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A B S T R A C T

Osteoarthritis (OA) is a chronic debilitating condition that affects the whole joint. There are several sources of
pain in OA that include the synovium, bone, including osteophytes and more recently bone marrow lesions (BML)
that correlate with pain. Recent studies have shown that the bone compartment contributes to pain in OA through
the development of OA-BMLs which are richly innervated and demonstrate angiogenesis. The synovium is also
innervated in OA tissue and is another distinct source of pain, with imaging and genetic studies supporting the
observation that synovitis is an important component of pain in OA. Previous studies using magnetic resonance
imaging (MRI) have shown that bone marrow lesions (BMLs), observed as high intensity signal on T2 fat-
suppressed imaging sequences, are commonly found in OA and are associated with progression of pain symp-
toms. Recent studies have described the genetic signature of BMLs and the characteristic histological changes of
BML tissue. In this narrative review we describe the recent developments in the discovery of the gene expression
profiles identified from BMLs. We also review the recently characterised histological changes from BMLs in large
weight-bearing joints including the knee and hip. Finally, we discuss the implications of new genetic and his-
tological findings in BML in the context of new developments for pharmacological therapies in OA.
1. Introduction

Osteoarthritis (OA) is a common condition affecting millions of
people globally [1]. Despite its high prevalence there are currently no
licensed disease-modifying drugs that halt disease progression [2,3].
Numerous large-scale clinical trials have been conducted to test new
pharmacological therapies in OA, particularly for knee and hip
involvement, but these have not led to the approval of new treatments
for this debilitating condition. Historically, the field has focused on
regeneration of cartilage in attempts to achieve clinically meaningful
improvements in pain and function after intervention. For example,
recently the FORWARD study tested the effect of the anabolic agent,
sprifermin, a recombinant protein consisting of fibroblast growth
factor-18 (FGF-18), on cartilage thickness, volume and pain outcomes
in OA [4]. Although there was an improvement in cartilage regener-
ation thickness component of the knee joint with sprifermin, it failed
to reach a clinically meaningful effect for pain and stiffness [4].
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Further clinical trials in large joint OA have targeted pain modulation
and have included novel therapeutic agents, including monoclonal
antibodies to nerve growth factor e.g. tanezumab [5,6]. However,
following Phase III clinical trials with tanezumab, licensing has not
progressed further due to concerns about rapidly progressive OA in a
subgroup of people with knee OA.

Participants with OA in clinical studies may also demonstrate varia-
tion in the individual effectiveness of treatment. People with OA are left
not knowing if a treatment will work or for how long, and when or why
their symptoms get worse. Many current clinical trials in OA recruit
participants with wide disease heterogeneity, resulting in a current sit-
uation where a streamlined approach does not exist for stratifying par-
ticipants to specific treatments. Recent research strategy groups have
proposed a multi-modal approach, using technology to assist in OA
stratification that could enhance OA trial design [9]. There is an urgent
need to develop better treatments for OA, since many non-surgical
treatments for OA only offer short-term relief.
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OA is a condition causing changes in several joint compartments,
including the synovium, bone, cartilage and meniscal structures [9].
Previous studies have demonstrated that bone marrow lesions (BMLs) in
OA are strongly associated with pain. One of the earliest studies of
OA-BMLs, led by Felson et al. [10], reported a study of 401 knee OA
participants, 50 of whom had no knee pain. Participants underwent
coronal T2-weighted fat suppressed MRI scans and BMLs were graded by
their size. The frequency of BMLs increased with radiographic grade of
OA: 48 % of Kellgren- Lawrence Grade 0 had BMLs compared with 100 %
of those with Kellgren- Lawrence Grade 4. In addition, BMLs were found
in 78 % of the painful knee group compared with 30 % of the non-painful
knee group (P < 0.001). In another study of BMLs in the OA participants
analysed by painful and non-painful OA groups, larger lesions (>1 cm2)
were more common in the painful versus the non-painful knee OA group
(P< 0.05) [11]. In a study of women with knee OA [11], the participants
with larger BMLs were more likely to have full-thickness cartilage de-
fects, adjacent subcortical bone abnormalities and painful knee OA with
an odds ratio of 3.2 [11].

Since its first descriptions of BML associations with pain in 2001,
numerous studies using large datasets such as the Multicentre Osteoar-
thritis Study [12], OsteoArthritis Initiative [13] and clinical trials [14]
have provided further support to the observation that OA-BMLs are an
important contributor to pain. Furthermore, scoring systems to assess
imaging changes characteristic of BMLs [15] have developed, including
the MRI knee osteoarthritis score (MOAKS) [16] to aid further research
into the pathophysiology of OA-BMLs.

Currently, many clinical trials and studies are collecting measures on
structural changes in the whole OA joint e.g. by MRI, to include cartilage,
bone and synovium changes in response to specific interventions
[15–17]. In addition to cartilage and bone, the synovium can become
inflamed in OA and active synovitis is a treatment target in OA. Tradi-
tional inflammatory disease modifying therapies have also been tested in
hand OA e.g. hydroxychloroquine but were not found to be effective in
improving pain [7], although recent work has suggested that other
disease-modifying anti-rheumatic drugs such as methotrexate may be an
agent that can target OA synovitis [8].

In this narrative review, we describe recent developments in our
understanding of OA-BML pathophysiology and review the literature
describing the genetic signature and histological profile of OA-BMLs. The
implications of new developments in OA-BML pathophysiology are
described in the context of novel therapies that are being developed to
target OA-BML modulation as a therapy for OA.
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2. Methods

A literature search was undertaken from 1 January 1990 to 1 August
2024 using electronic databases: Medline (Ovid), Embase (Ovid), Med-
line, Web of Science and CINAHL (EBSCO) for this narrative review. The
search terms “osteoarthritis” and “bone marrow lesions” were used.
Studies which reported genetic and histological studies of human OA-
BMLs were identified. For the purpose of this narrative review, studies
which reported clinical and/or imaging data alone were excluded.
Studies in animal models were excluded. We identified a total of 1024
publications using the search terms bone marrow lesions and osteoar-
thritis (Fig. 1). By including additional search terms of ‘genetics’ and
‘histology’, a total of 19 publications were identified, which are the
subject of this narrative review. Review articles and animal models were
excluded. Original articles reporting data in human OA were then
assessed and reported in this narrative review.

2.1. Genetic studies of OA-BMLs

OA-BMLs are characterized by hypo-intensity on T1 weighted images,
and hyperintensity on T2, proton density-, and intermediate-weighted
fat-suppressed fast and short tau inversion recovery MRI sequences (for
example see Fig. 2). OA-BMLs are most frequently observed where they
are adjacent to fibrillated and denuded articular cartilage in the sub-
chondral compartment, without any visible fracture line. It is important
to exclude other causes of bone marrow oedema in studies, including
BMLs representing trauma, subchondral insufficiency fracture or malig-
nancy (Fig. 3).

Several studies have used cell and tissue extraction techniques from
BMLs to identify the genetic transcriptomic signature of BMLs. Three
large studies to date have identified the transcriptome from OA-BMLs
[17–19] (Table 1). In the first transcriptomic study of OA-BMLs, Kutta-
pitiya et al. [17] found that 218 genes were upregulated in human knee
OA-BML compared to healthy non-OA bone. The most upregulated genes
included stathmin 2, thrombospondin 4, matrix metalloproteinase 13
andWnt/Notch/catenin/chemokine signalling molecules that are known
to constitute neuronal, osteogenic and chondrogenic pathways [17].
Tuerlings et al. [18] performed RNA sequencing on macroscopically
preserved and lesional OA subchondral bone from patients with OA hip
or knee. They identified 1569 genes that were significantly differentially
expressed between lesional and preserved subchondral bone, including
CNTNAP2 and STMN2. Among these 1569 genes, 305 were also
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Fig. 2. Presence of OA-BML in knee and hand OA.
Results from imaging and tissue analysis in knee and
hand osteoarthritis from the Pain Perception in Oste-
oarthritis study (the study was conducted with full
Ethical Approval, Research Ethics Committee
approval number 12/LO/1970). A. Magnetic Reso-
nance Imaging (MRI) scan of knee of participant with
osteoarthritis demonstrating osteophytes, synovitis,
cartilage degradation and bone marrow lesions. B.
Magnetic Resonance Imaging (MRI) scan of hand
participant with osteoarthritis demonstrating cartilage
degradation and bone marrow lesions. C. Histological
section of medial tibial subchondral knee tissue from
participant with OA-BML. D. Trapezium bone from
participant with hand OA undergoing trapeziectomy.
The 7 typical features showing OA-BML changes
include Cysts (C), Fibrosis (F), blood vessels (BV),
Thickened trabeculae (T), cartilage (Ca), tidemark
integrity (TM), inflammation (I) which comprise the
Osteoarthritis Bone Score (OABS).
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differentially expressed, and with the same direction of effect, in carti-
lage, including the recently recognized OA susceptibility genes IL-11 and
CHADL. Specific genes were differentially expressed in subchondral bone
of the knee, including KLF11 and WNT4. Zeng et al. also reported
upregulation of IL-11 and VCAN from knee OA BMLS [19], supporting
the role of IL-11 in OA-BML pathophysiology.

2.2. Characterisation of histological changes in OA-BMLs

Although a large proportion of people with OA receive medical
management, in cases where joint surgery is required due to
3

intractable pain symptoms e.g. hip, knee or hand, the tissue harvested
at joint surgery is a rich source of information which has increased our
understanding of OA-BML pathology. Samples from joint surgeries
have demonstrated features of angiogenesis and new nerve formation
[20,21]. Previous work has been conducted on BMLs in distinct
anatomical sites, including the hand, knee and hip. Taljanovic et al.
[22] showed that BMLs in hip OA can be observed clearly by MRI scan
before joint replacement surgery and correlated with histological
changes that includes cysts, pseudocysts and microfractures repre-
sented by areas of osteoclast activity and angiogenesis in the sub-
chondral bone.
Fig. 3. Bone marrow lesions caused by alternative
pathologies to OA. A. BML caused by trauma: Coronal
fat-suppressed intermediate-weighted MRI shows
hyperintensity of the posterior lateral tibial plateau,
but there is no fracture line (arrows). There is also a
smaller hyperintense lesion is visible at the posterior
medial tibia (arrowhead). There is also a traumatic
anterior cruciate ligament tear (asterisk) and the bone
marrow changes are consistent with bone contusions
found in association with the cruciate ligament tear.
B. BML caused by Subchondral Insufficiency Fracture
(SIF). Coronal fat-suppressed MRI shows a sub-
chondral linear hypo-intensity zone directly adjacent
to the normal subchondral plate (short arrow) at the
medial femoral condyle. There is also extensive bone
marrow hyperintensity of the femoral condyle (‘bone
marrow oedema’, asterisk) and soft tissue hyper-
intensity (‘inflammation’) at the medial joint line
(arrowheads). Subchondral linear hypo-intensity is
pathognomonic for SIF. There is also full-thickness
cartilage loss at the central medial femur (long
arrow) and meniscal extrusion due to a posterior
medial meniscus root tear, which are commonly found
with SIF.



Table 1
Gene pathways upregulated in bone marrow lesions.

Neuronal pathway genes:
Stathmin 2 (STMN2)
Thrombospondin 4 (THBS4)
Neuronal tyrosine-phosphorylated phosphoinositide-

3-kinase adaptor 2 (NYAP2)

Angiogenesis signalling
pathways:
Vascular epidermal growth
factor (VEGF)
Nuclear factor kappa B (NF-
κB)
Interleukin-11 (IL-11)

Chondrocyte-based genes:
Matrix metallopeptidase 13 (MMP-13)
Collagen type XVI
CHADL (chondroadherin-like)

Bone turnover genes:
Catenin delta (CTNND2)
Homeobox 1 and 2
RANK Ligand (RANKL)

A summary of the gene expression upregulated in human OA-BMLs (see Refs.
[17–19]).
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Koushesh et al. [23] demonstrated that knee OA-BMLs also have very
similar histological changes to hip OA-BMLs from tissue harvested at
joint replacement surgery [22]. OA-BMLs are associated with structural
change, including lost osteochondral integrity, fibrosis, cysts, and de
novo cartilage within subchondral bone. While non-BML regions of OA
subchondral bone display bone attrition, BMLs display trabecular thick-
ening (but with reduced mineralisation) consistent with high turnover.
Increased vascularity and perivascular innervation in BMLs might
contribute to pain and are a consistent feature of OA-BMLs [23].
Koushesh et al. [23] demonstrated that hypervascularity in BML tissue is
most frequently observed near the osteochondral junction, with other
regions of increased blood vessels deep within the subchondral bone.
Subchondral vascularity was higher in BML tissue 123.5 (SD 69.1)
compared with non-BML tissue 53.2 (SD 21.4) and post-mortem controls
11.7 (SD 5.4) p < 0.0001 [23]. Staining for nerves with PGP9.5 immu-
noreactive nerve profiles was also most frequently observed in a peri-
vascular distribution at the osteochondral junction and deeper within
subchondral bone [23].

More recently, BMLs have also been detected in people with hand OA
in the trapezium bone for people undergoing surgery for hand OA [24].
People with hand OA who had already received full medical manage-
ment, including non-steroidal anti-inflammatory drugs, intra-articular
steroid injections and hand therapy, underwent trapeziectomy for hand
OA [24]. Pre-operatively, MRI-defined changes using the OMERACT
thumb base scoring system found the presence of cartilage damage,
subchondral changes and bone marrow lesions (Fig. 2). Changes on MRI
were able to colocalise changes correlating to BMLs from harvested tis-
sue. The OABS was applied to all trapeziectomy tissue samples, with
scores ranging from 6 to 7 in all the samples evaluated [24]. Assessment
of pain sensitisation using painDETECT showed significant correlation to
the summed the OMERACT thumb base scoring system for: number of
subchondral bone defects (R ¼ 0.66, p ¼ 0.007), number of osteophytes
(R ¼ 0.72, p ¼ 0.002) and cartilage degradation (0.56, p ¼ 0.031). A
practical guide to assess BMLs can assist research groups in evaluating
OA tissue for BMLs (the OABS training manual for interpreting OA tissue
sections is provided in the supplementary information to this review).

Studies from hip, knee and hand OA demonstrate changes which are
found commonly in all three anatomical sites. Despite differences in
anatomy, joint loading, weight bearing, specific risk factors e.g. meno-
pause in hand OA, the presence of BMLs in joints as diverse as the hand,
knee and hip show that OA-BMLs are likely to represent a shared
pathway of joint damage that is found in OA. As such, OA-BML represent
an attractive therapeutic target for OA treatment.

Recently, significant progress has been made in other fields of med-
icine by identifying the clinical, histopathological and genetic correlates
of disease. For example, in oncology, a tissue biopsy of a malignant lesion
can be phenotyped for clinical features, histopathological changes and
genetic signatures [25]. By obtaining detailed ‘mapping’ of e.g. a tu-
mour’s characteristics, predictions can be made based on gene and pro-
tein characteristics for treatment choice, responsiveness and prognosis.
There is now increased recognition that OA has several phenotypes [26],
4

but information about clinical correlates of structural damage, gene and
protein signatures are less well characterised in OA. Attempts have been
made in other rheumatic diseases, including synovial tissue changes in
rheumatoid arthritis, which assist in disease stratification and treatment
consideration options [27]. By characterising the specific gene and pro-
tein signatures of OA including cartilage, synovium and bone we can
understand the histopathological changes which contribute to the OA
disease process.

2.3. How can we measure BML changes?

The quantification of OA-BMLs is an important step if we are to show
that interventions can target and modify BMLs. OA-BMLs can be assessed
semi-quantitatively with the MRI OA Knee Score (MOAKS) [13] or Rapid
OA MRI Eligibility Score [28]. MOAKS includes detailed subregional
grading of areas of presumed BML together with associated cysts con-
taining fluid equivalent signal directly adjacent to the subchondral plate.
MOAKS has been used in several clinical trials and epidemiological
studies [13,29,30]. Rapid OA MRI Eligibility Score is a simplified mea-
sure used for defining structural eligibility of participants for inclusion in
clinical trials. Quantitative measurement of BMLs using image segmen-
tation can also be performed using scores such as the Knee Inflammation
MRI Scoring System [31].

More recently, artificial intelligence methods have been used to
provide a more rapid assessment of MRI changes to identify specific
changes. For example, AI-assisted MRI has been used to acquire image
sequences more rapidly while not compromising image quality [32].
Some protocols have reduced scanning time but maintained image
quality [33] and machine learning tools are being developed to assist in
automation of scoring systems which may assist in MRI scoring of lesions
in the future [34].

BMLs have been identified in animal OA models, where histological
measurement might have advantages due to the small size of the rodent
joints often used for preclinical testing of novel pharmacological agents
[35] which can then be applied to clinical trials using OA-BMLs as a
readout. The recently described OA Bone Score (OABS) [23], grades 7
BML-associated histopathological characteristics, and, like MRI scoring
systems such as MOAKS and ROAMES, displays good reliability. The
OABS identifies characteristic histological changes in OA-BML, including
cysts, fibrosis, disruption of tidemark integrity, new blood vessel for-
mation, fibrosis, inflammatory infiltrates and thickened trabeculae in
subchondral bone (Table 2). The OABS effectively discriminated between
OA and non-OA medial tibial osteochondral samples and was better able
to distinguish BML from non-BML bone than the Mankin’s chondropathy
grade [23]. Further analysis of the distinct histological processes within
BMLs using a Rasch analysis from the same study showed that there are
two inter-related pathological processes, affecting trabecular and
non-trabecular structures respectively [23]. Future work is required to
investigate the temporal sequence of OA-BMLs in relation to the histo-
pathological signature of OA-BMLs.

2.4. Importance of BMLs as a therapeutic target

OA-BMLs might help to identify people at risk of symptomatic and
structural OA progression who are most likely to benefit from treatment.
BMLs might identify either an OA subtype or phase of disease that could
benefit from specific treatment [14]. Further research is required to
determine whether some individuals, perhaps with distinct genetic
constitution, joint structure or OA aetiology. It is important to identify
individuals at higher risk of developing BMLs, the relation to cartilage
defects and synovitis, to assess or whether BMLs reflect a specific phase of
OA development and progression.

The work of both Kuttapitiya et al. [17] and Tuerlings et al. [18]
identified similar target OA-BML genes from their studies, including
STMN2 and wnt/catenin pathway genes. The findings from the respec-
tive gene array studies open up potential new avenues for treatment e.g.



Table 2
Scoring system OABS.

Osteoarthritis Bone Score (OABS) Grade

1. Cysts
None 0
Present (at least 1) 1

2. Fibrosis (fibrotic connective tissue
within bone marrow space)
None 0
Present (at least one region) 1

3. Blood vessels (number of blood
vessels within the subchondral region of interest)
Normal (0–15) 0
Increased (>16) 1

4. Cartilage islands (new cartilage within bone)
Absent 0
Present 1

5. Trabeculae thickened (≥2 trabeculae >200 μm wide)
Normal 0
Increased thickness 1

6. Tidemark integrity
Intact 0
Crossed by at least one blood vessel 1

7. Inflammation (cellular infiltrates)
Absent 0
Present 1

Total 7

Legend. The OsteoArthritis Bone Score (OABS) is characterised by the presence
of 7 characteristic features summarised in the table. To score 1 in any domain, the
feature described needs to be observed at least once in the OA tissue section
(Ref. [23]).
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stathmin 2 has been identified in several studies. Since stathmin 2 is a
microtubule-associated protein that is involved in axonal development
and repair, then inhibitors targeting this protein could be developed in
future therapeutic studies. The wnt/catenin pathway has also been
implicated in several studies and work is currently underway including
wnt pathway modulators e.g. lorecivivint and more recently the
anti-sclerostin antibody romosozumab is being tested in clinical studies
for OA. With respect to IL-11, this pro-inflammatory cytokine is impli-
cated in cell senescence and ageing [36]. Anti-IL-11 therapy is currently
in early-stage clinical trials for fibrotic lung disease [37] and it has also
been proposed as a potential therapeutic agent on pathology involving
ageing, such as OA [38].

Pharmacological and non-pharmacological targeting of OA-BMLs
might represent a novel treatment class to both rapidly improve symp-
toms, delay structural and symptom progression, and reduce the currently
high need for joint replacement surgery, particularly of large weight-
bearing joints [39]. Clinical trials should appreciate differential di-
agnoses, because some BMLs might be inappropriate for OA-BML treat-
ment, for example BMLs representing trauma, subchondral insufficiency
fracture or malignancy (Fig. 3). There have been attempts to reduce
OA-BMLs which have targeted subchondral bone turnover bisphospho-
nates [40–43], strontium ranelate [44]. Recently, a phase 2 trial was
completed assessing the effect of pentosan polysulfate (PPS) in knee OA
[48]. PPS is a potential treatment target for OA-BML and inhibits NFKB,
which is upregulated in OA-BML [17]. Since PPS acts via NFKB it could act
via several mechanisms in OA to reduce inflammation, pain sensitisation,
cartilage degradation and improve blood flow. Results from a Phase 2 trial
in knee OA demonstrated that OA-BMLs reduced in size by treatment with
PPS [48].

Non-pharmacological approaches include offloading the affected joint
by reducing the biomechanical stresses thought to mediate BML formation
or pain, including high tibial osteotomy [45] or patellofemoral bracing
[46]. Other treatmentsmight remove or replace BMLs such as arthroplasty,
or more generally restore normal cellular function (Bone Marrow
Concentrate and Platelet Product injections [47]). Treatments targeting
sensitising molecules such as nerve growth factor or Trk Amay also reduce
pain by acting on factors produced within BMLs. Other treatments that can
5

reduce pain associated with BMLs, such as exercise, analgesics and weight
loss may exert their effect without reducing BMLs [49,50].

Assessing clinical responses to BML-targeted interventions might be
most expected in the subgroup of individuals for whom BMLs are the
predominant cause of pain or structural disease progression. OA-BML
assessment could enable OA stratification by identifying a treatment-
responsive OA patient subgroup. More recently, bone modulator drugs
have been suggested as modifiers of subchondral structural change in OA;
a recent clinical trial of denosumab, a monoclonal antibody targeted at
RANK Ligand demonstrated that in hand OA, treatment with denosumab
resulted in an improvement of the primary (radiographic) endpoint,
which was the change in the total Ghent University Scoring System at
week 24, where positive changes correspond to remodelling and negative
changes to erosive progression [51]. The primary endpoint was met with
an estimated difference between groups of 8.9 (95 % confidence interval
1.0 to 16.9; P ¼ 0.024) at week 24. There were also more erosions found
in the placebo group (125 events in 44 patients (90 %)) compared with
the denosumab group (97 events in 41 patients (80 %)). The results from
the hand OA denosumab trial suggest that it can achieve structure
modification in erosive hand OA by promoting remodelling and reducing
the development of new erosions. Other bone-modulating drugs e.g.
romosozumab have also been tested in OA, although results of a benefit
for pain in knee OA was inconclusive [52].

3. Concluding remarks

Recent studies have demonstrated that OA-BMLs are dynamic struc-
tures with a distinct genetic and histological profile. Genes involved in
new nerve formation, angiogenesis and inflammation feature highly in
OA-BMLs, with tissue changes showing increased nerve/blood vessel
formation, new cartilage formation and inflammation. Further studies
are needed to investigate if a treatment is more effective for or better
tolerated by individuals with BMLs than those without BMLs. New in-
terventions that target key biochemical or structural aspects of OA-BMLs
[53], will assist in identifying their importance in OA and to address the
high burden of symptoms caused by this condition.
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