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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• We used random forests models to esti-
mate traffic counts on all roads across
Europe.

• 5-fold cross-validation accuracy was
good for most road types.

• Correlation between European and na-
tional traffic flow models was
satisfactory.

• Our AADTs improved previous Europe-
wide air pollution models.

• Incorporation of AADT resulted in finer-
resolution urban air pollution maps.
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A B S T R A C T

Road traffic is an important source of noise and air pollution. Modelling of air pollution and noise therefore
requires detailed information on annual average daily traffic (AADT) flows on all roads. Europe-wide estimates
on traffic intensity are however not publicly available. This has hampered previous Europe-wide air pollution
and noise modelling, used extensively in Europe-wide epidemiological studies of morbidity and mortality. We
aim to estimate Europe-wide AADT and quantify potential improvements of previous Europe-wide air pollution
models.
We built separate random forests (RF) models for different road types in OpenStreetMap (highway, primary,

secondary and tertiary, and residential roads). We collected observations on annual average daily traffic (AADT)
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from six European countries. We evaluated our AADT models using 5-fold cross-validation (CV) and by com-
parison of our Europe-wide traffic flow estimates with national traffic model estimates for Switzerland and the
Netherlands. We evaluated whether adding our estimated AADT as predictors for Europe-wide air pollution
models trained by more than 2000 routine monitoring sites improved the performance of the models based upon
major road length in different buffer sizes.
The 5-fold cross-validation result showed our estimates overall captured variations in AADT between road

types (R2 = 0.82). Our result showed variability in AADT within and between road types, documenting the
benefit of our model framework at a continental scale. Our AADT estimates modestly improved model perfor-
mance of previous Europe-wide air pollution models for NO2, PM10, PM2.5, and O3, especially for NO2 (3%
improvement of geographically-weighted regression model). Improvement of model performance was larger in
urban areas (5% and 8% increases in R2 for NO2 and O3). Importantly, more detailed intra-city near-road var-
iations were captured for traffic-related air pollution. The resulting AADT estimates of all roads across Europe
will be useful for further improving air pollution modelling and facilitating harmonized road traffic noise
modelling in Europe.

Software

The work was done in Ubuntu (18.04.6 LTS) and with R version
4.2.1.

1. Introduction

Road traffic intensity (AADT) is a key driver for levels of traffic-
related air pollution and road traffic noise. Some epidemiological
studies on the health effects of traffic-related pollution used AADT data
as input for estimating air pollution and road traffic noise (Eeftens et al.,
2012; Morley and Gulliver, 2016). However, most Europe-wide air
pollution models do not include AADT but instead use road length of
specific road types (de Hoogh et al., 2016; de Hoogh et al., 2018). For
estimating air pollution exposure with land-use regression (LUR), where
emission- and dispersion-related variables are used to explain the vari-
ations in measured air pollution concentrations, previous studies have
shown that AADT data were important for improving the accuracy of
exposure estimates (Beelen et al., 2013; Eeftens et al., 2012; Wang et al.,
2014). One of the studies, with 23 mostly large urban areas in Europe,
showed that including local AADT data improved the model R2 on
average by 10% for estimating nitrogen dioxide and nitrogen oxides
compared to using road type information to represent road traffic
(Beelen et al., 2013). For road traffic noise, more accurate AADT data
has been shown to improve the noise estimates (Morley and Gulliver,
2016).

Although AADT data can be publicly available for some selected
areas (e.g. local, regional, or national), or broadly commercially avail-
able, it is not publicly available nor affordable for researchers over
larger areas (e.g. continentally or globally) on all roads. In previous air
pollution modelling studies at larger scales, area-specific AADT data was
collected in selected cities by local co-workers (Beelen et al., 2013;
Eeftens et al., 2012; Wang et al., 2014). Studies instead used road length
by type as a proxy for AADT (Chen et al., 2020; de Hoogh et al., 2018;
Shen et al., 2022). Only a small number of studies estimated AADT as an
input for assessing air quality and road traffic noise at a city- or
nation-scale (Alvarado-Molina et al., 2023; Morley and Gulliver, 2016).

For epidemiological studies on health effects of noise and/or air
pollution, exposure estimates need to consider road-related effects of
AADT on all roads. This presents an additional challenge, as AADT is
typically only observed on major roads. On minor roads, deterministic
traffic models can estimate AADT to derive a complete coverage of all
roads based on route choices (Ermagun and Levinson, 2019; Sheffi and
Powell, 1981). On the other hand, when the AADT observations are
available across major and minor roads, statistical models can also es-
timate AADT on all roads. With statistical regression models, AADT has
been estimated by capturing variations in observed AADTwith predictor
variables that explain traffic flow patterns (Das and Tsapakis, 2020; Fu
et al., 2017; Pun et al., 2019; Selby and Kockelman, 2013; Sfyridis and
Agnolucci, 2020; Yi et al., 2021; Zhao and Park, 2004). Variables

included in these models were road network characteristics (e.g., speed
limit, number of lanes, road connectivity, and transportation pattern),
distance to neighboring roads, and socio-demographic factors (e.g.,
population, number of vehicles in use, residential area density, work-
place area density, and urbanization degree). With these attributes as
spatial predictor variables, statistical regression methods were used to
estimate AADT at city up to national scale in previous studies. Pun et al.
(2019) found random forests (RF) outperformed artificial neural
network (ANN), support vector regression (SVR), and linear regression
based on root-mean-squared error (RMSE) when estimating AADT in
Hong Kong. Das and Tsapakis (2020) reported similar outperformance
of RF compared with SVR and generalized linear regression in Vermont
in the USA. Sfyridis et al. (2020) also found better performance of RF
than linear regression in England and Wales. In the UK, the study by
Morley and Gulliver (2016) found a coefficient of determination (R2) of
0.84 validated by external data in Norwich using an UK-wide statistical
method that included road importance determined by a routing algo-
rithm. These studies have shown the capability of statistical methods for
predicting AADT on all roads at local to national scales.

However, estimating AADT across Europe comes with the additional
challenge that Europe-wide AADT patterns are highly variable and
complex. Long-distance, cross-country traveling patterns are mixed with
medium and short-distance local commuting patterns which vary by
country.

To fill these gaps, we developed a Europe-wide modelling framework
using RF to capture variations in AADT and to estimate AADT on all
roads across Europe. Our main goal is to capture the variations in the
AADT across different road types using RF. Our second goal involves
comparison between our Europe-wide AADT estimates and national
AADT estimates available in limited countries. Our third goal is to
evaluate whether our Europe-wide AADT estimates help improve pre-
vious Europe-wide air pollution models which used (major) road length
summed in buffers to characterize traffic.

2. Methods

To estimate Europe-wide AADT on all roads, we developed RF AADT
models using observed AADT counts. We collected observations of
AADT counts from six European countries to train the RF AADT models.
The models were trained separately for different road types, because one
RF AADT model trained by all observations was dominated by the
observed high-AADT counts on motorways in initial modelling and
performed poorly on other roads. Thus, the RF AADT models were
separated based on four road types: highway (motorway and trunk
roads), primary roads, local roads (secondary and tertiary roads), and
residential roads, defined in OpenStreetMap (OSM). We also compared
the overall performance of our RF models with a fixed-value approach,
where the average observed values were assigned for every OSM road
type.

For the road-type specific model, we included several road-,
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population- and urbanization-related predictor variables with various
circular buffer sizes (ranging from 50 m to 200 km). With the data and
the models, we estimated AADT on 5 m × 5 m grids across Europe,
where the road line segments from OSM overlapped with the 5 m × 5 m
grid cells. We used the grid approach because it balances computational
resources and provides an acceptable approximation of the road infor-
mation. The resulting AADT map represented the annual average daily
traffic (AADT) counts from all lanes and directions on each road.

2.1. Road traffic intensity (AADT) observations

The observed AADT counts were collected from both automatic
continuous traffic counters and periodic manual counting. Both ap-
proaches captured the number of all types of vehicles passing in both
directions on a specific (multi-lane) road segment (i.e., bidirectional
AADT counts). The automatic traffic counters collect continuous traffic
counts all year round, whereas manual counting collects periodic traffic
counts during a day only available in the UK. The periodic manual
counts were converted to AADT by the British Department for Transport
using expansion factors derived from the observations of the automatic
counters separated into road types (Department for Transport, 2019).
The observations of the AADT counts were collected from national and
local databases in Austria, Switzerland, Germany, France, Italy, and the
United Kingdom (UK) where AADT observations were available publicly
(Table 1). Data from the UK comprised 70% of the collected traffic count
data. Counts on all types of roads were available in all countries (with
3651, 2861, 2356, and 1830 observations on highway, primary, local,
and residential roads respectively), although for residential roads almost

exclusively from the UK. We also removed observations with AADT
higher than 5000 vehicles per day on residential roads to avoid the
average estimates from being three times higher than the average ob-
servations on residential roads, based on our preliminary analysis
described in S3.2 in the supplementary material.

We documented the number of observations by road types and
countries in Table 3 and the observing locations in Fig. A1. The observed
AADT counts represent the number of all vehicles passing a counting
location from both directions per day. We did not attempt to model
AADT counts separately for different vehicle types (e.g. heavy-duty
vehicles), because the data were limited to fewer countries than the
AADT counts of all vehicles.

It was impossible to collect the observations from the same year
across different European countries. Therefore, we assumed that the
AADT counts did not differ greatly at the locations where observations
were collected between the years 2010 and 2015. Our assumption was
supported by a high correlation and close-to-one slope between obser-
vations collected in 2013 and 2019 in Germany and the UK (as shown in
scatterplots of Fig. A2 with Spearman’s correlations of 0.99, and slopes
of 1.06).

2.2. Predictor variables for AADT models

We included several predictor variables related to road, urbaniza-
tion, and topology shown in Table 2 and Table A1 because population
density and urbanization are shown to be related to mobility patterns
and the number of on-road vehicles on the same road type in the road
network (Frick and Grimm, 2014; Holz-Rau et al., 2014; Vienneau et al.,
2009). Data sources of variables are shown in Table 2, and detailed in-
formation can be found in Table A1.

For the urbanization variables, we collected data on population,
numbers of passenger cars and commercial vehicles, residential areas,
impervious surfaces, and area types (rural and urban) shown in Table 2.
We calculated the sum of population within various buffer sizes ranging
from 1 km to 200 km at a 1 km spatial resolution to capture mobility
patterns ranging from local daily transport patterns to medium-distance
and long-distance journeys across cities or countries in Europe. The
distance of 200 km represents the average distance of one-way long-
distance journeys across cities in Europe (Frick and Grimm, 2014). The
small buffer sizes represent the local daily traffic mobility patterns (e.g.,
20-km equal to 30-min travel time). To obtain the numbers of passenger
cars and commercial vehicles in the buffers, we combined the popula-
tion density with the information on the density of passenger cars and
commercial vehicles by country (ACEA, 2021). A passenger car is
defined as a “vehicle designed and constructed for the carriage of passengers
and comprising no more than eight seats in addition to the driver seat, and
having a maximum mass not exceeding 3.5 tons.” A commercial car is
defined as a “motor vehicle with at least four wheels used for the carriage of
goods.”

We also included road-related variables such as road length, speed
limit, and number of lanes from OSM as shown in Table 2. We calculated
the sum of the road length of the OSM road segments. For the other
variables, the OSM dataset also has information on the number of lanes
and speed limit on each road segment. We replaced the missing values
with nation-wide information, as described in Fig. 1 and Supplementary
text (S3.1). In short, we created 20 m and 10 m buffers around the road
segments of highway and non-highway roads to merge information from
bidirectional roads. On the bidirectional roads, we averaged the traffic
speed limit and number of lanes over the 5-m grids for locations where
there were road segments. The same set of 5-m grids was then used to
estimate AADT.

For the topology-related variables, we collected information on
altitude from the Shuttle Radar Topography Mission (SRTM). The alti-
tude data was then used to calculate the terrain slope data, which rep-
resents the local gradient of the 4-connected neighboring grids.

Because some variables had a different spatial resolution, we

Table 1
Description of traffic intensity observations for each country.

Country Link to raw data Observed
year

Collecting
approach

Number of
observing
locations

Austria City of Vienna (City of
Vienna, 2020)

2010 Automatic
traffic
counters

176

Switzerland Federal Roads Office
(Bundesamt für
Strassen) (ASTRA,
2022)

2013 Automatic
traffic
counters

343

Germany Federal Highway
Research Institute
(Bundesanstalt für
straβenwesen) (Bast,
2022)

2013 Automatic
traffic
counters

1393

France Department of Roads
of Haute-Garonne,
Nouvelle-Aquitaine,
and Loiret (
Department of Roads
of Haute-Garonne,
2022; Department of
Roads of; Department
of Roads of
Nouvelle-Aquitaine,
2020; Department of
Roads of Loiret, 2022)

2013 Automatic
traffic
counters

485

Italy Ministero delle
infrastructure e dei
trasporti (Ministry of
Infrastructure and
Transport, 2022)

2015 Automatic
traffic
counters

757

UK Department for
Transport (2022)

2013 Automatic
traffic
counters
and manual
countinga

8084

a In the UK, the manual counts were done between March and October by
trained enumerators over 12 h. More detailed information can be found in their
methodology document (Department for Transport, 2019).
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resampled all raster maps of the predictor variables to the 5-m grids
using the nearest neighbour approach. The 5-m resampled raster maps
were used to extract the values of the predictor variables at the observed
AADT locations.

2.3. AADT models: random forests (RF)

To capture potential non-linear relationships between predictor
variables and AADT counts and to allow interaction between predictor
variables, we used RF regression models (Breiman, 2001). RF is a
tree-based ensemble algorithm. The algorithm samples a subset of pre-
dictor variables randomly with replacement in each split of an individ-
ual regression tree. This sampling approach allows highly correlated
variables to be included in the RF. Each regression tree is built to
minimize a loss function which was mean squared error (MSE) in this
study. The sum of the reduction in the impurity at each split is calculated
for each predictor variable to obtain the variable importance. The im-
purity for each node (i.e., the split point) is determined by the
within-node sample variance in a regression RFmodel (Ishwaran, 2015).

We developed separate RF AADT models for each road type.
Although developing one RF AADT model for all road types would
benefit from the shared information of observations across road types,
the model was dominated by the observed high AADT counts on mo-
torways, and thus the significant difference in AADT patterns on other
roads cannot be represented. The difference resulted in the poorer pre-
dictive power of one RF AADT model than of separate RF AADT models,
based on our preliminary test (in Supplementary text S3.2). Moreover,
previous studies have shown different mobility patterns across road
types (Pulugurtha and Kusam, 2012). Therefore, we decided to develop
separate road-type specific RF AADT models with the same set of pre-
dictor variables but trained by the observations from each road type
separately (1) highway: motorway and trunk roads, 2) primary roads, 3)
local: secondary and tertiary roads, and 4) residential roads).

We implemented RF in R using the library ranger (Wright and Ziegler,
2017) version 0.14.1. The variable importance was represented by the
sum of the decrease in the impurity from each split. We used the variable
importance to interpret how informative and important a variable was
for explaining the variations in AADT. We set the number of trees (ntree)
as 500 and the number of variables split at each node (mtry) as 12, which
is the default setting: the square root of the number of variables.

With the trained road-type specific RF AADT models and the
resampled 5-m predictor variables, we estimated our final Europe-wide
AADT on 5 m× 5 m grids where the OSM road line segments overlapped
with the 5 m × 5 m grids.

2.4. Evaluate model performance: five-fold cross-validation (5-fold CV)

To evaluate the performance of the AADT models, we performed
five-fold CV, stratified by country and area type (rural and urban areas).
The stratification ensured that the number of observations from each
country and area type remained similar in different folds.

In the 5-fold CV analysis, we used four performancemetrics: adjusted
coefficient of determination (R2), mean-square-error-based R2 (MSE-
R2), root mean square error (RMSE), and relative RMSE (rRMSE) defined
as Equations 1, 2 & 3, respectively. The MSE-R2 reflects the prediction
bias relative to the variance of the observations along the 1:1 line. In
contrast, the RMSE reflects the absolute average difference between
estimates and observations, and the rRMSE normalizes RMSE by the
average of the observations.

MSE − R2=1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − y)2

Eq. 1

Table 2
Overview of predictor variables used in Random Forests. Table A1 gives a
detailed description.

Variable type Predictor
variables

Data source Variable code

Urbanization
variables

The sum of
population
within various
buffer sizes
(1–200 km)

GEOSTAT (
EUROSTAT,
2015)

pop2011_[buffer in
meter]a

The sum of the
number of
passenger carb

within various
buffer sizes
(1–200 km)

ACEA (ACEA,
2021)

pcar2011_[buffer in
meter]a

The sum of the
number of
commercial
vehiclesc within
various buffer
sizes (1–200 km)

ACEA (ACEA,
2021)

cveh2011_[buffer in
meter]a

The sum of the
number of 100
m grid cells of
residential areas
within various
buffer sizes
(0.1–10 km)

CORINE (CLC,
2018)

res_2012_[buffer in
meter]a

The sum of the
percentage of
sealed
impervious
surfaces within
various buffer
sizes (0.1–10
km)

Copernicus (
Copernicus, 2021)

imd_2012_[buffer in
meter]a

Area type (Rural
or urban)

See Fig. 1 part b. area_type

Road-related
variables

The sum of road
length within
various buffer
sizes (50–500 m)
separated by
road types

OSM (
OpenStreetMap
contributors,
2017)

highway_[buffer in
meter]a;
primary_[buffer in
meter]a;
loca_[buffer in meter]a;
residential_[buffer in
meter]a

The speed limit
on a road
segment
separated by
road types

OSM (see Fig. 1) (
OpenStreetMap
contributors,
2017)

maxv_20_highwayd;
maxv_10_primary;
maxv_10_locale;
maxv_10_residential

The number of
lanes on a road
segment
separated by
road types

OSM (see Fig. 1) (
OpenStreetMap
contributors,
2017)

lane_20_highwayd;
lane_10_primary;
lane_10_locale;
lane_10_residential

Topology Altitude SRTM DTM (
Jarvis et al., 2008)

Elevation

Slope SRTM DTM (
Jarvis et al., 2008)

Slope

a [buffer in meter] is set differently for different variables (buffers of pop2011,
pcar2011, and cveh2011: 1, 5, 8, 10, 12, 15, 20, 25, 30, 45, 50, 75, 100, 150,
200 km; buffers of res_2012 and mid_2012: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1,
1.2, 1.5, 1.8, 2, 2.5, 3.5, 4, 5, 6, 7, 8, 10 km; buffers of the sum of road length: 50,
100, 200, 300, 400, 500 m).
b Passenger car is defined as “vehicles designed and constructed for the car-

riage of passengers and comprising no more than eight seats in addition to the
driver seat and having a maximum mass not exceeding 3.5 tons.”
c Commercial car is defined as “motor vehicles with at least four wheels used

for the carriage of goods.”
d Highway consists of OSM road types of motorway, trunk, motorway link,

and trunk link.
e Local road consists of OSM road types of secondary, secondary link, tertiary,

and tertiary link.

Y. Shen et al.
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)

2

√
√
√
√ Eq. 2

rRMSE=
RMSE

y
Eq. 3

where yi is the observed AADT counts at location i, ŷi is the estimated

AADT counts at location i, and y is the average observations from all N
observing locations.

2.5. Comparison with national AADT estimates on road segments and
within circular buffers

To support future applications, we investigated the differences be-
tween our Europe-wide estimates of AADT counts and existing

Table 3
Descriptive statistics of annual average daily traffic (AADT) observations in vehicles per day separated by road types (column) and countries (row). Mean: average of
observations; sd: standard deviation of observations; N: number of observations. Road types are defined in OpenStreetMap (OSM): highway (motorway and trunk
roads), primary, local (secondary and tertiary roads), and residential roads.

highway primary local Residential

mean sd N mean sd N mean sd N mean sd N

Austria 28,601 12,090 5 24,414 929 78 13,281 7207 90 3050 720 3
Switzerland 44,307 28,124 218 8193 5429 90 8865 6767 36 4196 130 2
Germany 47,839 33,407 769 8414 6266 582 7759 4719 37 NA NA 0
France 38,338 28,757 85 8453 8061 244 4648 3473 155 NA NA 0
Italy 21,800 22,384 220 7913 7041 424 2931 3116 112 NA NA 0
UK 49,112 36,606 2354 16,839 11,060 1443 5679 4839 1926 1383 910 1825

Overall 46,632 35,196 3651 13,022 10,361 2861 5852 5118 2356 1392 923 1153

Fig. 1. Workflow of creating road-related variables. Rectangles with rounded corners represent processes, rectangles with sharp corners represent input or output,
and diamonds represent decisions. Arrows connect orders and relationships of components.

Y. Shen et al.
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predictions from national models. We compared our final Europe-wide
AADT estimates with national model estimates on road segments
(hereafter called the ‘road-segment’ approach), and we also compared
the sum of AADT values within different buffer sizes (hereafter called
the ‘buffer’ approach). These two approaches are related to the appli-
cations for estimating road traffic noise (Khan et al., 2021; Morley et al.,
2015; Morley and Gulliver, 2016) and for estimating air pollution con-
centrations using empirical methods (Bechle et al., 2015; Cattani et al.,
2017; de Hoogh et al., 2016; Gonzales et al., 2012; Kerckhoffs et al.,
2019; Lu et al., 2020; Wolf et al., 2017).

From the national models, we obtained national AADT estimates for
the Netherlands and Switzerland. The Swiss national model estimates
were obtained from the National Passenger Traffic Model (Nationales
Personenverkehrsmodell, NPVM) which is a population-based traffic
model built for the year 2017 (das Geoportal des Bundes, 2022). In the
Swiss model, the Tomtom road network was used in a simplified version
where all road functionalities remained. Then the simplified road
network was used to estimate AADT by modelling choices of routes and
transportation choices (ARE, 2023). The Dutch data was obtained from
the National Road Database (Nationaal WegenBestand, NWB) (NDW,
2021) for the year 2008. In the Dutch population-based traffic model,
almost all roads were included in the database. There are intrinsic dif-
ferences between the datasets. The national traffic models estimated
traffic intensity for each road segment of the national road networks,
whereas our Europe-wide models estimated traffic intensity on each 5-m
grid cell containing a road segment. In addition, the road network used
in the national models was different from the OSM road network.

For the ‘road-segment’ approach, to minimize the intrinsic differ-
ences, we discretize the road segments with national AADT estimates
using the same approach as described in Fig. 1. This produced AADT
values as the bidirectional sum of traffic counts comparable to our
Europe-wide AADT estimates at 5-m grids. Then we extracted the 5 m-
gridded AADT estimates of both the Europe-wide and national data on a
randomly selected subset of OSM road segments. To evaluate the vari-
abilities of 5 m-gridded AADT estimates on each road segment, we
further calculated the coefficients of variation (standard deviation (σ)

mean (μ) ) of the 5-
m gridded AADT estimates overlapped with each of the centerlines.

For the ‘buffer’ approach, for all pixels on the land area of Europe
within various circular buffer sizes (50 m, 500 m, 1 km, 2 km, 10 km),
we summed up the 5-m gridded AADT values within the buffers. Then
we extracted the sum of AADT values of the Europe-wide and national
data at randomly selected residential addresses of the European popu-
lation (Shen et al., 2022).

2.6. Improve previous Europe-wide air pollution models using the
modelled AADT estimates

In previously published air pollution models (Shen et al., 2022), we
used several predictor variables in the regression models including
road-related variables such as the sum of road length in specific buffer
sizes but without traffic intensities. Here, we included the newly
developed Europe-wide AADT estimates as additional potential predic-
tor variables to investigate whether the air pollution models can be
further enhanced. The models were developed for four pollutants (NO2:
nitrogen dioxide, O3: ozone, PM10: particulate matter <10 μm, PM2.5:
particulate matter <2.5 μm) in the year 2019.

The Europe-wide air pollution modelling framework, as reported
previously, was not changed (Shen et al., 2022). Two sets of potential
predictor variables were offered: one excluding AADT variables (i.e., the
original setting in the previous study), and the other including them. The
original set of predictor variables included several land-use variables,
population data, road data that served as a traffic indicator, meteoro-
logical and satellite-retrieved data, and chemical transport model esti-
mates. The included AADT variables were our on-road AADT estimates
and the sum of the on-road AADT estimates within various circular

buffer sizes (50 m, 100 m, 200 m, 300 m, 400 m, 500 m, 700 m, 1 km, 2
km, 5 km). A detailed description of predictor variables can be found in
Table A7 and Shen et al. (2022).

For air pollution modelling, our study used two linear regression
models—Supervised Linear Regression (SLR) and Geographically
Weighted Regression (GWR)—alongside a nonlinear machine learning
method: Random Forest (RF).

Supervised linear regression (SLR)
Potential variables were selected step-wise; in each step, the variable

is selected if it contributes most to explaining the variance in the
response variable (i.e., air pollution concentrations) and only if its di-
rection of effect is realistic (e.g., positive for road variables and negative
for urban green). Variables with high p-values (>0.1) and high Variance
Inflation Factors (VIF >3) were excluded to ensure model interpret-
ability and to mitigate multicollinearity.

Geographically weighted regression (GWR)
The variables selected by SLR were used, and spatially varying

regression coefficients were estimated using an exponentially weighted
function decaying by distance. This method addresses spatial hetero-
geneity in the data.

Random forest (RF)
All potential variables were included. RF, a tree-based ensemble

method, handles multicollinearity by randomly selecting a subset of
variables at each node split. The hyperparameters—mtry (number of
variables split at each node) and ntree (number of trees)—were opti-
mized using out-of-bag (OOB) data, which is unused data since each tree
is built using bootstrapped training data and thus not all training data is
used in each regression tree.

Details on these models are available in Shen et al. (2022).
Some of the predictors used in AADT modelling were also offered as

predictors for air pollution, raising issues of co-linearity. In the SLR and
thus GWR procedures (SLR used to select the potential predictor vari-
ables for GWR), we checked for variance inflation (VIF) and excluded
variables with high VIF (>3). This approach effectively avoids collin-
earity in the models. The RF trains each tree by randomly selecting
subsets of predictor variables, thereby reducing the impact of multi-
collinearity.

To quantify the improvement of model accuracy, we conducted 5-
fold CV, stratifying observations by their station type (background, in-
dustrial and traffic) and climate zone (Alpine, Atlantic, Continental,
Northern and Southern), following the method described previously
(Shen et al., 2022). The evaluation metrics included MSE-R2 (Eq. (1))
and RMSE (Eq. (2)). We also inspected and compared the spatial maps of
the air pollution estimates from models with and without the AADT
estimates.

3. Results

We collected observations of AADT from Austria, Switzerland, Ger-
many, France, Italy, and the UK. Most observations were limited to
higher classifications of roads such as highway, primary, and local roads
(Table 3). In the UK, observations were distributed quite evenly across
different road types. In contrast, other countries had limited observa-
tions unevenly distributed on highway (35.5%), primary (49.6%), local
(18.3%), and residential (0.27%) roads compared to the UK. The vari-
ations of the observed AADT were distinct across different road types
and countries (shown in Table 3 and Fig. A3), supporting the need for
assessing AADT beyond road type.

3.1. Model structure

In our RF AADT models using all observations separated by road
types, the most important (top 10) variables varied with road types, as
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shown in Fig. 2. For the highway model, the information on highway (e.
g., the number of lanes, speed limit and the sum of road length within 50
m–500 m) explained most variation in the AADT. Population in large
buffers (>10 km) added further prediction. For the primary road model,
the sum of primary road length within 50 m–100 m was the most
informative variable, but population-related variables within 4 km–8
km were also important in explaining the variation in AADT. For the
local road model, the population-related variables 1.8 km–5 km were
the most informative. For the residential road model, the information on
residential roads and local roads, population-related variables at a local
scale (1 km) as well as at a large scale (200 km), and elevation were
important in explaining the variation in AADT on the residential roads.

3.2. Model performance

The road-type specific RF AADT models demonstrated strong per-
formance, achieving an overall MSE-R2 of 0.81, as shown in Table 4.
This performance significantly outperformed the fixed-value approach,
which had anMSE-R2 of 0.44. For highway and primary roads, the 5-fold
CV model performances were satisfactory, with MSE-R2 values ranging
from 0.60 to 0.69. The performance on local roads was moderate, with a
5-fold CV MSE-R2 of 0.44. However, the residential roads model strug-
gled to capture AADT variability, as indicated by the close-to-zero MSE-
R2 and R2 values. The rRMSE values followed similar trends, with higher
rRMSE values for residential roads and lower values for other road types,
as detailed in Table 4. Excluding the five observations from Austria and
Switzerland in the residential model yielded similar model performance,
e.g. with MSE-R2 of − 0.01 and R2 of 0.01.

The scatterplot (in Fig. 3 and Fig. A4) shows that the agreement was
high between the observed and hold-out predicted values (with close-to-
1 regression slope) on highway, primary, and local roads. On residential
roads, however, the agreement was low and at most observed points
(66% of the residential observations) the RF model overestimated the
AADT values.

Boxplots in Fig. 4 illustrate that our RF AADT models predict sub-
stantial variability of AADT within road type. The averages and vari-
ability of AADT counts were similar between observed and estimated
values for highway, primary, and local roads. However, for residential
roads, the estimated AADT values were, on average, higher than the

observed values in the UK at 1825 observation locations, and lower than
the observed values on five residential roads in Austria and Switzerland.
Consistent with the poor predictive model accuracy, the residential es-
timates exhibited a narrower distribution compared to the observed
values. Overall, for most road types, the distributions of the estimated
values closely matched those of the observed values.

Moreover, we examined variations in the top 15 most informative
variables from the residential model. We found high variations in the
values of these informative variables within the corresponding models
(Fig. A5).

3.3. AADT estimates from RF

To illustrate the intra-and inter-city spatial variations in our 5-m
gridded AADT estimates, we show spatial maps of our AADT estimates
in Fig. 5 and the extracted values on a subset of road segments in box-
plots (Fig. A6) in some selected European cities (Amsterdam, Athens,
Barcelona, Basel, Lodz, Munich, and Rome). These cities were selected
for visualization because of the potential future use of our AADT esti-
mates for air pollution modelling using mobile data collected in these
cities. Motorways in Barcelona and Athens, for example, had higher
AADT estimates than other cities shown in the figures, whereas Basel
and Lodz had lower AADT estimates in general. Within the cities, the
contrasts in AADT were also reflected across road types.

Fig. 2. Top 10 variables with the highest variable importance measured by impurity in four European road-type specific random forest models of road traffic flow: 1)
highway (motorway and trunk roads), 2) primary, 3) local (secondary and tertiary roads), and 4) residential roads. An overview of the variables’ description can be
found in Table 2, and a detailed explanation can be found in Table A1.

Table 4
Model performance of traffic flow models from 5-fold cross-validation separated
by road type (highway: motorway and trunk roads, primary, local: secondary
and tertiary, and residential roads) and on all road types (“overall”). N: number
of observation points.

RMSE rRMSE MSE-R2 R2 N

highway 20,072 0.43 0.67 0.69 3651
primary 6532 0.50 0.60 0.60 2861
local 3845 0.66 0.44 0.44 2356
residential 907 0.92 − 0.01 0.02 1830

Overall 12,340 0.59 0.81 0.82 10,698

Y. Shen et al.



Atmospheric Environment 335 (2024) 120719

8

3.4. Model comparison: EU AADT model estimates vs national traffic
model estimates

3.4.1. Comparison of centerline road segments
Overall, in both Switzerland and the Netherlands, the agreement

between national model and Europe-wide AADT model estimates was
high (correlation = 0.81–0.84, shown in Fig. A7), higher than a fixed-
value approach of using the average by road types (correlation =

0.58–0.59). The agreement was different between road types (Fig. 6).
For the Netherlands, on highway, primary, and local roads, the

overall correlation between the Dutch national model and European
model estimates was moderate to high (correlation = 0.60–0.73) with
proportional bias, based on the scatterplot and Bland Altman plots
(Fig. 6 & Fig. A8). The proportional bias was only limited to some road
segments (15%–20%) represented by the points falling out of the 95%
limits of agreement lines (i.e., the dotted black lines in Fig. A8). On
residential roads, however, the agreement between the two datasets was
low (correlation = 0.16) with the European traffic model giving overall
higher traffic flow estimates than the Dutch national model (on 85% of
the selected residential roads) (Fig. A8).

Fig. 3. Scatterplots between observed and estimated annual average daily traffic (AADT) counts in thousands (unit: thousand vehicles/day) on 1) highway, 2)
primary, 3) local (secondary, tertiary), and 4) residential roads. The best-fit linear line is in blue with fitted linear regression and coefficient of determination (R2)
indicated in the upper left corner, and the 1:1 line is in black. The number of points (N) is also shown in upper left corner of each panel.

Fig. 4. Boxplots of observed (obs) and estimated (RF) AADT values in thousands (unit: thousand vehicles/day) across different road types (highway: motorway and
trunk roads; primary roads; local: secondary and tertiary roads; residential roads as defined in OpenStreetMap) and countries (AT: Austria, CH: Switzerland, DE:
Germany, FR: France, IT: Italy, UK: United Kingdom).
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For Switzerland, on highway, primary, and local roads, the overall
agreement of the traffic flow estimates from the national Swiss model
and European model was moderate to high, as indicated by the corre-
lation (0.60–0.77) (Fig. 6). On these three types of roads, the estimates
from the two had no obvious systematic bias, based on the Bland Altman
plot (Fig. A8). On the residential roads, there was little agreement be-
tween the two models, (correlation = 0.03). On most of the selected
residential roads (80% of the selected residential roads), the European
model gave higher traffic flow estimates than the Swiss national model
(Fig. A9).

In both the Netherlands and Switzerland, the variabilities of the 5-m
gridded Europe-wide AADT estimates were overall low (with co-
efficients of variation lower than 0.15 shown in Fig. A10). Only very few
road segments near the coastlines in the Netherlands had high co-
efficients of variation, caused by the missing pixel values near the
coastlines.

3.4.2. Comparison of sum within circular buffers at random points
For the Netherlands, the correlation was high (0.85–0.99) between

Europe-wide traffic flow estimates and national model estimates at 1795
random points, although overall the sum of national Dutch traffic flow
estimates was three times higher than the sum of Europe-wide estimates
with different circular buffer sizes (Fig. A11). The difference was
propagated from the higher Dutch traffic flow estimates on some road
segments observed in section 3.4.1. Such systematic differences between
the two datasets were also observed in the Bland Altman plot (Fig. A12),
which shows proportional bias between the two.

For Switzerland, the correlation was similarly high (0.91–0.98) be-
tween the Europe-wide and national model estimates at 999 random
points. For all buffer sizes, locations with a high AADT sum consistently
had higher values from the Swiss national model than from the Euro-
pean model, but at locations with a low AADT sum this was turned
around (AADT of Swiss model < AADT of European model). Propor-
tional bias was also found in the Bland Altman plot (Fig. A12) for points
with a higher sum of traffic intensity within all buffers.

Fig. 5. Spatial maps of annual average daily traffic (AADT) counts in thousands (unit: thousand vehicles/day) estimated by road-type specific RF AADT models in a)
Amsterdam, b) Athens, c) Barcelona, d) Basel, e) Lodz, f) Munich, g) Paris, and h) Rome. Coordinates in meter are shown in the x-axis and y-axis in projection
EPSG: 3035.
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3.5. Improvement of previous air pollution modelling by adding the AADT
estimates

We offered the Europe-wide AADT estimates as potential predictor
variables in our previous air pollution models for the year 2019. In each
pollutant model (NO2, O3, PM10, and PM2.5), AADT-related variables
were selected and used as predictor variables. On-road AADT estimates
were selected by SLR for NO2 and PM10. For O3 and PM2.5, the sum of
AADT estimates within 50 m were selected. The inclusion of traffic flow
variables replaced some road variables (such as sum of length of major
roads within 100 m for NO2 and PM2.5), as shown in Fig. 7. With traffic
flow variables provided, for NO2, we observed that more land-use var-
iables with both small and large buffer sizes were selected, while the out-
dated but high-resolution (10 × 10km) NO2 MACC chemical transport
estimates were replaced by up-to-date but coarser-resolution (13 ×

24km) satellite retrieved OMI (Ozone Monitoring Instrument) data.
Similarly, for PM10, with traffic flow variables included, more land-use
related variables were further selected while satellite retrieved data
from Aerosol Optical Depth (AOD) MODIS Blue band (0.47 μm) were
replaced by MODIS green band (0.55 μm).

Shown in Fig. A13, the top 10 informative variables in the RF air
pollution models remained similar with the inclusion of traffic flow data
for all pollutants, except for NO₂. For NO₂, the informative variables in
the RF models were dominated by traffic flow data (Fig. A13). Inter-
estingly, the models with AADT offered still included a buffer with major
road length in addition to the AADT at the nearest road.

When the AADT variables were included, the 5-fold CV results
showed improvement in model performance evaluated by MSE-R2 and
RMSE. The MSE-R2 increased by 0–4% (3% for NO2, 4% for O3, 3% for
PM10, and 0% for PM2.5), and the RMSE decreased by 0.02–0.42 μg/m3
(Fig. A14). The improvement was larger for more traffic-related
pollutant NO2 than for more regionally-varying pollutant PM2.5 for
which no gain in performance was found. The increases in MSE-R2 were
larger (NO2: 5% increase, O3: 8%, PM10: 4%, PM2.5: 2%) in urban areas
with population density larger than 5000 km− 2 (Fig. 8) than in rural
areas (where increases ranged from 0 to 3%, as shown Fig. A15).

The spatial maps of NO2, a road traffic-related pollutant, were
broadly similar for models with and without AADTs included, as shown
in Fig. 9. However, AADT maps for most cities showed more granularity
than maps with road length (i.e., without AADTs). Consistently, distinct
differences between the two models were found in near-road concen-
trations. More intra-city variations were captured when our AADT es-
timates were used in the model (Fig. 9). The contrasts in the estimated
concentration (presented by 95th minus 5th percentile) in most cities
increased when AADT was included (with increases of 0.18–1.55 μg/
m3), shown in Fig. A16.

4. Discussion

Our traffic flowmodels showed overall high performance based on 5-
fold CV (R2 = 0.82). The resulting traffic flow estimates for all European
roads further enhanced our previous air pollution models by capturing
more detailed near-road variations and spatial contrasts, and modest
improvements in model performance for NO2, PM10 and O3 especially in
urban areas (up to 8% increase in R2).

4.1. Europe-wide traffic models

4.1.1. Model structure
The RF models selected different important predictor variables

consistent with the type of road. Population with large buffers (>5 km)
were informative in all models. This information helped distinguish the
differences between rural and urban areas with distinct traffic patterns
(Morley and Gulliver, 2016; Sfyridis and Agnolucci, 2020).

4.1.2. Model performance and variability in AADT estimates
Based on the 5-fold CV result, our RF models performed well overall,

and we observed good to moderate performance on highway, primary,
and local roads. On residential roads, the performance was no better
than the overall average AADT on residential roads. Similarly, the
comparison between national AADT model estimates and our Europe-
wide AADT estimates yielded an acceptable agreement on highway,

Fig. 6. Scatterplots between national traffic flow model estimates and Europe-wide random forest model estimates on annual average daily traffic (AADT) counts in
thousands (unit: thousand vehicles/day) on a randomly selected subset of road segments separated by road types (highway: motorway and trunk roads, primary,
local: secondary and tertiary roads, residential) in A) The Netherlands and B) Switzerland. Values were extracted on randomly selected road segments (with AADT
counts’ unit as thousand vehicles per day). Black lines are 1:1 line, and blue lines are regression lines. Correlation (cor) and number of points (N) are presented in the
upper left corner of each scatterplot.

Y. Shen et al.



Atmospheric Environment 335 (2024) 120719

11

primary, and local roads but a low agreement on residential roads. The
poor performance of our residential model may be partly due to higher
measurement errors from manual counting on residential roads
compared to the other road types. Another explanation is that we did not
include routing information or road connectivity as predictor variables,
which are influential in distinguishing AADT variations on low-traffic
local and residential roads (Alvarado-Molina et al., 2023; Morley and
Gulliver, 2016). The informative variables in the residentials were
mainly population, topology, and sum of residential road lengths.
Although these variables showed great variations (Fig. A5), such vari-
ations can only reflect on the overall average AADT on residential roads

rather than the local variations in AADT.
Overall, the model predicted substantial variability of AADT within

road-type sites, documenting the benefit of estimating traffic intensity
beyond using road type to represent motorized traffic in air pollution
and noise modelling. While we developed models per road type, all
roads will be combined for the future application. Therefore, the low
model accuracy for residential roads is not a major problem, as road
traffic intensity is low on residential roads relative to other road types.
Assigning an average low road traffic intensity to all residential roads is
a reasonable approximation for future application of air pollution and
road traffic noise modelling.

Fig. 7. Variables selected in air pollution SLR models with and without traffic flow variables offered (i.e., aadt_onRoad and aadt_[buffer in m]). A detailed
explanation of predictor variables can be found in Table A7.
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4.1.3. Comparison between European and national AADT estimates
When we compared our Europe-wide AADT estimates with national

AADT estimates on a subset of road segments in Switzerland and the
Netherlands, the overall correlation was high, better than the fixed-
value approach. We found moderate agreement on highway, primary
and local roads, but the agreement was low on residential roads. The
Europe-wide traffic flow estimates exhibited proportional bias on a
small subset of the selected residential roads compared with national
traffic flow estimates. We note that national AADT estimates are also
based on modelling, but from deterministic traffic flow models (ARE,
2023; NDW, 2023). These models have considerable uncertainty for
individual road segments, similar to our models (ARE, 2024; NDW,
2023). This indicates that the agreement between our and national
AADT estimates is reasonable.

When the Europe-wide AADT estimates were used as a raster of the
sum within circular buffer, the Europe-wide traffic flow estimates
showed good agreement with national traffic flow estimates within all
buffer sizes.

The comparison result indicates that similar prediction results for air
pollution modelling are likely when using the sum of Europe-wide AADT
estimates with buffers compared to the sum of national traffic flow es-
timates. But if Europe-wide traffic flow estimates are used on road line
segments for air pollution or road traffic noise modelling, a limited
number of road segments may produce spatially heterogenous pre-
dictions compared to national estimates. Europe-wide estimates also
capture less variability in residential road traffic emissions (both air
pollution and noise) than national estimates. Regardless, due to the high
correlation between the datasets, overall results are expected to remain

similar for all road types in air pollution modelling, although local dif-
ferences may arise when using traffic flow predictor variables from
European and local national traffic models in the application of esti-
mating air pollution concentrations or road traffic noise levels.

4.2. Improvement of air pollution modelling with modelled AADT
estimates

When including estimated traffic flow data in the LUR air pollution
models, we found modest increases in MSE-R2 for more traffic-related
pollutants (NO2, O3) and only minor increases for PM2.5, which is not
strongly influenced by local traffic. The modest increase in MSE-R2

suggests that widely available traffic flow proxies, such as road length of
(major) roads, already represent the important impact of local traffic
emissions reasonably well. However, including estimated traffic flow
provided more granularity in near-road air pollution concentrations
compared to using proxies like road length.

Traffic flow data has been shown to be crucial for air pollution
modelling at a city- and multi-cities scales in Europe, North America and
Australia (Beelen et al., 2013; Boniardi et al., 2019; De Hoogh et al.,
2019; Dijkema et al., 2011; Eeftens et al., 2012; He and Huang, 2018;
Jones et al., 2020; Lu et al., 2020; Naughton et al., 2018; Shi et al., 2020;
Van den Bossche et al., 2018; Wang et al., 2014; Weissert et al., 2020;
Wen et al., 2023; Yang et al., 2020). Using only road type and road
length as proxies for traffic flow can miss variations in traffic-related
emissions.

While traffic flow estimates were available for some countries, there
were no publicly available continental-wide traffic flow estimates for air

Fig. 8. Five-fold cross-validated model performance of air pollution models with and without AADT estimates, evaluated by two metrics: (A) mean-square-error-
based R2 (MSE-R2) and (B) root-mean-square-error (RMSE) at stations located in urban areas where population density is larger than 5000 km− 2. Models were
built for four pollutants: (A) NO2, O3, PM10 and PM2.5 for year 2019. Bars with dashed lines present models with AADT estimates and with solid grey fills present
models without AADT estimates. Regression approaches include gwr (geographically weighted regression), rf (random forests), and slr (supervised linear regression).
Text in white at the bottom of each bar shows the difference of metric values between models with and without AADT estimates.
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Fig. 9. Spatial maps of estimated NO2 concentrations (unit: μg/m3) without and with AADT estimates included as predictor variables in the geographically weighted
regression model for a) Amsterdam, b) Athens, c) Barcelona, d) Basel, e) Lodz, f) Munich, g) Paris, and h) Rome. Estimated concentrations along a diagonal transect
are shown in the line chart below spatial maps for each city.
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pollution modelling. Here our traffic flow estimates were available on
every road segment of OSM (i.e., motorway, trunk, primary, secondary,
tertiary, and residential roads defined in OSM). The completeness of the
OSM road network data is high in most European countries (>95%)
(Barrington-Leigh and Millard-Ball, 2017), and the OSM data quality is
comparable to national road data (Graser et al., 2014; Neis et al., 2011).
In both our studies and other national studies, the improvement of traffic
flow data was found similarly. In some national or city-wide studies,
traffic flow estimates were estimated by regression models. For example,
a recent study in Australia showed that estimating traffic flow on minor
roads improves the modelling of traffic-related pollutants like black
carbon and ultrafine particles (Alvarado-Molina et al., 2023). Another
study in Los Angeles in U.S. also demonstrated significant improvement
in estimated concentrations for NO2, O3, and PM2.5 (increases of 21%,
3% and 7% in CV-R2 respectively) with traffic flow data considered in
LUR models (Wen et al., 2023). In other national studies, they used
national traffic intensity data estimated by traffic demand models to
improve air pollution modelling, such as studies from the ESCAPE
project in Europe for air pollution models for NO2 and PM (Beelen et al.,
2013; Eeftens et al., 2012; Wang et al., 2014) in multiple European
cities. They reported significantly improved performance of air pollution
models, particularly for NO2 where a 10% increase in R2 was observed
when including local traffic intensity data (Beelen et al., 2013). The
minor R2 increase in PM2.5 models can be attributed to its nature as a
regional pollutant with complex aerosol formation (Wang et al., 2014)
and the substantial contribution from satellite-retrieved data and
chemical transport model estimates (de Hoogh et al., 2016). For O3 in
our study, the relatively larger impact of traffic flow data on air pollu-
tion model accuracy reflects scavenging of O3 by nitric oxide (NO),
which is emitted from combustion of fossil fuels.

Some predictor variables thematically overlapped in our traffic flow
and air pollution models, potentially introducing collinearity issues in
air pollution models with traffic flow estimates offered as potential
variables. To address this, in our air pollution modelling, we used SLR to
select the most contributing variables for GWR, excluding those with a
high variance inflation factor (VIF>3). Consequently, this exclusion
reduces the impact of multi-collinearity. The RF air pollution model is
robust to collinearity because RF randomly selects subsets of predictor
variables, minimizing the impact of multi-collinearity. Thus, our air
pollution models mitigated collinearity issues, even with overlapping
predictor variables between the traffic flow and air pollution models.

4.3. Strengths and limitations

We developed a modelling framework using the random forest al-
gorithm to develop models stratified by road type. The results showed
several strengths. Firstly, our Europe-wide RF models, separated by road
type, effectively captured variations in AADT across different road types
with a high overall 5-fold CV accuracy. Secondly, the road-type specific
RF models outperformed the traditional fixed-value approach that as-
sumes the same AADT per road type. Thirdly, the availability of
harmonized AADT estimates can improve air pollution and road traffic
noise modelling, especially when higher-quality commercial AADT data
is not available nor affordable for academic research. However, across
different road types, the accuracy of the RF models varied. For all road
types except residential roads, the model performance was moderate to
good. The residential road model failed to capture local variations in
AADTs and only reflected on regional variation, with an accuracy as
good as using average observed values. Furthermore, there are some
limitations to consider for future applications.

Firstly, harmonized road networks and traffic information (e.g.,
number of lanes, speed limit) are lacking across Europe. Collecting and
creating harmonized information would be cumbersome but not
impossible. Some of this information is available in OSM, but data
quality and availability, especially for speed limits and number of lanes,
vary across Europe.

This variation is reflected in the proportion of missing values sepa-
rated by country and road type (Tables A2 and A3). Despite these data
quality issues, the completeness of the OSM road network is high in most
European countries (>95%) based on a previous study (Barrington--
Leigh and Millard-Ball, 2017). OSM provides the most well-organized
and freely accessible database for all of Europe.

Secondly, the AADT observations were dominated by UK data,
especially on local and residential roads. We assumed that the mobility
patterns observed in the UK could be extrapolated to represent the
mobility patterns across Europe (Vienneau et al., 2009). Prediction ac-
curacy on residential roads could be further improved with more ob-
servations from more European countries.

Thirdly, we obtained road length within different circular buffer
sizes in Euclidian distance. The Euclidian distance, however, cannot
reflect the actual road distance. On some residential roads in the centres
of European cities, vehicles are not allowed or limited (e.g., low emis-
sion zones in some cities such as London and Barcelona). This infor-
mation was missing across Europe for our RF models. Therefore, it could
result in overestimating traffic intensity and further overestimating in
air pollution concentrations and road traffic noise for potential appli-
cation in these limited low-emission zones.

Moreover, our RF models relied on OSM definitions to represent the
importance or connectivity of road traffic. Due to local variations in road
importance or connectivity, traffic patterns on the same OSM road type
may differ within and between countries. Instead of grouping observa-
tions by the OSM-defined road types, clustering observations based on
observed values could potentially better capture variations in AADT
caused by road importance (Sfyridis and Agnolucci, 2020). However,
this approach has difficulty estimating AADT on roads without obser-
vations that cannot be assigned to existing clusters.

In addition, for modelling road traffic noise and air pollution, diurnal
variations in AADT are important. Although our modelling framework
was built for estimating long-term AADT counts, it can be extended to
estimate daily or hourly AADT by including corresponding observations
and/or predictor variables.

Finally, there might be some biases in the comparison result due to
information loss when we converted between raster and vector data of
road segments. However, these issues can be mitigated by the small
raster grid cells we used (5 m). Despite these limitations, our Europe-
wide RF AADT models showed overall good accuracy based on CV and
agree generally well with national AADT models.

5. Conclusion

The Europe-wide AADT models demonstrated satisfactory overall
accuracy, despite variations in predictive accuracy across road types.
Our findings highlight the variability of AADT both within and across
road types, documenting the advantages of our approach over the use of
fixed values. This study introduces a novel methodology for estimating
traffic flow at a continental scale. Our AADT estimates showed overall
strong agreement with national AADTmodel estimates. The 5-m gridded
AADT estimates for all roads across Europe will be highly beneficial for
future modelling applications, enhancing air pollution modelling and
addressing critical gaps in harmonized road traffic noise modelling
across Europe. We have demonstrated enhanced air pollution modelling
performance, particularly in urban areas, with more refined spatial
patterns.
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