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A B S T R A C T

Respiratory syncytial virus (RSV) is a common cause of severe respiratory tract infection at the extremes of age and in vulnerable populations. However, it is difficult 
to predict the clinical course and most infants who develop severe disease have no pre-existing risk factors. With the recent licencing of RSV vaccines and monoclonal 
antibodies, it is important to identify high-risk individuals in order to prioritise those who will most benefit from prophylaxis. The immune response to RSV and the 
mechanisms by which the virus prevents the establishment of immunological memory have been extensively investigated but remain incompletely characterised. In 
animal models, beneficial and harmful immune responses have both been demonstrated. While only chimpanzees are fully permissive for human RSV replication, 
most research has been conducted in rodents, or in calves infected with bovine RSV. Based on these studies, components of innate and adaptive immune systems, 
cytokines, chemokines and metabolites, and specific genetic and transcriptomic signatures are identified as potential predictive indicators of RSV disease severity. 
These findings may inform the development of future human studies and contribute to the early identification of patients at high risk of severe infection. This 
narrative review summarises the factors involved in the immune response to RSV infection in these models and highlights the relationship between potential bio-
markers and disease severity.

1. Introduction

Respiratory syncytial virus (RSV or human orthopneumonvirus) is a 
single-stranded, negative-sense RNA virus of the paramyxoviridae family. 
Approximately 100,000 infant deaths globally are caused by RSV each 
year [1] but identifying patients who will develop severe disease is 
challenging, even amongst those with known risk factors, such as 
prematurity.

Several animal models have been used to study RSV [2]. Most studies 
are in mice, benefitting from fast gestation times, low husbandry costs, 
the availability of genetically modified mice, many immunological re-
agents and a well-characterised immune system. Some mouse strains 
have a much greater susceptibility to viral infection and disease than 
others, influencing study outcomes [3]. The immune system and the 
response to RSV in other small animals is less well characterised.

Bovine disease can be induced by bovine RSV (bRSV), closely related 
to human RSV-B strains with broadly similar pathogenesis and 

epidemiology [2]. The utility of bovine models is limited by cost and 
logistical issues of conducting experiments in large animals. Chimpan-
zees are highly susceptible to human strains but are essentially no longer 
used as experimental animals for ethical and cost reasons [4]. Addi-
tionally, pneumonia virus of mice (PVM) is the murine homolog of RSV 
and has been used to infer features of RSV pathogenesis [5]. However, 
the PVM model is restricted by the high rate of transmission within 
animal facilities, presenting a welfare and biosafety challenge.

Severe RSV disease is variably defined in different model organisms. 
Severity scores using clinical parameters can be reliable in some models 
but are somewhat subjective and variable. Weight loss and histopatho-
logical changes in the lungs are more commonly used to determine 
severity in animal models.

Findings from animal studies may not be directly transferable to 
humans, but insights gained from animal studies can establish principles 
and inform the design and focus of human studies which we have 
reviewed recently [6]. This current review summarizes factors 
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influencing disease severity in selected major animal RSV models, 
focusing on the immunological readouts that may act as biomarkers of 
disease severity.

2. Innate immune response

The innate immune system provides an immediate response to an 
encounter with RSV and aims to limit early RSV replication. The resident 
epithelial and antigen-presenting cells (APCs) express pattern recogni-
tion receptors (PRRs) including Toll-like receptors (TLRs) and RIG-like 
receptors (RLRs), which recognise pathogen-associated molecular pat-
terns (PAMPs) and initiate inflammatory responses to RSV. Activated 
PRRs upregulate inflammatory cytokines and chemokines [1] and re-
cruit eosinophils, monocytes and natural killer (NK) cells in a broad 
pattern that is similar across all prominent model organisms for RSV 
infection. The adaptor molecule MyD88 is a key component of TLR 
signalling that engages activation of NF-kB and subsequent inflamma-
tory cytokine responses [7]. MyD88(-/-) mice exhibit exacerbated RSV 
pathophysiology, associated with enhanced Th2 cytokine expression [8] 
and reduced neutrophil recruitment to the lung [9]. Additionally, loss of 
RLR signalling in MAVS(-/-) mice resulted in a deficient early innate 
response to primary RSV infection, but also led to a weaker recall 
response by CD4+ and CD8+ T cells following re-infection, indicating 
that MAVS signalling is required for robust T cell memory responses to 
RSV [10]. Furthermore, MAVS signalling was later shown to be required 
for the formation of CD8+ tissue resident memory T cell responses to 
RSV [11].

2.1. Resident cells of the respiratory tract

While human studies of immune responses to RSV have largely 
depended on peripheral sampling, there is a clear need to focus on the 
local responses in the lung [12]. Alveolar macrophages and dendritic 
cells (DCs) are major phagocytic cells in the lung and play a key role in 
presenting antigen to T cells. One study found that alveolar macrophage 
depletion in RSV infection was associated with reduced inflammation in 
BALB/c mice [13], possibly as macrophage depletion reduces the initial 
cytokine response to RSV in the murine model [14]. Similarly, it has 
been reported that “M2 type macrophages” mediate resolution of pul-
monary pathology in RSV infection in mice [15]. While this exact role 
has not been noted in humans, macrophages do play a role in immune 
regulation and antigen presentation [16]

Two murine studies found DCs were involved in viral clearance and 
were protective against RSV disease pathogenesis [17,18]. In humans 
and mice, DCs are the primary antigen-presenting cells in RSV infection, 
with low numbers of DCs being associated with the development of RSV 
bronchiolitis in humans [13]. Defects in DC function result in 
non-specific immunodeficiencies that might predict more severe in-
fections from a wide range of pathogens including RSV. Therefore, DCs 
may not represent useful biomarkers specifically for RSV infection.

2.2. Recruitment of cells to the respiratory tract

Recruited inflammatory cells promote RSV clearance but can cause 
immunopathology. NK cells are innate lymphoid cells exhibiting 
perforin-dependent cytotoxic activity against RSV-infected cells and 
production of cytokines and chemokines [19]. In a study of perforin 
knockout mice, RSV clearance was delayed, with prolonged illness and 
overproduction of IFN-γ and TNF-α compared with controls [20]. 
However, it has also been reported that NK cell depletion significantly 
limits lung immune injury in RSV-infected mice, and that production of 
excessive IFN-γ by NK cells may result in acute injury [21]. While NK 
cells are important in the clearance of infection, this suggests that they 
may also be involved in RSV pathogenesis. Markers of NK cell 
over-activity could be studied in future biomarker research.

Eosinophils have been shown to protect against RSV in vivo, 

promoting virus clearance and limiting virus-induced lung dysfunction 
[22]. However, transferring eosinophils from RSV-infected mice into 
naïve mice resulted in airway hyper-responsiveness (AHR) [23], similar 
to their ambiguous role in human infection, where some contribution to 
recovery is observed, despite the association of eosinophils with a 
generally deleterious Th2 immune response [16].

In the early stages of RSV infection, neutrophils are also recruited to 
the respiratory tract but recent studies show that neutrophils have no 
protective role in primary infection of mice, but are also not pathogenic 
[9]. While neutrophil and eosinophil recruitment have been associated 
with RSV disease severity in humans, with neutrophils being by far the 
most prevalent cells recruited to the respiratory tract in humans with a 
definite role in disease pathogenesis [16], they play little role in primary 
infection of mice. Markers of neutrophil activity are excellent human 
biomarker candidates, there is, however, limited evidence from animal 
models [24].

3. Soluble immune mediators

3.1. Interferons

Type I and type III interferons (IFN) are induced by almost all 
nucleated cell types following PRR activation by infecting respiratory 
viruses. These IFNs act to suppress RSV replication through autocrine 
and paracrine signalling that induces the expression of IFN stimulated 
genes (ISGs) that underpin innate antiviral immunity [25,26]. RSV 
infection reduces IFN expression [27], and several studies have focussed 
on the role of the cytokine IFN-γ (type II IFN) in RSV disease severity 
[28]. One study of IFN-γ (-/-) mice challenged with RSV found that viral 
load in the lungs was significantly higher than in wild-type mice, with 
increased airway hyperresponsiveness (AHR). In studies of IFN-γR(-/-) 
mice, IFN receptor deficiency resulted in aggravated pulmonary pa-
thology, enhanced disease and reduced viral clearance [29,30], leading 
to a shift towards a Th2-dominant response [29]. It has therefore been 
suggested that IFN-γ contributes to protection from AHR and lung his-
topathology [31].

However, another study demonstrated less severe obstructive air-
ways disease during RSV infection in IFN-γ(-/-) mice compared with 
wild-type controls, and treatment with IFN-γ in IFN-γ(-/-) mice resulted 
in greater AHR [32]. These conflicting reports suggest there is no clear 
relationship between IFNs and RSV disease severity, and that observed 
effects are likely a result of beneficial effects on viral suppression 
alongside pathologic effects on exacerbating inflammation.

There have been many studies of cytokines and interleukins in ani-
mal models, recently summarised in an extensive review [33]. For 
example, studies of IL-12 in mice indicate enhanced disease via NK cells, 
an effect similar to that seen with IL-18, [34,35]. Treatment of 
RSV-infected mice with anti-IL-12 antibody resulted in increased AHR 
and mucus production [36]. It was found that IL-2 priming in mice 
reduced weight-loss and illness severity [37], while treatment of 
CD8+-depleted mice with IL-5 resulted in lung eosinophilia and AHR 
[38].

TNF-α is a mediator of RSV-induced illness [39], and one study of 
various knockout mice found reduced disease severity with TNF-α 
depletion [40]. Age-dependent differential expression of TNF-α is also 
associated with disease severity in cattle [41], with older cattle experi-
encing more severe infection and higher levels of inflammatory cytokine 
expression, despite decreased viral replication.

3.2. Type 1 and Type 2 responses

In murine and bovine RSV infection, Th1-type 1 (Type 1) responses 
are generally protective, while Th2-type (Type 2) responses have a more 
uncertain role [42]. Type 1 cytokines promote cell-mediated resistance 
to viral infection and other pathogens through pro-inflammatory 
mechanisms. They are generally considered to be protective in RSV 

S.B. Drysdale et al.                                                                                                                                                                                                                             Journal of Clinical Virology 175 (2024) 105731 

2 



infection and are required for complete viral clearance. Type 2 cytokines 
counteract and limit this response, facilitating eosinophil responses and 
mucus production. Type 2 cytokines have been linked to enhanced RSV 
disease in mice but may prevent tissue damage resulting from an un-
controlled Type 1 response [43]. Thus, there needs to be a balance be-
tween Type 1 and 2 responses.

The relationship between cytokines involved in the Type 1 response 
and disease severity is evident. Deficiencies of Th1 cells or pathways 
linked to Type 1 responses can enhance RSV disease severity. This 
relationship is recapitulated in humans, with Type 1 responses broadly 
being seen as strongly protective against more severe infection in 
humans [16]. However, our recent studies of infants show that both 
interferon levels and viral load are paradoxically reduced in anterior 
nasal samples from infants with severe bronchiolitis and respiratory 
failure [44]. In the design of biomarker panels, inclusion of Type 1 
response markers is clearly important.

Type 2 cytokines also have a role in the immune response to RSV. 
Mice vaccinated with formalin-inactivated (FI) RSV that are subse-
quently inoculated with RSV demonstrate an IL-4 dominant immune 
response and delayed viral clearance and more severe immunopa-
thology [45]. This effect has been attributed to alterations in antigen 
processing that result from formalin treatment [46].

IL-6 is up-regulated after infection in mice and mediates resolution 
by inducing production of IL-27. This suppresses pathogenic immune 
responses in RSV infection, and accordingly, IL-6 may be associated with 
reduced disease severity [47]. Similarly, deletion or depletion of IL-10 in 
several studies of murine models resulted in enhanced T-cell mediated 
immunopathology and more severe disease [48–51].

IL-13 is a critical cytokine in the allergic response, associated with 
reduced RSV disease severity in the murine model. One study demon-
strated that overexpression of IL-13 resulted in decreased viral titres, 
protection against RSV-induced weight loss and diminished lung IFN-γ 
production [52]. However, RSV infection can induce an IL-13 dependent 
change in airway function, contributing to the development of severe 
allergic asthmatic responses [53], while a further study implicated IL-13 
in AHR during RSV infection [54]. It has been suggested that experi-
mental use of different viral strains may account for this discrepancy 
[52].

A high IL-4/IFN-γ ratio is a marker of Th2 bias and has been linked to 
more severe RSV infection in humans [16], particularly in children. Th2 
cytokines are promising potential biomarkers for severe RSV disease, 
due to inhibitory effects on the protective Th1 response and role in the 
development of AHR.

3.3. Chemokines

Chemokines are a diverse group of molecules with varied effects, 
some of which have a clear role in RSV disease severity.

CCR1 knock-out has no impact on RSV clearance in mice, but leads to 
decreased AHR and mucus production, and a significant increase in IFN- 
γ and CXCL10 [55]. CCR1 blockade promotes inhibition of inflammatory 
mediators with minimal impact on RSV replication, indicating a possible 
use for CCR1 levels in predicting disease severity.

CCL3 is significantly upregulated during primary RSV infection in 
the murine model [14]. While CCL3 inhibition increases the proportion 
of pro-inflammatory cells [56], two further murine studies demon-
strated that this chemokine is associated with increased disease severity 
[57,58], and is also associated with disease severity in human adults 
[16].

CCL5 is involved in the recruitment of monocytes, memory T-cells 
and eosinophils to sites of inflammation [59], and levels of this che-
mokine have been shown to correlate with RSV disease severity in mice 
[60]. Tekkanat et al. [61] treated mice with anti-CCL5 antibody, 
resulting in decreased AHR and increased IL-12 production. This sug-
gests that CCL5 influences the Th1:Th2 balance, and inhibiting this 
chemokine may be protective against RSV disease [61]. CCL5 has also 

been shown to be upregulated in human disease [16] and deserves 
further study as a disease marker.

One study, conducted using CXCR2(-/-) mice, concluded that CXCR2 
significantly increased AHR [62]. In contrast, neonatal mice deficient in 
CX3CR1 develop significantly greater neutrophilic inflammation in the 
lungs when compared with wild-type mice infected with RSV [63]. 
Similarly, antibody-mediated neutralisation of CXCR3 results in a sig-
nificant increase in AHR and impaired viral clearance [64].

3.4. Metabolomics

Measurements of various metabolites have recently been investi-
gated as potential biomarkers of RSV disease. One study in a mouse 
model found 15 metabolites including glutaric acid, hydroxyglutaric 
acid and spermine were upregulated in mice infected with RSV 
compared with controls [28].

4. Adaptive immune response

The adaptive immune response allows the host to precisely target 
pathogens including RSV, while minimising tissue damage. However, 
while cytotoxic T-lymphocytes mediate resolution of RSV infection, 
long-term immunity is not effectively established.

4.1. T-Cell response

Eradication of RSV infection relies upon an effective T-cell response, 
and defective T-cell responses in children or in animal models are 
associated with increased RSV disease severity and delayed viral clear-
ance[42]. T-cell defects result in progressive but atypical viral replica-
tion and airway inflammation [65]. In mice, T-cell transfer can augment 
acute disease [43] and it has been suggested that T-cell function may be 
actively dysregulated by RSV infection [66].

CD4+ cells have antiviral effects, promote B-cell activation but can 
augment disease as shown in one study of mice infected with RSV [67]. 
Neonatal infection with RSV primes mice for augmented eosinophilic 
disease in adulthood [68] and selective deletion of IL-4Rα, expressed on 
CD4+ cells, prevents immunopathology on reinfection in mice which 
had been originally infected as neonates [69].

In neonatal cattle, the immune response in the lungs is characterised 
by CD8+ T-cell infiltration, with these T-cells outnumbering CD4+ cells 
by a ratio of 3:1 by day 10 of infection [70]. Gnotobiotic calves can be 
selectively depleted of T-lymphocyte subsets using monoclonal anti-
bodies. CD4+-depleted calves exhibit poor neutralising antibody pro-
duction without impairment of viral clearance [71], while CD8+ T-cell 
depletion (which does not affect antibody production) delays viral 
clearance. However, combined CD4+ and CD8+ depletion in vivo results 
in reduced weight loss during RSV challenge [72].

One study found that control mice developed airway eosinophilia 
and AHR in response to RSV infection, while CD8+-depleted mice did 
not [38]. It was also found that CD8+ T-cells enhanced disease during 
RSV re-infection in a study of BALB/c mice [73]. Several animal studies 
have reported RSV disease severity to be associated with Th17 levels 
[74–76]. Pre-exposure of mice to B. pertussis protects from RSV infection 
in mice, an effect which is blocked by IL-17 depletion [77].

Regulatory T-cells (TREG) have an important role in regulating 
adaptive immunity [78,79]. TREG depletion increases disease severity 
and inflammation [80–83], but with no impact on viral clearance [84], a 
relationship which is similar to that observed in humans [16]. 
“Bystander” recruitment of heterlogous systemic memory T-cells 
impaired viral immunity and slightly increased weight loss in a study of 
TCR-transgenic mice [85]. Similarly, it has been noted that depletion of 
T-cell derived IL-10 is associated with increased inflammatory cells and 
production of inflammatory mediators [48].

Overall, levels of CD4+ and CD8+ T-cells provide promising potential 
as biomarker targets. The inverse correlation between levels of 
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circulating CD4+ T-cells and disease severity remains in humans [16]. 
The patterns identified in the murine model may not be directly com-
parable to those in humans due to the variation in disease pathogenesis 
and the direct inoculation of RSV into the lower respiratory tract in 
murine studies. It may be more beneficial to consider T-cell differenti-
ation as a marker of severity, rather than cell numbers.

4.2. B-Cell and antibody response

We have previously reviewed this topic in animal models in detail 
[86].

Following neonatal infection, wild-type mice exhibit an RSV-specific 
IgE response at reinfection. Increased AHR, airway eosinophilia and 
mucus hyperproduction occur. In two studies, administration of anti-IgE 
prevented AHR. As a result, it was concluded that specific IgE may be 
associated with severity of disease [87,88]. The magnitude and diversity 
of IgE response was correlated with severity of clinical signs of infection, 
in a study of bRSV in calves [89]. Similarly, virus-specific IgE contrib-
uted to the development of lung pathology and enhanced clinical disease 
in calves infected with bRSV [90,91].

However, in another study, investigators depleted mice of B-cells and 
reported that depletion was associated with more severe RSV disease at 
both primary challenge and reinfection compared to controls. The au-
thors concluded that the presence of RSV-specific antibody reduced 
illness severity [92]. Similarly, impairment of B-cells induced lung 
inflammation in mice challenged with RSV [82]. In humans there is 
some ambiguity in the contribution of B-cell responses to more severe 
disease, with some markers of plasma cell activity, such as APRIL and 
BAFF being found at higher levels in children being ventilated for severe 
RSV disease, while other studies have found these to correlate with 
decreased hypoxia, and increased neutralising antibody (and thus 
decreased disease severity) [16].

Calves with a wide range of antibody titres seem susceptible to RSV 
infection, suggesting that serum antibody protection is limited [93], and 
no clinical differences were observed between calves stratified into high 
and low bRSV-specific antibody groups [94]. It should be noted that 
there is not significant placental transfer of RSV antibodies in calves, so 
most antibody is derived from colostrum and these are at very low levels 
when compared with humans. In a bovine model, the level of specific 
maternally-derived antibodies inversely correlated with severity of 
disease, although did not prevent development of disease [95]. How-
ever, another study [96] observed that a high level of maternal antibody 
in early infection hindered the development of appropriate T- and 
B-lymphocyte responses during more severe infection, suggesting that a 
high level of maternal antibody may be harmful in this animal model. 
There is conflicting evidence for the effect of the adaptive immune 
response on RSV disease severity. There is good evidence that TREGS act 
effectively to modulate disease, but evidence of the long-term effects of 
RSV-specific antibody on subsequent lung health is contradictory. The 
impact of RSV-specific antibody on disease severity varies between 
studies. However, it is clear that passive transfer of neutralising antibody 
(e.g., palivizumab or nirsevimab) offers a significant protective effect in 
human infants [97].

Many of the relationships outlined in this section between factors 
involved in adaptive immunity and disease severity are similar to those 
noted in humans, making markers of these responses potentially useful 
in biomarker development [16]. Neutralising antibodies and genes 
effecting their generation may be useful as correlates of protection for 
RSV vaccines, however they may not be useful as biomarkers of severity, 
due to the relative lateness in the immune response where antibodies 
play a role.

5. Genetics and transcriptomics

Genetic factors play a role in the severity of murine RSV disease, [3] 
but are not well-characterised in other animal models. However, murine 

study findings are often not applicable to human populations, due to the 
genetic homogeneity of laboratory mouse populations and important 
differences in the innate immune systems.

One study [98] used microarrays to analyse the response to RSV 
infection, with weight loss, breathing difficulty and mortality as markers 
of disease severity. Many age-associated transcriptomic differences were 
correlated with disease severity, including deficiencies in the CD8+

cytotoxic T-cell response and decreased IFN-γ expression The con-
founding effect of age precluded identification of individual tran-
scriptomic differences associated with severity. A similar study which 
characterised the role of ageing in disease severity in mice [99] reported 
that older mice exhibited higher IFN-γ production and more severe 
disease. Another murine study [100] showed that interferon-induced 
protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L) are 
upregulated after RSV infection and that overexpression of these 
markers was sufficient to restrict RSV infection at an early time 
post-infection.

There are very few data on the effect of bRSV on the bovine tran-
scriptome. One study using microarrays from lung tissue to investigate 
the immune response to bRSV in calves [49] reported increased 
expression of IL-6 and IL-8, which have been implicated in disease 
pathogenesis in other models. Another study using RNA-seq [101] found 
several genes (CCL8, SLCO2B1, ADM, IFI27) were significantly 
up-regulated, and two genes (COL1A2, COL1A1) were significantly 
down-regulated, in bRSV challenged relative to control healthy calves. 
IFI27 has previously been implicated in severe RSV infection in humans 
[102,103]. Other targeted methods such as polymerase chain reaction 
(PCR) have been used to analyse gene expression in response to RSV. 
One study [104] used real-time PCR to measure the levels of inflam-
matory cytokines in the lungs of neonatal cattle in response to RSV 
infection, identifying genes related to IFN-γ, IL-8 and IL-12p40 upre-
gulation [98]. These findings indicate an immune response charac-
terised by neutrophil infiltration and Th1-type cytokines, as is generally 
expected in human infection.

Transcriptomics studies in murine and bovine models thus far reflect 
findings established by other methods – including correlations between 
disease severity and antigen presentation, CD8+ T-cells and IFN-γ 
expression. Transcriptomic analyses of other models may improve our 
understanding of RSV pathogenesis and improve the applicability of 
findings to human disease.

6. Conclusions

Despite the recent introduction of highly effective vaccines and long- 
half-life monoclonal antibody prophylaxis, RSV infection remains a 
major cause of morbidity and mortality worldwide in humans. Animal 
models have been used extensively to investigate the components of the 
immune response associated with the severity of disease, and identifying 
biomarkers of severity could improve care and outcomes in humans with 
RSV infection.

While contemporary studies of the human and animal models of RSV 
infection typically highlight similarities, most RSV studies have been 
conducted in murine models which have limitations with respect to 
understanding the disease in humans. However, knowledge of the fac-
tors affecting disease severity will be necessary for any advances in risk 
stratification, and animal models continue to provide a practical route to 
deeper understanding of potential mechanisms.

Promising candidates for further study (Table 1) include markers of 
NK cell activity, molecules such as IFN-γ and chemokines influencing the 
Th1:Th2 balance. Measures that reflect virus-specific CD4+ and CD8+ T- 
cells, and neutralising antibodies in local mucosal sites may also 
contribute significantly to predicting the outcome of RSV infection.
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Table 1 
Summary of possible biomarkers of RSV disease severity in animal models, and their contribution to severity in each model, in comparison with data from human infant 
studies.

Severity Murine models Bovine models Other models Human infants (mild vs. 
severe RSV disease) from [6]

Innate immune 
response

↑ NK cells [21], monocytes [23]   Neutrophils
No 
effect

Alveolar macrophage [13]   

↓ SP-A [105], SP-C [106] SP-D [107], alveolar macrophages 
[13,15], DCs [17,18], TLR3 [108], TLR7 [75], NOD2 [109], 
perforin [20], eosinophils [22]

  

Chemokines and 
cytokines

    Respiratory tract: IL-1β, IL-6, 
IL-8, IL-4:IFN-γ, MIP-1β

↑ IFN-γ [32], IL-5 [110], TNF [56], TNF-α [40], IL-4 [45], 
IL-13 [53,54], CCL3 [57,58], CCL5 [61], CXCR2 [62]

  Peripheral blood: IL-6, IL-10, 
IL-8, IL-4:IFN-γ

No 
effect

   

↓ IFN-γ [31,40], IFN-γR [29], IL-12 [36], IL-2 [37], IL-6 [47], 
IL-10 [48–51], IL-13 [52], CX3CR1 [63], CXCR3 [64]

  Respiratory tract: IFN-γ 
Peripheral blood: IL-4, IL-12, 
IFN-γ,

Adaptive immune 
response

↑ CD4+ [67,72], CD8+ [38,72,73], memory T-cells [85], 
IL-4Rα [69], Th17 [74–76], RSV-specific IgE [88]

RSV-specific IgE 
[89,90,111]

 nBreg cell. RSV-specific IgG, 
IgA, IgM, pre-F and G 
antibodies

No 
effect

 bRSV-specific 
antibodies [93] IgG1 
[94]

bRSV-specific 
antibodies in an ovine 
model [112]



↓ T-cells [65], TREG [2-6] [79–83], B-cells[82,92] CD8+ [71]  T-cells, B-cells, cytotoxic NK 
cells, plasma cells, RSV- 
specific IgE

Abbreviations: IFN-γ, interferon-gamma; IFN-γR, interferon-gamma receptor; IFN-R, interferon receptor; IL, interleukin; NK, natural killer; NOD, NOD-like receptor; 
Th, T-helper; TLR, Toll-like receptor, IFN-γ, interferon-γ; IL, interleukin; MIP-1β, macrophage inflammatory protein-1β; nBreg, neonatal-specific regulatory B cell; NK, 
natural killer;.
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the Environment, Bilthoven, Netherlands); Thea K Fischer (Statens 
Serum Institut, Copenhagen, Denmark); Maarten van den Berge (Uni-
versity of Groningen, Groningen, Netherlands); Carlo Giaquinto (PENTA 
Foundation, Padua, Italy); Michael Abram (AstraZeneca, Gaithersburg, 
MD, USA); Kena Swanson (Pfizer, Pearl River, NY, USA), Rachel Cohen 
and Gael Dos Santos (GlaxoSmithKline, Wavre, Belgium); Charlotte 
Vernhes and Scott Gallichan (Sanofi Pasteur, Lyon, France); Jeroen 
Aerssens (Janssen, Beerse, Belgium), Veena Kumar (Novavax, Gai-
thersburg, MD, USA), Eva Molero (Team-It Research, Barcelona, Spain).
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Joseph McGinley, Calum McPherson, Deniz Oner, Jeroen Aerssens, Peter 
JM Openshaw and Andrew J Pollard on behalf of the RESCEU 
investigators.
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J. Herberg, M. Levin, J.F. Eléouët, P. Kellam, J.S Tregoning, Interferon-induced 
protein 44 and interferon-induced protein 44-like restrict replication of 
respiratory syncytial virus. Williams BRG, editor, J. Virol. 94 (18) (2020 Aug 31) 
e00297 [cited 2024 Feb 26]-20Available from, https://journals.asm.org/doi/1 
0.1128/JVI.00297-20.

[101] D. Johnston, B. Earley, M.S. McCabe, J. Kim, J.F. Taylor, K. Lemon, C. Duffy, 
M. McMenamy, S.L. Cosby, S.M. Waters, Messenger RNA biomarkers of Bovine 
respiratory syncytial virus infection in the whole blood of dairy calves, Sci. Rep. 
11 (1) (2021 Apr 30) 9392 [cited 2024 Feb 26]Available from, https://www. 
nature.com/articles/s41598-021-88878-1.

[102] J. Gao, X. Zhu, M. Wu, L. Jiang, F. Wang, S. He, IFI27 may predict and evaluate 
the severity of respiratory syncytial virus infection in preterm infants, Hereditas 
158 (1) (2021 Dec) 3 [cited 2024 Feb 26]Available from, https://hereditasjo 
urnal.biomedcentral.com/articles/10.1186/s41065-020-00167-5.
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