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Abstract: We discuss the potential usefulness of molecular testing of soil, dust, and water samples to
detect medically important parasites, and where such testing could be used to supplement stool sam-
pling in humans. A wide variety of parasites including protozoa and helminths, many of which are
zoonotic, have an important infection reservoir in the environment. In some cases, this environmental
period is essential for further parasite development. We describe the progress in implementing
methods for the molecular detection of these parasites in soil across eight collaborating centers in
Latin America and represent a variety of potential applications in improving our understanding of
parasite epidemiology and mapping, surveillance, and control of these parasites. This methodology
offers new opportunities for improving our understanding of a wide variety of parasites of public
health importance and novel tools for their control.
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1. Introduction

Human parasitic infections acquired from the environment are estimated to infect
several billion people worldwide [1]. These infections are most prevalent in children living
in urban neighborhoods and rural communities in conditions of inadequate clean water
and sanitation in tropical and temperate regions, especially in low- and middle-income
countries (LMICs). Among these parasites are intestinal protozoa (e.g., Giardia intestinalis
and Cryptosporidium spp.), soil-transmitted helminths (STH—e.g., Ascaris lumbricoides,
Trichuris trichiura, hookworms, and Strongyloides stercoralis), and zoonotic infections (e.g.,
Toxocara spp.). In most endemic settings, individuals may be infected with more than one
parasite at any time and with several parasites over their life span. Infections are generally
acquired through ingesting contaminated food, water, geophagy, and other contact forms
with fecal-contaminated soil. Infections with these parasites during childhood have been
associated with significant mortality and morbidity, the latter primarily mediated through
chronic nutritional deficits, anemia, and impaired childhood growth and development [2].

2. Soil as a Reservoir for Parasite Infections

In the case of protozoal cysts and helminth eggs, infectious stages of parasites in the
environment can survive for extended periods in the soil, generally for months to years. For
some parasites, the soil is a necessary part of their life cycles: eggs of some parasite species
require a period of embryonation (e.g., A. lumbricoides and T. trichiura) before becoming
infectious. In contrast, those of other species hatch into infectious larvae (e.g., hookworms)
or undergo further larval development (e.g., Strongyloides stercoralis). Soil represents an
important environmental reservoir for these infections. The long-term survival of infectious
stages in the environment, whether as cysts, eggs, or larvae, depends on several factors,
including soil type and characteristics (e.g., pH), climate (temperature and humidity), and
shade. The presence of infectious stages in the environment, their density and dispersal,
and the opportunities for transmission are likely important determinants of the endemicity
of any specific parasite in any geographic locality.

3. Soil and Stool Sampling

Epidemiological studies of environmental parasites in endemic communities rely on stool
sampling or other diagnostic methods from members of whole communities or specific groups
considered to be at the greatest risk [3]. For example, STH prevalence studies often sample
stools from children of school age because they are both easily accessible in schools and an
important reservoir of infection. Stool sampling, particularly in large surveys, can be expensive
and logistically challenging, requiring repeated visits to schools or communities, often by
experienced field teams, while social and cultural factors may limit participation rates. We
successfully used a multi-parallel real-time quantitative Polymerase Chain Reaction (qPCR)
platform designed for use with stool samples for use with a variety of environmental samples
including soil, dust, and water samples. Multiparallel qPCR is a molecular test developed
to quantify the amount of parasite DNA in stool samples and is run separately for each
parasite (i.e., multiparallel). This qPCR platform has now been successfully applied in multiple
settings including in the USA [4–6], Latin America [7–12], and Africa [13,14]. Soil testing
would complement stool sampling and be advantageous for the epidemiological mapping
of enteric parasites, particularly those that cause significant morbidity and are amenable to
control strategies. In addition, soil sampling could be used for studies of routes and intensity of
transmission of a variety of parasitic pathogens, including emerging and zoonotic infections
that may not be detectable in human stool samples (e.g., Toxocara spp. and Angiostrongylus spp.).

4. A Robust and High Throughput Molecular Assay for the Detection of Parasites in
Soil, Dust, and Water

We evaluated the utility of qPCR-based screening for parasite infections in soil, dust, and
water samples around households (Figure 1) and community centers in rural communities
known to be endemic for a variety of STH and protozoan parasites in eight Latin Ameri-
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can countries (Argentina, Bolivia, Brazil, Colombia, Ecuador, Mexico, Paraguay, and Peru)
(Figure 2). Before its use in Latin America, our soil and qPCR assays were used through-
out the USA. A soil study of urban parks in New York City showed a higher prevalence
and parasite burden of Toxocara in poorer neighborhoods [15]. Another study of parasites
in playground soil from indigenous Paiute reservations in Utah has similar associations of
parasites with poverty [16]. Finally, a multi-state soil study in rural Southern USA (Texas,
Louisiana, Mississippi, Alabama, and South Carolina) consistently revealed parasite burden
and prevalence with high poverty rates [17]. Apart from considerations of climate and soil,
the presence, dispersal, and density of enteric parasites in soil are likely to directly reflect
the epidemiology of these parasites in communities where human populations live. We
used highly specific and sensitive qPCR to map the spatial epidemiology of multiple en-
teric parasites within these communities. The parasites evaluated included anthroponotic
and zoonotic helminths (Ancylostoma duodenale, Ancylostoma ceylanicum, Ascaris lumbricoides,
Necator americanus, Strongyloides stercoralis, Taenia solium, Trichuris trichiura, Toxocara canis/cati)
and protozoa (Acanthamoeba spp., Blastocystis, Cryptosporidium spp., Entamoeba histolytica, and
Giardia intestinalis). These data have provided information on potentially important sites
of transmission within households and communities for a range of different protozoal and
helminth parasites, including zoonotic infections. Outdoor sampling can be extended to
samples collected indoors on different surfaces, including dust. For example, we showed that
mattress and floor dust samples from the beds of children living in rural communities have
significant rates of parasite contamination—for example, in one analysis, 39% of mattress
samples were positive for A. lumbricoides and positivity was strongly associated with the
presence of active infections [18] (Figure 1C—a typical bed in Esmeraldas Province, Ecuador).
Parasites including G. intestinalis, Blastocystis, Cryptosporidium, and the trematode, Schistosoma
mansoni in Brazil, were also detected in the water samples (Figure 1D). Of course, detecting
DNA by qPCR could reflect non-viable parasites rather than viable infectious parasites. Still,
several methods could be used to determine the potential for transmission. Among these are
the incorporation of vital dyes into living cells or the detection of mRNA [19]. Because the
qPCR assays we used can detect as little as 1 fg/µL of DNA, their exquisite sensitivity must
be considered, particularly if parasite viability measures are impractical, as may be the case in
many settings. Under such circumstances, it may be possible to define quantitative thresholds
below which it is unlikely that viable parasite stages of specific parasites are present in any
specific setting. Further, extracted DNA from parasite-contaminated soil could be used for
surveillance of genetic resistance markers for anthelmintic and antiprotozoal drugs.
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Figure 1. (A)—Soil samples were collected in the environment (i.e., in front of the front door, in the
porch area, and front of the latrine) around this rural household in the Amazon region of Ecuador.
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(B)—Collection of peri-domestic soil samples in Ecuador. (C)—A typical bed where dust was collected
in Esmeraldas Province, Ecuador. (D)—Local streams and waterways used for bathing and washing
and which are sources of Schistosoma mansoni exposure in Januária, Brazil.
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eight collaborating laboratories within a Latin American research network. Our sampling 
method draws on standardized multi-parallel qPCR assays developed for molecular 
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Further, the technique allows relatively high throughput testing of samples when 
using a 96-well plate format. In contrast, the high specificity of the assays allows human 
and animal parasites to be distinguished easily. Further studies must define the number 

Figure 2. Map showing locations of collaborating centers in Latin America for our collaborating
research group on using molecular methods for parasite detection in soil samples. Including sites in
Argentina, Bolivia, Brazil, Colombia, Ecuador, Mexico, Paraguay, and Peru.

5. Soil and Water Assays across Field Sites in Latin America

Other research groups have developed methods for molecular testing of soil and other
samples for STH parasites [20]. Our soil sampling method has the advantage of easy use
and standardization across laboratories. The methods can be easily adapted for other
environmental samples, such as household dust. Additionally, it offers the flexibility of a
simple extraction method that can be performed in unsophisticated laboratories at field sites
using inexpensive and widely available equipment with more centralized molecular testing
where appropriate (Figure 1). The assays are currently being standardized across eight
collaborating laboratories within a Latin American research network. Our sampling method
draws on standardized multi-parallel qPCR assays developed for molecular diagnostics of
enteric parasites in stool samples in resource-limited settings [7].
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Further, the technique allows relatively high throughput testing of samples when
using a 96-well plate format. In contrast, the high specificity of the assays allows human
and animal parasites to be distinguished easily. Further studies must define the number of
soil samples required to estimate potential transmission risks (or exclude significant risks)
for a specific infection in a community or defined geographic area.

6. The Assays Have Wide Potential Applicability

The use of molecular assays to detect enteric parasites in soil and other environmental
samples has a wide variety of potential applications: examples of potential uses are pro-
vided in Table 1. For example, in the case of STH control programs, mapping of prevalent
STH in unmapped regions could use soil sampling as a rapid method before stool surveys
to determine the need for preventive chemotherapy in communities. The technique may be
particularly useful in populations of low parasite transmission where infections are likely
undetectable by standard microscopic methods. Given the growing interest in moving
beyond morbidity control to elimination of transmission of STH infections in some formerly
endemic settings [21], in populations where STH transmission is thought to have been inter-
rupted or is close to being interrupted, soil sampling may be more sensitive than screening
of stools at a populational level. Longitudinal sampling could be performed in sentinel
communities, as with other helminth elimination programs [22], with sampling focused on
collecting relatively few soil samples from community centers or schools where ongoing
or recrudescence of transmission could be monitored. In such circumstances, viability
measurement will be important as intact DNA in old and degenerate eggs may otherwise
give positive results. Similarly, post-treatment and post-certification surveillance could
be carried out most efficiently using soil sampling at key sites in sentinel communities. It
may be important to do surveillance for the emergence of genetic markers of resistance to
benzimidazole drugs under conditions of periodic preventive chemotherapy, particularly if
community-wide mass drug treatments are being given [23].

Genetic markers of resistance could be detected in soil samples before a loss of drug
efficacy is detectable in treated populations, and community soil sampling would allow
such surveillance to be performed relatively easily and cost-effectively. Control programs
for other enteric parasites, if and when considered feasible and cost-effective, could use a
similar strategy for initial mapping followed by measurement of impact on the transmission
of Water, Sanitation, and Hygiene (WASH) strategies or chemotherapy.

Table 1. Examples of potential uses of soil and other environmental sampling for detecting en-
teric parasites in the environment. STH—soil-transmitted helminths. WASH—water, sanitation,
and hygiene.

Potential
Application Sample Indication Sampling Sites Parasites

STH control/
elimination
programs

Soil

Initial community mapping;
monitoring for transmission

interruption; post-treatment and
post-certification surveillance;

surveillance for drug
resistance markers.

Question: can environmental
parameters be used to define

transmission ‘break-points’ and will
these breakpoints differ for distinct

STH parasites?

Community
centers/schools;

households: transmission
monitoring could be

carried out in sentinel
communities (either in

community centers or in
high-transmission

households)

STH

Control programs
for other enteric

parasites/WASH
strategies

Soil

Surveillance for key enteric parasites;
surveillance for emergence of genetic

resistance markers to common
antiparasitic drugs

Community centers,
schools, and households

STH and pathogenic
protozoa.

Environmental
monitoring Soil Animal husbandry Farms and animal pens STH
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Table 1. Cont.

Potential
Application Sample Indication Sampling Sites Parasites

Clinical and
epidemiological

studies
Soil

Detection of low-level transmission
where changes in prevalence may

affect clinical disease (e.g., A.
lumbricoides and respiratory disease;
T. trichiura and rectal prolapse; etc.)

Households or schools STH

Epidemiological
studies Soil

Detection of environmental
contamination with zoonotic infections;

One Health

Households; play areas;
parks; schools; community

centres; etc.

Toxocara spp.;
G. intestinalis and

Cryptosporidium spp.);
zoonotic hookworms

Intervention studies Soil

Measuring the impact of WASH or
environmental decontamination to kill

parasite stages in the environment
using chemicals or biological agents;

One Health interventions

Households; schools;
communal areas

A wide variety of
parasites, including
zoonotic infections

Environmental
monitoring

Wastewater/sludge/
water sources/
food sources

Outbreak investigations in
non-endemic settings; analysis of
sludge, biosolids, and compost as
fertilizers or soil conditioners, etc;

analysis of food/vegetables

Reservoirs, sewage plants,
fresh water, market food

Pathogenic protozoa
(i.e., G. intestinalis and
Cryptosporidium spp.)

and STH

Epidemiological
studies Soil/dust/water

Detection of sources of transmission of
enteric and non-enteric parasites in

household samples

Different areas outside
(porch/play area, front
door, latrine, etc.) and

inside the house (entrance,
bed, food preparation

area, etc.)

A wide variety of
parasites with an

environmental reservoir

Climate change Soil/dust/water

Longitudinal detection of parasites
around and inside built environments
to determine impact of climate change

on parasite contamination

Households; schools;
communal areas

A wide variety of
parasites with an

environmental reservoir

7. Conclusions

The availability of molecular assays for the detection of enteric parasites in soil and
other environmental samples using high throughput methodology that can be applied
easily in resource-limited settings provides a potentially valuable tool for the surveillance
of transmission risk in endemic populations, as well as for the monitoring of the emergence
of drug resistance. Although further field evaluation of these methods will be required
in various settings, these methods could complement stool collections for many research
and surveillance uses, particularly in populations with limited acceptability and where
repeated sampling may be required.
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