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Effectofpneumococcal conjugate vaccine six
years post-introduction on pneumococcal
carriage in Ulaanbaatar, Mongolia

Claire von Mollendorf 1,2,11 , Tuya Mungun3,11, Munkhchuluun Ulziibayar3,
Paige Skoko 1,2, Laura Boelsen1, Cattram Nguyen 1,2, Purevsuren Batsaikhan3,
Bujinlkham Suuri3, Dashtseren Luvsantseren3, Dorj Narangerel4,
Bilegtsaikhan Tsolmon 3,5, Sodbayar Demberelsuren6, Belinda D. Ortika1,
Casey L. Pell 1, Ashleigh Wee-Hee 1,7, Monica L. Nation1, Jason Hinds8,9,
Eileen M. Dunne 1,2, E. Kim Mulholland1,2,10,11 & Catherine Satzke 1,2,7,11

Limited data from Asia are available on long-term effects of pneumococcal
conjugate vaccine introduction on pneumococcal carriage. Here we assess the
impact of 13-valent pneumococcal conjugate vaccine (PCV13) introduction on
nasopharyngeal pneumococcal carriage prevalence, density and antimicrobial
resistance. Cross-sectional carriage surveys were conducted pre-PCV13 (2015)
and post-PCV13 introduction (2017 and 2022). Pneumococci were detected
and quantified by real-time PCR from nasopharyngeal swabs. DNA microarray
was used for molecular serotyping and to infer genetic lineage (Global Pneu-
mococcal Sequence Cluster). The study included 1461 infants (5–8 weeks old)
and 1489 toddlers (12–23 months old) enrolled from family health clinics. We
show a reduction in PCV13 serotype carriage (with non-PCV13 serotype
replacement) and a reduction in the proportion of samples containing resis-
tance genes in toddlers six years post-PCV13 introduction. We observed an
increase in pneumococcal nasopharyngeal density. Serotype 15 A, the most
prevalent non-vaccine-serotype in 2022, was comprised predominantly of
GPSC904;9. Reductions in PCV13 serotype carriage will likely result in pneu-
mococcal disease reduction. It is important for ongoing surveillance to
monitor serotype changes to potentially inform new vaccine development.

Infections due to Streptococcus pneumoniae (the pneumococcus)
remain an important cause of childhood morbidity and mortality1

despite pneumococcal conjugate vaccine (PCV) introduction in 168
countries2. Pneumococcal carriage is a prerequisite for disease3 and

community transmission. Reductions in carriage and transmission of
vaccine serotypes to unvaccinated individuals4 results in the indirect
effects of paediatric PCV vaccination5. Reductions in vaccine serotypes
are associated with an increase in carriage and disease due to non-
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vaccine serotypes (serotype replacement)6. Although replacement can
be extensive, there is usually a net benefit from vaccine introduction,
as the replacing serotypes are generally less pathogenic7. However, in
some settings this public health benefit of PCV has been eroded
overtime6,8,9.

In low- andmiddle-income countries (LMICs)with limited invasive
pneumococcal disease (IPD) surveillance, carriage is a useful outcome
for evaluating the effects of PCV introduction10. Carriage studies are
easier to conduct, as sample collection is less invasive than for IPD
surveillance and sample size requirements are smaller. Serial cross-
sectional community surveys in children are important to document
direct and indirect effects on pneumococcal serotypes11. While several
LMICs have conducted cross-sectional serial pneumococcal carriage
surveys in healthy populations, only a handful of surveys are from
Asia12–16 and none of these had data up to six years post-PCV intro-
duction. Previously, we undertook community carriage surveys in
Mongolia, comparing the pre-PCV13 (2015) period to one-year post-
PCV13 introduction, finding a 50% reduction in PCV13 serotype car-
riage in infants and toddlers, with evidence of serotype replacement in
toddlers17.

Although there is increasing evidence demonstrating the impor-
tance of pneumococcal nasopharyngeal density on disease and
transmission, the effect of PCVs on pneumococcal density is largely
unknown with heterogeneous findings from previous studies18. A sys-
tematic review explored antimicrobial resistance (AMR) of invasive
and non-invasive paediatric pneumococcal isolates between 2000 and
2020 to understand the effect of PCV introduction on AMR19. Carriage
isolates generally had a higher prevalence of penicillin and macrolide
non-susceptibility than invasive isolates, where non-susceptibility was
defined as an intermediate or resistant phenotype on antimicrobial
susceptibility testing20. Over the 10 years following PCV introduction,
reductionswere estimated in non-susceptibility ofmultiple antibiotics.
Changes in penicillin non-susceptibility were largely due to replace-
ment of vaccine-targeted serotypes with non-vaccine serotypes19.

In this current analysis we aim to demonstrate the long-term
impact of PCV13 introduction in Mongolia on pneumococcal carriage
prevalence, density and AMR in the context of an established PCV13
program six years post-PCV introduction.

Results
Participant characteristics
There were 3000 children enrolled across the three surveillance years
(2015, 2017, 2022). In 2015, 50 children did not meet the age inclusion
criteria andwere excluded from the analysis. All childrenmet the study
criteria in 2017 and 2022. Characteristics were similar between the first
two surveys and have previously been described17. Here we compare
the pre-PCV13 (2015) survey and the third survey (2022) which shows a
reduction in the use of smoky fuels, fewer children living in traditional
ger dwellings and less household members that smoked. The total
number of people residing in each household increased (Table 1). In
2022most (95%) toddlers aged 12-23months had received three doses
of PCV13.

Result from all three surveys
Figure 1 shows the carriage prevalence of all pneumococci, PCV13
serotypes and non-PCV13 serotypes across the three surveys. All
pneumococcal and PCV13 carriage decreased over the three surveys.
Compared with 2015, non-PCV13 carriage increased in 2017, and
maintained that higher level in 2022. Comparing the final survey
(2022) with the first post-PCV13 survey (2017) weobserved a reduction
in all pneumococcal carriage (25% in infants [aPR 0.75, 95%CI
0.58–0.96], 15% in toddlers [aPR 0.85, 95%CI 0.76–0.96]), a reduction
in PCV13 serotype carriage (37% in infants [aPR 0.63, 95%CI 0.35–1.12],
35% in toddlers [aPR 0.65, 95%CI 0.48–0.90]) and a non-significant
change in non-PCV13 serotypes (20% in infants [aPR 0.80, 95%CI

0.59–1.08] and 11% in toddlers [aPR 0.89, 95%CI 0.76–1.05]) (Supple-
mentary Table S1).

Whenwe compared the pre-PCV13 (2015) and the final post-PCV13
survey (2022), a reduction was observed in all pneumococcal carriage
prevalence in both age groups, 33% in infants and 19% in toddlers
(Table 2). In infants there was a 67% reduction in PCV13 serotype car-
riage (adjusted prevalence ratio [aPR] 0.33 [95% confidence interval
[CI] 0.20–0.56]) compared with the pre-PCV13 period; but there was
no significant increase in non-PCV13 serotype carriage prevalence (aPR
0.88 [95%CI0.65–1.21]). In toddlers aged 12-23months, therewas a 71%
reduction in PCV13 serotype carriage (aPR 0.29 [95% CI 0.22–0.38]),
with evidence of serotype replacement (1.4 fold increase in non-PCV13
serotypes, aPR 1.36 [95% CI 1.12–1.65]).

Over all three years, serotyping results were obtained from 1132 of
1152 pneumococcal-positive samples (98%). A total of 20 samples
could not be serotyped because they were either culture negative
(n = 19) or had a low DNA yield from culture (n = 1). In all ages, most
pneumococcal-positive samples contained a single serotype (963/1132,
85%). Only 8% of colonised infants (27/325) carried more than one
serotype, while in contrast 18% (142/805) of colonised toddlers carried
multiple serotypes (p < 0.001). In all infants there was no significant
change in the prevalence of multiple serotype carriage over the three
surveys: 3% (12/457), 2% (9/494) and 1% (6/496) (p =0.27), but numbers
were small. In toddlers the prevalence of multiple serotype carriage
was similar in 2015 (64/488, 13%) and 2017 (60/497, 12%), with a sub-
stantial decrease observed in 2022 (18/494, 4%, χ2 p <0.001). In par-
ticipants who carried vaccine serotypes, these were not more likely to
be present as a minor serotype in 2022 (compared with 2015 or 2017)
for either infants or toddlers (Supplementary Table S2).

Prevalence of individual PCV13 and non-PCV13 serotypes fluc-
tuated across the three surveys and varied by age group. For
PCV13 serotypes, serotype 19F remained the most prevalent across all
three years for infants (Fig. 2A), while in 12-23 month olds serotype 6A
was replaced by 19F as the most prevalent serotype (Fig. 2B). Non-
PCV13 serotypes showed a number of changes across the three years
with several serotypes higher in 2017 than in 2022. Overall NT2was the
most prevalent non-PCV13 serotype inboth agegroups in 2015 andwas
replaced by 15A as most prevalent in infants (Fig. 2C) and toddlers
(Fig. 2D) in 2022.

Results comparing first carriage survey (2015) and final carriage
survey (2022)
The carriage prevalence of individual PCV13 serotypes and the most
common non-PCV13 serotypes pre-PCV13 (2015) and post-PCV13
(2022) introduction are shown in Fig. 3 for infants and Fig. 4 for tod-
dlers. In infants (Fig. 3) 45% (59/131) of pneumococci were PCV13 ser-
otypes in the pre-PCV13 period, comparedwith 23% (20/87) in the post-
PCV13 period (p =0.003). In the pre-PCV13 period, the most common
serotypes carried were 19F (n = 13), 23F (n = 13), non-encapsulated
lineage NT2 (n = 12) and 6A (n = 10); while in the post-PCV13 period,
serotypes 15A (n = 20), 19F (n = 11) and 10A (n = 9) predominated. For
toddlers aged 12-23 months (Fig. 4), 70% (206/294) of pneumococci
were PCV13 serotypes in thepre-PCV13 survey, comparedwith 26% (62/
241) post-PCV13 introduction (p <0.001). Themost common serotypes
identified in 2015 were 6A (n = 61), 19F (n = 47), non-encapsulated
lineage NT2 (n = 30), 23F (n = 29) and 14 (n = 28) compared with 15A
(n = 64), 19F (n = 35), 34 (n = 31), and 10A (n = 28) in 2022.

Thedensity of pneumococcal carriage for all pneumococci, PCV13
serotypes, and non-PCV13 serotypes were higher in the final post-
PCV13 survey (2022) comparedwith the pre-PCV13 period for both age
groups (Supplementary Figs. S2A and S2B). In infants the median
PCV13 carriage density was 4.71 (interquartile range [IQR] 3.98–5.61)
log10 genome equivalents/ml (log10 GE/ml) in the pre-PCV13 period
and 6.36 (IQR 5.40–7.04) log10 GE/ml in 2022. In toddlers the median
PCV13 carriage density was 5.11 (IQR 4.23–5.75) log10 GE/ml in the pre-
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Table 1 | Characteristics of study participants in cross-sectional pneumococcal carriage surveys, performed pre-PCV13 (2015)
& six years post-PCV13 introduction (2022), in healthy children in Mongolia, by age group & year

5–8 week old infants Pre-PCV13# (N = 461a) Post-PCV13 (N = 500a) p-value*

Age in weeks (IQR)b 6.4 (5.3–7.7) 6.1 (5.4–7.3) 0.03

Male sex, n (%) 239 (52) 259 (52) 0.99

Parent primary caregiver, n (%) 457 (99) 497 (99) 0.63

≥2 children <5 years in household, n (%) 177 (38) 176 (35) 0.3

Crowding, n (%)c 172 (37) 297 (59) <0.001

Smoky fuel use, n (%)d 272 (59) 252 (50) 0.007

Living in informal housing (ger), n (%) 153 (33) 151 (30) 0.32

At or below minimum income, n (%) 148/435 (34) 181/481 (38) 0.26

Mother completed university, n (%) 275/455 (60) 296 (59) 0.7

Household member smokes, n (%) 231/456 (51) 205 (41) 0.003

Breastfeeding at time of survey, n (%) 439 (95) 483 (97) 0.28

Born by caesarean section, n (%) 141/457 (31) 122/499 (24) 0.03

Child attends daycare, n (%) 3 (1) 1 ( < 1) 0.28

Household member treated for tuberculosis, n (%) 15 (3) 3 ( < 1) 0.002

Previous pneumonia admission

No previous pneumonia admission, n (%) 450/457 (98) 496 (99) 0.29

Had recent pneumonia admission, n (%)e 7/457 (2) 4 (1)

Previous other admission

No previous other admission, n (%) 443/459 (97) 486 (97) 0.54

Had recent other admission, n (%)e 16/459 (3) 14 (3)

Any previous admission

No previous admission, n (%) 437/459 (95) 482 (96) 0.36

Had previous admission, n (%) 22/459 (5) 18 (4)

12–23 month old children Pre-PCV13 (N =489a) Post-PCV13 (N =500a) p-value*

Median age in months (IQR)b 16.4 (14.1–20.7) 16.2 (14.1–20.4) 0.67

Male sex, n (%) 232 (47) 241 (48) 0.81

Parent primary caregiver, n (%) 410 (84) 442 (88) 0.04

≥2 children <5 years in household, n (%) 156 (32) 160 (32) 0.97

Crowding, n (%)c 206 (42) 294 (59) <0.001

Smoky fuel use, n (%)d 301 (62) 260 (52) 0.002

Living in informal housing (ger), n (%) 189 (39) 143 (29) <0.001

At or below minimum income, n (%) 188/465 (40) 185/489 (38) 0.41

Mother completed university, n (%) 304/487 (62) 307 (61) 0.74

Household member smokes, n (%) 259 (53) 226 (45) 0.02

Breastfeeding at time of survey, n (%) 329 (67) 297 (59) 0.01

Born by caesarean section, n (%) 142/488 (29) 132 (26) 0.34

Child attends daycare, n (%) 29 (6) 14 (3) 0.02

Household member treated for tuberculosis, n (%) 19 (4) 10 (2) 0.08

Previous pneumonia admission

No previous pneumonia admission, n (%) 365/485 (75) 434 (87) <0.001

Had recent pneumonia admission, n (%)e 33/485 (7) 47 (9)

Had non-recent pneumonia admission, n (%) 87/485 (18) 19 (4)

Previous other admission

No previous other admission, n (%) 428/484 (88) 424 (85) 0.25

Had recent other admission, n (%)e 22/484 (5) 30 (6)

Had non-recent other admission, n (%) 34/484 (7) 46 (9)

Any previous admission

No previous admission, n (%) 310 (63) 366 (73) <0.001

Previous admission, n (%) 179 (37) 134 (27)

Vaccinated with any number of PCV13 dosesf

Received 1 dose, n (%) 0 (0) 4/493 (1)

Received 2 doses, n (%) 0 (0) 20/493 (4)

Received 3 doses, n (%) 0 (0) 469/493 (95)

#Pre-PCV13 data previously published17. aTotal unless otherwise indicated. bIQR Interquartile range. cThree or more people per room. d Coal, briquettes or wood used as primary fuel for cooking.
eConsidered recent hospital admission if within same year as survey. f Infants were ineligible if they had received PCV13.
*Two-sided p-value determined using Chi-squared test for categorical data and Mann-Whitney U-test for continuous data.
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PCV13 period and 6.20 (IQR 5.42–6.85) log10 GE/ml in 2022 (Supple-
mentary Table S3).

AMRgeneswere common,with 83%of samples containing at least
one of the 10 AMR genes assessed. Samples with a PCV13 serotype
were more likely to have at least one AMR gene detected (94.3%, 247/
262) andmultiple AMRgenes (59.5%, 156/262), comparedwith samples
with non-PCV13 serotypes (66.8%, 189/283 and 17.7%, 50/283, respec-
tively) (Supplementary Table S3). Four AMR genes were significantly
more common in PCV13 serotypes compared with non-PCV13 ser-
otypes; tetM 92.0% versus 58.7%, cat 32.8% versus 14.1%, mefA 53.8%
versus 19.1% and ermB 72.1% versus 41.3%, respectively (Supplementary
Table S4). In infants 5–8 weeks, the proportion of samples containing

catdecreasedpost-PCV13, while aphA3 and sat4 increased. Therewas a
slight reduction in samples containing any AMR genes (81% to 79%),
but not multiple resistance genes (Supplementary Table S5). In tod-
dlers 12–23 months, the proportion of samples containing tetM, cat,
mefA, ermB and ermC all decreased post-PCV13 introduction. There
was a significant reduction in the proportionof samples containing any
or multiple resistance genes in toddlers (Supplementary Table S5).
With regards to themost common emerging non-PCV13 serotypes, for
serotype 15A one (or more) AMR genes were detected in all isolates in
the final survey in 2022 (40/40 [100%]) compared with a lower per-
centage in 2015 (3/4 [75%], p < 0.001). For serotypes 10A (7/24 [29%]
versus 3/9 [33%], p = 0.91) and 34 (8/25 [32%] versus 6/14 [43%],
p =0.78) a lower percentage of isolates in the final survey had AMR
genes compared with the previous two surveys.

Global Pneumococcal sequence clusters
Microarray data was available for 1132 pneumococcal positive samples
and of these 1098 had a pneumococcus as the most abundant call and
were analysed for lineage composition. We identified a total of 76
GPSCs from 1045 samples suitable for analysis. Serotype 19F remained
the most prevalent vaccine serotype in 2022 and was comprised
almost entirely of GPSC1 for both infants and toddlers across all three
surveys (Fig. 5). Serotype 15A was the most prevalent non-vaccine
serotype in 2022 and was comprised almost entirely of GPSC904;9 for
both infants and toddlers across all three years. Serotype 10A and 34
were common non-vaccine-serotypes post-PCV13 introduction and
were comprised almost entirely of GPSC634 andGPSC45, respectively,
for both infants and toddlers across all three years (Fig. 5, Supple-
mentary Figs. S3 and S4).

Discussion
This study aimed to describe the long-term effects of PCV13 on
pneumococcal colonisation up to six years post-PCV13 introduction.
We demonstrated that PCV13 introduction in the context of high
vaccination coverage had a substantial impact on pneumococcal car-
riage in healthy children in Mongolia. PCV13 serotype carriage was
reduced by around 70% in toddlers aged 12-23 months as well as for
infants too young to be vaccinated, demonstrating substantial indirect
vaccine effects.

Our study population had high PCV13 coverage (estimated at 96%
in 202321) with extensive catch-up campaigns in children up to
24 months of age. Previously, we showed substantial reductions in
PCV13 type pneumococcal carriage even at one year post-
introduction17. In the current study reductions were maintained and
increased in magnitude compared with the first post-PCV (2017) sur-
vey. Despite these reductions we found persistence of vaccine-types,
with 12% of children carrying PCV13 type pneumococcal in 2022. These
observations are consistent with our data in carriage in hospitalised
children in Mongolia22. Serotype 19F was the most common vaccine
type in the post-PCV period and was comprised exclusively of lineage
GPSC1. This lineage is common in global datasets where it comprises
serotypes 19A and 19F and less commonly, 3, 6C, 14 and 23F23. GPSC1
has been detected among serotype 19F isolates from South Africa,
Peru, China and The Gambia23. The underlying mechanism behind the
persistent carriage of certain serotypes such as 19F is still unclear.

Indirect protection is vital for young infants too young to be
vaccinated as they are at high risk for pneumococcal disease. We
observed the indirect herd effect of PCV13 on infants, with a 51%
reduction in pneumococcal carriage already one year post
introduction17 and a 67% reduction compared with the pre-PCV13
period in the current study. The high vaccine coverage and extensive
catch-up campaign in the study districts may have contributed to the
herd effect. Most LMIC studies reporting on indirect effects have
demonstrated some evidence of herd effects, however, not all saw
these changes in the infant age group11. Other studies with evidence of
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Fig. 1 | Nasopharyngeal carriage prevalence per age group and year. A Carriage
prevalence of all pneumococci, B 13-valent pneumococcal conjugate vaccine
(PCV13) serotype pneumococci, and C non-PCV13 serotype pneumococci in two
different age groups, in healthy children in Mongolia in 2015 (N = 950), 2017
(N = 999) and 2022 (N = 999). Error bars depict 95% confidence intervals for car-
riage prevalence (%). Source data are provided as a Source Data file.
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indirect effects in children aged <5 years showed reductions of 16–44%
which was less than that observed in the current study11. Under-
standing indirect effects is important as taking protection of the
unvaccinated population into consideration improves the cost-
effectiveness of PCV use.

Although carriage surveys in healthy populations have been
conducted in other countries from the WHO Western Pacific
region12–16, these have focused on the immediate years following PCV
introduction and there is little long-term evidence of vaccine impact
and serotype replacement.

Reductions were observed in all these countries, except Papua
New Guinea with very high carriage prevalence, density and multiple

serotype carriage pre-PCV13 introduction, high serotype diversity and
low vaccine coverage16. The degree of vaccine serotype carriage
reductions varied in the other countries depending on the vaccine
used, schedule, vaccine coverage, serotype distribution pre-vaccine
and other population-specific factors12–15.

Many high-income countries saw a rapid reduction in vaccine
serotype carriage post-PCV introduction24, while studies fromMalawi25

and TheGambia26 reported residual vaccine serotype carriage 5-7 years
post PCV introduction. Published community carriage studies from the
WHO Western Pacific region, included post-PCV introduction periods
ranging from 1-4 years12–16. In Nepal, four years post-PCV10 introduc-
tion, carriage prevalence of PCV10 serotypes was 5% and
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Fig. 2 | Nasopharyngeal carriage prevalence of individual pneumococcal ser-
otypes in healthy Mongolian children over three carriage surveys, 2015, 2017
and 2022. A PCV13 serotypes in children aged 5-8 weeks, B PCV13 serotypes in

children aged 2-23months, Cmost common non-PCV13 serotypes in children aged
5-8weeks, andDmost commonnon-PCV13 serotypes in children aged 2-23months.
Source data are provided as a Source Data file.

Table 2 | Carriage prevalence and prevalence ratios for pneumococcal carriage (all, PCV13 serotypes, and non-PCV13 ser-
otypes) for 5-8 week old infants and 12-23 month old children before (2015) and six years after (2022) PCV13 introduction

Pre-PCV13
n/N

Pre-PCV13 prevalence
(%) (95% CI)

Post-PCV13
n/N

Post-PCV13 prevalence
(%) (95% CI)

Unadjusted prevalence
ratio (95% CI)

Adjusted prevalence
ratioa (95% CI)

All pneumococcib

5–8 week old 131/461 28.4 (24.3–32.8) 87/499 17.4 (14.2–21.0) 0.61 (0.48–0.78) 0.67 (0.52–0.85)

12–23 month old 294/489 60.1 (55.6–64.4) 241/500 48.2 (43.7–52.7) 0.80 (0.71–0.90) 0.81 (0.72–0.91)

PCV13 serotypes

5–8 week old 59/457 12.9 (10.0–16.3) 20/496 4.0 (2.5–6.1) 0.31 (0.19–0.51) 0.33 (0.20–0.56)

12–23 month old 206/488 42.2 (37.8–46.7) 62/494 12.5 (9.7–15.8) 0.30 (0.23–0.38) 0.29 (0.22–0.38)

Non-PCV13 serotypes

5–8 week old 74/457 16.2 (12.9–19.9) 65/496 13.1 (10.3–16.4) 0.81 (0.59–1.10) 0.88 (0.65–1.21)

12–23 month old 129/488 26.4 (22.6–30.6) 183/496 36.9 (32.6–41.3) 1.39 (1.16–1.68) 1.36 (1.12–1.65)
a The following variables were used to adjust the prevalence ratios in each group: housing type (formal or informal), maternal education, household crowding (greater than three people per room),
number of children under five years of age, household fuel type, and previous hospital admission.
b All carriage prevalence does not necessarily equal the sum of PCV13 serotype and non-PCV13 serotype prevalence. This is due to multiple serotype carriage and/or exclusion of pneumococcal-
positive samples for which serotype was not determined.
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PCV13 serotypes 8% in children <2 years12. Monitoring the long-term
changes in carriage serotypes helps to inform ongoing use of PCVs.

As expected, we observed serotype replacement with an increase
in non-PCV13 carriage in vaccinated toddlers26,27. For both age groups
non-vaccine serotypes 15A and 10A increased, and were common,
post-introduction. The prevalence of serotype 34 also increased in
toddlers. There was no increasing trend of replacement between the
two post-PCV carriage surveys. Serotypes 10A, 34 and 15A have been

identified as replacement serotypes in other studies26,27. Serotype
replacement carriage relevance is dependent on the invasiveness of
the increasing serotypes28. In hospitalised children with pneumonia in
Mongolia, 15A, 15B/C and NT2 were the most common replacement
serotypes22. Monitoring non-vaccine serotypes in different popula-
tions assists in understandingwhichpopulations areoptimal topredict
effects on disease. Of note is that serotype 15A and 34, which are
emerging in Mongolia, are not included in any of the current higher
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Fig. 4 | Carriage prevalence of PCV13 serotypes and the most common non-
PCV13 serotypes in 12-23 month old children, pre-PCV13 (2015) and six-years
post-PCV13 (2022) introduction. Solid bars indicate carriage that was detected as
a single or major (dominant) serotype, open bars indicate carriage that was

detected as a minor (second or third) serotype. NT2, NT3b and NT4b refer to
different lineages of non-encapsulated pneumococci46. Other NVT includes all
other identified non-PCV13 serotypes not listed individually. Source data are pro-
vided as a Source Data file.
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valency vaccines (PCV15, PCV20 and PCV24)29. Lineage GPSC904;9 has
been identified as associated with 15A-CC63 which is multidrug
resistant30. The 15A-CC63 sub-lineage has been identified in several
other countries including the USA, Israel and Hong Kong30.

The prevalence of infants (2%) and toddlers (10%) with multiple
serotype carriage was low in our study. Multiple carriage is reported to
promote genetic recombination. We observed a significant reduction
in multiple serotype carriage from 13% (in 2015) to 4% (in 2022) in
vaccinated toddlers. No substantial decrease was observed in the
unvaccinated infant group, although baseline values were low. There is
little evidence from LMICs on multiple serotype carriage as most
methods only detect the dominant serotype. In contrast, we used
microarray which is highly sensitive for detecting multiple serotype
carriage31. The evidence of PCV impact onmultiple serotype carriage is
mixed although reductions have been observed in other studies32,33.

This study showed an increase in all pneumococcal, PCV13 and
non-PCV13 density post-PCV introduction for both the early17 and long-
term post-PCV surveys. Our systematic review which explored the
impact of PCVonpneumococcal density foundvarying results between
studies18. Previous studies in healthy children have shown both
decreases13,34,35 and increases14,17 in carriage density with PCV intro-
duction. Variations in density observed across our three cross-sectional
surveys may be temporal and/or related to unmeasured factors. These
factors may include viral co-infection, multiple serotype carriage, ser-
otype replacement and prior antibiotic use. It is unclear which factors
are driving the changes in pneumococcal density in Mongolia.

In our study, 83% of pneumococcal positive samples had at least
one AMR gene, and samples with a PCV13 serotype weremore likely to
have at least one AMR gene detected. We observed a decrease in five
AMR genes and in samples with multiple AMR genes in 2022 in vac-
cinated toddlers, which was not observed in the earlier post-PCV
(2017) survey17. With regards to individual serotypes, it appears that
overall antimicrobial resistance was not a factor in driving the emer-
gence of non-vaccine serotypes. However, for serotype 15A the num-
bers in the pre-PCV13 period were small, and it is unclear what role
antimicrobial resistance played in the increase in this serotype. PCV
introduction has been shown to reduce resistance in circulating
pneumococci19. Mongolia, like many other countries in Asia, has a
history of inappropriate antibiotic prescription36. Increasing regula-
tions have been introduced over the last decade towards limiting
antibiotic use to prescription only. Changes in antibiotic usemay have
influenced our AMR findings. The most commonly used antibiotics in
Mongolia include amoxicillin, cephalosporins and ciprofloxacin37,38.

Our final carriage survey was conducted in 2022 at a time when
COVID-19 case numbers were low and only minimal pandemic related
restrictions were in place39. Other studies in children have shown a
reduction in IPD associated with pandemic restrictions, but no asso-
ciated reductions in pneumococcal carriage40,41. The overall reductions
in PCV13 type carriage observed in our 2022 carriage survey are likely
predominantly due to PCV13 introduction andnot non-pharmaceutical
interventions (NPIs) introduced during the pandemic. It is unclear
however whether NPIs or other factors may have played a role in the
decrease of individual non-PCV13 serotypes in the final survey or
whether these were cyclical changes in carriage prevalence unrelated
to PCV13 introduction.

This study has several strengths. Firstly, our studywas conducted
in a country with a high number of risk factors for pneumococcal
disease, located in Asia where there are limited data on PCV impact.
Secondly, our study was conducted six years post-PCV introduction
which is longer than other similar studies in the region. Thirdly, we
sampled clinics randomly according to subdistrict to be representa-
tive of the different housing types in Ulaanbaatar, including to
account for difference in health seeking behaviour. Our findings are
therefore likely generalisable to other urban populations inMongolia,
as primary health care is free for children and immunisation coverage

is high across the population. Lastly, we used sensitive molecular
methods31,42 to measure the prevalence and density of pneumococcal
carriage and were able to detect all pneumococcal serotypes present
in a sample. Our additional GPSC analysis enables us to identify
pneumococcal lineages that have emerged or persisted for non-
vaccine type replacers and persistent vaccine-types allowing us to
understand how PCV13 has induced changes within the pneumo-
coccal population. Very few countries in Asia have included lineage
analysis in PCV impact publications43,44. This study also has some
limitations. Firstly, as mentioned above the final survey was con-
ducted during the COVID pandemic, but this is unlikely to have sub-
stantially affected our results. Secondly, we did not collect
information on all confounders that may potentially effect vaccine
type carriage, for example air pollution levels and recent antibiotic
use, and some of these factors may have resulted in us under-
estimating the impact of PCV on pneumococcal carriage. Although
there was a reduction in the prevalence of some carriage risk factors
in children included in the final survey, it is not possible to determine
the relative contribution of these factors to changes in carriage rates.
However, most of the reduction in carriage is likely driven by vaccine
introduction based on observed reductions in vaccine-type serotypes
and increases in non-vaccine type serotypes. Thirdly, AMR detection
was limited to select resistance genes, and phenotypic testingwas not
conducted. Lastly, we inferredGPSCs and such inferences for samples
withmultiple serotype carriagemay not always be accurate, although
multiple carriage was relatively low in Mongolia.

This study provides evidence of substantial PCV impact on
pneumococcal carriage in children up to six years after the introduc-
tion of PCV13 in Mongolia. It demonstrates persistent vaccine-types
(especially 19F) and emerging non-vaccine type replacers that will be
important to monitor in ongoing surveillance. In addition, it provides
compelling data on AMR changes and will potentially inform new
vaccine development through serotype changes.

Methods
Ethical approval
The study was approved by the Medical Ethics Review Committee at
the Mongolian Ministry of Health and the Royal Children’s Hospital
Human Research Ethics Committee (HREC 33203). Written informed
consent was obtained from parents/caregivers prior to any study
procedures being conducted.

Study site
Mongolia is a lower-middle income country with a population of
around 3.4 million people in 2023. The Government of Mongolia
introduced PCV13 into the routine national immunisation program
using a 2 + 1 schedule (2, 4, 9 months) in a staged manner from 201645.
PCV13 was introduced into the two survey districts (Songinokhairkhan
and Sükhbaatar) in Ulaanbaatar in June 2016, with a catch-up campaign
for children 3 to 23 months of age (two PCV13 doses, two months
apart)45.

Study design and participants
Cross-sectional carriage surveys were conducted at family health
centres in the two districts from May to July in 2015 (pre-PCV intro-
duction), 2017 (one-year post-PCV introduction) and 2022 (six years
post-PCV introduction). The methods and initial results for the first
two surveys (2015 and 2017) have been previously published17. In brief,
family health centre selection was stratified by predominant sub-
district housing type in each district and similar numbers of children
were enrolled in each age group from each clinic. Only well children
were invited to participate and children with respiratory symptoms
were excluded. Children were ineligible if they had a fever, had not
lived in one of the study districts for at three or moremonths (toddler
group), or if they were infants and had received PCV1317. Staff
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completed questionnaires and collected nasopharyngeal swabs from
all enrolled participants. PCV13 vaccination status was verified using
the child’s vaccination card or clinic records.

Sample collection and laboratory procedures
World Health Organization recommended methods were followed for
nasopharyngeal sample collection, handling and transport42. Swab
processing and DNA extraction (MagNA Pure LC machine) for the
earlier surveys (2015 and 2017) was previously described17. DNA
extraction of swabs for the 2022 survey was performed using the
QIAcube HT machine (QIAgen), lytA qPCR using the Stratagene
Mx3005 machine, and molecular serotyping by microarray13,14,17.
Microarray can determine the presence of multiple serotype carriage
and the relative abundance of each pneumococcal serotype. The
dominant serotype is considered the major serotype and the less
abundant serotypes are designated as the minor serotypes31.
PCV13 serotypes were defined as 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A,
19F, and 23F. All other serotypes, including non-encapsulated
pneumococci46, were designated non-PCV13 serotypes. Genetic line-
age (usingGlobal Pneumococcal SequenceCluster, GPSC)was inferred
from genomic profiling by microarray to examine lineage changes
across the carriage surveys. AMR genes were also identified using
microarray (Supplementary Methods page 1).

Statistical analysis
Sample size calculations were previously described; in brief we
assumed that 281 participants in each age group with a baseline
PCV13 serotype carriage prevalence of 16%, would detect a 50%
reduction, with 90% power at a 5% significance level. Numbers were
roughly doubled as true prevalence in 2015 was unknown17. Study data
for the 2022 survey were collected and double data entered using the
REDCap secure, web-based software platform hosted at the Murdoch
Children’s Research Institute47. Databaseswere compared, cleaned and
analysed using Stata version 17.0 and 18.0 (College Station, TX: Sta-
taCorp LLC). R (version 4.1.2) was used for the pneumococcal lineage
analysis.

We used chi-squared tests to compare categorical data andMann-
Whitney test for continuous data.

Pneumococcal carriage prevalence was calculated for all,
PCV13 and non-PCV13 serotypes for all years and for the most
common individual serotypes. Unadjusted and adjusted prevalence
ratios (aPR) were estimated using univariable andmultivariable log-
binomial regression by age group for all, PCV13 type and non-PCV13
type pneumococcal carriage prevalence for the pre-PCV13 (2015)
and final post-PCV13 survey (2022) and for the two post-PCV13
surveys (2022 versus 2017). A common set of confounders was used
to adjust the prevalence ratios comparing these various periods.
The covariates were selected using a directed acyclic graph (Sup-
plementary Fig. S1), informed by relevant literature, and included
housing type (formal or informal), maternal education, household
crowding (greater than three people per room), number of children
under five years of age, household fuel type, and previous hospital
admission. Reductions in PCV13 type carriage were calculated as (1 -
aPR)*100%, while an increase in non-PCV13 type carriage was
reported as a fold increase.

Pneumococcal carriage density data were log10 transformed
and reported as log10 GE/ml. Median carriage densities were cal-
culated for each age group (5-8 weeks and 12-23months) for the pre-
PCV13 (2015) and both post-PCV13 surveys (2017 and 2022). Median
densities were compared using quantile regression to determine
the impact of PCV13 introduction on pneumococcal density. A
common set of confounders (Supplementary Fig. S1) was used to
adjust the regression coefficient.

We determined detection rates of AMR genes for all, PCV13 type
and non-PCV13 type pneumococci. We compared AMRdetection rates

between the pre-PCV13 and post-PCV13 periods for each age group.
Samples with multiple resistance genes were considered as those with
three or more AMR genes detected. Only samples that contained a
single pneumococcal serotype with no other species identified were
included in this analysis.

For genetic lineage analysis GPSCswere inferred for the serotypes
detected with the highest relative abundance. Samples that had non-
pneumococci detected as the highest relative abundance were exclu-
ded from further analysis. Data was stratified by year and age group.
The number of samples belonging to each GPSC was plotted using R
package ‘ggplot2’ (version 3.3.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data are within the paper and the supplementary infor-
mation files. The source data underlying Figs. 1–5 and Supplementary
Figs. S3&S4 are provided as a Source Data file with this paper. Addi-
tional data requests can be made to the corresponding author and
should include details regarding the intended use of the data and
appropriate approvals in line with local ethical requirements. Source
data are provided with this paper.

Code availability
Data were analysed using Stata® version 17.0 and 18.0 (College Station,
Texas, USA), with R (version 4.1.2) used for the pneumococcal lineage
analysis.
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