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A B S T R A C T

Twin-to-Twin Transfusion Syndrome (TTTS) is a rare condition that affects about 15% of monochorionic
pregnancies, in which identical twins share a single placenta. Fetoscopic laser photocoagulation (FLP) is the
standard treatment for TTTS, which significantly improves the survival of fetuses. The aim of FLP is to identify
abnormal connections between blood vessels and to laser ablate them in order to equalize blood supply to both
fetuses. However, performing fetoscopic surgery is challenging due to limited visibility, a narrow field of view,
and significant variability among patients and domains. In order to enhance the visualization of placental
vessels during surgery, we propose TTTSNet, a network architecture designed for real-time and accurate
placental vessel segmentation. Our network architecture incorporates a novel channel attention module and
multi-scale feature fusion module to precisely segment tiny placental vessels. To address the challenges posed
by FLP-specific fiberscope and amniotic sac-based artifacts, we employed novel data augmentation techniques.
These techniques simulate various artifacts, including laser pointer, amniotic sac particles, and structural and
optical fiber artifacts. By incorporating these simulated artifacts during training, our network architecture
demonstrated robust generalizability. We trained TTTSNet on a publicly available dataset of 2060 video frames
from 18 independent fetoscopic procedures and evaluated it on a multi-center external dataset of 24 in-vivo
procedures with a total of 2348 video frames. Our method achieved significant performance improvements
compared to state-of-the-art methods, with a mean Intersection over Union of 78.26% for all placental vessels
and 73.35% for a subset of tiny placental vessels. Moreover, our method achieved 172 and 152 frames per
second on an A100 GPU, and Clara AGX, respectively. This potentially opens the door to real-time application
during surgical procedures. The code is publicly available at https://github.com/SanoScience/TTTSNet.
1. Introduction

Twin-to-Twin Transfusion Syndrome (TTTS) is an infrequent yet
severe complication impacting around 10%–15% of monochorionic
twin pregnancies (Lewi et al., 2008). It occurs when there is an im-
balance in the blood flow between the twins, which can lead to serious
complications and even death for both fetuses, if left untreated

∗ Corresponding author.
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(Haverkamp et al., 2001). The condition is caused by the presence of
abnormal blood vessel connections in the placenta, called arteriovenous
anastomoses, which connect the blood circulations of both twins. These
anastomoses are not present in normal monochorionic twin pregnancies
but are almost always present in TTTS. The pathological blood flow
imbalance results in one twin (the ‘‘recipient’’) receiving too much
https://doi.org/10.1016/j.media.2024.103330
Received 4 December 2023; Received in revised form 7 June 2024; Accepted 27 Au
vailable online 30 August 2024 
361-8415/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
gust 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/media
https://www.elsevier.com/locate/media
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://weiss-develop.cs.ucl.ac.uk/fetreg/
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://drive.google.com/drive/folders/1C_AEDAhiszdhJyG2ZmhBZXS56qFbej5z?usp=sharing
https://github.com/SanoScience/TTTSNet
mailto:asitek@mgh.harvard.edu
https://doi.org/10.1016/j.media.2024.103330
https://doi.org/10.1016/j.media.2024.103330
http://creativecommons.org/licenses/by/4.0/


S. Płotka et al. Medical Image Analysis 99 (2025) 103330 
Fig. 1. An overview of FLP for TTTS. Twin fetuses, each within their own amniotic
sac, are shown. The monochorionic twin pregnancy is characterized by a single shared
placenta, typically with vascular connections that allow an exchange of blood between
twins. A fetoscope is used to inspect the placental vessels and find pathological
connections which cause an imbalance in blood exchange. When such connections are
identified, they are coagulated using laser light. An ultrasound probe is typically used
to guide the insertion of the fetoscope.

blood while the other twin (the ‘‘donor’’) receives too little (Umur et al.,
2002).

Fetoscopic laser photocoagulation (FLP) is a surgical procedure that
is used to treat TTTS. The procedure involves the use of ultrasound-
guided insertion of a fetoscope into the amniotic sac, where the fetal
surgeon identifies and ablates abnormal blood vessels in the placenta
(arteriovenous anastomoses) using a laser, as shown in Fig. 1. This pro-
cedure has been shown to achieve a 70% survival rate of both twins and
a survival rate of at least one fetus in more than 90% of cases (Bamberg
and Hecher, 2019). The surgeon also coagulates a narrow area along
the placental equator, which divides the placenta into territories that
supply each twin, called the Solomon technique (Ruano et al., 2013).
This minimizes the risk of a serious post-surgery complication, Twin
Anemia Polycythemia Sequence (TAPS) (Bamberg and Hecher, 2019),
which can lead to serious complications such as heart failure and brain
injury in the affected twins.

Accurately detecting and identifying placental vessels during FLP
surgery for TTTS is essential for successful outcomes and reducing the
risk of surgical complications like TAPS or preterm birth (Chalouhi
et al., 2011, Baschat et al., 2013). However, the visibility of the
placental vessels can be hindered by the turbid environment inside
the amniotic sac, poor texture visibility, low image resolution, non-
planar view, particularly with anterior placenta, occlusions due to the
fetus and ablation tool, and striking highlights making it difficult for
the surgeon to target the abnormal blood vessels correctly. Therefore,
improving the detection and identification of placental vessels would
likely increase the chances of success of the treatment.

Prior studies have addressed the segmentation of placental vessels;
however, these investigations relied on ex-vivo images and classical
computer vision algorithms might not meet the necessary standards
for clinical applications (Almoussa et al., 2011, Chang et al., 2013).
In recent years, deep learning algorithms have emerged as a promising
approach for the segmentation of placental vessels. Sadda et al. (2019)
introduced the first deep learning-based solution using 345 in-vivo
2 
video frames from 10 TTTS surgeries, utilizing a U-Net-based network
architecture. Bano et al. (2020) further explored this approach by
testing various variants of U-Net and with different backbones (VGG-
16, ResNet-50, and ResNet-101). They improved the segmentation by
implementing a larger backbone (ResNet-101) compared to the basic
U-Net. The performance and robustness of the segmentation algorithm
were evaluated on 483 in-vivo video frames from 6 independent TTTS
procedures.

To foster research in the field, the FetReg2021 (Bano et al.,
2021, Bano et al., 2023) dataset was released as part of the Endoscopic
Vision Challenge.1 This two-site dataset includes 2717 video frames
from 24 in-vivo TTTS procedures, providing a valuable resource for
developing robust and generalized models. Therefore, we utilize the Fe-
tReg2021 dataset, maintaining its original distribution, for both training
and as part of the test set to develop and evaluate our method. How-
ever, the aforementioned methods are computationally demanding,
which makes them impractical for real-time application. Additionally,
we noticed inconsistencies in annotations in the publicly available
dataset (Bano et al., 2021, Bano et al., 2023). These inconsistencies
include inaccurately delineated placental vessels at the edge of the field
of view or omitted tiny placental vessels. In this work, expert fetal
surgeons manually corrected them, and we investigated the impact of
these corrections on the segmentation performance of placental vessels.

The research in this field is still constrained by the limited availabil-
ity of comprehensive expert-annotated datasets collected from various
surgical settings, essential for capturing such variability. This limitation
primarily arises due to the infrequent occurrence of TTTS, making
systematic data collection challenging, coupled with a shortage of
annotators possessing sufficient domain expertise to ensure clinically
accurate ground truth. It follows that methods mentioned in the previ-
ous paragraph were evaluated on relatively small size datasets drawn
from two clinical centers. This lack of diversity may hinder their gener-
alizability and robustness in segmentation performance on new, unseen
data. To address these limitations, we summarize our contributions as
follows:

1. Motivated by the need for real-time analysis and the optimal
trade-off between computational efficiency and segmentation
performance, we adapt state-of-the-art lightweight segmentation
neural networks — DABNet and LMFFNet. Here, we modify
multi-scale feature fusion and an attention mechanism to en-
hance placental vessel visualization during FLP for TTTS. The
multi-scale approach allows the network to effectively capture
both fine and coarse-grained details of the vessels while being
computationally efficient and enabling real-time analysis. Addi-
tionally, the channel-attention mechanism provides the network
with the ability to focus on the most important regions of the
image, thereby further improving segmentation performance,

2. To address challenges associated with poor visibility within
the amniotic sac environment and other artifacts, we introduce
novel data augmentation approaches, mimicking laser pointer
effects, amniotic sac particles, camera structural defects, and
fiber artifacts,

3. To foster research in the field, we introduce and release, a
novel, comprehensive, expert-annotated dataset, which includes
data from four fetal medicine centers across Europe. The dataset
consists of 1690 video frames from 18 in-vivo TTTS procedures.
To the best of our knowledge, this is the most diverse dataset
of intraoperative video frames during FLP for TTTS treatment to
date,

4. We develop our method using the publicly available FetReg2021
dataset (Bano et al., 2021, Bano et al., 2023). We identify
inconsistencies in the annotations of this dataset, which are

1 https://weiss-develop.cs.ucl.ac.uk/fetreg/
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Fig. 2. An overview of the TTTSNet network architecture for real-time placental vessel segmentation during FLP for TTTS. The TTTSNet is designed as an asymmetric encoder–
decoder neural network, taking a three-channel RGB input image and producing binary segmentation maps as output. In the encoder part, TTTSNet consists of the Initial Block,
Residual Feature Fusion Module (RFFM) blocks, and Split-Extract-Merge Bottleneck (SEM-B) blocks, including a channel-attention mechanism called Max Pooled Channel-Attention
Mechanism (MEDCAM). The encoder part allows the extraction of contextual features with low computational complexity, allowing efficient and fast processing with a few model
parameters. In RFFM modules, a ∙ preceded with the dashed line denotes residual connections, which aid the model in learning complex features without increasing the number
of model parameters In the decoder part, we use the lightweight Multi-scale Attention Decoder (MAD). The MAD, with its multi-scale attention mechanism, allows the decoder to
effectively recover spatial feature representation by using a minimal number of parameters.
subsequently corrected by expert fetal surgeons. We then demon-
strate the enhanced generalization ability of models trained
on the corrected dataset. Finally, we release these improved
annotations to the community.

The rest of the paper is organized as follows. We present the method
and implementation details in Section 2. The data is described in
Section 3. Experimental design, and results are presented in Sections 4
and 5, respectively. We discuss the results in Section 6, and conclude
the paper in Section 7.

2. Methods

This section presents our network architecture, TTTSNet, for real-
time placental vessel segmentation for TTTS surgery. Our approach in-
cludes an asymmetric encoder–decoder neural network, feature fusion
module, and channel-attention mechanism. Additionally, we introduce
novel data augmentation approaches to increase the robustness and
generalizability of the trained model against artifacts.

2.1. TTTSNet

TTTSNet is inspired by the efficient encoder design in DABNet (Li
and Kim, 2019), and the lightweight Multi-scale Attention Decoder
(MAD) in LMFFNet (Shi et al., 2022). Our solution adapts these meth-
ods for placental vessel segmentation through proposed Residual Fea-
ture Fusion Module (RFFM) blocks and Max Pooled Channel-Attention
Mechanism (MEDCAM), designed to improve the precision for tiny
vessel segmentation and facilitate model learning of complex fea-
tures without increasing the number of parameters. Motivated by the
lightweight design and real-time application capabilities of both DAB-
Net and LMFFNet, our approach balances computational complexity
during inference with high-quality segmentation. DABNet’s encoder ef-
ficiently generates a sufficient receptive field and densely incorporates
3 
contextual information. At the same time LMFFNet’s decoder precisely
recovers multi-scale details of the input images through its attention
mechanism. The MAD is particularly advantageous for segmenting
vessels with significant size variability. During FLP, the distance from
the camera to the placenta can fluctuate considerably, impacting the
apparent size of the vessels within the field of view. In such cases,
the fusion of features at different scales becomes highly desirable,
enhancing the precision and effectiveness of the segmentation process.
To segment placental vessels, we use the asymmetric encoder–decoder
strategy, as it has shown promising results and a good balance between
providing high segmentation accuracy and fast inference (Li et al.,
2019, Li and Kim, 2019, Zhuang et al., 2021, Gao et al., 2021). An
overview of TTTSNet is illustrated in Fig. 2.

2.1.1. Encoder
The encoder of TTTSNet consists of the Initial Block, Residual Fea-

ture Fusion Module (RFFM) blocks, and Split-Extract-Merge Bottleneck
(SEM-B) blocks, as shown in Fig. 2.

The main objective of a feature extractor is the efficient extrac-
tion of rich and multi-scale features. It is achieved through a rapidly
progressive reduction in the dimensions of feature maps coupled with
multiple connections between the different levels of the architecture.
This strategy is implemented using three components. Firstly, the Initial
Block consisting of convolutional layers removes redundant informa-
tion, reducing the original input image size by half. Secondly, RFFM
blocks capture multi-scale features and context information between
adjacent layers’ feature map representations and combine multi-scale
semantic information from different depths. They leverage also the
proposed MEDCAM with max pooling operation to ensure sensitivity
to small vessels. Finally, the SEM-B Blocks play a role in increasing
the feature extraction efficiency by enlarging the receptive field, which
allows the network to capture more context information from the input
image.
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Fig. 3. Proposed RFFM preserves the identity function to aid the model in learning
complex features without increasing the number of model parameters. In RFFM-A, we
concatenate an identity path of input block features and process with convolution 1 × 1
concatenated features of the raw image and Initial Block. In RFFM-B, processed input
feature maps are concatenated to the output of the SEM-Bs, down-sampled raw image,
MEDCAM’s output, and residual connection of input feature maps. The SEM-B Block 𝑁
bounded in the dashed box comprises (𝛼+ 1) SEM-Bs, where 𝑁 corresponds to block
1 or 2.

The Initial Block serves as the starting point and performs key
operations to lower computational complexity, reducing the resolution
of feature maps. Simultaneously, removing redundant information en-
sures that the network focuses on the most relevant visual features
for accurate placental vessel segmentation. A convolutional layer with
a stride of 2 reduces the size of the input image while creating a
64-channel deep feature map

The encoder of TTTSNet includes two types of proposed RFFM
presented in Fig. 3. We adapt the original FFM module with residual
connection, thus creating RFFM to improve training efficiency without
increasing the number of model parameters. RFFM-A block integrates
the down-sampled image 𝐼ds1 with the convolutional result of the Initial
Block 𝐹IB from the input stage and feds it through a point-wise product
of 1 × 1 convolutional filter, expressed as:

𝐹RFFM-A = 𝑓𝑐𝑜𝑛𝑣1×1 (𝐹IB ⊕ 𝐼ds1 ) + 𝐹IB, (1)

where ⊕ denotes concatenation operation along channels dimension
and 𝐹 corresponds to feature map. The second one, RFFM-B, establishes
a long-range skip connection, reaching the down-sampled input image
and concatenating it with the feature map, and a short-range skip
connection fusing the output of the SEM-B Block 𝑁 and processed with
the proposed MEDCAM down-sampled output of the RFFM from the
previous network stage, given by equation:

𝐹RFFM-B𝑁
= 𝑓𝑐𝑜𝑛𝑣1×1 (𝐼ds1+𝑁 ⊕ 𝐹SEM-B𝐵𝑁

⊕ 𝐹MEDCAM)

+ 𝐹SEM-B𝐵𝑁
,

(2)

where 𝑁 corresponds to Blocks 1 or 2. The proposed adaptation with
residual connection joins the output of one earlier layer to the input
of another via summation. At the same time, intermediate operations
are skipped, which, through the identity function, aids the model in
learning more complex functions and reduces a vanishing gradient
problem. We sum original SEM-B Block 𝑁 feature maps from before
concatenation with the output of the convolution operation.

The SEM-B is used to improve the feature extraction efficiency.
It operates by enlarging the model’s receptive field, allowing it to
extract features more efficiently with fewer parameters. SEM-B Block
consists of a variable number of SEM-Bs in different layers of the
architecture. SEM-B Block 1 consists of three SEM-Bs and SEM-B Block
2 of eight SEM-Bs. Fig. 4 depicts an overview of the SEM-B. The
3 × 3 convolutions are used on both ends of SEM-B, which enlarge
4 
Fig. 4. Architecture of the SEM-B structure. The SEM-B starts with a 3 × 3 convolution
(Conv) that is applied to extract feature maps and reduce the number of input channels
by half. The output of this convolution is then split into two branches, consisting of a
depth-wise convolution (DConv) and a depth-wise dilated convolution (DConv(d)). To
fuse multi-scale feature maps, a 3 × 3 convolution is utilized. Batch Normalization (BN)
and PReLU activation are applied after every convolutional operation. The module’s
output concatenates the last convolutional layer’s output and the identity of the input
feature map. 𝑁 , and ⊕ denote the number of feature channels and concatenation,
respectively.

the receptive field of the model. Then, after the channel split, depth-
wise dilated convolutions are performed. In this module, the activation
function is essential to the convolution operation. Parametric Rectified
Linear Unit (PReLU) (He et al., 2015) and Batch Normalization (BN)
are applied in the SEM-B, which is important because the PReLU acti-
vation function typically performs better than the ReLU in lightweight
networks. Moreover, the BN helps to increase the convergence speed.
The module’s output concatenates the last convolutional layer’s output
and the identity of the input feature map 𝐹in, which is finally followed
by the PReLU activation function. We omit PReLU activation and BN
for brevity and express the result of SEM-B as:

𝐹SEM-B𝐵𝑁
= 𝑓𝑐𝑜𝑛𝑣3×3 (⊕

2𝑓𝐷𝑐𝑜𝑛𝑣3×3 (↕
2 (𝑓𝑐𝑜𝑛𝑣3×3 (𝐹in)))) + 𝐹in, (3)

where ↕2 denotes halving channel split operation, and ⊕2 concatena-
tion of halved in previous step channels. A novel channel-attention
mechanism module called Max Pooled Channel-Attention Mechanism
(MEDCAM) is proposed for improving the feature fusion ability of the
RFFMs. We adapt the pooling operation with max pooling instead of
average pooling in LMFFNet’s PMCA module. This adjustment aims to
improve precision, especially when segmenting the finest vessels. Our
module prioritizes the features within significant channels while it links
the down-sampled previous stage RFFM result and SEM-B Block output.
Fig. 5 shows an overview of the MEDCAM module architecture. In the
proposed attention module, the input feature maps 𝐹in are processed
with Adaptive Max Pooling AMP2×2, where the feature maps are parti-
tioned into four equally sized regions, and global max pooling is applied
to each. A weighted sum is applied to the partition-pooled feature
vectors through learned weights of 2 × 2 depth-wise convolutional
filters, focusing more on specific spatial partitions among channels.
Finally, Squeeze Excitation (SE) Block (Hu et al., 2020) is used for
dynamic channel-wise feature re-calibration of concatenated pooled-
partitions with globally pooled AMP1×1 input features 𝐹in to calculate
a channel-attention vector used to multiply with the input features. The
resulting modified with channel attention vector 𝑎𝑡𝑡 output feature map
is given as 𝐹out = 𝐹in × 𝑎𝑡𝑡(𝐹in), where the MEDCAM 𝑎𝑡𝑡 is expressed as:

𝑎𝑡𝑡(𝑥) = SE(𝑓 (AMP (𝑥)) + AMP (𝑥)) (4)
𝐷𝑐𝑜𝑛𝑣2×2 2×2 1×1
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Fig. 5. The proposed MEDCAM module architecture. We utilize Adaptive Max Pooling
(AMP) globally and on partitioned feature maps to leverage multi-scale features while
preserving vessel details. The weighted sum is applied to the partition-pooled feature
vector through learned depth-wise convolutional filters, focusing more on specific
spatial partitions among channels. Squeeze Excitation (SE) Block allows for dynamic
channel-wise feature re-calibration, resulting in the meaningful channel attention vector
finally being applied to input features. The MEDCAM utilizes a channel attention
mechanism to focus on specific feature channels and capture important information
about tiny placenta vessels. ℎ, 𝑤, 𝐶, ⊗ denote feature map height, and width, number
of channels, and multiplication, respectively.

The MEDCAM module allows the model to pay attention to the narrow
placental vessels, which are often visible in only a small area of the
image. The primary objective of utilizing max pooling is to mitigate the
influence of background features on segmentation outcomes, as demon-
strated in the study by Nirthika et al. (2022), while simultaneously
augmenting the information on the most delicate vessel fragments. In
contrast, using average pooling often results in losing intricate details
and smaller fragments. Although average pooling proves advantageous
for generalizing natural images (Khosravan and Bagci, 2018), it is
less preferred for TTTS segmentation, where the extraction of fine
vessels holds greater importance. The MEDCAM utilizes an attention
mechanism to focus on specific feature channels and capture important
information about small vessels.

2.1.2. Decoder
The decoder in the TTTSNet consists of the Lightweight Multi-

scale Attention Decoder (MAD). It leverages an attention mechanism
to process multi-scale features and efficiently recover spatial details.
The employed MAD combines two-scale features in one stage to refine
and generate more accurate attention maps corresponding to the two
RFFM-Bs in the encoder. To achieve fast inference speed, MAD aims
to recover the input information by gathering low-level and high-level
features with less computational complexity. The lightweight decoder
with a multi-scale attention mechanism has the potential to recover the
feature map’s spatial details with only 0.35M parameters.

2.2. Data augmentation

We propose novel data augmentations to improve model generaliza-
tion and avoid specific challenges in TTTS segmentation (Bano et al.,
2021). These challenges mainly correspond to artifacts such as laser
pointers, amniotic sac particles, fiber comb pattern artifacts, and fiber
structural defects, as shown in Fig. 6. The following subsections outline
the origin of the artifacts and the segmentation difficulties they cause.
We also provide details on how augmentations mimic the artifacts.

The proposed data augmentations share the general principle of the
image generation process unless otherwise stated. In the first part of
this process, we build an augmentation prototype and then combine
it with the input image to create the final image. Let 𝐼 ∶ 𝛺 ⊆ Z2 →
{0, 1,… , 255} be a single-channel gray-scale image, where 𝛺 denotes
the domain of the image, assumed to be a convex set, specifically
𝛺 = {1,… , 𝑛} × {1,… , 𝑛}. The domain 𝛺 represents discrete pixel
coordinates in the image plane, with values greater than zero. Firstly,
we initialize a prototype matrix 𝐼𝑝 ∶ 𝛺 → Z, where each element
𝐼𝑝(𝑥, 𝑦) represents the intensity value at pixel (𝑥, 𝑦), initially filled with
zeros. This prototype undergoes a series of operations and is finally
5 
Fig. 6. A summary of the custom data augmentations is presented. Four examples of
different data augmentations are shown in each row, including laser pointer, amniotic
sac particles, structural defects, and optical fiber artifacts. The images depict the input
image on the left, the real artifact in the middle, and the artificial artifact on the right.

merged with the input image 𝐼in, yielding the augmented image 𝐼aug,
defined as:

𝐼aug(𝑥, 𝑦) = 𝐼in(𝑥, 𝑦) + 𝐼p(𝑥, 𝑦). (5)

Throughout the description of each of the following augmentation
methods, we operate on the intensities of pixels within the field of view
(FoV) of the camera, which we refer to as 𝐼𝐹𝑜𝑉 . This set consists of
pixels satisfying the relation:

(𝑥 − 𝑥𝑐 )2 + (𝑦 − 𝑦𝑐 )2 ≤ 𝑟2𝐹𝑜𝑉 , (6)

where (𝑥𝑐 , 𝑦𝑐 ) are the coordinates of the center of the image, (𝑥, 𝑦)
are the integer coordinates of a points in 2D space, and 𝑟𝐹𝑜𝑉 is the
radius of the FoV. Proposed augmentations to ensure fidelity to the
actual artifacts and the variety of images generated include operations
leveraging randomness, where random numbers come from a uniform
distribution.

2.2.1. Laser pointer
During the ablation procedure, a laser is used to project a light spot

onto the placenta’s surface for targeting (Su et al., 2015), which can
lead to local invisibility of vessels or the presence of unrealistic colors.
To address this, we create augmentation that generates a realistic laser
pointer (lp) effect with varying color 𝐶lp, size 𝑆lp and intensity 𝐼lp.
This augmentation is only performed after we ensure that there are no
existing laser spots on the original input image. We present the final
result in Fig. 6(c). Our initial step involves confirming that there are no
existing laser spots in the image before applying the enhancement. We
then build a prototype of the blurred laser spot fused with a randomized
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overexposure effect, defined as:

𝐼p(𝑥, 𝑦) =
1
𝑛2

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝐵(𝑖, 𝑗)𝐼lp(𝑥 + 𝑖, 𝑦 + 𝑗), (7)

where 𝐼lp(𝑥, 𝑦) represents the normalized intensity value of the laser
spot image, 𝐵(𝑖, 𝑗) denotes the value of the box filter at position (𝑖, 𝑗),
nd 𝑛 is the size of the box filter kernel 𝐵, an odd integer. To generate
laser spot we select its center point 𝑝c(𝑥, 𝑦) ∈ 𝐼FOV, where 𝐼FOV ⊆ 𝛺

enotes pixels within the field of view of the camera. We draw a circle
f size 𝑆l, where 𝑆l = 𝛼𝑟FOV and 𝛼 ∈ [0.1, 0.3] is a random real number.

The laser spot takes one out of three available colors 𝐶lp by assigning
a random intensity in the range of 𝐼 ∈ [50, 150] to a randomly selected
channel. The intensity diminishes from the spot center, mimicking real-
world behavior (Ritt, 2019; Račiukaitis et al., 2011). We determine
the laser’s intensity distribution based on the Distance Transform (𝐷𝑇 ),
which generates a map 𝐷 ∶ 𝛺 → R where each pixel 𝑝 represents the
smallest distance from the laser’s spot edge pixels. The intensity map
of the laser spot is defined as:

𝐷(𝑝) = min {𝑑(𝑝, 𝑞) ∣ 𝑞 ∈ 𝑐} , (8)

where 𝑐 is the complement set of pixels belonging to the laser spot,
i.e. pixels on its edge, and 𝑑(𝑝, 𝑞) is the Euclidean distance. Addition-
ally, overexposure is applied to the central part of the laser spot, as
commonly observed during the procedure. This effect is obtained by
superimposing with probability 𝑝oe of 0.3 s smaller laser spot of size
𝑆𝑙′ = 𝛽𝑟𝐹𝑜𝑉 , where 𝛽 ∈ [0.7, 0.9] at the exact point 𝑝c. Let 𝐼 ∶ 𝛺 → Z be
the laser spot image. Given a clipping parameter 𝑐 ∈ N+ to achieve an
overexposure effect, the normalization operation is defined as:

𝐼lp(𝑥, 𝑦) = min (max (𝐼(𝑥, 𝑦), 0) , 𝑐) . (9)

2.2.2. Amniotic sac particles
The amniotic fluid is turbid and contains many particles, such as

vernix caseosa coating the fetus’s skin (Narendran et al., 2000; Akinbi
et al., 2004). These particles can move freely around the amniotic sac
and reflect light. Additionally, the light transmission through amniotic
fluid decreases throughout gestation (Steigman et al., 2010). These
factors limit visibility, causing difficulties for surgeons and the seg-
mentation model. To simulate particles obscuring the vessels of the
placenta, we implement data augmentation that mimics particles and
their behavior within the field of view. The augmentation parameters,
including particle shape, size, and motion blur strength, are randomly
sampled from experimentally determined intervals to ensure fidelity to
the original data. Fig. 6(f) illustrates the augmentation of the amniotic
sac particle artifact.

The geometric shape of particles is defined based on polygons
interpolated with Bezier curves. Let 𝑃 ∶ R2 → R2 denote a Bezier curve
function with control points 𝑃𝑖, where 𝑖 = 0, 1,… , 𝑛. The particle’s shape
𝑆 is defined as the interpolation of these curves:

𝑆(𝑡) =
𝑛
∑

𝑖=0
𝐵𝑖,𝑛(𝑡)𝑃𝑖, (10)

where 𝐵𝑖,𝑛(𝑡) denotes the Bernstein polynomial of degree 𝑛 at parameter
𝑡, given as:

𝐵𝑛,𝑘(𝑡) =
(

𝑛
𝑘

)

𝑡𝑘(1 − 𝑡)𝑛−𝑘. (11)

We define control points positions 𝑃𝑖 =
(

𝑥𝑖, 𝑦𝑖
)

with 𝑖 ∈ {5,… , 20} in
the space of the prototype as:

𝑃𝑖(𝑡) ∶

{
∑

𝑁𝑖=0𝑥𝑖𝐵𝑖,𝑁 (𝑡),
∑

𝑁𝑖=0𝑦𝑖𝐵𝑖,𝑁 (𝑡).
(12)

Motion blur applied to particles is accomplished using a 2D linear
filter. The filter is applied to the particle shapes in a randomly selected
direction to generate streak-like effects. Let 𝐾 be the 2D filter kernel

of odd size 𝑛 initialized with zeros. We denote the center row of 𝐾
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as 𝑘c and create a filter that will smooth the image in the horizontal
direction 𝑘c =

[

1 1 1 ⋯ 1
]

. To achieve variability in motion
blur through smoothing strength and direction, we apply an affine
transformation to 𝐾 with a random rotation angle 𝛼 and scaling factor
𝑠. Let 𝑇 denote the 2D affine transformation matrix, combining rotation
and scaling:

𝑇 =
(

cos(𝛼)𝑠 − sin(𝛼)𝑠
sin(𝛼)𝑠 cos(𝛼)𝑠

)

(13)

Then, we apply the affine transformation 𝑇 to the kernel matrix 𝐾:

𝐾 ′ = 𝑇 ×𝐾 (14)

To apply the 2D filter 𝐾 ′ to the particles prototype 𝐼p, we perform
operation 𝐼p = 𝐾 ′ ⊛ 𝐼 , where ⊛ represents convolution.

2.2.3. Structural defects
The fibers within the fiber bundle of the fiberscope are fragile

and, during exploitation, they are prone to various fiber structure
defects (Perperidis et al., 2020). These defects range in size from single
optical fibers to groups connecting a dozen or more. The damaged
fibers are unable to transmit light and appear as black spots in the
image (Olivas et al., 2015) which can affect segmentation performance.
An example of the effect of structural defects is depicted in Fig. 6(i).

For this augmentation, instead of adding the prototype 𝐼p we sub-
tract it from the input image 𝐼in to imitate the real defects’ significant
drop in intensity. We simulate structural defects within the fiber bundle
with dark gray or black spots based on polygons interpolated with
Bezier curves. The polygons have a random number of vertices, which
serve as control points for the curves. The parameter 𝑟 controls the
distance of the control points 𝑃c from the curve’s endpoints 𝑃e. Specif-
ically, it steers the distance of the control points relative to the length
of the line segment between the endpoints, given as:

𝑃c = 𝑃e + 𝑟(cos(𝜃), sin(𝜃)), (15)

where 𝑟 is the distance from the endpoint to the control point and 𝜃
is the angle formed between the horizontal axis and the line segment
connecting the endpoint to the control point. We parameterize curves
also with edginess parameter 𝑒, which modifies the angle 𝜃 between
consecutive pairs of curve segments, defined as:

𝜃new =

{

𝑒𝜃1 + (1 − 𝑒)𝜃2 + 𝜋 if |𝜃2 − 𝜃1| > 𝜋,
𝑒𝜃1 + (1 − 𝑒)𝜃2 if |𝜃2 − 𝜃1| ≤ 𝜋.

(16)

Increasing the value of 𝑒 leads to sharper changes in direction along the
curve, resulting in a more angular appearance. The number of defects is
randomized, and their positions are randomly selected within the field
of view. Gaussian blur with varying kernel sizes is applied to blur the
spots and mimic out-of-focus blur. The likelihood of a strongly blurred
defect is the same as that of a slightly blurred one.

2.2.4. Optical fiber artifacts
Flexible endoscopes, or fiberscopes, are utilized in modern laparo-

scopic surgery (Elter et al., 2006). They consist of a semi-rigid bending
section that guides light through optical fibers, forming coherent bun-
dles of flexible cores surrounded by opaque cladding (Waterhouse
et al., 2018). This core-cladding relationship creates a distinctive comb
structure in the image, with bright transmission points and dark bor-
ders (Winter et al., 2006), which degrades image quality (Kim et al.,
2021). To mimic the image-degrading structure, our augmentation
creates a hexagonal pattern. Fig. 6(l) illustrates the optical fiber artifact
augmentation.

We employ Euclidean tiling with convex regular polygons to repli-
cate the way optic fibers are packed in fiberscopes. Hexagons are used
for regular tiling. Let 𝐼in(𝑥, 𝑦) be the intensity of the original image

pixel located at coordinates (x,y) and let Hex(𝑥ℎ, 𝑦ℎ) represent a regular
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hexagon centered at coordinates (𝑥ℎ, 𝑦ℎ). We define set of 𝑘 vertices
𝑉hex(𝑥, 𝑦) of a hexagon, as:

𝑉hex(𝑥, 𝑦) ∶

⎧

⎪

⎨

⎪

⎩

cos
(

2𝜋𝑘
6 + 𝜋

2

)

sin
(

2𝜋𝑘
6 + 𝜋

2

) (17)

The function 𝑓 (𝐼in,Hex) assigns to hexagon the same color as the pixel
of original input image located at its center (𝑥ℎ, 𝑦ℎ), defined as:

𝑓 (𝐼in,Hex) → 𝐼in
(

𝑥ℎ, 𝑦ℎ
)

for (𝑥, 𝑦) ∈ Hex
(

𝑥ℎ, 𝑦ℎ
)

. (18)

The augmentation generates hexagons of various sizes based on the
parameter of fiber density fd ∈ [0.1, 0.3], which indicates the number
of fibers used for image propagation to the sensor. Furthermore, a dark
gradient generated with 𝐷𝑇 transform is applied to all the fiber edges
or inside their centers to imitate the cladding comb structure.

3. Data

To develop and evaluate our method, we used a fetoscopic video
dataset which consists of 4,408 frames (2,060 for training and valida-
tion and 2,348 for testing) obtained from 42 independent patients with
TTTS fetoscopic procedures done in six European fetal surgery centers,
namely:

1. Center A: Fetal Medicine Unit, University College London Hos-
pital, London, United Kingdom,

2. Center B: Department of Fetal and Perinatal Medicine, Instituto
‘‘Giannina Gaslini’’, Genoa, Italy,

3. Center C: Department of Obstetrics, Perinatology and Neonatol-
ogy, The Medical Center of Postgraduate Education, Bielański
Hospital, Warsaw, Poland,

4. Center D: First Department of Obstetrics and Gynecology, The
University Center for Women and Newborn Health, Medical
University of Warsaw, Warsaw, Poland,

5. Center E: Fetal Medicine Unit, Obstetrics and Gynecology Divi-
sion, Hospital Universitario 12 de Octubre, Complutense Univer-
sity of Madrid, Madrid, Spain,

6. Center F: Fetal Medicine Unit, Saint George’s Hospital, Univer-
sity of London, London, United Kingdom.

Data from Centers A and B are publicly available within FetReg2021
dataset (Bano et al., 2021, Bano et al., 2023), while data from Centers
C-F is our in-house acquired dataset. The data were acquired from
both anterior and posterior placental cases, providing a comprehensive
representation of the procedure. An anterior placenta is attached to the
abdominal ceiling, while a posterior placenta is attached to the back of
the uterus. Overall, the dataset consists of 17 anterior placenta and 25
posterior placenta cases. Prior to usage, the dataset was anonymized in
accordance with the ethical standards listed in the Helsinki Declaration.
All patients provided written informed consent to use TTTS videos for
research purposes.

3.1. Data acquisition

The publicly available data from Centers A and B were acquired
with an original image size varying from 470 × 470 to 720 × 720
pixels (Bano et al., 2023). The data from Centers C through F were
acquired with an original image size varying from 384 × 288 to
1430 × 1080 pixels. It should be noted that the frames have different
sizes because the fetoscopic videos were captured at different centers
with various models of fetoscope devices or light scopes. The details
about the different sets are given in Table A1, and Table A2 in the
Supplementary material, respectively. The data from Centers A through
F were acquired by various Karl Storz GmbH (Tuttlingen, Germany)
fetoscopes with an acquisition frame rate of 25 frames per second (FPS).
The curved rigid 11508 AAK and straight rigid 11506 AAK fetoscopes
7 
Fig. 7. Examples of corrected annotations: The input (left), original annotation (mid-
dle), and corrected annotation (right). Dotted circles emphasize inaccurate annotations,
and arrows pinpoint labeling inconsistencies such as annotations beyond the field of
view or not adhering to the edge. The first row illustrates an annotation that failed
to fill in the gaps. In the second row, inaccurately delineated edges of the placental
vessel are emphasized. The third row demonstrates the discontinuous annotation of
vessels resulting from amniotic sac particle artifacts. The fourth row shows omitted big
placental vessels. Lastly, the final row exhibits omitted small placental vessels.

were used to obtain data from Center A and Center B respectively.
Center C and Center D employed the 11510 A fetoscopes, while Center
E and Center F used the 11508 AAK, and 11530 KA fetoscopes, respec-
tively. The data from Centers C and D were acquired by the same fetal
surgeon but with different clinical settings such as support staff with
fetal medicine expertise. For data from Centers C through F, we extract
consecutive video frames among those in which the placental vessel is
detected by expert fetal surgeons. Each video frame differs in quality,
brightness, contrast, and percentage of vessels on the placental surface.
We decompose the videos into frames, and the excess area outside the
field of view is cropped to obtain squared images of the field of view.
The dataset shows high variability in terms of image quality, noise,
motion blur, the field of view size, brightness and contrast, placenta
position, camera view, and stage of TTTS, as shown in Fig. 8, and Fig. 9.
Table 1 shows the quantity of the dataset divided into training and test
sets.
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Fig. 8. Representative video frames from the training set from Center A and Center B. Each row illustrates five consecutive data samples extracted from a single video. In total
90 video frames from 18 independent in-vivo TTTS procedures are presented.
Fig. 9. Representative video frames from the test set from four centers – Center C, through Center F. Each row illustrates five consecutive data samples extracted from a single
video. In total 120 video frames from 24 independent in-vivo TTTS procedures are presented.
Table 1
The total number of videos and video frames from each of the six centers used
for training and testing.

No. Center Videos Training videos Test videos
(frames) (frames) (frames)

1. A 12 (1,518) 9 (1,160) 3 (358)
2. B 12 (1,200) 9 (900) 3 (300)
3. C 3 (300) – 3 (300)
4. D 9 (450) – 9 (450)
5. E 3 (340) – 3 (340)
6. F 3 (600) – 3 (600)

Total 42 (4,408) 18 (2,060) 24 (2,348)

3.2. Annotation protocol

The annotators segmented placental vessels adhering to the follow-
ing guidelines: (1) The binary map should closely match the outline of
the vessel, (2) should the object be obscured by artifacts or shadows,
the vessel needs to be filled in by the annotators, (3) in cases where
the placental vessel goes underneath another vessel, only the visible
8 
vessel should be annotated, (4) the vessel must remain within the field
of view.

The FetReg2021 dataset (from Centers A and B), currently publicly
accessible, contains pixel-wise annotations that exclude small placental
vessel segmentation and feature incomplete labels for larger vessels.
Within the context of this paper, these segmentations were revised to
align with our segmentation protocol. This process was executed by six
junior clinicians and later reviewed by two clinical experts. To reduce
inter-observer variability, each image was examined and, if necessary,
rectified by one junior clinician and then reviewed by two clinical
experts. Two field experts conducted quality control, and video frames
were re-annotated as needed. Fig. 7 provides a selection of examples
of the corrected pixel-wise annotations. We release the corrected an-
notations to the community to foster research in this domain. In total,
520 intraoperative video frames underwent correction. For the test set
(from Centers C through F), annotations were made by a consensus of
two field experts. Video frames were annotated using Supervisely, a
publicly available web-based platform.2

2 Online annotation tool https://supervise.ly/

https://supervise.ly/
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3.3. Training and validation sets

We utilized a publicly available multi-center training set with cor-
rected annotations (see Table 1). This dataset comprises 2060 pixel-
wise annotated video frames obtained from 18 independent fetoscopic
TTTS procedures performed in-vivo. For the training and validation
sets, video frames were sourced from two distinct centers. Center A
contributed 1160 video frames derived from 9 videos, while Center B
provided 900 video frames obtained from 9 videos.

Although the dataset originally included four labels (background,
placenta vessels, ablation tool, and fetus), we were only using the
background and placenta vessel classes as our focus was on vessel
segmentation. Fig. 8 shows representative examples of the video frames
in the training and validation sets.

3.4. Test set

We used the multi-center test set from six European fetal medical
centers, which consisted of 2348 pixel-wise annotated video frames
from 24 in-vivo independent fetoscopic TTTS procedures (see Table 1).
Of these, 658 video frames from 6 in-vivo procedures were sourced
from FetReg2021 (Bano et al., 2023), while 1690 video frames from
18 in-vivo procedures were our in-house dataset. Fig. 9 shows repre-
sentative frames from the test set.

To test our method for placental vessel segmentation, clinicians
selected a diverse set of images that represent the range of variations
in placental vessel appearance and structure that are typically encoun-
tered in clinical practice. The test images were selected such that the
set is representative of real-world scenarios. The following criteria for
selection are observed: (1) the video frame contains a placental vessel
hereafter referred to as object, (2) the video frame (preferably) contains
occluded parts, (i.e. by artifacts related to the laser pointer, optical
fiber, amniotic sac particles, or structural defects), (3) the target object
might be presented with different objects like ablation tool, and fetus,
(4) the video frames that differ in the size of object are selected, (5) the
target objects are represented in different positions, angles, and light,
(6) the consecutive video frames do not represent the same object.

4. Experimental design

This section presents implementation details for reproducing our
work, the evaluation metrics used to compare both speed and segmen-
tation performance, and an explanation of the experimental setup that
was followed.

4.1. Implementation details

We resized all video frames to 448 × 448 pixels and used them as
input to the neural network. We implemented our model with PyTorch
1.11.0 (Paszke et al., 2019) on an Ubuntu workstation with 24 cores
of 2.20 GHz and trained it using 2 × NVIDIA A100 80 GB GPUs and
CUDA 11.3 with a mini-batch size of 16 and an initial learning rate of
1×10−4 with a cosine annealing learning rate scheduler (Loshchilov and
Hutter, 2017) which is defined as:

𝜂𝑡 = 𝜂𝑚𝑖𝑛 +
1
2
(

𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛
)

(

1 + cos
(

𝑇𝑐𝑢𝑟
𝑇𝑚𝑎𝑥

𝜋
))

, (19)

where 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥 define the range for the learning rate, 𝑇𝑐𝑢𝑟 accounts for
the number of epochs performed since the last restart, and 𝑇𝑚𝑎𝑥 is the
max number of epochs, which is set to 300.

The neural network was initialized with default PyTorch weights,
including Xavier initialization for linear, and Kaiming initialization for
convolutional layers, respectively. We trained and optimized the neural
network hyperparameters using six-fold cross-validation on the training
set. For each fold, we used video frames from 15 videos for training and
video frames from 3 videos for validation.
9 
As a loss function we use a weighted sum of 𝑑𝑖𝑐𝑒 and 𝐶𝐸 losses,
which is defined as:

 = 𝑑𝑖𝑐𝑒 + 𝛬𝐶𝐸 , (20)

A limited grid search for optimal 𝛬 was carried out by changing the
value of 𝛬 in the range between 0.5 and 1. We found that the network
performed best if the value was 1.

To minimize the loss function , we employed an ADAM opti-
mizer (Kingma and Ba, 2015) with L1 regularization of 1 × 10−5. To
handle class imbalanced data, we only counted loss for the placenta
vessel class. In addition to custom augmentations, we applied default
Albumentations-based (Buslaev et al., 2020) data augmentation as
follows:

• HorizontalFlip and VerticalFlip with 𝑝 = 0.5,
• OneOf, which select one of transform to apply, including Blur,

limit ∈ [3, 7], with 𝑝 = 0.25 and BlurMotion, limit ∈ [3, 7], with
𝑝 = 0.75. OneOf is applied with 𝑝 = 0.2,

• ShiftScaleRotate with shift limit 0.025, rotate limit = 40, scale limit
= 0.2, and constant border mode with 𝑝 = 0.5,

• ColorJitter with saturation = 0.2, hue = 0.15, with 𝑝 = 0.4,
• RandomBrightnessContrast with brightness limit ∈ [−0.15, 0.05],

contrast limit ∈ [−0.1, 0.2] with 𝑝 = 0.5,
• CLAHE with clip limit = 1.0, tile grid size ∈ [16, 16] with 𝑝 = 0.15,
• PiecewiseAffine with scale ∈ [0.004, 0.007], number of rows and

columns = 12 with 𝑝 = 0.3,
• ChannelShuffle with 𝑝 = 0.05,
• and our four custom augmentations are as follows. OneOf Laser

pointer, Optical fiber artifacts, Amniotic sac particles, and Structural
defects, each applied with 𝑝 = 0.15. OneOf is applied with 𝑝 = 0.5.

After identifying the appropriate hyperparameters through six-fold
ross-validation, we trained a single model using an 80% random data
plit for training and 20% for validation. Subsequently, we evaluated
ur method on an external test set. We used CometML3 as the Machine
earning Operation (MLOps) platform to track our experiments.

.2. Evaluation metrics

The performance of the proposed TTTSNet, along with two different
onfigurations based on TTTSNet, was evaluated and compared to
ther state-of-the-art methods following the guidelines defined by the
etReg2021 challenge, using the Intersection-over-Union (IoU) as the
egmentation metric

For the analysis of statistical differences, one-way analysis of vari-
nce (ANOVA) were calculated, with 𝑝 < 0.05 indicating statistically
ignificant differences.

We performed an inference speed test on a 60-second video se-
uence. To ensure a fair comparison of inference time, synchronization
etween the host and device (i.e., the CPU and GPU) is utilized. This
eans that the time recording was only initiated after the process

unning on the GPU has been completed. Additionally, a GPU warm-up
f 300 iterations is performed to stabilize the final results. The inference
as tested on an NVIDIA Clara AGX equipped with RTX 6000 Quadro
4 GB GPU and a single NVIDIA A100 GPU to investigate the ability to
eploy our method on portable devices.

.3. Ablation studies

We conducted two ablation studies. Specifically, we investigate the
ollowing:
Impact of each key component. We validate the effectiveness of

ifferent key components in the proposed network in four configu-
ations. First, we trained a baseline neural network. To establish a

3 https://www.comet.com/site/

https://www.comet.com/site/
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Table 2
Experimental results of ablation study with different approaches to each of key
components of TTTSNet. The results of the test set are presented. The first row is
the result of the baseline neural network as a part of TTTSNet, and the rest three rows
refer to additional components added to the baseline.

Baseline RFFM MEDCAM mIoU (%) 𝑝-value

Configuration 1 ✓ – – 67.54 < 0.05
Configuration 2 ✓ – ✓ 69.95 < 0.05
Configuration 3 ✓ ✓ – 70.22 < 0.05
Configuration 4 ✓ ✓ ✓ 73.08 < 0.05

baseline for comparison, we adopt DABNet. This serves as our ref-
erence method against which we evaluate our proposed approach.
Second, we added Max Pooled Channel-Attention Mechanism (MED-
CAM) module to the baseline. Then, we added Residual Feature Fusion
Module (RFFM) to the baseline and both RFFM and MEDCAM module,
respectively.

Impact of custom data augmentation. We trained a baseline
neural network without using any custom data augmentations (con-
figuration 1). We used the baseline method called TTTSNet, from the
previous ablation study (i.e., Baseline + RFFM + MEDCAM). We added
Laser pointer data augmentation to the baseline (configuration 2). In
configuration 3, we added both Laser pointer and Optical fiber data
augmentation to the baseline and so on (see Table 3).

4.4. Placental vessel segmentation experiments

The proposed TTTSNet network architecture was compared with
eleven state-of-the-art segmentation models, including UNet
(Ronneberger et al., 2015), ESNet (Wang et al., 2019), FBSNet (Gao
et al., 2022), CFPNet (Lou and Loew, 2021), DABNet (baseline) (Li and
Kim, 2019), UNet++ (Zhou et al., 2019), LMFFNet (Shi et al., 2022),
2D Swin UNETR (Tang et al., 2022), SwinPA-Net (Du et al., 2022),
FetReg2021 top 1 performing method – Baseline (Bano et al., 2021),
FetReg2021 top 2 performing method – RREB (Bhattarai et al., 2023)
and two TTTSNet-based configurations: TTTSNet-S and TTTSNet★.
Small TTTSNet (TTTSNet-S) is a variant of our proposed TTTSNet,
trained with a reduced number of feature map scaling (32 for TTTSNet-
S compared to 64 for TTTSNet). On the other hand, TTTSNet★ is trained
using the same parameters as the proposed TTTSNet, but it is trained
on the original pixel-wise annotations provided by the FetReg2021
challenge. For a fair comparison, we implement all methods in the same
programming environment and computational settings. For training the
networks, we use the same dataset (with corrected annotations) and
employ the same data augmentations. The segmentation performance
of the TTTSNet and other methods were compared between all centers
(see Table 4).

Furthermore, to demonstrate the robustness and generalization of
our method in segmenting tiny placental vessels, we conducted an
additional experiment using video frames that exclusively featured
tiny placental vessels. Fetal surgeons were tasked with selecting video
frames containing only tiny placental vessels from data collected across
each center. Clinicians selected 28, 35, 92, 68, 89, and 87 video frames
from the test sets of centers A through F, respectively. In total, these
selections amounted to 398 video frames, representing nearly 17% of
the test set. The segmentation performance of the TTTSNet and other
methods were compared between all centers (see Table 5).

Additionally, to show variability between each video sample, we
performed a quantitative segmentation performance evaluation of the
top 5 performing methods across each of the 24 test video samples
from six centers. Moreover, we indicate the type of placenta (anterior
or posterior) for each video sample to demonstrate differences in
segmentation performance for both placental types (see Table 6).
10 
Fig. 10. A qualitative comparison of the impact of the MEDCAM module on the
segmentation of placental vessels. Each row shows an example from the test set. Input
image, ground truth, MEDCAM, and without attention module are presented from left
to right, respectively.

4.5. Comparison with FetReg2021 challenge solutions

We compared TTTSNet with the methods from Task 1 of the Fe-
tReg2021 challenge in the following ways. Firstly, we conducted six-
fold cross-validation between TTTSNet and the Baseline (Bano et al.,
2020) on the FetReg2021 training dataset, maintaining the same data
distribution as outlined in Bano et al. (2021). By adopting a patient-
centric approach to dataset composition, we maintained consistency in
the size of validation and training datasets, thereby ensuring diverse
data representation in each fold. Due to the multicentric nature of the
FetReg2021 dataset, patients from all centers were included in each fold
to ensure comprehensive representation. As a Baseline method, we treat
UNet (Ronneberger et al., 2015) with ResNet50 (He et al., 2016) back-
bone with the same settings described in Bano et al. (2021). We com-
pared both methods using original and corrected annotations. Secondly,
we compared TTTSNet with the next top 5 performing methods, which
include Baseline, RREB, GRECHID, SANO, and AQ-ENIB solutions. For
methods lacking publicly available code, we re-implemented them to
the best of our abilities, following the reproducibility descriptions
provided by Bano et al. (2021).

5. Results

This section presents the results of two ablation studies conducted
to demonstrate the impact of each key component in the proposed
TTTSNet, along with the custom data augmentations, the results of pla-
cental vessel segmentation, and comparison with FetReg2021 challenge
solutions.

5.1. Ablation studies

Table 2 presents the segmentation performance of each key com-
ponent of TTTSNet in different ablated configurations. The baseline
method (configuration 1) achieved an mIoU of 67.54%. The incorpo-
ration of the MEDCAM module (configuration 2) resulted in a 2.41%
increase in mIoU, while the addition of the RFFM (configuration 3)
to the baseline yielded a 2.68% improvement. Notably, when both
modules were incorporated (configuration 4) into the baseline, they
significantly outperformed the previous configurations, achieving an
mIoU of 73.08%. The one-way ANOVA revealed a statistically signif-
icant difference between configurations 1–3 and the proposed method
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Table 3
Experimental results of ablation study with different approaches to custom data augmentation methods used for
TTTSNet training. The results of the test set are presented. We listed five different approaches. The first row was
the result of TTTSNet trained without any custom data augmentations as the baseline, and the other four rows refer
to progressively adding each type of data augmentation.

Laser Optical Amniotic sac Structural mIoU 𝑝-value
pointer fiber particles defects (%)

Configuration 1 – – – – 73.08 < 0.05
Configuration 2 ✓ – – – 73.87 < 0.05
Configuration 3 ✓ ✓ – – 75.16 < 0.05
Configuration 4 ✓ ✓ ✓ – 76.76 < 0.05
Configuration 5 ✓ ✓ ✓ ✓ 78.26 < 0.05
Table 4
A summary of the number of parameters in millions, inference speed on both A100 GPU (GPU) and Clara AGX (Clara) hardware in FPS, and values of mIoU
(%) for placental vessel segmentation obtained with different state-of-the-art methods computed using the test set. Each column shows the method, results per
Center, as well as overall results. All methods were compared with the same image size of 448 × 448 pixels. The 𝑝-value indicates the pairwise comparison of
the significance between TTTSNet and each method. The results are in order of the segmentation performance. The best results are bolded.
Method Parameters GPU Clara Center A Center B Center C Center D Center E Center F Overall ↑ 𝑝-value

(M) (FPS) mIoU (%)

CFPNet 0.55 125.81 110.52 62.54 57.98 76.75 78.41 56.24 68.51 66.74 ± 9.42 < 0.05
FBSNet 0.61 67.52 48.51 63.95 59.54 78.56 79.15 55.25 71.42 67.98 ± 9.98 < 0.05
DABNet 0.75 205.61 186.21 65.43 60.21 78.84 81.25 59.45 69.56 69.12 ± 9.26 < 0.05
ESNet 1.66 209.46 190.51 66.06 61.25 79.43 81.25 58.43 72.44 69.81 ± 9.46 < 0.05
TTTSNet★ 5.30 171.59 154.11 67.21 63.45 81.24 83.15 62.67 74.55 72.05 ± 8.93 < 0.05
LMFFNet 1.40 190.93 160.21 69.45 64.78 82.45 82.21 64.98 73.25 72.85 ± 7.98 < 0.05
UNet++ 9.16 142.81 125.27 70.25 64.54 84.21 82.11 67.09 71.54 73.29 ± 8.05 < 0.05
TTTSNet-S 1.35 173.04 155.12 70.44 64.25 84.15 85.15 67.31 77.56 74.81 ± 8.81 < 0.05
UNet 31.07 87.57 65.15 72.32 67.20 83.19 83.59 68.92 75.42 75.11 ± 7.01 < 0.05
Swin UNETR 25.14 27.48 18.98 72.68 67.78 84.12 84.33 70.22 75.10 75.71 ± 7.04 < 0.05
FetReg_top2 44.01 50.78 46.32 73.18 67.56 84.22 84.15 71.16 75.62 75.98 ± 6.88 < 0.05
SwinPA-Net 117.0 18.14 13.89 73.45 67.95 84.26 85.98 71.76 76.15 76.59 ± 7.14 < 0.05
FetReg_top1 82.45 29.05 20.98 74.25 68.16 85.56 84.01 70.27 77.86 76.68 ± 7.12 < 0.05
TTTSNet 5.30 171.59 154.11 75.01 70.11 86.15 86.09 72.08 80.12 78.26 ± 6.96 –
Table 5
A summary of values of mIoU (%) for tiny placental vessel segmentation obtained with different state-of-the-art methods
computed using the test set. Each column shows the method, results per Center, as well as overall results. All methods were
compared with the same image size of 448 × 448 pixels. The 𝑝-value indicates the pairwise comparison of the significance
between TTTSNet and each method. The results are in order of the segmentation performance. The best results are bolded.
Method Center A Center B Center C Center D Center E Center F Overall ↑ 𝑝-value

mIoU (%)

CFPNet 48.75 45.47 71.75 70.23 56.84 65.78 59.81 ± 11.17 < 0.05
FBSNet 48.81 49.73 73.19 71.00 55.12 68.21 61.01 ± 11.05 < 0.05
DABNet 50.02 52.00 74.44 71.30 59.56 69.08 62.73 ± 10.37 < 0.05
ESNet 51.76 53.50 75.76 74.85 58.77 70.22 64.14 ± 10.79 < 0.05
TTTSNet★ 50.22 55.49 81.24 78.78 61.59 73.67 66.83 ± 12.88 < 0.05
LMFFNet 50.75 56.10 82.15 80.20 63.73 75.70 68.11 ± 13.16 < 0.05
UNet++ 55.00 57.36 77.83 77.52 70.15 72.10 68.33 ± 9.90 < 0.05
UNet 56.69 56.35 79.45 76.40 71.80 73.54 69.04 ± 10.04 < 0.05
Swin UNETR 56.28 57.04 79.49 80.16 70.15 71.78 69.15 ± 10.47 < 0.05
SwinPA-Net 56.85 56.59 79.55 80.42 71.60 70.68 69.28 ± 10.51 < 0.05
TTTSNet-S 56.37 55.47 81.92 80.59 68.50 74.08 69.49 ± 11.56 < 0.05
FetReg_top2 57.45 59.44 80.64 82.87 72.36 74.62 71.15 ± 10.53 < 0.05
FetReg_top1 58.07 59.89 81.04 83.34 72.87 75.60 71.80 ± 10.63 < 0.05
TTTSNet 59.90 60.40 82.70 84.26 74.35 78.49 73.35 ± 10.79 –
t
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(configuration 4), which significantly outperformed the other evaluated
configurations.

The segmentation results of the five evaluated configurations, which
are associated with different approaches to custom data augmentations,
are listed in Table 3. The baseline method (TTTSNet) without any
custom data augmentations (configuration 1) achieved an mIoU of
73.08%. The incorporation of the Laser pointer augmentation (con-
figuration 2) into the baseline improved segmentation performance
by 0.79%. Furthermore, the addition of the Optical fiber augmenta-
tion (configuration 3) increased the mIoU by 1.29% compared to the
previous configuration. The introduction of Amniotic sac particles and
tructural defects as augmentations (configurations 4 and 5) further im-
roved the mIoU by 1.6% and 3.1%, respectively. Overall, the TTTSNet
rained with all augmentations outperforms the TTTSNet without any

ugmentations by 5.18% using mIoU as an evaluation metric. f

11 
To further analyze the effect of the attention module in highlighting
iny placental vessels, we visualize the probability maps generated
y TTTSNet with and without the MEDCAM module, as shown in
ig. 10. When MEDCAM is not applied, the probability map exhibits
naccuracies and is susceptible to artifacts. Conversely, when MEDCAM
s applied, the probability map effectively emphasizes both thick and
hin placental vessels, remains robust in the presence of artifacts,
onsistently aligns with the ground truth, and closely resembles it.

.2. Placental vessel segmentation

Table 4 presents a quantitative comparison of results among our
roposed TTTSNet, eleven state-of-the-art methods, and two TTTSNet-
ased configurations. This comparison includes the number of model
arameters, speed on two different devices, and segmentation per-
ormance across all evaluated centers. The proposed TTTSNet has a
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Table 6
A summary of values of mIoU (%) ± standard deviation for TTTSNet and the next top 5 performing methods per each video from the test set. Each column shows the video
name, Center, type of placenta and method. All methods were compared with the same image size of 448 × 448 pixels and the same training settings, i.e. data augmentations.
The results are in order of the segmentation performance (the best on the left). The best results are bolded.

No. Video name Center Type of placenta TTTSNet FetReg_top1 SwinPA-Net FetReg_top2 Swin UNETR UNet

1. B_Video010 B anterior 75.57 ± 8.00 72.25 ± 9.10 71.98 ± 9.06 71.66 ± 9.05 71.81 ± 9.20 71.73 ± 8.51
2. B_Video012 B anterior 61.98 ± 13.11 61.75 ± 12.77 61.53 ± 12.88 61.13 ± 12.64 61.37 ± 12.66 60.95 ± 12.67
3. A_Video015 A anterior 75.14 ± 8.35 74.73 ± 11.16 74.13 ± 11.57 71.44 ± 11.26 74.45 ± 9.28 71.92 ± 9.40
4. A_Video020 A posterior 74.25 ± 8.10 73.18 ± 9.08 72.26 ± 9.42 71.85 ± 9.38 71.63 ± 9.34 71.56 ± 8.91
5. B_Video024 B posterior 72.77 ± 10.12 70.49 ± 8.69 70.33 ± 8.81 69.89 ± 8.91 70.13 ± 9.06 68.93 ± 8.60
6. A_Video025 A posterior 75.69 ± 7.71 75.39 ± 7.29 74.02 ± 7.32 74.37 ± 7.27 73.37 ± 7.38 73.92 ± 7.150
7. C_Video001 C posterior 83.07 ± 9.85 82.44 ± 9.83 80.98 ± 9.94 80.62 ± 9.76 80.53 ± 9.76 80.52 ± 8.81
8. C_Video003 C anterior 87.62 ± 5.32 87.18 ± 5.34 85.82 ± 5.50 86.11 ± 5.52 86.03 ± 5.52 83.90 ± 4.52
9. C_Video004 C posterior 87.75 ± 8.49 87.02 ± 8.13 85.97 ± 8.21 85.92 ± 8.08 85.81 ± 8.06 85.14 ± 8.38
10. D_Video006 D anterior 89.70 ± 12.98 87.38 ± 13.11 88.32 ± 11.78 86.74 ± 11.62 87.02 ± 11.77 85.04 ± 11.59
11. D_Video009 D anterior 82.18 ± 13.75 80.70 ± 13.56 82.84 ± 12.75 80.10 ± 12.68 81.38 ± 12.51 79.06 ± 13.85
12. D_Video012 D posterior 82.78 ± 9.09 80.84 ± 9.00 82.52 ± 8.30 79.76 ± 8.34 81.70 ± 9.19 79.38 ± 7.65
13. D_Video015 D posterior 83.84 ± 10.26 81.16 ± 10.16 82.82 ± 9.78 81.94 ± 10.02 81.50 ± 10.05 81.08 ± 10.59
14. D_Video019 D posterior 87.52 ± 4.28 82.22 ± 6.27 85.10 ± 5.97 84.14 ± 6.13 83.70 ± 5.65 85.70 ± 3.45
15. D_Video020 D anterior 85.16 ± 7.57 82.02 ± 8.41 84.40 ± 6.86 82.76 ± 7.10 83.96 ± 7.49 83.18 ± 6.89
16. D_Video021 D posterior 85.06 ± 8.00 83.96 ± 7.47 86.70 ± 6.60 85.14 ± 6.44 84.16 ± 6.52 82.80 ± 8.25
17. D_Video022 D anterior 91.76 ± 7.97 91.50 ± 4.29 91.20 ± 5.31 90.62 ± 5.29 88.90 ± 4.95 90.68 ± 8.01
18. D_Video029 D posterior 86.90 ± 10.24 86.32 ± 8.59 88.92 ± 7.58 86.14 ± 8.03 86.64 ± 8.10 85.38 ± 9.92
19. E_Video034 E posterior 69.50 ± 11.15 68.91 ± 12.31 70.26 ± 12.26 69.84 ± 12.21 69.09 ± 12.55 67.24 ± 12.27
20. E_Video035 E posterior 71.28 ± 10.89 68.62 ± 11.87 69.75 ± 11.55 69.31 ± 11.69 67.74 ± 12.35 67.43 ± 12.32
21. E_Video036 E anterior 75.78 ± 5.09 73.93 ± 6.12 76.06 ± 5.99 75.08 ± 5.64 74.83 ± 6.30 72.69 ± 6.39
22. F_Video031 F posterior 72.37 ± 5.80 70.11 ± 7.05 67.71 ± 7.09 67.31 ± 7.14 67.04 ± 7.37 69.35 ± 7.08
23. F_Video032 F posterior 82.74 ± 9.80 81.04 ± 9.02 79.72 ± 9.30 79.30 ± 9.42 78.48 ± 9.27 77.40 ± 9.65
24. F_Video033 F anterior 85.23 ± 8.90 82.45 ± 8.65 81.06 ± 9.03 80.26 ± 9.35 79.79 ± 9.53 79.52 ± 10.01
Table 7
Results of six-fold cross-validation for both baseline and TTTSNet methods on original and corrected annotations. Vessel Original and Vessel Corrected classes
are abbreviated as VO and VC, respectively.

Video Center VOBaseline VCBaseline VOTTTSNet VCTTTSNet Fold Images per fold Type of placenta

Video001 A 86.1 89.5 87.9 90.2 posterior
Video006 B 69.4 74.8 73.2 75.8 1 352 posterior
Video016 B 85.2 88.9 87.3 89.8 posterior

Video002 A 81.0 85.2 83.2 87.6 posterior
Video011 B 73.2 77.1 74.9 78.9 2 353 posterior
Video018 B 80.9 84.4 83.1 86.4 anterior

Video004 B 81.1 85.2 83.3 86.8 posterior
Video019 A 78.8 82.4 80.8 83.6 3 349 posterior
Video023 B 82.9 86.8 84.4 87.7 anterior

Video003 A 82.1 86.9 83.7 89.5 posterior
Video005 B 77.7 82.1 79.8 83.2 4 327 anterior
Video014 A 84.3 88.9 85.2 87.9 anterior

Video007 A 78.2 82.4 79.1 83.2 anterior
Video008 A 76.4 80.6 77.2 81.8 5 350 anterior
Video022 B 81.8 87.4 83.3 87.6 posterior

Video009 A 80.7 85.3 83.0 86.2 anterior
Video013 A 78.3 82.8 79.9 84.4 6 329 anterior
Video017 B 67.9 70.6 70.5 74.1 posterior

79.22 ± 4.98 83.41 ± 5.08 81.10 ± 4.71 84.71 ± 4.63
Table 8
A summary of the values of mIoU (%) for TTTSNet and the top 5 performing methods from the FetReg2021 challenge. We provide placental vessel segmentation performance
for each Center, as well as overall results for both original and corrected annotations. All methods were compared using the same image size of 448 × 448 pixels and the same
training settings, i.e., data augmentations. The results are ordered by segmentation performance, with the best results bolded.

Method Original annotations Corrected annotations

A B C D E F Overall ↑ A B C D E F Overall ↑

AQ-ENIB 52.63 49.42 68.72 68.72 51.07 56.44 57.83 ± 8.75 60.00 59.86 74.12 76.12 62.56 67.27 66.65 ± 7.11
SANO 58.81 52.14 72.53 73.18 55.13 61.95 62.29 ± 8.83 67.10 65.40 78.62 81.45 68.67 72.08 72.22 ± 6.50

GRECHID 65.92 60.98 79.06 79.45 60.82 67.15 68.90 ± 8.42 72.58 67.60 83.90 83.75 71.20 75.95 75.83 ± 6.75
RREB 66.04 61.84 79.68 80.12 58.11 70.50 69.38 ± 9.14 73.18 67.56 84.22 84.15 71.16 75.62 75.98 ± 6.88

Baseline 66.48 62.21 80.45 81.51 59.48 71.15 70.21 ± 9.24 74.25 68.16 85.56 84.01 70.27 77.86 76.68 ± 7.12
TTTSNet 67.21 63.45 81.24 83.15 62.67 74.55 72.05 ± 8.93 75.01 70.11 86.15 86.09 72.08 80.12 78.26 ± 6.96
total of 5.3 million parameters and operates at speeds of 154.11 and
171.11 FPS on the two hardware configurations. For the test data from
each of the six participating centers, our proposed TTTSNet achieves
an overall mean IoU of 78.26%. The IoU values range from 70.11%
to 86.15% across all centers. Notably, our TTTSNet demonstrates the
12 
best segmentation performance among the compared methods, with an
average IoU score improvement of 1.58% over the second-best FetReg
top 1 performing solution–Baseline (Bano et al., 2020). Particularly
noteworthy is that our method outperforms the other segmentation
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Fig. 11. Examples of segmentation results obtained on the test set by our proposed TTTSNet model, compared with several state-of-the-art methods and two TTTSNet-based
configurations. Ground truth is abbreviated as GT. TTTSNet★ denotes TTTSNet trained on original pixel-wise annotations provided by the FetReg2021 challenge. The images are
arranged in order of the best overall score, with the best results on the left. Each row corresponds to a different video, and each column shows the input image, ground truth,
results of TTTSNet, and results of other state-of-the-art methods.
methods by a statistically significant margin across all evaluated centers
(with 𝑝 < 0.05).

Table 5 provides a quantitative evaluation of our proposed TTTSNet,
eleven state-of-the-art methods, and two TTTSNet-based configurations.
This assessment focuses specifically on the segmentation performance
within a subset of the test dataset, which exclusively contains video
frames featuring tiny placental vessels. Within this subset, our TTTSNet
demonstrates strong segmentation performance, yielding an overall
mean IoU score of 73.35% across all six participating centers. The IoU
values range from 58.43% to 84.26% across these centers. Notably,
our TTTSNet stands out as the top-performing method in this con-
text, achieving an average IoU score improvement of 1.55% over the
second-best FetReg top 1 performing solution – Baseline. Importantly,
our method consistently outperforms several segmentation approaches
across all assessed centers, with statistical significance (with 𝑝 < 0.005).

Table 6 presents a quantitative comparison of the results among our
proposed TTTS and the next top 5 performing methods for each video
in the test set along six centers. Our TTTSNet achieves an mIoU for
the anterior placenta ranging from 61.98 to 91.76%, with a mean of
81.01 ± 8.97%. For the posterior placenta, the mIoU ranges from 71.28
to 87.52%, with a mean of 79.68 ± 6.65%.

Fig. 11 presents a qualitative comparison of segmentation results
among ground truth, our proposed TTTSNet, several state-of-the-art
methods, and two TTTSNet-based configurations. This figure illustrates
that TTTSNet consistently delivers accurate segmentation for both thick
and thin placental vessels. In contrast, other methods encounter dif-
ficulties with thin placental vessels and regions affected by artifacts.
Our approach successfully achieves accurate segmentation in these
challenging regions, as evident in the qualitative comparison.

5.3. Comparison with FetReg2021 challenge solutions

Table 7 presents a comparison of results between TTTSNet and the
Baseline (Bano et al., 2020), utilizing six-fold cross-validation on the
training FetReg2021 dataset with both original and corrected anno-
tations. TTTSNet achieved mIoU of 81.10 ± 4.71 and 84.71 ± 4.63
compared to 79.22 ± 4.98 and 83.41 ± 5.08 for the Baseline, for
original and corrected annotations, respectively. In both scenarios, our
proposed TTTSNet outperformed the Baseline method. Overall, both
13 
compared methods demonstrated stable performance across all folds,
although limitations were observed in certain challenging scenarios.

Table 8 shows a comparison of results between TTTSNet and the top
5 performing methods of the FetReg2021 challenge. For comparison,
we used both original and corrected annotations. In both scenarios,
our TTTSNet outperformed the next best method—RREB by 2.67% and
1.28% for original and corrected annotations, respectively.

6. Discussion

Our proposed network architecture, TTTSNet, is designed to address
the challenging task of segmenting placental vessels within frames
extracted from video feeds obtained during FLP surgery, a proce-
dure aimed at treating TTTS. Specifically, we adapt both state-of-
the-art lightweight segmentation networks, DABNet and LMFFNet, by
modifying the multi-scale feature fusion module and the attention
mechanism to enhance placental vessel segmentation. Our method
demonstrated superior performance compared to eleven state-of-the-art
methods, achieving an mIoU of 78.26% in placental vessel segmen-
tation. Notably, TTTSNet achieves an inference speed of 150 FPS,
enabling real-time interactive usage and potentially facilitating prompt
decision-making by surgeons.

We assessed the generalizability of our method by testing it on data
from multiple centers. This multi-center placental vessel segmentation
study is by far the most extensive to date, involving 24 in-vivo videos
(comprising 2,348 meticulously annotated frames) from six different
European institutions. 18 of these video samples are novel in-house
test set from four centers, and remaining 6 coming from two centers
are already publicly available within FetReg2021. We observed that the
TTTSNet segmentation performance differs across data from different
centers. These differences are likely due to several reasons. The multi-
center test set was acquired by fetal surgeons with varying levels of
clinical experience, each employing different techniques for performing
the TTTS procedure. In addition, videos vary in the acquisition quality,
which is influenced by different equipment used during surgery (see
Fig. 9) and different sizes of fields of view (Table A1 and Table A2
in the Supplementary material). Moreover, we have used the publicly
available data from Center A, Center B, and our in-house acquired
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Fig. 12. Examples of poor visibility in video frames and their corresponding overlay prediction mask of placental vessels. The first row shows input video frames, and the second
row shows the overlay prediction mask of placental vessels. Here, we demonstrate how a deep learning-based model may improve the visibility of placental vessels to assist fetal
surgeons during TTTS fetoscopic surgery.
Center E using fetoscopes of lower optical quality compared to those
used in the other centers.

The FetReg2021 challenge was released in 2021 (Bano et al.,
2021, Bano et al., 2023) for the evaluation of various segmenta-
tion methods using a two-center dataset comprising 24 in-vivo proce-
dures. In the challenge, the best-performing method achieved an mIoU
of 67.03% (Bano et al., 2023). We extended the publicly available
FetReg2021 dataset with additional data from four European fetal
medicine centers. In the FetReg2021 dataset, we identified areas for
potential improvement in the pixel-wise annotations, which we aimed
to enhance in our research. The annotations were carefully corrected
and agreed upon by two domain experts. Our findings indicate that
training our approach on improved annotations resulted in superior
performance compared to using the publicly available annotations
prior to correction. To foster research in this field, we are releasing
the corrected annotations and making them available to the scientific
community.

To address challenges associated with poor visibility within the
amniotic sac environment, we introduced a novel data augmentation
approach mimicking laser pointer effect, amniotic sac particles, camera
structural defects, and fiber artifacts. This approach helps in building a
robust and generalizable method. Specifically, TTTSNet trained with
these custom data augmentation methods achieved superior quanti-
tative segmentation performance compared to results without these
methods, with an mIoU of 78.26% vs. 73.08%, respectively (see Ta-
ble 3). Moreover, the proposed data augmentations are not only limited
to TTTS but can also be used in different fetoscopy-based surgeries
such as Amniotic Band Syndrome (ABS) and Fetoscopic Endoluminal
Tracheal Occlusion (FETO) (Nassr et al., 2018).

Specifically, we obtained an average mIoU of 78.26%, whereas
the mIoU using the uncorrected annotations was 72.05%, as shown
in Table 4. Our quantitative outcomes suggest a noticeable correla-
tion between the segmentation performance and the specific fetoscope
hardware utilized in the data collection process, as substantiated by
mIoU values of 75.01%, 70.11%, and 72.08%, for Center A, B, and E,
respectively. Furthermore, it is important to note that the data gathered
from both Center C and Center D were obtained using fetoscopes of
higher optical quality compared to those used in the other centers,
resulting in the most accurate segmentation outcomes. We achieved
the highest mIoU of 86.15% and 86.09% for Centers C and D, which
are quite similar. This may be correlated, as the same fetal surgeon
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acquired these data. However, they were obtained from two different
centers with different hardware and clinical settings.

To demonstrate the robustness and sensitivity of our method in seg-
menting tiny placental vessels, we conducted an additional experiment
on a subset of the test set, which consisted of video frames containing
only tiny placental vessels. Overall, clinical experts selected nearly
17% of the test set, and our method, TTTSNet, outperformed eleven
compared methods, and two TTTSNet-based configurations achieving
a mean mIoU of 73.35 ± 10.79%, as shown in Table 5. It is worth
noting that the second-best method, TTTSNet-S, demonstrates that our
proposed neural network architecture can excel in the challenging task
of tiny placental vessel segmentation. Both configurations achieved
accurate segmentation of tiny placental vessels, despite the challenges
posed by artifacts and a turbid environment (see the last three rows of
Fig. 11).

Fig. 11 demonstrated that our method consistently provided accu-
rate and robust segmentation covering the entire map of the placental
vessel, including challenging regions like reduced contrast tiny vessels.
Furthermore, TTTSNet produced smoother segmentation maps when
compared to other state-of-the-art methods. Our proposed TTTSNet
performs well in both types of placenta: anterior and posterior (see
Table 6). Moreover, it is worth noting that video frames from anterior
placenta cases exhibit enhanced visibility, with vessels appearing more
detailed in the field of view due to their proximity to the camera (see
Fig. 13). While performing FLP (Bamberg and Hecher, 2019) on the
anterior placenta is a more challenging task than on the posterior pla-
centa, the segmentation performance revealed that posterior placenta
cases were much harder (mIoU of 81.01 ± 8.97% vs. 79.68 ± 6.65%).
Notably, the worst-performing case (B_Video012) with an mIoU of
61.98 ± 13.11% came from a posterior placenta. This low segmentation
performance is associated with the lowest resolution of the video
frames (320 × 320 pixels). Moreover, the next two worst-performing
cases (E_Video035 and F_Video031) with mIoUs of 71.28 ± 10.89%
and 72.37 ± 5.80%, respectively, also came from posterior placenta
cases. In contrast, the two best-performing cases (D_Video022 and
D_Video006) with mIoUs of 91.76 ± 7.97% and 89.70 ± 12.98%,
respectively, came from anterior placenta cases (see Table 6).

Two ablation studies demonstrated the effectiveness of various
components developed in this work. Both neural network innovations
and data augmentations significantly improved and contributed to
achieving state-of-the-art segmentation performance (see Table 2). We
showed that our proposed module, MEDCAM, enhances segmentation
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Fig. 13. Examples of video frames from two types of the placenta: (a) anterior, and (b) posterior placenta. We demonstrate that anterior placenta cases exhibit better visibility of
placental vessels within the field of view compared to posterior cases, which impacts the segmentation performance of both types.
quality and effectively addresses limitations such as detecting tiny
placental vessels within a small region of the field of view (see Fig. 10).
This capability is particularly crucial during TTTS surgery to avoid
postoperative complications. Any residual connections left unnoticed
and uncoagulated may further enhance TTTS stages. In cases of fetal
demise, such connections may also be responsible for the death of
the second twin, or if the second twin survives, for brain hemorrhage
leading to brain injury. Another postoperative complication is Twin
Anemia Polycythemia Sequence (TAPS), which is one of the most
prevalent side effects of FLP and is mostly due to a surgeon missing
small placental intertwin vessels.

Fig. 12 illustrates an example of poor visibility in video frames
alongside their corresponding overlay prediction masks. This visual rep-
resentation underscores the challenge of identifying crucial anatomical
features in such scenarios. Through our research, we establish that
employing a deep learning-based method can significantly aid fetal
surgeons during real-time TTTS surgery. By utilizing deep learning, we
can effectively highlight regions containing placental vessels that would
otherwise be challenging for the human eye to detect. This augmenta-
tion of visual perception may offer support to surgeons enhancing their
ability to navigate during the procedure.

We compared TTTSNet with the Baseline method (Bano et al.,
2020) of the FetReg2021 challenge using six-fold cross-validation on
the training set, detailing an mIoU for individual videos based on
both original and corrected annotations. We demonstrate that TTTSNet
outperformed the Baseline method in both scenarios. Furthermore, we
observed consistent results across all folds for both methods. However,
in some cases such as Video006, Video011, and Video017, issues like
intense laser glare or shadows and posterior placenta type coupled
with low image resolution led to inaccurate vessel segmentation (see
Table 7).

Furthermore, to demonstrate the robustness of TTTSNet and ensure
a fair comparison, we evaluated TTTSNet against the top 5 performing
methods from Task 1 of the FetReg2021 challenge. This comparison
was conducted using both original and corrected annotations across the
entire test set encompassing all six centers. In both scenarios, TTTSNet
outperformed the next-best method, Baseline, by mIoU margins of
1.84% and 1.58%, respectively. Interestingly, it is evident that all
compared methods achieved their highest results at Centers C, D, and
F, while their performance was comparatively lower at Centers A, B,
and E (see Table 8).
15 
Although our method achieved overall success in qualitative out-
comes, it also encountered some errors in quantitative results, but
we did not observe recognizable patterns in the predictions. The high
absolute error, devoid of any consistent trends or patterns, can be
attributed to the inherent challenges of dealing with highly variable
and competitive data encountered during TTTS surgery. The observed
discrepancy in the performance of the mIoU metric for placental vessel
segmentation in TTTS surgery can be attributed to various sources of
error. Challenges arise due to poor image quality, characterized by low
resolution, noise, and motion blur, which have a detrimental impact on
the accuracy of vessel segmentation. These factors create difficulties for
the model in detecting and outlining intricate vessel structures. Addi-
tionally, artifacts such as shadows, reflections, or occlusions caused by
medical instruments further complicate the segmentation process, lead-
ing to errors in vessel boundaries. Moreover, irregular vessel structures
commonly associated with placental pathologies, type of placenta and
TTTS abnormalities introduce additional complexity. These irregulari-
ties include vessel tortuosity, abnormal branching patterns, and vessel
dilation, deviating from the typical appearance of vessels and posing
challenges for achieving accurate segmentation.

Our work is subject to limitations, which we intend to address
through future research. Firstly, while our network architecture is
designed for the segmentation of placental vessels, it would be clinically
beneficial to differentiate vessels into arteries and veins. This is a chal-
lenging task due to the high similarity between the two. Additionally,
we have not included segmentation of other structures such as the fetus
or ablation tools as they are not considered clinically relevant. We
found that including more classes in the training process can negatively
impact the performance of vessel segmentation, and thus, we have
chosen to focus solely on vessel segmentation. Another limitation is
that the proposed network architecture relies on a single frame for
segmentation. While this approach is efficient and fast, it does not take
into account the temporal context. We plan to explore 2𝐷 + 𝑡 spatio-
temporal feature representation learning as a means of incorporating
temporal context into the segmentation process in the future. Addi-
tionally, as with any deep learning project, we would like to utilize
more data for training, validation, and testing to increase data diversity
using different clinical centers, obtained on different equipment, and
performed by other surgeons to test our solution. Lastly, our goal is
to create a clinically useful system, and as such, it should be evaluated
using clinical utility measures such as improvement in FLP success rate.
This will be an important aspect in future evaluations.
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7. Conclusions

We have proposed a network architecture for real-time placen-
tal vessel segmentation in videos obtained during FLP for TTTS. To
improve performance, we have developed custom network and data
augmentations specifically tailored for this task. Our experiments on
a large and diverse test set have shown that TTTSNet is not only
accurate in terms of segmentation metric but also robust in terms of
generalizability to datasets from different institutions. Furthermore, our
method demonstrates superior performance compared to current state-
of-the-art methods. In the future, the use of TTTSNet may aid surgeons
during real-time fetoscopic fetal surgery to accurately identify critical
structures and ultimately improve outcomes of TTTS treatments.
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