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Abstract: Background: Exercise is associated with several cardiac adaptations that can enhance one’s
cardiac output and allow one to sustain a higher level of oxygen demand for prolonged periods.
However, adverse cardiac remodelling, such as myocardial fibrosis, has been identified in athletes
engaging in long-term endurance exercise. Cardiac magnetic resonance (CMR) imaging is considered
the noninvasive gold standard for its detection and quantification. This review seeks to highlight
factors that contribute to the development of myocardial fibrosis in athletes and provide insights into
the assessment and interpretation of myocardial fibrosis in athletes. Methods: A literature search was
performed using the PubMed/Medline database and Google Scholar for publications that assessed
myocardial fibrosis in athletes using CMR. Results: A total of 21 studies involving 1642 endurance
athletes were included in the analysis, and myocardial fibrosis was found in 378 of 1595 athletes.
A higher prevalence was seen in athletes with cardiac remodelling compared to control subjects (23.7
vs. 3.3%, p < 0.001). Similarly, we found that young endurance athletes had a significantly higher
prevalence than veteran athletes (27.7 vs. 19.9%, p < 0.001), while male and female athletes were
similar (19.7 vs. 16.4%, p = 0.207). Major myocardial fibrosis (nonischaemic and ischaemic patterns)
was predominately observed in veteran athletes, particularly in males and infrequently in young
athletes. The right ventricular insertion point was the most common fibrosis location, occurring in the
majority of female (96%) and young athletes (84%). Myocardial native T1 values were significantly
lower in athletes at 1.5 T (p < 0.001) and 3 T (p = 0.004), although they had similar extracellular volume
values to those of control groups. Conclusions: The development of myocardial fibrosis in athletes
appears to be a multifactorial process, with genetics, hormones, the exercise dose, and an adverse
cardiovascular risk profile playing key roles. Major myocardial fibrosis is not a benign finding and
warrants a comprehensive evaluation and follow-up regarding potential cardiac disease.

Keywords: cardiac magnetic resonance imaging; endurance athlete; late gadolinium enhancement;
myocardial fibrosis; T1 mapping

1. Introduction

Exercise is associated with several structural, functional, and electrical cardiac adapta-
tions. These usually result in a balanced increase in the cardiac chamber size and myocardial
mass, which is often referred to as athlete’s heart [1]. The magnitude of these adaptations is
influenced by the athlete’s age, sex, ethnicity, body size, and sporting discipline, including
the intensity, duration, and years of sports practice [1]. Often, the most profound effects are
seen in male endurance athletes.

Emerging evidence, however, suggests that high-volume, high-intensity exercise
training over time may be associated with adverse cardiac remodelling, such as myocardial
fibrosis (MF) [2]. MF is characterised by fibroblast activation and collagen infiltration into
the extracellular matrix, which can develop in response to injury from myocardial ischaemia,
inflammation, or pressure overload [3]. MF is divided into reactive and replacement fibrosis.
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The reactive type is an earlier and reversible marker of myocardial disease, involving
increased collagen synthesis in response to cardiac stress. Meanwhile, replacement or focal
fibrosis is irreversible, involving collagen replacement following myocyte apoptosis or
necrosis and resulting in myocardial scarring [4].

MF can be assessed by a variety of methods in clinical practice. Traditionally, en-
domyocardial biopsy, an invasive procedure, is used for determining the presence of MF
and is regarded as the gold standard [3]. Other tools currently available to characterize
MF include biomarkers and noninvasive imaging modalities, such as echocardiography
and strain analysis, cardiac computed tomography, single-photon emission computed
tomography and positron emission tomography, and CMR [3,4]. CMR provides detailed
tissue characterization using methods that focus primarily on the composition of the
extracellular space.

MF is assessed noninvasively using CMR imaging with gadolinium to determine
late gadolinium enhancement (LGE), a marker of replacement MF. However, LGE typi-
cally represents only focal regions of increased fibrosis. Parametric T1 mapping, such as
myocardial native T1 values and the extracardiac volume (ECV) can be used to assess
myocardial composition. This emerging technique can detect focal or diffuse interstitial
disease, although it has not been well established in the athlete population [5,6]. Late
gadolinium enhancement CMR imaging has emerged as a powerful tool in the field of
sports cardiology due to its unique ability to comprehensively assess myocardial structure
and function. It has become increasingly useful for differentiating structural features in
athletes that overlap with cardiomyopathies, providing important guidance to physicians
regarding sports participation [7].

Interestingly, specific patterns of LGE have been observed more frequently in athletes,
although these data are not always consistent and have not been compared to those of
the general population or veteran athletes [2,5,7]. A pattern-based approach has been
described for LGE assessment [8]. MF can be described as major or minor [9]. Major
MF is defined as overt fibrosis in the compacted myocardium involving nonischaemic
(mid-myocardial and subepicardial LGE) or ischaemic (subendocardial and transmural
LGE) patterns [7]. Meanwhile, minor MF typically affects the anterior and inferior right
ventricular (RV) insertion points (with a non-specific pattern in athletes), papillary muscles,
or RV trabeculae [9].

MF is associated with increased myocardial stiffness, heart failure, a higher incidence
of ventricular arrhythmias (VAs), and adverse cardiac outcomes such as sudden cardiac
death (SCD) [2,3,9]. However, the aetiology and clinical implications of MF in athletes are
still unclear. This review seeks to highlight the factors that contribute to the development
of MF in athletes and assess its effects on cardiac structure and function.

2. Methods

A literature search was performed using the PubMed/Medline database and Google
Scholar. This review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [10]. The search strategy was
not limited by the date of publication and was restricted to the English language. Medical
subject headings and free search terms were used individually and in combination. The
terms included athlete AND athlete’s heart AND myocardial fibrosis AND fibrosis AND
scar AND cardiac magnetic resonance imaging AND late gadolinium enhancement OR
delayed gadolinium enhancement AND T1 mapping OR native T1 values OR extracellular
volume quantification. In addition, other relevant publications were identified using a
manual search of the reference and citation lists from all of the eligible studies (Figure 1).
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Figure 1. Flow chart of the literature selection. 

Studies were included in which high-performance endurance athletes were assessed 
using CMR to determine the presence of MF. Outcomes of studies that evaluated one or 
more of the following parameters in athletes were eligible for inclusion: (a) the presence 
of late gadolinium enhancement, (b) native T1 values, and (c) extracellular volume. En-
durance athletes were defined as having had competition experience or a long period of 
regular high-intensity endurance training [6]. A mean age of >40 years characterised vet-
eran athletes [5]. Only studies reported in English were evaluated for inclusion. Publica-
tions based on athletes with known cardiovascular disease or included on the basis of 
having signs or symptoms of cardiac disease (e.g., premature ventricular beats) were ex-
cluded from the systematic review. When multiple studies reported results using the same 
cohort data from the same research group, only one was kept, unless no overlap was iden-
tified. A detailed presentation of the systematic protocol is described in Supplementary 
Materials. Quality and bias assessment was performed via the Newcastle–Ottawa quality 
assessment scale (NOS) for cohort studies (Supplementary Table S1). Between-group dif-
ferences were assessed using Student’s t-tests, with a p-value < 0.05 considered statistically 
significant. 

  

Figure 1. Flow chart of the literature selection.

Studies were included in which high-performance endurance athletes were assessed
using CMR to determine the presence of MF. Outcomes of studies that evaluated one or
more of the following parameters in athletes were eligible for inclusion: (a) the presence of
late gadolinium enhancement, (b) native T1 values, and (c) extracellular volume. Endurance
athletes were defined as having had competition experience or a long period of regular
high-intensity endurance training [6]. A mean age of >40 years characterised veteran
athletes [5]. Only studies reported in English were evaluated for inclusion. Publications
based on athletes with known cardiovascular disease or included on the basis of having
signs or symptoms of cardiac disease (e.g., premature ventricular beats) were excluded
from the systematic review. When multiple studies reported results using the same cohort
data from the same research group, only one was kept, unless no overlap was identified. A
detailed presentation of the systematic protocol is described in Supplementary Materials.
Quality and bias assessment was performed via the Newcastle–Ottawa quality assessment
scale (NOS) for cohort studies (Supplementary Table S1). Between-group differences were
assessed using Student’s t-tests, with a p-value < 0.05 considered statistically significant.
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3. Results

The results of the literature search are displayed in Table 1 [11–31]. A risk of bias
assessment was performed using the Newcastle–Ottawa Scale (Supplementary Table S1).
Across 21 studies, there were 1642 athletes with a mean age of 43.36 ± 6.8 years (with
a range of 15–82). Overall, 78% of the athletes were male. However, the age and sex
of 40 athletes were not reported. The athletes were mostly long-term, highly trained
endurance participants who engaged in high volumes of exercise per week (with a mean of
21.7 ± 9.2 years and 9.8 ± 3.8 h per week of training, based on 16 studies) [1]. The majority
participated in running and cycling, competing in triathlons and marathons.

MF was reported in 21 studies, with 23.7% of the athletes (378 of 1595) and 3.3%
of the controls (20 of 602, 15 studies) (p < 0.001) showing evidence of LGE. A higher
prevalence was seen in young (27.7% of 775, eight studies) compared to veteran (19.9% of
820, 14 studies) athletes (p < 0.001). Meanwhile, 3.5% of the veteran controls (18 of 515,
13 studies) and 2.3% of the young controls (2 of 87, 2 studies) (p = 0.565) showed LGE.

In 16 studies in which sex was differentiated, LGE was found in 193 of 980 male
athletes (19.7%) and 47 of 287 female athletes (16.4%) (p = 0.207). Athletes with MF showed
greater cardiac remodelling, with larger heart chambers and a greater mass than athletes
without MF [2,4,7,11–18,20].

In 19 studies, LGE patterns were reported in 303 athletes (80% male), with major
MF patterns found in 31% of cases, consisting of nonischaemic (23.4%) and ischaemic
(7.6%) types (Figure 2). Major MF patterns were found significantly less frequently in
young athletes (38%) compared to veteran athletes (62%) (p < 0.001). A nonischaemic
pattern presented significantly more frequently in veteran athletes (57%) compared to
young athletes (43%) (p = 0.008). Similarly, an ischaemic pattern was more common in
veteran athletes (83%) compared to young athletes (17%) (p < 0.001) (Figure 3).

The most common location of LGE followed a non-specific pattern, such as the RV
insertion point (69%). Interestingly, 96% of female (n = 49) and 84% young (n = 215) athletes
had this pattern. This was significantly higher in young athletes compared to veterans (16%)
(p < 0.001). Overall, veteran athletes showed nonischaemic patterns (43%), followed by
non-specific (37%) and ischaemic (20%) patterns, while young athletes showed non-specific
(84%), nonischaemic (14%), and ischaemic (2%) patterns.

Myocardial composition was further assessed using native T1 time and ECV quan-
tification in nine studies (Table 2). Athletes had normal native T1 times, although statis-
tically lower mean values at 1.5 T (990.09 ± 32 ms vs. 1029 ± 27 ms, p < 0.001) and 3 T
(1185.8 ± 34 ms vs. 1207.5 ± 32 ms, p = 0.004) when compared to the control groups. There
was no significant difference for mean myocardial ECV values at 1.5 T (26.2 ± 2.1% vs.
25.95 ± 2.9%, p = 0.432) and 3 T (23.2 ± 3.3% vs. 22.84 ± 2.6%, p = 0.366) between the
athlete and control groups. Veteran athletes showed similar results, while female athletes
had slightly higher ECV values. Those with LGE demonstrated slightly higher native T1
times and global or remote ECV values, although still within normal ranges [19].
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Table 1. Characteristics of myocardial fibrosis in athletic populations using CMR.

Type of Sport Athletes CMR Findings

Study Athlete Group Exercise Exposure Age (y), Mean ± SD Sex (%) BSA (m2) LGE Pattern/Location T1 (ms) ECV (%)

Zaidi et al. (2017) [13] 170

Master endurance

- 54.4 ± 8.5 M: 71
F: 29

69/170 (40.6%) - - -

Verwijs et al. (2022) [14]
1.5 T, 3 T

210

Elite international,
national, Olympic:
38 road cycling, 28 field
hockey, 27 water polo,
21 soccer, 18 rowing,
13 swimming, 12 track
cycling, 10 tennis,
10 sailing

- 28 ± 7 M: 66 2 ± 0.2
F: 34

M: 64/138 (46.4%)
F: 20/72 (27.8%)

Total: 84/210 (40%)

M: 64 RV insertion points

F: 20 RV insertion points

959 ± 77

LGE+ 956 ± 24
LGE- 960 ± 96

24 ± 2
LGE+ 24 ± 2
LGE- 25 ± 2

Domenech Ximenos
et al. (2020) [19]
1.5, 3 T

93

Triathlon

>12 h/wk training during
last 5 y

35.7 ± 5.8 M: 53 1.91 ± 0.13
F: 47 1.63 ± 0.1

M: 17/49 (34.7%)
F: 18/44 (40.9%)

Total: 35/93 (37.6%)

RV insertion points - 26 ± 2.3%
LGE+ 27.1 ± 2.2
LGE- 25.2 ± 2.1

Banks et al. (2020) [15]
3 T

72

24 endurance runners,
20 cycling, 28 triathletes

10 y of competition,
7.6 ± 4.5 h/wk vigorous
exercise

53 ± 5 M: 74 1.9 ± 0.1
F: 26 1.6 ± 0.2

M: 18/53 (34%)
F: 5/16 (31%)

Total: 23/69 (33%)

M: 12 RV insertion points,
2 ischaemic, 4 nonischaemic

F: 5 RV insertion points

M: 1164 ± 36
F: 1190 ± 23

Total: 1169 ± 35

M: 22.1 ± 3.3
F: 24.2 ± 3.9

Total: 22.6 ± 3.5

Malek et al. (2019) [16]
3 T

30

Active healthy
ultramarathon runners

Median 9 y running with
frequent competitions

40.9 ± 6.6 M: 100 M: 8/30 (27%) Nonischaemic: 5 RV insertion
point, 3 septum or inferolateral
wall

1200 ± 59 26.1 ± 2.9

Wilson et al. (2011) [20]
1.5 T

29

12 lifelong veteran
endurance and
17 young endurance:
marathon,
ultramarathon,
ironman, triathlon

Veteran: 43 ± 6 y of
competitive training

Young: 18 ± 7 y of
competitive training

57 ± 6

31 ± 5

M: 100 1.96 ± 0.14

2 ± 0.14

Veteran: 6/12 (50%)

Young: 0/17

Total: 6/29 (20.7%)

1 CAD pattern: subendocardial
septal and lateral wall infarction
pattern

5 non-CAD pattern:
1 subepicardial lateral wall
(myocarditis), 4 junctional: basal
and mid insertion point, inferior
insertion point and mid/apical,
inferior mid/apical insertion
point, inferior insertion point

- -

Sanchis-Gomar et al.
(2016) [21]
3 T

53

Highly trained
endurance: 11 elite and
42 sub-elite cyclists,
runners

Elite: 29 ± 9 y training,
10.6 ± 3.1 h/wk

Sub-elite: 24 ± 9 y training,
10.6 ± 4.2 h/wk

54 ± 4 (elite)

55 ± 9 (sub-elite)

M: 100 2/10 (20%) Nonischaemic pattern,
intra-myocardial LV lateral wall,
basal inferolateral LV wall

- -
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Table 1. Cont.

Type of Sport Athletes CMR Findings

Study Athlete Group Exercise Exposure Age (y), Mean ± SD Sex (%) BSA (m2) LGE Pattern/Location T1 (ms) ECV (%)

Andresen et al. (2022)
[22]
3 T

27

Healthy elite endurance
athletes

379 ± 161 h/y exercise
duration, 9.2 ± 0.9 MET

41 ± 9 M: 100 5/27 (18.5%) - 1214 ± 24 (septal)

LGE+ 1220 ± 4
LGE- 1212 ± 27

22.5 ± 3.1 (septal)

LGE+ 22 ± 1.2
LGE- 22.7 ± 3.4

Altaha et al. (2016) [17]
3 T

33

Sub-elite endurance:
10 runners, 12 cyclists,
10 triathletes

>10 y of exercise,
4.8 ± 2.5 h/wk exercise

55 ± 5.6 M: 76
F: 24

M: 4/25 (16%)
F: 1/8 (12.5%)

Total: 5/33 (15.2%)

Non-specific RV inferior
hinge-point

- -

La Gerche et al. (2012)
[18]
1.5 T

40

7 marathon runners,
11 endurance triathletes,
9 alpine cyclists,
13 ultra-triathletes

10 ± 9 years training,
16.3 ± 5.1 h/wk intense
training

37 ± 8 M: 90
F: 10

5/39 (12.8%) Interventricular septum,
frequently in the RV attachment

- -

Bosscher et al. (2020)
[23]
3 T

231

Elite endurance athletes

- 18 ± 2 (young)
38 ± 5 (middle-aged)

M: 79
F: 21

M: 27/187 (14.4%)
F: 1/50 (2%)

Total: 28 (12.5%)

M: 24 RV insertion points,
3 subepicardial LV lateral wall

F: 1 RV insertion points

- -

Breuckmann et al.
(2009) [24]
1.5 T

102

Marathon runners

≥5 marathons in ≤3 y 57 ± 6 M: 100 12/102 (11.8%) 5: subendocardial layer typical
myocardial infarction (10 LAD,
1 LCA, 3 RCA segments)

7: mid-myocardial patchy
nonischaemic pattern (3 LAD,
5 LCA, 9 RCA segments)

- -

Tahir et al. (2018) [11]
1.5 T

83

Triathletes

12.6 y competitions,
>10 h/wk training

43 ± 10 M: 65 1.98 ± 0.12
F: 35 1.73 ± 0.12

M: 9/54 (16.7%)
F: 0/29

Total: 9/83 (10.8%)

Nonischaemic: 5: subepicardial
(myocarditis)–inferolateral LV
wall, 2: posterior RV insertion
points, 1: transmural

M: 990 ± 28
F: 1015 ± 25

M: LGE+ 1005 ± 32
M: LGE- 987 ± 27

M: 24.8 ± 2.2
F: 27.8 ± 1.9

M: LGE+ 26.3 ± 1.8
M: LGE- 24.4 ± 2.2

Merghani et al. (2017)
[12]
1.5 T

152

Master cyclists, runners

M: 33.4 ± 12.9 y endurance
exercise, 7.5 ± 3.8 h/wk

F: 26.1 ± 10.9 y endurance
exercise, 7.7 ± 2.9 h/wk

54.4 ± 8.5 M: 70 1.9 ± 0.12
F: 30 1.62 ± 0.12

M: 15/106 (14.2%)
F: 1/46 (2.2%)

Total: 16/152 (10.5%)

M: 7 subendocardial LGE
consistent with myocardial
infarction, 5 midmyocardial,
3 epicardial distribution

F: 1 subendocardial LGE

- -

Pujadas et al. (2018) [25]
1.5 T

34

Healthy endurance
veterans: marathons

28.06 ± 10.84 y training,
9.38 ± 3.52 h/wk, still in
regular training

48.17 ± 7.4 M: 100 1.8 ± 0.11 3/34 (8.8%) Nonischaemic: mesocardial in
septal–apical wall, subepicardial
inferior apical wall, mesocardial
lateral wall

943.6 ± 53 (septal) 25 ± 2% (septal)
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Table 1. Cont.

Type of Sport Athletes CMR Findings

Study Athlete Group Exercise Exposure Age (y), Mean ± SD Sex (%) BSA (m2) LGE Pattern/Location T1 (ms) ECV (%)

Karlstedt et al. (2012)
[26]
1.5 T

25

Healthy marathon
runners

≥3 marathons in the past 2 y,
47 ± 7 miles/wk training

55 ± 4 M: 84
F: 16

2/25 (8%) Subendocardial distribution of LV
anterior wall (before running
marathon), with evidence of
obstructive LAD artery disease

- -

Swoboda et al. (2016)
[27]
3 T

40

Competitive athletes:
11 runners,
13 triathletes, 16 cyclists

>6 h/wk training <45 y - 2/40 (5%) Subepicardial lateral in a
myocarditis pattern

1182.7 ± 42.4 22.7 ± 3.3

McDiarmid et al. (2016)
[28]
3 T

30

Endurance: 7 runners,
11 cyclists, 12 triathletes

Regional, national, or
international level

>6 h/wk training

31.7 ± 7.7 M: 100 1/30 (3.3%) Nonischaemic (post myocarditis
pattern)

1178 ± 32 22.5 ± 2.6

Bohm et al. (2016) [29]
1.5 T

33

16 former elite master
endurance athletes:
marathon, triathlons,
ironman, rowing,
cycling

29 ± 8 y training history,
16.7 ± 4.4 h/wk training

47 ± 8 M: 100 1.96 ± 0.1 1/33 (3%) Nonischaemic, subepicardial LV
posteroinferior region (most
likely due to former pericarditis)

- -

Mangold et al. (2013)
[30]
1.5 T

95

39 long-distance
runners, 8 cyclists,
34 triathletes, 13
handball players, 1
speed skater

13.1 ± 4.2 h/wk for ≥2 y

M: 13.1 ± 4.5 h/wk (5–30)

F: 12.8 ± 3 h/wk (7–20)

35.2 ± 11.4 M: 77 1.91 ± 0.13
F: 23 1.7 ± 0.2

M: 1/73 (1.3%)
F: 1/22 (4.4%)

Total: 2/95 (2.1%)

Nonischaemic, post myocarditis
pattern (spot-shaped),
disseminated and intramural

- -

Androulakis et al.
(2022) [31]

61

Endurance sport: 40

12.5 ± 3.3 h/wk 27.9 ± 6.7 M: 80 1.99 ± 0.2
F: 20

60 Minor MF: 28 insertion points

Major MF: 18 mid-myocarial,
10 subepicardial, 4 subepicardial

- -

CAD: coronary artery disease, CMR: cardiac magnetic resonance, ECV: extracellular volume, F: female, h: hours, LAD: left anterior descending artery, LCA: left circumflex artery, LGE:
late gadolinium enhancement, LV: left ventricle, M: male, MET: metabolic equivalent of task, RCA: right coronary artery, RV: right ventricle, SD: standard deviation, T: Tesla, wk: week, y:
years. Studies arranged from highest to lowest MF prevalence.
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Table 2. T1 mapping and ECV quantification in athletic populations using CMR.

Athletes

CMR Findings All Male Female Young Veteran

1.5 T (3 studies) (n = 145) (n = 88) (n = 29) (n = 28) (n = 117)
T1 (ms) 990.9 ± 32 * 966.8 ± 40 1015 ± 25 - 990.9 ± 32
ECV (%) 26.2 ± 2.1 24.9 ± 2.1 27.8 ± 1.9 26 ± 2.3 26.3 ± 2

LGE + (1.5 T) (2 studies) (n = 22)
T1 (ms) - 1005 ± 32 (n = 9) - -
ECV (%) - 26.7 ± 2 (n = 22) - -

LGE − (1.5 T) (n = 60)
T1 (ms) - 987 ± 27 (n = 45) - -
ECV (%) - 24.8 ± 2.1 (n = 60) - -

3 T (5 studies) (n = 177) (n = 95) (n = 12) (n = 30) (n = 107)
T1 (ms) 1185.8 ± 34 1192.7 ± 40 1190 ± 23 1178 ± 32 1191.3 ± 31
ECV (%) 23.2 ± 3.3 23.6 ± 3.1 24.2 ± 3.9 22.5 ± 2.6 23.9 ± 3.5

LGE + (3 T) (1 study) (n = 5)
T1 (ms) - 1220 ± 4 - - -
ECV (%) - 22 ± 1.2 - - -

LGE − (3 T) (n = 22)
T1 (ms) - 1212 ± 27 - - -
ECV (%) - 22.7 ± 3.4 - - -

Controls

1.5 T (2 studies) (n = 48) (n = 34) (n = 14) (n = 48)
T1 (ms) 1029 ± 27 999.1 ± 32 1059 ± 22 - 1029 ± 27
ECV (%) 25.95 ± 2.9 23 ± 2.5 28.9 ± 3.3 - 25.95 ± 2.9

3 T (5 studies) (n = 97) (n = 35) (n = 7) (n = 20) (n = 42)
T1 (ms) 1207.5 ± 32 ˆ 1221.7 ± 35 1197 ± 22 1202 ± 33 1209.3 ± 28
ECV (%) 22.84 ± 2.6 23.7 ± 2.6 20.4 ± 2.8 24.5 ± 2.2 22 ± 2.7

CMR: cardiac magnetic resonance, ECV: extracellular volume, LGE: late gadolinium enhancement. * T1 not
reported in 28 athletes, ˆ T1 not reported in 35 controls. Study 14: 210 athletes not included in analysis (combined
1.5/3T data).

4. Discussion

This is the largest systematic review on endurance athletes with MF, which aimed to
highlight the prevalence of MF among athletes and provide insights into its assessment
and interpretation. We found a significantly higher prevalence of MF in athletes with
cardiac remodelling compared to control subjects, with specific patterns more commonly
associated with endurance athletes’ age and sex. In this review, when compared to two
previous meta-analyses [5,6], we found a similar prevalence of MF in endurance athletes
compared to the meta-analysis by Zang et al. (21.1%) [6]; however, we observed a higher
prevalence of non-specific (RV insertion point) patterns and a lower prevalence of major
MF patterns (69% vs. 31%) in these endurance athletes compared to their review (31% vs.
69%) [6]. This difference is owed to the updated set of studies, which included new data
involving greater numbers of high-level young endurance athletes.

A higher prevalence of LGE was seen between the young athletes compared to veteran
athletes in this review, which was a similar finding in the meta-analysis by Androulakis
et al. [5], in which young athletes had a higher incidence of LGE compared to veteran
athletes (25.7% vs. 14.6%, p = 0.002). Androulakis et al. [5] showed that non-RV insertion
point LGE prevalence was significantly higher in athletes compared to controls (7% vs.
0.2%, p = 0.003). In this review, this pattern was further evaluated, with nonischaemic
and ischaemic patterns significantly more common in veteran athletes, particularly males,
and infrequent in young athletes. Meanwhile, female and young athletes presented more
often with a non-specific pattern, such as RV insertion point LGE. Interestingly, the athletes’
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native T1 values were reduced compared to control groups, with similar ECV values which
was a similar finding to that of Androulakis et al. [5].

4.1. Myocardial Fibrosis in Athletes and the General Population

Several studies have shown evidence of MF in high-level endurance athletes in 2 to
50% of small-scale athletic populations [13,18,20,24,30]. However, not all of these studies
have demonstrated MF in athletic groups [32,33]. In a large general population study,
MF was reported in 7.9% of patients (62% nonischaemic vs. 38% ischaemic scars), 78% of
whom were not recognized in clinical evaluations or via electrocardiography [34]. A higher
prevalence of undiagnosed MF (17% and 19.8%) was reported in other general population
studies [35,36]. Interestingly, those with scars were more likely to be older, male, and
smokers, with higher blood pressure, body mass index, and coronary calcium scores [34].

4.2. Factors Associated with Myocardial Fibrosis in Athletes
4.2.1. Exercise Dose

Several studies have suggested a strong association between the volume of lifelong
endurance exercise and the extent of MF [3,11,18,20,24]. Wilson et al. [20] found that six
(50%) male veteran athletes demonstrated LGE, but none of the 17 young endurance athletes
and 20 age-matched controls did. LGE was associated with the number of years spent
training, as well as the number of completed competitive marathons and ultra-endurance
(>50 miles) marathons.

Breuckmann et al. [24] demonstrated a higher prevalence of LGE in 102 male veteran
marathon runners compared to age-matched controls (11.8% vs. 3.9%), with the number
of marathons functioning as an independent predictor of the presence of LGE. Tahir
et al. [11] also showed an association between MF and race distance in male triathletes,
with LGE+ athletes completing longer cumulative distances and more middle and ironman
distances than LGE- athletes. La Gerche et al. [18] found minor focal MF in five endurance
athletes who had greater cumulative exercise exposure. The investigators also showed that
intense endurance exercise can cause transient RV dilatation and dysfunction and elevated
cardiac biomarkers (brain natriuretic peptide and cardiac troponin I) after endurance races.
Recovery occurred in most athletes within one week. The study highlighted a key step in
the potential pathophysiological development of MF in athletes. It linked repeated bouts of
myocardial dysfunction to intense exercise, leading to adverse cardiac remodelling [37].
Evidence from animal models may also support this mechanism. Benito et al. [38] showed
that in young male rats, endurance training demonstrated training-dependent RV MF
and increased VA following 16 weeks of a chronic exercise regime. These findings were
reversed after eight weeks of exercise cessation. However, most of these studies investigated
male veteran athletes, with limited numbers of female athletes included. Interestingly,
female athletes may have lower cumulative exposure to vigorous exercise compared to
males, which may account for some of the differences in MF between male and female
athletes [11,12,17].

4.2.2. Pressure Overload

Pressure overload has also been proposed as a potential haemodynamic mechanism
for the development of MF in athletes. Rises in ventricular wall stress with exercise and the
duration of exercise stress have been suggested as important contributing factors [18,39].
Tahir et al. [11] showed that exercise-induced systolic hypertension was an independent
predictor of MF. In 83 asymptomatic triathletes (training >10 h/w), 16.7% of males showed
nonischaemic MF, but none of the female athletes did. Interestingly, LGE+ athletes had
significantly higher peak levels of systolic exercise blood pressure (213 ± 24 mmHg vs.
194 ± 26 mmHg, p < 0.05), LV mass indices (93 ± 7 g/m2 vs. 84 ± 11 g/m2, p < 0.05),
and ECV values (26.3 ± 1.8% vs. 24.4 ± 2.2%, p < 0.05) compared to LGE- athletes.
However, female athletes demonstrated a lower peak exercise blood pressure and shorter
race distances compared to male athletes [11]. In general, female athletes appear to have
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lower blood pressure at rest [40] and with exercise [41], which may be another reason for
the difference in MF between male and female athletes.

Minor focal MF located in the RV insertion points is thought to occur due to RV
pressure and/or volume overload, resulting from damage to myocytes [2,3]. In endurance
athletes, exercise-induced elevations in pulmonary artery systolic pressure can occur. La
Gerche et al. [39] demonstrated that RV wall stress increases 30-fold during exercise,
reflecting a significant rise in pulmonary artery systolic pressure. This raises the possibility
that repetitive, intense exercise may induce chronic structural changes in the RV insertion
points in endurance athletes.

4.2.3. Viral Myocarditis

Several studies have suggested that myocarditis may be responsible for major MF
in athletes [2,3,42]. Tahir et al. [11] showed that LGE+ athletes exhibited a nonischaemic
pattern in 55% of cases, which may be consistent with prior silent myocarditis involving the
mid-myocardial and subepicardial locations. This pattern may also be associated with other
conditions, such as arrhythmic, dilated, or hypertrophic cardiomyopathies [2]. However,
small mid-wall areas of nonischaemic MF have also been observed in 4% of the general
population [34] and seem to have no significant prognostic implications [43]. Viral infections
have been linked to subclinical myocarditis, occurring more frequently in younger men than
women, suggesting a strong relationship with testosterone levels [3,11,42]. Testosterone
may promote an immune response that leads to inflammation and fibrosis, while oestrogen
may result in less inflammation during myocarditis in females [44]. Using animal models,
researchers found that physical activity during myocarditis worsened heart damage in
male mice [45]. In athletes who continue to exercise during an infection, it is thought that
this may weaken immune function, leading to myocardial dysfunction, arrhythmias, and
MF [2,42].

4.2.4. Coronary Artery Calcification

Some studies have suggested a link between the coronary plaque burden and my-
ocardial damage in marathon runners [12,26,46]. Vigorous exercise at a very high intensity
and increasing exercise volume may accelerate the progression of atherosclerotic disease,
with possible links to vascular wall damage and exercise-induced metabolic or hormonal
changes [12,46–48]. Möhlenkamp et al. [46] found that coronary artery calcification was
higher in male veteran marathon runners with major MF (with 42% showing an ischaemic
pattern). These athletes had low Framingham risk scores (7 ± 3.6%), despite some having a
history of hypertension (12%) and smoking (51.9% former smokers and 4.6% active smok-
ers). Coronary artery calcification and the frequency of marathon running were shown
to be independent predictors of the presence of LGE [46]. Karlstedt et al. [26] proposed
a similar pathophysiological link in marathon runners, with two male veteran marathon
runners showing subendocardial LGE and obstructive coronary artery disease.

In contrast, a study conducted by Merghani et al. [12] showed no adverse cardiac
remodelling in female veteran endurance athletes. A similar prevalence of coronary artery
disease was observed in sedentary female controls. However, male veteran athletes had
higher coronary artery calcification scores and evidence of major MF (14.2% vs. 0) and VA
(9.4% vs. 0) compared to sedentary male controls. In these athletes, their age and years
of endurance training were determinants of significant coronary artery disease [9,12] and
a predictor of major MF [9] (with 56% having nonischaemic, 33% having ischaemic, and
11% having mixed patterns). Interestingly, in these three studies, an ischaemic pattern was
present in 50% of LGE+ middle-aged veteran athletes (6.7% female) [12,26,46]. This pattern
is the least common one observed in athletes, occurring with a similar frequency to that
of sedentary individuals [2]. It has been suggested that genetics, a lower cardiovascular
risk profile, and the protective effects of hormones such as oestrogen in females may
play a role in preventing adverse cardiac remodelling, when compared to male veteran
athletes [12,34,39,49].
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The pathological consequences of MF can contribute to structural and electrical
changes, leading to alterations in cardiac function and arrhythmias, particularly in those
associated with major MF [2]. Excessive collagen deposition can disrupt the mechanical-
electrical coupling of myocytes, predisposing athletes to VA and sudden death [3,50].
Fibrosis diffuse interstitial fibrosis widely throughout the myocardium, measured by ECV,
has been shown to promote arrhythmias more often than focal MF detected by LGE, which
typically involves only small portions of the myocardium [51].

Furthermore, interaction between diffuse MF and myocytes in perivascular areas can
restrict the supply of oxygen and nutrients to the myocardium, further exacerbating adverse
remodelling responses [2,50]. These structural changes can lead to adverse outcomes
such as myocyte ischaemia, as well as decreased myocardial compliance and impaired
contractility, leading to heart failure.

4.3. Parametric T1 Mapping

T1 mapping can provide valuable information regarding physiological or pathological
cardiac remodelling in athletes and earlier insight into pathological changes compared to
LGE [2,5] (Figure 4). Native T1 and ECV values can increase in LGE+ athletes, suggesting
the presence of diffuse interstitial fibrosis and extracellular expansion [11,19]. These values
increase with the burden of fibrosis and show a good correlation with histologic evidence
of interstitial MF [4,27,52]. Meanwhile, normal or lower values in athletes with a higher
LV mass can represent physiological remodelling due to greater myocyte hypertrophy
with no extracellular expansion [9,19,27,28]. To prevent the overdiagnosis of pathological
findings, these mapping parameters should be assessed in the appropriate clinical context
and should not be reported in isolation [53].
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4.4. Clinical Implications

Irrespective of age and sex, a pattern of minor focal MF, particularly the RV insertion
point location (Figure 5), is commonly seen in endurance athletes with cardiac remod-
elling [2,9,14–16,18–20,23]. This location of fibrosis has been correlated with the cumulative
training load and intensity [15,16,18–20]. However, the volume of LGE is typically small
and has also been found in similar locations in healthy elderly individuals and patients with
pulmonary hypertension [2]. This non-specific pattern has been shown to be benign and
is not associated with VA; thus, it may be considered an incidental finding [2,3,7,23,25,54].
However, further follow-up studies may be required to assess the long-term outcomes of
this pattern. Several studies have emphasized the clinical importance of major MF, such
as a nonischaemic pattern of LGE in athletes [31,55–57] (Figure 6). This pattern should



J. Clin. Med. 2024, 13, 4536 13 of 18

not be considered a benign finding; it has been associated with VA, progressive LV dys-
function, and SCD. Zorzi et al. [56] studied 27 young athletes with a mid-myocardial and
subepicardial stria of LGE, mostly involving the lateral LV wall, which was associated with
malignant arrhythmic events, regional LV dysfunction, and SCD. Schnell et al. [58] followed
seven asymptomatic young professional athletes (86% male) with extensive subepicardial
LGE. The majority experienced non-sustained VA and progressive LV dysfunction. In these
two studies, all young athletes except one were excluded or restricted from competitive
sports during the follow-up assessments.
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Figure 6. (A) Subepicardial scar in a 20-year-old female swimmer with VA (arrhythmogenic
cardiomyopathy—gene elusive). (B) Mid-myocardial and subepicardial LGE in a 31-year-old male
triathlete presenting with ventricular ectopy and chest pain (arrhythmogenic cardiomyopathy—
desmin gene variant). (C) Mid-myocardial and subepicardial LGE in a 51-year-old male runner with
previous reports of chest pain and raised inflammatory markers (prior myocarditis).

Ischaemic patterns in veteran athletes may result from subclinical myocardial infarc-
tion [59] which warrants appropriate investigation and follow-up assessments (Figure 7).
An increased risk of adverse outcomes has been seen in veteran marathon runners with
MF and higher coronary artery calcification scores [60]. In this study, higher coronary
event rates at the six-year follow-up were seen in those runners with MF and coronary
calcification (57% vs. 8%) than those without MF.
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4.5. Limitations

This review has several limitations. The studies reviewed are based on small numbers
of athletes, typically healthy males. Data on female endurance athletes remain limited. The
possibility of selection bias could not be excluded due to the different recruitment strategies
and inclusion/exclusion criteria employed in the studies; e.g., several studies recruited
athletes who were from local communities or who were self-referred. Not all athletes or
controls could be guaranteed to be without cardiovascular disease, as not all underwent
physical examinations or testing prior to the studies, e.g., the self-reporting of comorbidities
or prior risk factors. The definition and characterisation of exercise history, athletic groups,
and myocardial fibrosis may vary between studies and affect the interpretation of the data.
These categories can be poorly defined and not well quantified, particularly when using
self-reporting methods. This may make it somewhat difficult to accurately account for
exercise history (intensity, duration, and mode) or classify an athlete or a control in studies,
e.g., recreational vs. professional. Using common terminology to describe MF or LGE
patterns and locations may help to facilitate a more accurate and reproducible interpretation
of the studies involved, e.g., minor vs. major, patchy or spotty, and mid- or intramyocardial.
Lastly, a limited number of studies in this review utilised T1 mapping to assess myocardial
composition in athletes; thus, more extensive population data are needed.

5. Conclusions

This review highlights several factors that may predict the development of MF in
athletes, with speculative insights into the associated pathophysiological processes. In most
instances, an increase in cardiac remodelling and MF was associated with intense long-term
endurance exercise. The patterns and extent of MF appear to vary according to the athlete’s
age and sex. Although few studies on female athletes are available, women seem to be
less strongly affected by MF than male athletes, which may explain the lower incidence of
adverse cardiac events. MF should be assessed in clinical contexts, and the assessment of
at-risk athletes is essential due to the risk of VA and SCD. Minor MF seems to be of little
clinical significance; however, major MF should prompt further evaluation and follow-
up assessments regarding potential cardiac disease, particularly in young athletes. The
absence of extensive MF (>20% LGE) or exercise-induced arrhythmias may allow athletes to
participate in most competitive sports. Additional longitudinal studies using standardized
definitions for athletic groups, exercise history, and MF assessment are required in larger
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athletic cohorts to explore the underlying pathophysiological mechanisms of MF in athletes.
Further research addressing research gaps involving more diverse athletic populations
including female athletes and those from different ethnic backgrounds and long-term
cardiovascular outcomes of athletes with MF are required.
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