272] v 1.594 [0.91, 2.251] vp 0.052 [0.036, 0.066]	C 0.669 [0.653, 0.683] D _{xy} 0.337 [0.305, 0.367]		

	Mean B	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
orbita_dse_score_rand	0.4534	0.4529	0.2373	-0.0045	0.9237	0.9724	1.01
orbita_dse_score_rand'	-0.2319	-0.2338	0.5751	-1.3859	0.8711	0.3411	1.00
Treatment=PCI	-5.5205	-5.4611	4.9397	-15,1753	4.1878	0.1258	0.95
angio_stenosis_ffr	1.5010	1.5073	4.5060	-7.3915	10.3601	0.6354	0.98
angio_stenesis_ffr'	-7.4467	-7.4054	5.2258	-18,2409	2.4187	0.0755	0.98
rose_is_angina_random	2.1466	2.1524	2.8180	-3.3775	7.7011	0.7802	0.98
Treatment=PCI × angio_stenosis_ffr	7.2057	7.1188	9.6749	-11.7518	26.2195	0.7727	1.04
Treatment=PCI × angio_stenosis_ffr'	1,9435	1.9822	9.2778	-16.3151	19.9634	0,5859	0.99
Treatment=PCI × rose_is_angina_random	1.9679	1.8885	5.3862	-8,5918	12.5334	0.6400	1,05
angio_stencsis_ffr x rose_is_angina_random	-4.8643	-4.8916	5.9645	-16.5745	6.7869	0.2044	1.01
angio_stenosis_ffr' x rose_is_angina_random	7.9413	7.9801	7.0732	-6.1479	21.4957	0.8682	0.99
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	-3.8483	-3.7040	10.8224	-24.9829	17.4524	0.3649	0.97
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	-0.5812	-0.6357	11.1125	-22.1371	21.2846	0.4777	1.02

Contrasts Given Priors

list(cl = list(Treatment = "Placeba"), c2 = list(Treatment = "PCI"),
 contrast = expression(cl = c2), sd = 8.842887127883599)

Supplementary figure S57: coefficient density plots: DSE score

Supplementary figure S58: coefficient density plots: DSE score for Rose angina and Rose nonangina

-20

0

20

Coefficient value

25

0

Supplementary figure: chain plot of MCMC draws for DSE score

Supplementary figure S59: chain plot of MCMC draws for DSE score for Rose angina and Rose nonangina

EQ-5D-5L index value

Supplementary figure S60: result: EQ-5D-5L index value

Supplementary figure S61: result: EQ-5D-5L index value for Rose angina and Rose nonangina

Supplementary figure S62: Regression model and coefficients for EQ-5D-5L index value **Bayesian Proportional Odds Ordinal Logistic Model**

Dirichlet Priors With Concentration Parameter 0.029 for Intercepts

blrm(formula = eq5d_value_fu ~ rcs(eq5d_value_random, 3) + Treatment *
 rcs(angio_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon,
 iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir,
 "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL,
 method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"})

- HM - Chavis	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 268 Draws 40000 Chains 4 Time 37.4s p 7	B 0.004 [0.004, 0.005]	g 1.724 [1.412, 2.065] g _p 0.005 [0, 0.016] EV 0.043 [0, 0.125] v 2.46 [1.662, 3.47] vp 0 [0, 0.001]	C 0.739 [0.731, 0.745] D _{xy} 0.479 [0.462, 0.49]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
eq5d_value_random	4.7289	4.7195	0.8982	3.0059	6.5436	1.0000	1.02
eq5d_value_random'	2.8108	2.8111	1.3404	0.1316	5.3759	0.9840	1.03
Treatment=PCI	1.9633	1.9469	1.5462	-1.1094	4.9715	0.9002	1.02
angio_stenosis_ffr	-2.6694	-2.6884	2.4583	-7.4623	2.1385	0.1392	1.03
angio_stenosis_ffr'	2.7139	2.7280	2.7474	-2.5935	8.1235	0.8356	1.00
'Treatment=PCI × angio_stenosis_ffr	-1.3276	-1.3071	3.3029	-7.8806	5.0797	0.3454	0.99
Treatment=PCI × angio_stenosis_ffr'	-3.1190	-3.1104	3.7342	-10.2763	4,3911	0.2010	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 8.842887127883599)

Supplementary figure S63: Regression model and coefficients for EQ-5D-5L index value for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.031 for Intercepts

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 239 Draws 40000 Chains 4 Time 30.8s p 13	B 0.168 [0.16, 0.177]	g 1.994 [1.667, 2.379] gp 0.336 [0.302, 0.367] EV 0.342 [0.274, 0.408] v 3.219 [2.041, 4.31] vp 0.085 [0.069, 0.102]	C 0.751 [0.743, 0.759] D _{xy} 0.502 [0.485, 0.517

Sector of the	Mean ß	Median ß	S.E.	Lower	Upper	Pr(fi>0)	Symmetry
eq5d_value_random	4,5761	4.5706	0.9715	2.6599	6.4656	1.0000	1.03
eq5d_value_random'	3,6524	3,6342	1.4549	0.8098	6.4477	0.9951	1.01
Treatment=PCI	2.0827	2.0409	4.4812	-6.5168	10.9174	0.6778	1.02
angio_stenosis_ffr	-6.7099	-6.8058	4.6632	-15.6928	2.7166	0.0756	1.04
angio_stenosis_ffr'	6.7331	6.7698	4.7547	-2.4633	16.2833	0.9213	0.98
rose_is_angina_random	-1.1538	-1.1874	2.7063	-6.4371	4.0884	0.3301	1.03
Treatment=PCI × angio_stenosis_ffr	-3.0424	-2.9890	8.6815	-20.0521	13.9081	0.3646	0.98
Treatment=PCI × angio_stenosis_ffr	0.5420	0.4565	8.0403	-15.0501	16.4462	0.5226	1.00
Treatment=PCI × rose_is_angina_random	-3.2552	-3.2136	4.8602	-12.5995	6.3794	0.2528	0.98
angio_stenosis_ffr x rose_is_angina_random	2.9369	3.0048	5.6126	-8.1509	13.7563	0.7013	0.97
angio_stenosis_ffr' × rose_is_angina_random	-2.2177	-2.2316	6.1111	-14.0193	9.7264	0.3598	1.00
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	10.2799	10.2328	9.6714	-8.9466	28.8084	0.8580	1.02
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	-14.9385	-14.9384	9.6789	-33.7893	4.0302	0.0591	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S64: coefficient density plots: EQ-5D-5L index value

Supplementary figure S65: coefficient density plots: EQ-5D-5L index value for Rose angina and Rose nonangina

_stenosis_ffr * rose_is_angina_ra

-20 -10 0 10

Coefficient value

Supplementary figure S66: chain plot of MCMC draws for EQ-5D-5L index value

Supplementary figure S67: chain plot of MCMC draws for EQ-5D-5L index value for Rose angina and Rose nonangina

EQ-5D-5L visual analogue scale

Supplementary figure S68: result: EQ-5D-5L visual analogue scale

Supplementary figure S69: result: EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Supplementary figure S70: Regression model and coefficients for EQ-5D-5L visual analogue

scale

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.086 for Intercepts

```
blrm(formula = eq5d_gol_post ~ rcs(eq5d_gol_pre, 3) + Treatment *
    rcs(angio_stenosis_ffr, 3), data = analysis_d, pcontrast = pcon,
    iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir,
        "interact_resl.progress.txt"), loo = FALSE, ppairs = NULL,
    method = "sampling", file = file.path(output_dir, "interact_resl.blrm.rds"))
```

Frequencies of Responses

 6
 15
 20
 25
 30
 35
 38
 40
 45
 50
 55
 56
 63
 64
 65
 70
 73
 74
 75
 78
 80
 82
 85

 1
 1
 2
 5
 5
 4
 1
 11
 6
 22
 5
 1
 22
 1
 1
 13
 26
 1
 1
 23
 1
 29
 2
 28

 86
 88
 90
 95
 98
 99
 100
 1
 1
 23
 1
 2
 3
 2
 1
 1
 13
 26
 1
 1
 23
 1
 29
 2
 28

 16
 23
 1
 2
 3
 2
 1
 1
 13
 26
 1
 1
 23
 1
 29
 2
 28

 16
 88
 90
 95
 98
 99
 100
 1
 1
 1
 23
 1
 29
 2
 28

 1
 2
 32
 1
 2
 3</t

Mixed Calibration/		Discrimination	Rank Discrim.
Discrimination Indexes		Indexes	Indexes
Obs 268 Draws 40000 Chains 4 Time 24.4s p 7	B 0.195 [0.191, 0.199]	g 1.461 [1.144, 1.74] g _p 0.286 [0.248, 0.323] EV 0.247 [0.186, 0.311] v 1.685 [1.036, 2.405] vp 0.062 [0.045, 0.077]	C 0.709 [0.703, 0.715] D _{xy} 0.418 [0.406, 0.43

	Mean ß	Median B	S.E.	Lower	Upper	Pr(β>0)	Symmetry
eq5d_qol_pre	0.0552	0.0551	0.0122	0.0310	0.0787	1.0000	1.02
eq5d_qol_pre'	0.0173	0.0172	0.0171	-0.0156	0.0512	0.8446	1.00
Treatment=PCI	1.1873	1.1949	1.4829	-1.6594	4.1593	0.7878	1.00
angio_stenosis_ffr	-5.0919	-5.0826	2.4417	-9.7174	-0.1809	0.0174	0.99
angio_stenosis_ffr*	7.0228	7.0305	2,7579	1.5058	12.3358	0.9948	1.01
Treatment=PCI × angio_stenosis_ffr	0.0881	0.0845	3.1747	-5.9117	6.5428	0.5099	1.01
Treatment=PCI × angio_stenosis_ffr	-4.7496	-4,7585	3.6414	-11.7956	2.4468	0.0967	0.99

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S71: Regression model and coefficients for EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.086 for Intercepts

Frequencies of Responses

 6
 15
 20
 25
 30
 30
 40
 45
 50
 55
 56
 60
 63
 64
 65
 78
 73
 74
 75
 78
 80
 82
 85

 1
 1
 2
 3
 4
 3
 1
 9
 6
 19
 4
 1
 11
 14
 1
 1
 22
 1
 27
 2
 26

 86
 86
 95
 96
 99
 108
 1
 21
 1
 11
 24
 1
 1
 22
 1
 27
 2
 26

 86
 86
 95
 96
 99
 108
 1
 27
 1
 2
 1
 27
 2
 26

 1
 1
 11
 2
 1
 2
 3
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 2
 2
 2
 2

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 239 Draws 40000 Chains 4 Time 32.3s p 13	B 0.198 [0.193, 0.205]	g 1.568 [1.269, 1.85] gp 0.3 [0.263, 0.334] EV 0.271 [0.207, 0.333] v 1.928 [1.249, 2.662] vp 0.068 [0.052, 0.083]	C 0.708 [0.699, 0.716] D _{xy} 0.416 [0.397, 0.432]

Source of the second seco	Mean B	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
eq5d_qol_pre	0.0578	0.0578	0.0142	0.0296	0.0854	1.0000	0.99
eq5d_qol_pre*	0.0162	0.0162	0.0187	-0.0208	0.0526	0.8086	1.00
Treatment=PCI	-0.7581	-0.7864	4,0661	-8.6238	7.3089	0.4223	1.02
angio_stenosis_ffr	-9.8654	-9.9046	4,7802	-19.5280	-0.7327	0.0216	1.02
angio_stenosis_ffr	10.0354	10.0567	4.9200	0.4072	19.6448	0.9784	0.98
rose_is_angina_random	-2.0162	-2.0242	2,7600	-7.4516	3.2998	0.2309	1.02
Treatment=PCI × angio_stenosis_ffr	3.3031	3,3413	7,9193	-12,4499	18.5139	0.6629	0.99
Treatment=PCI × angio_stenosis_ffr'	-3.6970	-3.6345	7,4533	-18.2269	10.9157	0.3083	0,98
Treatment=PCI × rose_is_angina_random	1.0800	1.0985	4.4617	-7.6104	9.7814	0.5987	0.99
angio_stenosis_ffr × rose_is_angina_random	4.3603	4.3810	5.6925	-6.5404	15.5523	0.7807	0.97
angio_stenosis_ffr x rose_is_angina_random	+1.0107	-1.0322	6.1313	-12.9989	10.9924	0.4339	1.01
Treatment=PCI × angio_stenosis_ffr × rose_is_angina_random	-0.7388	-0.7712	8,8794	-17.8254	16.8422	0.4662	1.00
Treatment=PCI × angio_stenosis_ffr' × rose_is_angina_random	-6.0548	-6.0645	8.9667	-23.5954	11.6069	0.2520	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S72: coefficient density plots: EQ-5D-5L visual analogue scale

Coefficient value

Supplementary figure S73: coefficient density plots: EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Coefficient value

-10

0

10

20

Supplementary figure S74: chain plot of MCMC draws for EQ-5D-5L visual analogue scale

Supplementary figure S75: chain plot of MCMC draws for EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Treadmill exercise time

Supplementary figure S76: result: treadmill exercise time for Rose angina and Rose nonangina

Supplementary figure S77: Regression model and coefficients for treadmill exercise time **Bayesian Proportional Odds Ordinal Logistic Model**

Dirichlet Priors With Concentration Parameter 0.015 for Intercepts

blrm!formula = fu_ett_seconds ~ rcs(baseline_ett_seconds, 3) +
 Treatment * rcs(angio_stenosis_ffr, 3), data = analysis_d,
 pcontrast = pcon, iter = 20000, chains = 4, refresh = 100,
 progress = file.path(output_dir, "interact_res1.progress.txt"),
 loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir,
 "interact_res1.blrm.rds"))

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 217 Draws 40000 Chains 4 Time 72.5s p 7	B 0.138 [0.133, 0.144]	g 2.661 [2.265, 3.049] gp 0.387 [0.366, 0.41] EV 0.457 [0.401, 0.512] v 5.572 [3.981, 7.307] vp 0.114 [0.1, 0.128]	C 0.784 [0.78, 0.788] D _{xy} 0.569 [0.56, 0.576

	Mean ß	Median B	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
baseline_ett_seconds	0.0092	0.0092	0.0014	0.0065	0.0120	1,0000	1.04
baseline_ett_seconds'	-0.0002	-0.0002	0.0014	-0.0029	0.0024	0.4291	1.00
Treatment=PCI	5,0405	5.0466	1.6187	1.9337	8.2471	0.9989	1.02
angio_stenosis_ffr	1.4137	1.3932	2.6281	-3.7409	6.5557	0.7059	1.00
angio_stenosis_ffr'	0.5349	0.5486	2.9949	-5.5286	6.1829	0.5735	1.00
Treatment=PCI × angio_stenosis_ffr	-8,1006	-8.1190	3.4568	-14.9168	-1.4573	0.0094	0.99
Treatment=PCI × angio_stenosis_ffr'	2.0359	2.0413	4.0226	-5.6882	10.0176	0.6915	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S78: Regression model and coefficients for treadmill exercise time for

Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.016 for Intercepts

	Mixed Calibration/ Discrimination Indexes	Rank Discrim. Indexes			
Obs 193 Draws 40000 Chains 4 Time 62.6s p 13	B 0,141 (0.134, 0.15)	g 2.653 [2.236, 3.085] g _p 0.388 [0.36, 0.411] EV 0.46 [0.385, 0.515] v 5.535 [3.721, 7.321] vp 0.115 [0.097, 0.129]	C 0.777 [0.768, 0.784] D _{xy} 0.555 [0.537, 0.568]		

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
baseline_ett_seconds	0.0098	0.0097	0.0015	0.0068	0.0127	1.0000	1.04
baseline_ett_seconds'	-0.0011	-0.0011	0.0014	-0.0039	0.0017	0.2288	0.99
Treatment=PCI	4.9436	4.9644	4.6375	-4.0451	14.0631	0.8563	0.99
angio_stenosis_ffr	1,4426	1.3948	4.6135	-7.5474	10.7886	0.6237	1.05
angio stenosis ffr'	3.3350	3.3338	5.0166	-6.3402	13.3960	0.7515	1.00
rose_is_angina_random	0.3164	0.2909	2.7500	-5.1648	5.6406	0.5440	1.02
Treatment=PCI × angio_stenosis_ffr	-8.0976	-8.1619	9.1669	-25.9394	9.8156	0.1882	1.01
Treatment=PC1 × angio_stenosis_ffr'	1.0918	1.1252	8.8474	-16.1079	18.3777	0.5511	1.00
Treatment=PCI × rose_is_angina_random	-0.9405	-0.9884	5.0727	-10.5070	9.4306	0.4253	1.01
angio stenosis ffr x rose is angina random	-0.2218	-0.1667	5.8233	-11.5491	11.3707	0.4889	0.98
angio_stenosis_fft' x rose_is_angina_random	-3.8311	-3.8477	6.5814	-17.0115	8.8585	0.2794	0.99
Treatment=PCI x angio_stenosis_ffr x rose_is_angina_random	3.1289	3.2030	10.2644	-17.1764	23.1405	0.6201	1.00
Treatment-PCI × angio_stenosis_ffr' × rose_is_angina_random	-1.9063	-1.9659	10.5266	-22.3861	18.6377	0.4273	0.99

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S79: coefficient density plots: treadmill exercise time

Coefficient value

Supplementary figure S80: coefficient density plots: treadmill exercise time for Rose angina and Rose nonangina

Coefficient value

Supplementary figure S81: chain plot of MCMC draws for treadmill exercise time

Supplementary figure S82: chain plot of MCMC draws for treadmill exercise time for Rose angina and Rose nonangina

Supplementary Results - iFR

Supplementary table S7: iFR-stratified effect of PCI over placebo according to symptom characteristics

	iFR at the 25 th centile	iFR at the 75 th centile	Probability of greater benefit in a patient with a					
iFR	0.50	0.86	lower iFR (Pr)					
Primary endpoint: angina symptom score at 12 weeks*								
Rose angina								
Odds of improvement	2.91 (2.31 to 3.69)	1.37 (1.11 to 1.73)						
Odds ratio	2. (1.79 t	>99.9%						
Rose nonangina								
Odds of improvement	1.62 (1.23 to 2.12)	0.96 (0.76 to 1.22)						
Odds ratio	1. (1.32 t	69 o 2.17)	>99.9%					
	Daily angina o	episodes						
Rose angina								
Odds of improvement	3.60 (2.84 to 4.58)	1.60 (1.26 to 2.03)						
Odds ratio	2. (1.88 t	>99.9%						

Rose nonangina			
Odds of improvement	1.93 (1.46 to 2.58)	0.97 (0.76 to 1.25)	
Odds ratio	1.5 (1.53 te	99 o 2.55)	>99.9%

Angina symptom score

Daily angina episodes

Supplementary figure S85: result: daily angina episodes

CCS class

Supplementary figure S87: result: CCS class for Rose angina and Rose nonangina

Supplementary figure S88: Regression model and coefficients for CCS class

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

Frequencies of Responses

0 1 2 3 4 76 59 83 47 7

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 272 Draws 40000 Chains 4 Time 22.3s p 6	B 0.204 [0.2, 0.21]	g 1.201 [0.932, 1.491] gp 0.246 [0.206, 0.284] EV 0.19 [0.128, 0.246] v 1.189 [0.667, 1.795] vp 0.047 [0.032, 0.062]	C 0.704 [0.692, 0.713] D _{xy} 0.408 [0.383, 0.427

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
y≥l	0.5205	0.5104	0.9155	-1.2570	2.3153	0.7136	1.02
y≥2	-0.6248	-0.6324	0.9162	-2.4174	1.1635	0.2490	1.02
y≥3	-2.3184	-2.3162	0.9287	-4.1030	-0.4768	0.0065	1.01
y≥4	-4.7526	-4.7438	0.9923	-6.7941	-2.9089	0,0000	0.99
num_ccs_rand	0.9446	0.9439	0.2081	0.5439	1.3607	1.0000	1.02
Treatment=PCI	-4.6833	-4.6604	1.2216	-7.0258	-2.2633	0.0001	0.96
angio_stenosis_ifr	-1.3564	-1.3475	1.6216	-4.5494	1.7877	0.2020	0.98
angio_stenosis_ifr'	0.0946	0.0932	1.6036	-3.0584	3.2339	0.5230	1.00
Treatment=PCI × angio_stenosis_ifr	4.8722	4.8388	2,4431	0.0082	9.5335	0.9790	1.02
Treatment=PCI × angio_stenosis_ifr'	0.5525	0.5699	2.3774	-4.1512	5.1659	0.5923	0.99

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 8.842887127883599)

Supplementary figure S89: Regression model and coefficients for CCS class for Rose angina

and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

blrm(formula = num_ccs_fw ~ num_ccs_rand + Treatment * rcs(angio_stenosis_ifr, 3) * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), low = FALSE, ppairs = MULL, method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

0 1 2 3 4 69 53 72 44 5

	Mixed Calibration/	Discrimination	Rank Discrim,
	Discrimination Indexes	Indexes	Indexes
Obs 243 Draws 40000 Chains 4 Time 26.5s p 12	B 0.179 [0.174, 0.187]	g 1.358 [1.055, 1.676] g _p 0.227 [0.187, 0.272] EV 0.222 [0.15, 0.307] v 1.475 [0.819, 2.145] vp 0.045 [0.029, 0.063]	C 0.713 (0.699, 0.725) D _{xy} 0.426 (0.399, 0.45

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
yal	-0.2659	-0.3006	1.4490	-3.0371	2.6433	0.4181	1.08
ya2	-1.4471	-1.4842	1.4491	-4.2758	1,4180	0.1570	1.08
y≥3	-3.1662	-3.2005	1.4684	-6.0121	-0.2661	0.0189	1.08
ye4	-5,9215	-5.9487	1.5442	-8.9294	-2.8812	0.0002	1.05
num_ccs_rand	1.0506	1.0493	0.2255	0.6046	1.4887	1.0000	1.02
Treatment=PCI	-4.5322	-4.4498	3.2379	-11.1493	1.5888	0.0731	0.91
angio_stenosis_ifr	-0.2786	-0.2033	2,7667	-5.6039	5.2404	0.4714	0.93
angio_stenosis_ifr'	-1.1928	-1.2301	2.7194	-6.4784	4.1645	0.3255	1.03
rose_is_angina_random	0,3870	0.4075	1.6905	-2.9908	3.6810	0.5976	0.95
Treatment=PCI × angio_stenosis_ifr	5.2836	5.1870	5,8836	-5.9511	17.1547	0.8170	1.07
Treatment=PCI × angio_stenosis_ifr'	0.6594	0.6880	4,9434	-8.9458	10.5115	0.5568	0.98
Treatment=PCI × rose_is_angina_random	0.0826	0.0056	3.5506	-6.6860	7.2198	0.5007	1.05
anglo_stenosis_ifr x rose_is_angina_random	-0.6654	-0.6971	3.4500	-7.2842	6.3564	0.4169	1.04
angio_stenosis_ifr' x rose_is_angina_random	1.6011	1.6255	3.4438	-5.2401	8.3825	0.6838	1.00
Treatment=PCI x angio_stenosis_ifr x rose_is_angina_random	-1.5375	+1.4641	6.6517	+14.3370	11.6414	0.4126	0.96
Treatment=PCI × angio_stenosis_iff' × rose_is_angina_random	-0.1562	-0.1728	5.8552	-11.6582	11.2575	0.4880	1.02

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PC1"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S90: coefficient density plots: CCS class

Supplementary figure S91: coefficient density plots: CCS class for Rose angina and Rose nonangina

Supplementary figure S92: chain plot of MCMC draws for CCS class

Supplementary figure S93: chain plot of MCMC draws for CCS class for Rose angina and Rose nonangina

SAQ angina frequency

Supplementary figure S94: result: SAQ angina frequency for Rose angina and Rose nonangina

Supplementary figure S95: Regression model and coefficients for SAQ angina frequency

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.233 for Intercepts

blrm(formula = outcome_saq_angina_freq_post ~ rcs(outcome_saq_angina_freq_pre, 3) * Treatment * rcs(angio_stenosis_ifr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

0 20 30 40 50 60 70 80 90 108 1 14 8 20 9 34 35 39 33 77

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 270 Draws 40000 Chains 4 Time 10.9s p 7	B 0.189 [0.184, 0.195]	 g 1.454 [1.115, 1.725] g_p 0.282 [0.242, 0.317] EV 0.243 [0.178, 0.305] v 1.673 [0.963, 2.323] vp 0.06 [0.045, 0.076] 	C 0.724 [0.714, 0.734] D _{xy} 0.449 [0.429, 0.467]

	Mean ß	Median B	S.E.	Lower	Upper	Pr(β>0)	Symmetry
y≥20	4.0796	3.9812	1.3887	1.4553	6.8517	0.9998	1.26
y≥30	0.9260	0.9238	0.9071	-0.8489	2.6936	0.8452	1.00
y≥40	0.3763	0.3785	0.9093	-1.3710	2,1957	0.6633	1.00
y≥50	-0.4691	-0.4613	0.9136	-2.2838	1.2927	0.3031	0.99
y≥60	-0.7481	-0.7420	0.9139	-2,5616	1.0210	0.2074	0.99
y≥70	-1.5669	-1.5596	0.9193	-3.3548	0.2393	0.0432	0.98
y≥80	-2.2798	-2.2719	0.9264	-4.0874	-0.4566	0.0062	0.99
y≥90	-3.0502	-3.0442	0.9301	-4.8808	-1.2460	0.0004	0.99
y≥100	-3.7423	-3.7343	0.9323	-5.6122	-1.9724	0.0000	0.99
outcome_saq_angina_freq_pre	0.0225	0.0225	0.0133	-0.0039	0.0482	0.9542	1.00
outcome_saq_angina_freq_pre'	0.0212	0.0211	0.0131	-0.0049	0.0466	0.9471	1.02
Treatment=PCI	4.2189	4,2052	1.1568	1.9582	6.4930	0.9998	1.04
angio_stenosis_ifr	-0.5905	-0.6006	1.5233	-3.4911	2.4970	0.3458	1.02
angio_stenosis_ifr'	1.8886	1.8949	1.5585	-1.2125	4.8835	0.8876	1.00
Treatment=PC1 × angio_stenosis_ifr	-3.8124	-3.7917	2.3507	-8.4798	0.6608	0.0498	0.98
Treatment=PCI × angio_stenosis_ifr	-1.7010	-1,7007	2.3755	-6.2567	2.9961	0.2366	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S96: Regression model and coefficients for SAQ angina frequency for

Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.253 for Intercepts

blrm(formula = outcome_saq_angina_freq_post ~ rcs[outcome_saq_angina_freq_pre, 3) + Treatment * rcs(angin_stenosis_ifr, 3) * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcon, iter = 20006, chains = 4, refresh = 100, progress = file.path[output_dir, "interact_res2.progress.txt"], loo = FALSE, ppairs = NULL, method = "sampling", file = file.path[output_dir, "interact_res2.blrm.rds"])

Frequencies of Responses

28 38 40 50 68 70 80 90 180 14 8 18 7 28 31 36 29 70

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 241 Draws 40000 Chains 4 Time 10.6s p 13	B 0.19 [0.181, 0.199]	g 1.541 [1.241, 1.897] g _p 0.292 [0.255, 0.331] EV 0.259 [0.197, 0.328] v 1.879 [1.024, 2.615] vp 0.064 [0.049, 0.082]	C 0.722 [0.708, 0.735] D _{ky} 0.445 [0.417, 0.471]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
ya30	1.4365	1.4592	1.3061	-1.1338	3.9995	0.8659	0.96
y≥40	0.8372	0.8644	1.3029	-1.7364	3.3811	0.7442	0.96
ya50	-0.0039	0.0230	1.3039	-2.6025	2.5121	0.5075	0.96
ya60	-0.2523	-0.2252	1.3046	-2.8339	2.2972	0.4289	0.95
yz70	-1.0295	-1.0032	1.3063	-3.6349	1.4760	0.2148	0.94
y≥80	-1.7531	-1.7247	1.3123	-4.3171	0.8139	0.0873	0.94
yz90	-2.5579	-2.5294	1.3129	-5.1211	0.0232	0.0229	0.95
ya:100	-3.2415	-3.2170	1.3129	-5.8552	-0.7161	0.0057	0.94
outcome_saq_angina_freq_pre	0.0286	0.0286	0.0141	0.0011	0.0565	0.9787	1.01
outcome_saq_angina_freq_pre'	0.0136	0.0136	0.0138	-0.0130	0.0412	0.8386	1.00
Treatment=PCI	2.1657	2.1125	3,0184	-3.8446	7.9884	0.7619	1.05
angio_stenosis_ifr	-2.0606	-2.0988	2.4255	-6.8561	2.7110	0.1931	1.05
angio_stenosis_ifr'	3.3568	3.3764	2.5621	-1.5693	8,4687	0.9042	1.00
rose_is_angina_random	-0.8036	-0.8266	1.5247	-3.8085	2.1717	0.2926	1.03
Treatment=PCI × angio_stenosis_ifr	-0.8514	-0.7689	5.5619	-11.8724	9.8831	0.4430	0.96
Treatment=PCI x angio_stenosis_ifr	-3.1880	-3.1895	4.9165	-12.7049	6.4844	0.2565	1.02
Treatment=PCI × rose_is_angina_random	2.2711	2.3175	3.3256	-4.4157	8,6436	0.7552	0.97
angio_stencsis_ifr × rose_is_angina_random	1.6227	1.6532	3.3687	-4.6723	7.8321	0.7022	0.97
angio_stenosis_ifr' x rose_is_angina_random	-1.7537	-1.7715	3.3122	-8.1948	4.7883	0.2966	1.01
Treatment=PCI × angio_stenosis_ifr × rose_is_angina_random	-3,0160	-3.0804	6.3012	+15.5042	9,2798	0.3118	1.02
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	1.7868	1.8102	5,7755	-9.5401	12.9378	0.6230	0.99

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842607127883599)

Supplementary figure S97: coefficient density plots: SAQ angina frequency

Supplementary figure S98: coefficient density plots: SAQ angina frequency for Rose angina and Rose nonangina

_stenosis_ifr * rose_is_angina_ra

-10 Ó 10

Coefficient value

-20 -10

0

10

20

Supplementary figure S99: chain plot of MCMC draws for SAQ angina frequency

Supplementary figure S100: chain plot of MCMC draws for SAQ angina frequency for Rose angina and Rose nonangina

SAQ physical limitation

Supplementary figure S101: result: SAQ physical limitation

Supplementary figure S102: result: SAQ physical limitation for Rose angina and Rose nonangina

Supplementary figure S103: Regression model and coefficients for SAQ physical limitation **Bayesian Proportional Odds Ordinal Logistic Model**

Dirichlet Priors With Concentration Parameter 0.062 for Intercepts

blrm(formula = outcome_saq_pl_post ~ rcs(outcome_saq_pl_pre, 3) + Treatment * rcs(angio_stenosis_ifr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NALL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

2.778 5.556 19.444 22.222 25 27.778 38.556 33.333 36.111 38.889 48.278 41.667 44.444 58 51.389 52.778 54.167 55.556 56.944 58.333 59.722 61.111 62.5 63.889 66.667 47.222 1 9 9 7 93,056 94,444 95,833 97,222 2 11 2 16 18 1 100

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 262 Draws 40000 Chains 4 Time 29.7s p 7	B 0.168 [0.163, 0.174]	g 2.176 [1.851,2.532] gp 0.349 [0.317,0.376] EV 0.371 [0.304,0.431 v 3.883 [2.712,5.094] vp 0.093 [0.077,0.109]	C 0.764 [0.758, 0.769] D _{xy} 0.527 [0.516, 0.538		

	Mean B	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_pl_pre	0.1061	0.1060	0.0136	0.0800	0.1331	1.0000	1.02
outcome_saq_pl_pre'	-0.0400	-0.0400	0.0145	-0.0690	-0.0119	0.0025	1.00
Treatment=PCI	4.9361	4.9242	1.0826	2.7977	7.0410	1.0000	1.02
angio_stenosis_ifr	0.7586	0.7621	1.4832	-2.1572	3.6570	0.6958	1.00
angio_stenosis_ifr'	1.3409	1.3428	1.5252	-1.6864	4.3156	0.8130	0.99
Treatment=PCI × angio_stenosis_ifr	-6.0256	-6.0220	2.2409	-10.4516	-1.6566	0.0041	1.00
Treatment=PCI × angio_stenosis_ifr	0.5304	0.5276	2.2993	-3.9675	5.0512	0.5900	1.00
and a part of the second s							

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S104: Regression model and coefficients for SAQ physical limitation for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.065 for Intercepts

Frequencies of Responses

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 233 Draws 40000 Chains 4 Time 33.9s p 13	B 0.173 [0.168, 0.179]	g 2.297 [1.959, 2.65] gp 0.36 [0.336, 0.389] EV 0.399 [0.339, 0.458] v 4.261 [3.121, 5.625] vp 0.099 [0.085, 0.115]	C 0.261 (0.753, 0.767) D _{ky} 0.522 (0.506, 0.534)		

er en	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_sag_pl_pre	0.1067	0.1065	0.0148	0.0783	0.1361	1.0000	1.04
outcome_sag_pl_pro'	-0.0434	-0.0433	0:0171	-0.0760	-0.0094	0.0058	0.98
Treatment=PC1	7.5652	7,4732	3.3556	1.0476	14.1317	0.9902	1.06
angio_stenosis_ifr	0.7563	0.7542	2.4894	-4.1551	5.6232	0.6226	1.00
angio_stenosis_ifr'	0.2826	0.2453	2.7235	-4.9927	5.6640	0.5372	1.02
rose_is_angina_random	-0.4543	-0,4530	1,4802	-3.4064	2.4051	0.3787	1.01
Treatment=PCI x angio_stenosis_ift	-13.2726	-13.1593	6.1089	-25 3308	-1,4964	0.0135	0.95
Treatment=PCI × angio_stenosis_ift'	10.0225	9.9739	5.4066	-0.5777	20.6659	0.9697	1.02
Treatment=PCI x rose_is_angina_random	-2.8724	-2.7995	3.5870	-9.8346	4.2110	0.2117	0.94
angio_stenosis_ifr × rose_is_angina_random	-0.0219	-0.0324	3.1633	-6.2589	6.1761	0.4958	1.00
angio_stenosis_ifr' × rose_is_angina_random	2.0892	2.1056	3.4276	-4.2065	8,6948	0.7310	1.00
Treatment=PC1 × angio_stenosis_ifr × rose_in_angina_random	8.9908	8.8921	6.7289	-4.0632	22.2308	0.9134	1.03
Treatment=PCI x angio_stenosis_ifr' x rose_is_angina_random	-12.4652	-12.4256	6.2330	-24.7574	-0.3874	0.0217	0.98

Contrasts Given Priors

[1] List(c1 = List(Treatment = "Placebo"), c2 = List(Treatment = "P(I"), [2] contrast = expression[c1 - c2), ad = 0.642007127083599)

Supplementary figure S105: coefficient density plots: SAQ physical limitation

Supplementary figure S106: coefficient density plots: SAQ physical limitation for Rose angina and Rose nonangina

0

-20

20

40

10 20 30

Ô. 10 -20 -10

Coefficient value

-10 0

Supplementary figure S107: chain plot of MCMC draws for SAQ physical limitation

Supplementary figure S108: chain plot of MCMC draws for SAQ physical limitation for Rose angina and Rose nonangina

SAQ quality of life

Supplementary figure 109: result: SAQ quality of life

Supplementary figure 110: result: SAQ quality of life for Rose angina and Rose nonangina

Supplementary figure S111: Regression model and coefficients for SAQ quality of life

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_qol_post ~ rcs(outcome_saq_qol_pre, itrormula = outcome_sad_doi_post ~ restoutcome_sad_doi_pre, 3) + Treatment * res(angio_stenosis_ifr, 3), data = analysis_d, progress = file.path(output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

0	8.333	16.667	25	33.333	41.667	58	58.333	62.5	66.667	75	83,333	91.667
3	7	9	25	17	28	37	30	1	26	19	31	18
160												
18												

	Mixed Calibration/ Discrimination Indexes		Discrimination Indexes	Rank Discrim. Indexes		
Obs 269 Draws 40000	B 0.196 [0.193, 0.2]	g Sp	1.505 [1.22, 1.797] 0.294 [0.262, 0.332]	C D _{xy}	0.721 [0.713, 0.726] 0.441 [0.426, 0.452]	
Chains 4		EV	0.261 [0.202, 0.327]			
p 7		vp	0.065 [0.052, 0.083]			

	Mean ß	Median B	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_qol_pre	0.0513	0.0513	0.0144	0.0232	0.0799	0.9998	1.00
outcome_saq_qol_pre'	0.0004	0.0004	0.0161	-0.0313	0.0323	0.5092	1.00
Treatment=PCI	2.2313	2.2268	1.0462	0.1840	4,2975	0.9832	1.00
angio_stenosis_ifr	0.8640	0.8631	1.5625	-2.2285	3.8856	0.7119	0.99
angio_stenosis_ifr'	0.5118	0,5060	1.5492	-2.4749	3.5932	0.6316	1.00
Treatment=PCI x angio_stenosis_ifr	-0.4142	-0.4054	2.2067	-4.7478	3.9540	0.4258	1.00
Treatment=PCI × angio_stenosis_ifr	-4.5801	-4.5647	2.3069	-9.1380	-0.0404	0.0238	0.99

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 8.842887127883599)

Supplementary figure S112: Regression model and coefficients for SAQ quality of life for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_qol_post ~ rcs(outcome_saq_qol_pre, 3) + Treatment * rcs(anglo_stenosis_ifr, 3) * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path[output_dir, "interact_res2.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path[output_dir, "interact_res2.blrm.rds"])

Frequencies of Responses

0 8.333 16.667 25 33.333 41.667 22 16 24 50 58.333 62.5 66.667 31 25 1 23 75 83.333 91.667 17 31 15 188

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 240 Draws 40000 Chains 4 Time 19s p 13	B 0.193 [0.187, 0.201]	g 1.644 [1.381, 1.96] gp 0.307 [0.276, 0.342], EV 0.286 [0.231, 0.35] v 2.107 [1.446, 2.888] vp 0.071 [0.055, 0.086]	C 0.725 [0.714, 0.734] D ₃₉ 0.449 [0.429, 0.468		

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_qol_pre	0.0612	0.0612	0.0154	0.0315	0.0916	1.0000	1.01
outcome_saq_qol_pre'	-0.0103	-0.0104	0:0170	-0.0445	0.0218	0.2703	1.00
Treatment=PCI	5.9241	5.8938	3.1936	-0.3669	12.0768	0.9694	1.01
angio_stenosis_ifr	2.7530	2.8225	2.8278	-2.9940	8.0352	0.8350	0.93
angio_stenosis_ifr'	-0.5142	-0.5523	2.7202	-5.8469	4,7646	0.4225	1.04
rose_is_angina_random	1,5254	1,5483	1.6402	-1,7485	4,6655	0.8245	0.96
Treatment=PCI × angio_stenosis_ifr	-7.6243	-7.6028	5.8834	-19.0362	3.8832	0.0968	0.99
Treatment=PCI × angio_stenosis_ifr'	-0.7753	-0.7994	5:0784	-10.8465	9:0748	0.4379	1,00
Treatment=PCI × rose_is_angina_random	-4.4932	-4.4693	3.4101	-11.1478	2.1757	0.0925	0.98
angio_stenosis_ifr × rose_is_angina_random	-3.2464	-3.2890	3.3883	-9.8205	3,4795	0.1689	1.03
angio_stenosis_ifr' × rose_is_angina_random	1.9987	2.0162	3.3632	-4.6732	8,4853	0.7255	0.99
Treatment=PCI × angio_stenosis_ifr × rose_is_angina_random	9.4309	9.3923	6.4548	-3.3662	21.9036	0.9280	1.01
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	-5.1522	-5.1327	5.8167	~16.7750	5.9898	0.1860	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

117

Supplementary figure S113: coefficient density plots: SAQ quality of life

Supplementary figure S114: coefficient density plots: SAQ quality of life for Rose angina and Rose nonangina

-20

Ó

20

40

Coefficient value

Supplementary figure S115: chain plot of MCMC draws for SAQ quality of life

Supplementary figure 116: chain plot of MCMC draws for SAQ quality of life for Rose angina and Rose nonangina

SAQ treatment satisfaction

Supplementary figure 117: result: SAQ treatment satisfaction

Supplementary figure 118: result: SAQ treatment satisfaction for Rose angina and Rose nonangina

Supplementary figure S119: Regression model and coefficients for SAQ treatment satisfaction

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_ts_post ~ rcs(outcome_saq_ts_pre, 3) + Treatment * rcs(angio_stenosis_ifr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loa = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

6.25	25	37.5	43.75	50	56.25	62.5	66.667	68.75	75	81.25	87.5	93.75
1	2	1	3	2	8	22	1	12	16	44	23	36
180												
98												

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 269 Draws 40000 Chains 4 Time 17.2s p 7	B 0.195 [0.19, 0.201]	g 1.346 [1.071, 1.594] gp 0.264 [0.225, 0.3] EV 0.23 [0.168, 0.285] v 1.498 [0.955, 2.076] vp 0.056 [0.041, 0.07]	C 0.714 [0.703, 0.722] D _{xy} 0.427 [0.407, 0.443]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_ts_pre	0.0482	0.0481	0.0131	0.0228	0.0739	0.9998	1.01
outcome_saq_ts_pre'	0.0178	0.0178	0.0141	-0.0103	0.0451	0.8972	1.01
Treatment=PCI	3.1558	3.1508	1.0836	1.0352	5.2801	0.9982	1.02
angio_stenosis_ifr	1.5642	1.5567	1.5293	-1.4278	4.5713	0.8477	1.01
angio_stenosis_ifr'	-0.8928	-0.8934	1.5872	-4.0715	2.1511	0.2878	1.00
Treatment=PCI × angio_stenosis_ifr	-3.7963	-3.7944	2.2754	-8.1984	0.7091	0.0472	0.99
Treatment=PCI × angio_stenosis_ifr'	0.6819	0.6727	2.3471	-3.9679	5.2318	0.6140	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S120: Regression model and coefficients for SAQ treatment satisfaction for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.175 for Intercepts

blrm(formula = outcome_saq_ts_post ~ rcs(outcome_saq_ts_pre, 3) + Treatment * rcs(angio_stenosis_ifr, 3) * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

6.25	25	37.5	43.75	50	56.25	62.5	66.667	68.75	75	81,25	87.5	93.75
1	2	- 1	3	2	8	18	1	11	15	39	21	38
100												
88												

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 240 Draws 40000 Chains 4 Time 17.5s p 13	B 0.194 [0.187, 0.201]	g 1.517 [1.204, 1.84] g ₀ 0.283 [0.243, 0.322] EV 0.256 [0.19, 0.327] v 1.876 [1.203, 2.692] vp 0.062 [0.046, 0.08]	C 0.715 [0.702, 0.725] D _{X3} 0.429 [0.405, 0.45]

Construction and the second	Mean B	Median B	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
outcome_saq_ts_pre	0.0538	0.0537	0.0138	0.0260	0.0801	0.9999	1.01
outcome_saq_ts_pre'	0.0138	0.0138	0.0151	-0.0154	0.0439	0.8188	1.01
Treatment=PCI	2,7657	2.7442	3,2904	-3.7988	9.1879	0.8040	1.02
angio_stenosis_ifr	-1.3061	-1.2437	2.7710	-6.9184	4.0166	0.3219	0.93
angio_stenosis_ifr'	2.0333	1.9901	2.7870	-3.3537	7.5575	0.7670	1.03
rose_is_angina_random	-1.2700	-1.2375	1.5998	-4,4580	1.8346	0.2147	0.95
Treatment=PCI × angio_stenosis_ifr	-3.9491	-3.9545	6.0362	-16.0821	7.6591	0.2531	0.99
Treatment=PCI × angio_stenosis_ifr	2.1296	2.1685	5.3682	-8.1900	12.8571	0.6567	1.00
Treatment=PCI × rose_is_angina_random	0.6252	0.6314	3.5414	-6.2299	7,7215	0.5732	0.98
angio_stenosis_ifr × rose_is_angina_random	3,4737	3,4345	3.3692	-3.0120	10.2905	0.8512	1.04
angio_stenosis_ifr' × rose_is_angina_random	-3.5228	-3.4950	3.4646	-10.3869	3.2037	0.1537	0.98
Treatment=PCI × angio_stenosis_ifr × rose_is_angina_random	0,6197	0.6351	6.6933	-12,7876	13,4992	0.5384	1.00
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	-2.8119	-2.8020	6.1879	-14,7458	9.5521	0.3229	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S121: coefficient density plots: SAQ treatment satisfaction

Coefficient value

Supplementary figure S122: coefficient density plots: SAQ treatment satisfaction for Rose angina and Rose nonangina

-10

0

10

0 -10 10 outcome_saq_ts_pre' -0.059-0.0250.000 0.025 0.050 0.075 1 * angio_stenosis_ifr * rose_is_a

-20

0

_stenosis_ifr * rose_is_angina_ra

-5

-30 -20 -10 0 10 20

10 20

10

Coefficient value

Supplementary figure S123: chain plot of MCMC draws for SAQ treatment satisfaction

Supplementary figure S124: chain plot of MCMC draws for SAQ treatment satisfaction for Rose angina and Rose nonangina

SAQ angina stability

Supplementary figure S125: result: SAQ angina stability

Supplementary figure S127: Regression model and coefficients for SAQ angina stability

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

blrm(formula = outcome_saq_stab_post ~ rcs(outcome_saq_stab_pre, 3) + Treatment + rcs(angio_stenosis_ifr, 3), data = analysis_d, pcontrast = pcon, iter = 20008, chains = 4, refresh = 108, progress = file.path(output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

0 25 50 75 100 11 29 135 44 50

1	Mixed Calibration/ Discrimination Indexes	Discrimination Indexes g 0.511 [0.314,0.7] gp 0.067 [0.038,0.1] EV 0.033 [0.007, 0.064] v v 0.224 [0.054, 0.382] vp vp 0.004 [0.001, 0.009]		Rank Discrim. Indexes				
Obs 269 Draws 40000 Chains 4 Time 16.5s p 7	B 0.122 [0.117, 0.127]			C 0.561 [0.531,0.582 D _{xy} 0.123 [0.062,0.16	4]			
2 <u>000</u>	N	dean B	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
y≥25		1.6911	1.6856	0.9053	-0.0547	3.4924	0.9706	1.03
y≥50		0.2235	0.2206	0.8830	-1.5125	1.9712	0.6010	1.01
y≥75	4	2.2307	-2.2319	0.9004	-4.0137	-0.4688	0.0068	0.99
y2100		3.1027	-3.1059	0.9052	-4.8997	+1.3432	0.0003	0.99
outcome_saq_stab_pro	• ·	0.0035	0.0035	0.0094	-0.0151	0.0218	0.6433	1.01
outcome_saq_stab_pro	9	0.0008	0.0008	0.0107	-0.0201	0.0216	0.5302	1.00
Treatment=PCI		1.3095	1.3106	1.1377	-0.9099	3.5376	0.8755	1.00
angio_stenosis_ifr		2.2761	2.2767	1.7009	-1.0169	5.6344	0.9102	1.00
angio_stenosis_ifr'	2	1.4294	-1.4203	1.7263	-4,8342	1.9463	0.2057	1.00
Treatment=PCI × angi	o_stenosis_ifr -	1.0318	-1.0248	2.3869	-5.6971	3.6042	0.3316	1.00
Treatment=PCI × angi	o_stenosis_ifr'	0.9752	-0.9837	2.4748	-5,8644	3.7995	0.3473	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S128: Regression model and coefficients for SAQ angina stability for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.392 for Intercepts

birm(formula = outcome_saq_stab_post ~ rcs[outcome_saq_stab_pre, 3] + Treatment * rcs[amgio_itemosis_ifr, 3] * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file,pathloutput_dir, "interact_res2,progress.txt"), loo = FALSE, ppsirs = NULL, method = "sampling", file = file,pathloutput_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

8 25 58 75 100 18 27 118 38 47

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 240 Draws 40000 Chains 4 Time 16.9s p 13	B 0.122 [0.115, 0.13]	# 0.77 [0.529, 1.002] sp 0.104 [0.066, 0.137] EV 0.093 [0.03, 0.16] v 0.544 [0.284, 0.914] vp 0.013 [0.004, 0.022]	C 0.589 [0.564, 0.614] D _{ky} 0.179 [0.128, 0.229]

Sec. 2	Mean p	Median ß	S.E.	Lower	Upper	Pr([b=0)	Symmetry
ya25	4,7638	4.7394	1,4749	1.9189	7,7105	0.9997	1.04
ya50	3.2027	3.1748	1.4530	0.3756	6.0705	0.9882	1.04
yz75	0.6888	0.6579	1.4388	-2.0806	3.5623	0.6805	1.04
y2100	-0.1610	-0.1953	1,4368	-3.0007	2.6300	0.4468	1.05
outcome_saq_stab_pre	0.0052	0.0052	0.0098	-0.0143	0.0244	0.7030	1.01
outcome_saq_stab_pre'	-0.0017	-0.0017	0.0113	-0.0237	0.0203	0.4402	1.01
Treatment=PCI	-1.3313	-1.3865	3.2884	-7.9324	5.0575	0.3382	1.03
angio_stenosis_ifr	-3.1097	-3.0514	2.8584	-8.8782	2.3873	0.1348	0.95
angio_stenosis_th'	2.4139	2,3906	2.9159	-3.3633	8,0658	0.7968	1.01
rose_is_angina_random	-4.8635	-4.8515	1.7214	-8.2595	-1.5304	0.0026	0.97
Treatment=PCI × angio_stenosis_ifr	4.6869	4.7470	6.1141	-7.5024	16.5644	0.7810	0.98
Treatment=PCI × angio_stenosis_ifr'	-7.8395	-7.8618	5.5498	-18.8302	2,8965	0:0796	1.02
Treatment=PCI x rose_is_angina_random	4,4798	4,5046	3,5659	-2.4684	11.5240	0.8964	0.97
angio_stenosis_ifr × rose_is_angina_random	9.2625	9.2354	3,6147	2.2995	16.5613	0.9948	1.03
angio_stenosis_ifr' × rose_is_angina_random	-7.4227	-7,4176	3.7490	-14.8993	-0.1518	0.0238	0.98
Treatment=PCI x angio_stenosis_ifr x rose_is_angina_random	-9.5306	-9.5738	6.8192	-22.8820	3.7671	0.0819	1.03
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	11.0501	11.0545	6.4283	-1.5752	23.6440	0.9564	0.99

Contrasts Given Priors

List(c1 = List(Treatment = "Placebo"), c2 = list(Treatment = "PC1"),
contrast = expression(c1 - c2), sd = 8.842887127883599)

129

Supplementary figure S129: coefficient density plots: SAQ angina stability

Supplementary figure S130: coefficient density plots: SAQ angina stability for Rose angina and Rose nonangina

Supplementary figure S131: chain plot of MCMC draws for SAQ angina stability

Supplementary figure S132: chain plot of MCMC draws for SAQ angina stability for Rose angina and Rose nonangina

Dobutamine stress echocardiography (DSE) score

Supplementary figure S133: result: DSE score for Rose angina and Rose nonangina

Supplementary figure S134: Regression model and coefficients for DSE score **Bayesian Proportional Odds Ordinal Logistic Model**

Dirichlet Priors With Concentration Parameter 0.079 for Intercepts

blrm(formula = orbita_dse_score_fu ~ rcs(urbita_dse_score_rand, 3) + Treatment * rcs(angio_stemosis_ifr, 3), data = analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

Frequencies of Responses

0	0.167	0.333	0.5	0.667	0.833	1	1.167	1.333	1.5	1.667	1.833	2
53	11	17	18	13	11	11	7	10	7	8	1	4
2.167	2.333	2.5	2.667	2.833	3	3.167	3.333	3.5	3.667	4.333	4.667	5
5	3	2	2	5	2	2	3	1	1	1	3	3
5.167	5.667	5.833	6.167	6.333	7.667	9.833	11.333					
1	1	2	1	1	1	1						

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 213 Draws 40000 Chains 4 Time 55.6s p 7	B 0.222 [0.217, 0.228]	g 1.205 [0.892, 1.498] g _p 0.229 [0.18, 0.27] EV 0.168 [0.111, 0.23] v 1.371 [0.746, 2.071] vp 0.042 [0.028, 0.057]	C 0.658 [0.645, 0.668] D _{xy} 0.316 [0.29, 0.335]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(β>0)	Symmetry
orbita_dse_score_rand	0.4719	0.4714	0.2240	0.0358	0.9165	0.9820	1.00
orbita_dse_score_rand	-0.2522	-0.2549	0.4930	-1.2229	0.7067	0.3044	1.01
Treatment=PCI	-4.4705	-4.4742	1.2001	-6.8257	-2.1357	0.0001	1.00
angio_stenosis_ifr	-4.5775	-4.5694	1.9482	-8.3572	-0.7201	0.0091	0.99
angio_stenosis_ifr	2.0570	2.0473	1.9301	-1.7557	5.8086	0.8587	1.00
Treatment=PCI × angio_stenosis_ifr	5,4229	5.4216	2.5031	0.5135	10.3096	0.9848	1.00
Treatment=PCI × angio_stenosis_ifr'	-1.3222	-1.3273	2.6304	-6.4609	3.8582	0.3054	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S135: Regression model and coefficients for DSE score for Rose angina

and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.079 for Intercepts

blrmiformula = orbita_dse_score_fu ~ rcs[orbita_dse_score_rand, 3) + Treatment * rcs(angio_stenosis_ifr, 3) * rose_is_angina_random, data = rose_analysis_d, pcontrast = pcom, iter = 20000, chains = 4, refresh = 100, progress = file.path[output_dir, "interact_res2.progress.txt"), loo = FALSE, ppairs = NULL, method = "sampling", file = file.path[output_dir, "interact_res2.blrm.rds"))

Frequencies of Responses

0	8.167	8,333	0.5	0.667	0.833	1	1.167	1,333	1.5	1.667	1.833	8
44	7	16	16	12	18	10	6	. 9	- 6	6	1	- 3
2,167	2,333	2.5	2,667	2.833	з	3,167	3,333	3.5	3.667	4,333	4,667	- 1
5	3	2	2	5	2	2	2	1	1	1	3	
5.167	5.667	5.833	6.367	6.333	7.667	9.833	11.333					
1000	11000 1 0	2	100.004	1	1 C C C C C C C C C C C C C C C C C C C	1						

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 188 Draws 40000 Chains 4 Time 29.2s p 13	B 0.216 [0.207, 0.227]	g 1.39 [1.107, 1.721] gp 0.256 [0.209, 0.297] EV 0.205 [0.144, 0.275] v 1.698 [0.981, 2.431] vp 0.05 [0.034, 0.066]	C 0.671 [0.633, 0.685] D _{xy} 0.341 [0.307, 0.37]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(f>0)	Symmetry
orbita_dse_score_rand	0.5496	0.5486	0.2402	0.0811	1.0214	0.9896	1.02
orbita dse score rand'	-0.4886	-0.4909	0.5845	-1.6602	0.6348	0.2022	1.00
Treatment=PCI	-7.0738	-6.9779	3.4348	-13.9101	-0.4333	0.0153	0.91
angio_stenosis_ifr	-0.0374	-0.0113	3.3710	-7.0019	7.0536	0.4986	0.98
angio_stenosis_ifr'	-2.5155	-2.5283	3.4080	-9.2437	4.0922	0.2299	1.01
rose_is_angina_random	2.3717	2.3871	2.1083	+1.9272	6.3742	0.8708	0.98
Treatment=PCI × angio_stenosis_ifr	9.8582	9.7177	6.5063	-2.7991	22.7315	0.9382	1.07
Treatment=PCI × angio_stenosis_ifr'	-3.8494	-3.8210	5.8220	-15.2742	7.5521	0.2542	0.99
Treatment=PCI × rose_is_angina_random	3.0189	2.9478	3.6961	-4.0404	10.4565	0.7909	1.06
angio_stenosis_ifr × rose_is_angina_random	-5.7698	-5.7817	4.3232	-14.2266	2.6565	0.0916	1.00
angio_stenosis_ifr' × rose_is_angina_random	6.5086	6.5120	4.1765	-1.4393	14.8556	0.9396	1.00
Treatment=PCI × angio_stenosis_ifr × rose_is_angina_random	-5.6697	-5.5917	7.2049	-20.1248	8.1210	0.2170	0.95
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	3.0106	3.0153	6.6857	-9.9980	16.2410	0.6736	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PC1"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

135

Supplementary figure S136: coefficient density plots: DSE score

Supplementary figure S137: coefficient density plots: DSE score for Rose angina and Rose nonangina

0

10

20

-10

Coefficient value

Supplementary figure S138: chain plot of MCMC draws for DSE score

Supplementary figure S139: chain plot of MCMC draws for DSE score for Rose angina and Rose nonangina

EQ-5D-5L index value

Supplementary figure S140: result: EQ-5D-5L index value

Supplementary figure S141: result: EQ-5D-5L index value for Rose angina and Rose nonangina

Supplementary figure S142: Regression model and coefficients for EQ-5D-5L index value

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.029 for Intercepts

blrm(formula = eq5d_value_fu ~ rcs(eq5d_value_random, 3) + Treatment *
rcs(angio_stenosis_ifr, 3), data = analysis_d, pcontrast = pcon,
iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir,
 "interact_res1.progress.txt"), loo = FALSE, poars = NULL,
method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 268 Draws 40000 Chains 4 Time 30.2s p 7	B 0.004 [0.004, 0.005]	g 1.724 [1.437, 2.014] gp 0.005 [0, 0.017] EV 0.05 [0, 0.163] v 2.455 [1.703, 3.344] vp 0 [0, 0.001]	C 0.738 [0.73, 0.743] D _{xy} 0.476 [0.46, 0.486		

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
eq5d_value_random	4,6527	4.6385	0.9162	2.8764	6.4802	1.0000	1.04
eq5d_value_random'	2.8809	2.8656	1.3542	0.2339	5.5757	0.9838	1.03
Treatment=PCI	1.2872	1.2857	1.0316	-0.7139	3.3259	0.8950	1.02
angio_stenosis_ifr	-0.8440	-0.8368	1.4902	-3.7304	2.0934	0.2854	0.99
angio_stenosis_ifr'	1.0520	1.0477	1.5284	-1.8932	4.1307	0.7564	1.00
Treatment=PCI × angio_stenosis_ifr	0.8375	0.8372	2.1986	-3.4506	5.1841	0.6484	0.99
Treatment=PCI × angio_stenosis_ifr'	-4.2663	-4.2642	2.2962	-8,8932	0.1670	0.0317	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S143: Regression model and coefficients for EQ-5D-5L index value for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.031 for Intercepts

	Mixed Calibration/	Discrimination	Rank Discrim.		
	Discrimination Indexes	Indexes	Indexes		
Obs 239 Draws 40000 Chains 4 Time 35.8s p 13	B 0.169 [0.159, 0.177]	g 1.992 [1.64, 2.344] gp 0.336 [0.303, 0.367] EV 0.34 [0.277, 0.407] v 3.216 [2.127, 4.402] vp 0.085 [0.068, 0.101]	C 0.746 [0.736, 0.752] D _{xy} 0.492 [0.473, 0.504		

and the second se	Mean ß	Median ß	S.E.	Lower	Upper	Pr(fi>0)	Symmetry
eq5d_value_random	4.1234	4.1208	0.9976	2.1929	6.0972	0.9999	1.00
eq5d_value_random'	4,1180	4,1064	1.5099	1.2034	7,1404	0.9974	1.04
Treatment=PCI	-0.0816	-0.1052	2.9119	-5.8013	5.6846	0.4853	1.02
angio_stenosis_ifr	-2.5820	-2,5265	2.5816	-7.6652	2,4844	0.1564	0.94
angio_stenosis_ifr'	3,6412	3.6265	2,7504	-1.7974	8.9678	0.9097	1.02
rose_is_angina_random	0,1828	0.2076	1,4801	-2.7477	3.0626	0.5560	0.97
Treatment=PCI × angio_stenosis_ifr	2,2557	2,2497	5,4910	-8.7185	12.9664	0.6633	0.98
Treatment=PCI × angio_stenosis_ifr	-4.7417	-4.7316	5.0517	-14.6606	5.1081	0.1727	1.01
Treatment=PCI × rose_is_angina_random	-0.0838	-0.0715	3.1782	-6.2614	6.1819	0.4915	0.99
angio_stenosis_ifr x rose_is_angina_random	1.4960	1.4664	3,2090	-4.7316	7.7912	0.6778	1.03
angio_stenosis_ift' x rose_is_angina_random	-2.8463	-2.8440	3,4065	-9.4096	3.9091	0.2022	0.99
Treatment=PCI x angio_stenosis_ifr x rose_is_angina_random	2.7491	2.7426	6.1911	-9.5456	14,6746	0.6714	1.01
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	-3.1036	-3.1072	5.9042	-14.3684	8.7070	0.3007	0.99

Contrasts Given Priors

[1] list[c1 = List(Treatment = "Placebo"), c2 = List[Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S144: coefficient density plots: EQ-5D-5L index value

Coefficient value

Supplementary figure S145: coefficient density plots: EQ-5D-5L index value for Rose angina and Rose nonangina

Coefficient value

Supplementary figure S146: chain plot of MCMC draws for EQ-5D-5L index value

Supplementary figure S146: chain plot of MCMC draws for EQ-5D-5L index value for Rose angina and Rose nonangina

EQ-5D-5L visual analogue scale

Supplementary figure S147: result: EQ-5D-5L visual analogue scale

Supplementary figure S148: result: EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Supplementary figure S149: Regression model and coefficients for EQ-5D-5L visual analogue scale

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.086 for Intercepts

```
blrm(formula = eq5d_qol_post ~ rcs(eq5d_qol_pre, 3) + Treatment *
    rcs(angio_stenosis_ifr, 3), data = analysis_d, pcontrast = pcon,
    iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir,
        "interact_res1.progress.txt"), loo = FALSE, ppairs = NULL,
    method = "sampling", file = file.path(output_dir, "interact_res1.blrm.rds"))
```

Frequencies of Responses

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 268 Draws 40000 Chains 4 Time 25.9s p 7	B 0.195 [0.19, 0.2]	g 1.396 [1.131, 1.67] gp 0.277 [0.236, 0.309] EV 0.233 [0.171, 0.289] v 1.547 [0.971, 2.142] vp 0.058 [0.042, 0.072]	C 0.706 [0.7, 0.711] D _{xy} 0.412 [0.4, 0.422

	Mean ß	Median B	S.E.	Lower	Upper	Pr(β>0)	Symmetry
eq5d_qol_pre	0.0470	0.0469	0.0119	0.0237	0.0705	1.0000	1.01
eq5d_qol_pre'	0.0228	0.0227	0.0169	-0.0092	0.0571	0.9129	1.01
Treatment=PCI	1.4706	1.4688	1.0133	-0.5065	3.4529	0.9274	1.01
angio_stenosis_ifr	-1,4503	-1.4415	1.5078	-4,4449	1.4683	0.1672	0.98
angio_stenosis_ifr'	1.7850	1.7921	1.5401	-1.2754	4.7543	0.8763	1.01
Treatment=PCI × angio_stenosis_ifr	-0.3667	-0.3590	2.1397	-4.5463	3.8002	0.4334	1.01
'Treatment=PCI × angio_stenosis_ifr'	-2.4314	-2.4471	2.2432	-6.8959	1.8806	0.1406	1.00

Contrasts Given Priors

[1] list(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S150: Regression model and coefficients for EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.086 for Intercepts

blrm(formula = eq5d_qol_post ~ rcs(eq5d_qol_pre, 3) + Treatment + rcs(angio_stenosis_ifr, 3) * rose is angine_rondow, data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4, refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"), los = fAlSt, poaries = NULL, method = "sampling", file = file.pathloutput_dir, "interact_res2.blrm.rds"})

Frequencies of Responses

 6
 15
 20
 25
 30
 35
 36
 40
 45
 59
 55
 56
 60
 63
 64
 65
 70
 73
 74
 75
 78
 80
 82
 85

 1
 1
 2
 3
 4
 3
 1
 9
 6
 19
 4
 1
 21
 1
 131
 24
 1
 1
 22
 1
 27
 2
 26

 86
 88
 96
 95
 96
 99
 100
 1
 1
 1
 1
 24
 1
 1
 22
 1
 27
 2
 26

 86
 88
 96
 95
 96
 190
 4
 1
 21
 1
 1
 1
 24
 1
 1
 22
 1
 27
 2
 26

 16
 87
 71
 1
 2
 3
 2
 1
 1
 1
 1
 27
 1
 2

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 239 Draws 40000 Chains 4 Time 39.3s p 13	B 0.196 [0.19, 0.203]	g 1.513 [1.25, 1.825] gp 0.294 [0.259, 0.33] EV 0.261 [0.202, 0.328] v 1.799 [1.198, 2.562] vp 0.065 [0.05, 0.081]	C 0.706 [0.697, 0.714] D _{xy} 0.412 [0.393, 0.428]

	Mean ß	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
eq5d_qol_pre	0.0416	0.0416	0.0131	0.0152	0.0665	0.9991	1.01
eq5d_qol_pre'	0.0332	0.0333	0.0180	-0.0014	0.0692	0.9673	1.00
Treatment=PCI	3.7213	3.6957	2.9080	-1.9738	9,5010	0.9020	1.04
angio_stenosis_ifr	-2.6231	-2.5705	2.6659	-7.8621	2.5072	0.1620	0.93
angio_stenosis_ifr'	1.9247	1.8968	2.7699	-3.3878	7,4152	0.7554	1.03
rose_is_angina_random	0.1617	0.1932	1.5736	-2.9015	3.2529	0.5475	0.96
Treatment=PCI × angio_stenosis_ifr	-5.6088	-5.5623	5.4434	-16.2068	5.2304	0.1505	0.98
Treatment=PCI × angio_stenosis_ifr'	4.8004	4.7920	5.0258	-4.8723	14,7840	0.8290	1.01
Treatment=PCI × rose_is_angina_random	-3.1963	-3.1644	3.1810	-9.4356	3.0675	0.1559	0.98
angio stenosis ifr x rose is angina random	-0.0913	-0.1223	3.3145	-6.3998	6.5812	0.4852	1.03
angio stenosis ifr' × rose is angina random	1.9049	1.9285	3,4747	-4.8045	8.7897	0.7079	0.99
Treatment=PCI × angio_stenosis_ifr × rose_is_angina_random	7.9100	7.8858	6.1226	-3.9619	19.9918	0.9032	1.02
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	-10.6815	-10.6557	5.8590	-21.7487	1.1423	0.0336	0.99

Contrasts Given Priors

[1] listic1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S151: coefficient density plots: EQ-5D-5L visual analogue scale

Supplementary figure S152: coefficient density plots: EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

-10 0

-15 -10 -5 0 5 10 15 eq5d_qol_pre' 0.00 0.05 0.10 1* anglo_stenosis_ifr * rose_is_e

_stenosis_ifr * rose_is_angina_ra

ō

-10

10

20

angio_stenosis_ifr'

Coefficient value

Supplementary figure S153: chain plot of MCMC draws for EQ-5D-5L visual analogue scale

Supplementary figure S154: chain plot of MCMC draws for EQ-5D-5L visual analogue scale for Rose angina and Rose nonangina

Treadmill exercise time

Supplementary figure S156: Regression model and coefficients for treadmill exercise time **Bayesian Proportional Odds Ordinal Logistic Model**

Dirichlet Priors With Concentration Parameter 0.015 for Intercepts

	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 217 Draws 40000 Chains 4 Time 59.2s p 7	B 0.141 [0.136, 0.146]	g 2.567 [2.153, 2.926] gp 0.381 [0.358, 0.406] EV 0.444 [0.387, 0.504] v 5.199 [3.621, 6.754] vp 0.111 [0.096, 0.126]	C 0.782 [0.778, 0.785] D _{xy} 0.564 [0.556, 0.57]

	Mean ß	Median B	S.E.	Lower	Upper	Pr(β>0)	Symmetry
baseline_ett_seconds	0.0095	0.0094	0.0014	0.0066	0.0122	1,0000	1.05
baseline_ett_seconds'	-0.0005	-0.0005	0.0014	-0.0032	0.0022	0.3502	0.99
Treatment=PCI	2.4585	2,4616	1.1511	0.1797	4.6941	0.9837	1.00
angio_stenosis_ifr	-0.1022	-0.1058	1.6422	-3.3654	3.0833	0.4740	1.02
angio_stenosis_ifr'	0.7080	0.7092	1.7513	-2.7165	4.1260	0.6566	1.00
Treatment=PCI × angio_stenosis_ifr	-2.3645	-2.3660	2.4524	-7.2020	2.3632	0.1672	1.01
Treatment=PCI × angio_stenosis_ifr'	-1.4509	-1.4547	2.5919	-6.6387	3,4858	0.2876	0.99

Contrasts Given Priors

[1] List(c1 = list(Treatment = "Placebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842007127883599)

Supplementary figure S157: Regression model and coefficients for treadmill exercise time for

Rose angina and Rose nonangina

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Prices With Concentration Parameter 0.016 for Intercepts

blrm(formula = fu_ett_seconds ~ rcs(baseline_ett_seconds, 3) +
Treatment * rcs(anglo_stenosis_ifr, 3) * rose_is_angine_random,
data = rose_analysis_d, pcontrast = pcon, iter = 20000, chains = 4,
refresh = 100, progress = file.path(output_dir, "interact_res2.progress.txt"),
loo = FALSE, ppairs = NBLL, method = "sampling", file = file.path(output_dir,
 "interact_res2.blrm.rds"))

68 - 10 eX	Mixed Calibration/	Discrimination	Rank Discrim.
	Discrimination Indexes	Indexes	Indexes
Obs 193 Draws 40000 Chains 4 Time 59.2s p 13	B 0.144 [0.138, 0.151]	g 2.553 [2.148, 2.986] g _p 0.382 [0.353, 0.406] EV 0.446 [0.376, 0.508] v 5.146 [3.551, 6.84] vp 0.112 [0.094, 0.127]	C 0.771 [0.764, 0.778] D _{xy} 0.543 [0.528, 0.555]

19 18 - 19	Mean \$	Median ß	S.E.	Lower	Upper	Pr(\$>0)	Symmetry
baseline_ett_seconds	0.0097	0.0096	0.0015	0.0068	0.0128	1.0000	1.04
haseline_ett_seconds'	-0.0011	-0.0011	0.0015	-0.0040	0.0017	0.2250	1.00
Treatment=PC1	1.6685	1.6449	3.0916	-4.3912	7.7773	0.7055	1.01
angio_stenosis_ifr	-0.0283	-0.1055	2.8534	-5.6030	5.6157	0.4858	1.07
angio_stenosis_ifr'	1.9982	2.0001	3.0215	-3.9205	7.9519	0.7477	1.00
rose_is_angina_random	0.3890	0.3551	1.6993	-2.8442	3.8445	0.5836	1.06
Treatment=PCI × angio_stenosis_ifr	-1.7338	-1.6843	5.9327	-13.3119	10.0268	0.3875	0.99
Treatment=PCI × angio_stenosis_ifr'	-1.1739	-1.2017	5.4819	-11.8147	9.6533	0.4148	1.01
Treatment=PCI × rose_is_angina_random	0.2363	0.2300	3.4257	-6.5623	6.9038	0.5279	0.98
angio_stenosis_ifr x rose_is_angina_random	-0.4294	-0.3850	3.6756	-7.5870	6.8326	0.4573	0.96
angio_stenosis_ifr' × rose_is_angina_random	-1.6311	-1.6191	3.8772	-9.3124	5.8479	0.3358	0.99
Treatment=PCI × angio_stenosis_ifr × rose_is_angina_random	1.1203	1.1226	6.8074	-12.3562	14.4858	0.5654	1.03
Treatment=PCI × angio_stenosis_ifr' × rose_is_angina_random	-0.8578	-0.8651	6.4870	-13.8450	11.5219	0.4454	1.01

Contrasts Given Priors

[1] list(c1 = list(Treatment = "P(acebo"), c2 = list(Treatment = "PCI"), [2] contrast = expression(c1 - c2), sd = 0.842807127883599)

Supplementary figure S158: coefficient density plots: treadmill exercise time

Supplementary figure S159: coefficient density plots: treadmill exercise time for Rose angina and Rose nonangina

-10 0 10

baseline_ett_seconds' -0.005 0.000 0.005 1* angio_stenosis_ifr * rose_is_a

0

10

-10

stenosis_itr' * rose_is_angina_ra

Coefficient value

-20 -10

0

10 20

Supplementary figure S160: chain plot of MCMC draws for treadmill exercise time

Supplementary figure S161: chain plot of MCMC draws for treadmill exercise time for Rose angina and Rose nonangina

Supplementary figure S162: Consort checklist

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	ltem No	Checklist item	Reported
Title and shetract			on page ne
The and abstract	1a	Identification as a randomised trial in the title	1
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	2
Introduction			
Background and	2a	Scientific background and explanation of rationale	6
objectives	2b	Specific objectives or hypotheses	7
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	8
	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	NA
Participants	4a	Eligibility criteria for participants	8
	4b	Settings and locations where the data were collected	8
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	8
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	9
	6b	Any changes to trial outcomes after the trial commenced, with reasons	NA
Sample size	7a	How sample size was determined	Supplement
	7b	When applicable, explanation of any interim analyses and stopping guidelines	NA
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	9
generation	8b	Type of randomisation; details of any restriction (such as blocking and block size)	9
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	9
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	9
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those	9
CONSORT 2010 checklist			Page 1

7

	11b	If relevant, description of the similarity of interventions	9
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	11
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	NA
Results			
Participant flow (a diagram is strongly	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome	13
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	13
Recruitment	14a	Dates defining the periods of recruitment and follow-up	13
	14b	Why the trial ended or was stopped	
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	13
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	13-16
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	13-16
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	NA
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory	NA
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	13
Discussion			
Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	19
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	19
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	19
Other information			
Registration	23	Registration number and name of trial registry	3
Protocol	24	Where the full trial protocol can be accessed, if available	3
Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	20
Citation: Sobuda KE Alter		Makes D. for the CONSODT Once CONSODT 2010 Statements undated multiplines for seconding parallel once readomiced trade DNC Ma	diala 2010-0-10

Citation: Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trails. BMC Medicine. 2010;8:18. © 2010 Schulz et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. "We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also recommend reading CONSORT extensions for cluster randomised trails, non-inferiority and equivalence trails, non-pharmacological treatments, herbal interventions, and pragmatic trials. Additional extensions are forthcoming; for those and for up-to-date references relevant to this checklist, see <u>www.consort-statement.org</u>.

CONSORT 2010 checklist

Page 1