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S U M M A R Y  

B A C K G R O U N D : Identifying spatial variation in TB 
burden can help national TB programs effectively allo-
cate resources to reach and treat all people with TB. 
However, data limitations pose challenges for subna-
tional TB burden estimation. 
M E T H O D S : We developed a small-area modeling 
approach using geo-positioned prevalence survey 
data, case notifications, and geospatial covariates to 
simultaneously estimate spatial variation in TB inci-
dence and case notification completeness across dis-
tricts in Uganda from 2016–2019. TB incidence was 
estimated using 1) cluster-level data from the national 
2014–2015 TB prevalence survey transformed to 
incidence, and 2) case notifications adjusted for geo-
spatial covariates of health system access. The case 
notification completeness surface was fit jointly 

using observed case notifications and estimated 
incidence. 
R E S U L T S : Estimated pulmonary TB incidence among 
adults varied .10-fold across Ugandan districts in 2019. 
Case detection increased nationwide from 2016 to 2019, 
and the number of districts with case detection 
rates .70% quadrupled. District-level estimates of TB 
incidence were five times more precise than a model using 
TB prevalence survey data alone. 
C O N C L U S I O N : A joint spatial modeling approach pro-
vides useful insights for TB program operation, outlining 
areas where TB incidence estimates are highest and health 
programs should concentrate their efforts. This approach 
can be applied in many countries with high TB burden. 
K E Y  W O R D S :  modelling; tuberculosis; TB prevention; 
TB control program 

Reducing the substantial burden of TB morbidity and 
mortality requires public health efforts that fit the local 
epidemiology of a region. While TB prevalence and 
incidence are typically estimated at the national level in 
high-burden settings, they likely vary locally within a 
country in relation to differences in underlying risk 
factors. By identifying these differences, programs can 
more efficiently and equitably allocate resources to 
reach and treat all people with TB to reduce the local 
burden of disease.1,2 

In Uganda, the National Tuberculosis and Leprosy 
Control Program (NTLP) aims to provide effective and 
equitable treatment to all people with TB and provide TB 
preventive treatment to people with increased risk of 
developing TB. Uganda is a country with a high burden 
of TB, with an estimated incidence of 198/100,000 in 
2022.3 Case notifications have increased by 59% over 
the past decade,4 thanks to campaigns to sensitize people 
about the need to seek care for TB symptoms, improved 
availability of rapid diagnostic testing for TB, and 
community screening by village health teams. 

Despite recent increases in TB case notifications, a 
significant gap persists between the number of people 

estimated to have developed TB in 2021 and those who 
were notified to the NTLP through the national health 
information system.5 Previous studies suggest that TB 
burden varies widely across Uganda’s districts and 
regions.6–8 Similarly, health and social factors asso-
ciated with TB vary across the country: for example, 
HIV prevalence, a leading risk factor for TB, was 
found to vary four-fold across the regions of Uganda in 
2020.9 Better estimation of subnational TB burden 
may help inform public health efforts to reach addi-
tional people with TB. 

At the national level, TB burden has traditionally 
been measured using TB prevalence surveys, case 
notifications, and cause-specific mortality data, where 
available.10,11 National TB prevalence surveys use a 
well-defined screening process to identify people with 
signs and symptoms of TB within a sample population, 
typically people aged �15 years, and microbiological 
testing is conducted to confirm the presence of TB.12 

National TB prevalence surveys, while providing ro-
bust epidemiological evidence, are conducted infre-
quently due to their expense and logistical complexity. 
In contrast, reported case notifications offer a more 
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abundant and readily accessible source of data, with 
counts available for each geographic district and year. 
However, it is important to note that while case no-
tifications provide valuable insight into the distribu-
tion of active TB diagnoses, they may not fully capture 
the true TB incidence due to various factors such as 
lack of access to healthcare, diagnostic limitations, or 
misdiagnosis as other respiratory conditions.7 

Although previous studies have explored spatial 
variation in TB incidence and prevalence within high- 
burden countries, no widely accepted standards exist 
for assessing subnational variation in TB.13 A recent 
systematic review identified 168 studies that con-
ducted spatial analyses of TB, including 57 in high- 
burden settings.14 Of these, 161 (96%) used TB case 
notifications as the data underlying the spatial anal-
ysis, although no studies in the review accounted for 
spatial variation in under-reporting of case notifica-
tions, which can be problematic in settings where 
patterns in case notifications may better reflect health 
system access and program efforts than the underlying 
TB burden.15 Additional factors such as distance from 
hospital/clinic, lack of local transport, gender, 
knowledge of TB, and stigma can all influence 
treatment-seeking behavior,16–18 further complicating 
the interpretation of case notification rates. Subse-
quent spatial studies have used TB prevalence survey 
data to estimate subnational burden.13,19 

This study proposes a new method for estimating 
spatial variation in TB burden by combining data from 
a TB prevalence survey, annual case notifications, and 
predictive spatial covariates. This method is applied to 
estimate TB incidence and case notification com-
pleteness (defined as the estimated proportion of 
incident pulmonary TB cases among adults 
aged �15 years who are reported in case notifica-
tions) across districts in Uganda, with the goal to 
inform public health program activities to reach all 
people with TB. 

METHODS 

Study design and ethics 
This nationwide modeling study used the 136 admin-
istrative districts of Uganda as the unit of analysis, 
including the capital, Kampala, as a separate 
administrative unit. 

The study was approved by the Makerere University 
School of Medicine Research Ethics Committee, 
Kampala, Uganda (2021-019); the Uganda National 
Council for Science and Technology, Kampala, 
Uganda (HS1981ES); and the University of Wash-
ington Human Subjects Division, Seattle, WA, USA 
(STUDY00006169). 

Data sources 
The 2014–2015 Uganda National TB Prevalence 
Survey used a cross-sectional, population-based 

cluster sampling design.20 We matched each sampled 
survey cluster to its corresponding district. We 
extracted the number of people with bacteriologically 
confirmed pulmonary TB and the total tested pop-
ulation within each cluster from the National TB 
Prevalence Survey published report.20 Figure 1A 
shows these raw prevalence estimates by district. Of 
136 districts in Uganda, 58 were associated with at 
least one cluster from the 2014–2015 prevalence 
survey. 

We extracted annual counts of TB case notifications 
by district, as reported to the NTLP, for 2016–2019. We 
included only case notifications for pulmonary TB 
among adults aged �15 years to match the population in 
the 2014–2015 National TB Prevalence Survey. We then 
calculated the population of adults aged �15 years using 
high-resolution gridded population estimates for every 
1 km-by-1 km area in Uganda from the WorldPop 
Project.21 We aggregated these data by district. Figure 1B 
shows the estimated case notification rate for pulmonary 
TB by district. At the national level, the case notification 
rate for pulmonary TB among people aged 15 and above 
increased from 211/100,000 people in 2016 to 254/ 
100,000 in 2019.5 

Through consultation with experts in Uganda, we 
identified five predictive covariates for TB incidence, 
all of which vary by district and year: 1) household 
crowding;22 2) nighttime lights, a proxy for local 
variation in economic activity;23 3) HIV prevalence;24 

4) refugees per capita;25 and 5) cattle per capita, a 
proxy for pastoral populations.26 We also identified 
one predictive covariate for TB case notification 
reporting completeness, which varies by district: 
average travel time to the nearest health facility.27 All 
covariates were summarized by district and year for 
use in the statistical model. 

Statistical model 
We developed a small-area statistical model to jointly 
and simultaneously estimate TB incidence and TB case 
notification reporting completeness by district for 
2016-2019, summarized in Figure 2. TB incidence for 
each district d and year t, denoted Incidenced,t, is a log- 
linear surface that varies according to an intercept 
(aINC), fixed effects (b

. INC) on the five incidence 
covariates (X INC

d;t , a matrix), and a spatially-structured 
random intercept by district (Z

.

d
INC): 

Incidenced;t¼ exp
�

aINCþ b
.INC X INC

d;t þ Z
.

d
INC
�

We define case notification reporting completeness 
as the estimated ratio between the number of reported 
TB cases and true count of incident TB cases as defined 
in our study. Completeness for each district d and year 
t, denoted Completenessd,t, is a logit-linear surface that 
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Figure 1. Data sources used to estimate TB incidence and case notification completeness: A) TB prevalence point estimates from 
the 2014–2015 National Tuberculosis Prevalence Survey, aggregated to the district level; B) TB case notification rates by district, 
2016–2019. 
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varies according to an intercept (aCOMP), a fixed effect 
(bCOMP) on the distance to facility covariate (XCOMP

d , a 
column matrix), a spatially-structured random intercept 

(
.
Z1d

COMP), and a spatially-structured random slope on 

time (
.
Z2d

COMP): 

Completenessd;t¼ logit� 1
�

aCOMPþbCOMP XCOMP
d þ

.
Z1d

COMP 

þ
.
Z2d

COMP
*t
�

The two spatial random intercepts (Z
.

d
INC;

.
Z1d

COMP
) 

and spatial random slope on time (
.
Z2d

COMP) are all 
parameterized using a Besag proper conditional 
autoregressive (CAR) model in space.28 

In populations where disease burden is relatively 
stable, the prevalence and incidence of a disease are 
related by the expected (mean) duration of the disease: in 
other words, Prevalence¼ Incidence*Duration.29 To 
relate TB prevalence data to estimates of TB incidence, it 
is therefore necessary to estimate TB duration by district. 
Using TB duration estimates published by the WHO that 
vary depending on treatment and HIV status,10 we 
develop a formula for average duration as a function of 
case notification completeness, detailed in the Sup-
plementary Appendix: 

Durationd;t¼1:51 years � 0:42*Completenessd;t 

District-level observations from the National TB 
Prevalence Survey, with numerators YPrev

d and sample 
sizes NPrev

d , are evaluated against the estimated prev-
alence (incidence times duration) surface in 2016, 
which is the earliest year where district-level case 
notifications were readily available: 

YPREV
d ~Poisson

�
NPREV

d *Incidenced;2016*Durationd;2016
�

In addition, case notifications with reported cases 

YNotif
d;t and corresponding population denominators 

NNotif
d;t are evaluated against the true incident cases in 

the population (NNotif
d;t * Incidenced;t) multiplied by 

case notification completeness: 

YNotif
d;t ~Poisson

�
NNotif

d;t * Incidenced;t*Completenessd;t

�

The joint model was fit using the Laplace approxi-
mation for mixed-effect parameter estimation.30 The 
model was fit in R v.4.3.1 (R Core Team, Vienna, 
Austria) using the package Template Model Builder 
v.1.9.6.30,31 The likelihood of all model parameters 
governing district-level TB incidence and case notifi-
cation completeness were evaluated simultaneously, 
then repeatedly stepped until reaching the most likely 
combination of parameters given the observed data 
and model priors. 

Figure 2. Flow chart for small area estimation model. TB incidence is estimated by district, and case notification completeness is 
estimated by district and year. Blue boxes indicate data inputs to the model. Dark orange boxes indicate the two key outcomes, TB 
incidence and case notification completeness, estimated by the model. Light orange boxes indicate intermediate outcomes that are 
used to compare estimated outcomes to data. 
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Model evaluation and comparison 
To understand the effect of case notifications on model 
performance, we fit two versions of the model: one in-
corporating both TB prevalence survey results as well as 
case notifications, and a prevalence-only small area model 
incorporating just data from the TB prevalence survey. 

We performed out-of-sample predictive validity test-
ing using the TB Prevalence Survey. We also performed 
sensitivity analyses to understand how assumptions 
about average duration influenced model results. These 
tests are detailed in the Supplementary Data. 

RESULTS 

Figure 3 shows the estimated incidence of pulmonary 
TB across the districts of Uganda. The joint spatial 

model estimated that TB incidence varied over 10-fold 
across districts of Uganda, ranging from 94 cases/ 
100,000 in Bukedea District, Eastern Region to 
1,313 cases/100,000 in Kalangala District, Central 
Region. District clusters with below-average TB in-
cidence were apparent in the southwest and southeast 
of Uganda, while districts with above-average TB 
incidence were concentrated in the center and north of 
the country. 

Figure 4 shows the estimated case detection rate 
(defined as the ratio between observed case notifica-
tion counts and model-estimated TB incidence) by 
district in 2016 and 2019. Case detection increased in 
109 of 136 districts during the study time period. In 
2016, fewer than 1 in 10 districts had a case detection 
rate greater than 70%, while 4 in 10 districts had a 

Figure 3. Estimated incidence of pulmonary TB/100,000 population by district in Uganda, 2019. 

Figure 4. Estimated TB case detection rate by district in Uganda for A) 2016 and B) 2019. 
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case detection rate below 50%. By 2019, over 3 in 
10 districts had case detection greater than 70%, and 
fewer than 1 in 10 districts had case detection rates 
below 50%. This matches evidence from the NTLP, 
which recorded a 33% increase in case notifications 
from 2016 to 2019. However, the model estimates that 
some clusters of low case detection remain in districts 
across the far north and east of Uganda. 

The average duration of TB cases was also estimated 
as a function of the case detection rate. In 2019, the 
average duration of pulmonary TB was estimated to 
range from 1.15 years in Obongi to 1.43 years in 
Pallisa, a difference of over 3 months. 

Results of model comparison 
A second, survey-only model was developed for 
comparison using only observations from the 2014– 
2015 national TB prevalence survey and the same suite 
of five predictive covariates (i.e., without case notifi-
cation data). Compared to the data shown in Figure 1, 
the survey-only model strongly smooths towards the 
national mean in unobserved districts. Prevalence 
estimates generated from the survey-only model are 
also much more uncertain than the joint model, with 
the average width of the 95% uncertainty interval (UI) 
more than five times larger. 

Figure 5 demonstrates how the addition of case 
notification data increases model precision, enabling 
greater confidence in the identification of low- and high- 
burden districts. The figure shows model predictions for 
districts where TB prevalence falls below 300 cases/ 
100,000, as well as districts exceeding a relatively high 
prevalence threshold of 600/100,000. In the context of 
this figure, low-confidence predictions indicate that the 
model’s mean estimated prevalence passed a given 
threshold, while high-confidence predictions indicate 
that both bounds of the 95% uncertainty interval for 
prevalence in a district have passed the threshold. 
Figure 5A shows prevalence estimates based on the joint 
model developed in this paper; Figure 5B shows prev-
alence estimates based on the survey-only model. The 

joint model sorted half of all districts (n ¼ 68) into either 
low or high burden categories; it sorted 31 districts with 
high confidence. The survey-only model sorted only 
45 of 122 districts into either high or low burden cat-
egories, and sorted only three districts with high 
confidence. 

When comparing out-of-sample results between the 
two models, the joint model outperformed the survey- 
only model, displaying a lower root mean squared error 
and a higher correlation to held-out prevalence survey 
data (Supplementary Figure S5). Out-of-sample estimates 
from the joint model were the most consistent with both 
prevalence survey data and observed case notifications. 

DISCUSSION 

We describe a novel framework for estimating TB 
incidence and case detection rate per district by syn-
thesizing data from a national TB prevalence survey 
and annual case notifications in Uganda. We found 
that although estimated incidence varied substantially 
by district, the estimated case detection rate increased 
between 2016 and 2019 in most districts. 

More precise estimates of high vs. low burden 
districts can be informative for public health program 
activities. In many settings, district TB case-finding 
targets are developed by multiplying estimated 
national TB incidence by the district-level population; 
alternately, case-finding targets by district may be set 
as a function of the previous year’s targets. By in-
corporating district-level estimates of TB incidence 
into case-finding targets, TB programs may be better 
able to identify all people living with TB in a district. 
District specific estimates generated by the model were 
shared with Uganda NTLP and have been used to 
guide active TB case finding campaigns. 

This modeling approach that uses prevalence survey 
and case notification data together generates more 
precise estimates by compensating for the shortcomings 
of each data source, particularly by addressing the issue 
of systematic under-reporting in case notification data. 

Figure 5. Results of a performance comparison between the statistical model presented in A) this manuscript, and B) an alternative 
small-area model that does not incorporate data from TB case notifications. 
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Modeling approaches utilizing case notification data are 
valuable, particularly as the quality of these data improve 
through major investments in electronic health man-
agement information systems and efforts to improve 
outreach to find people with TB. This approach repre-
sents a step forward from previous TB spatial modeling 
frameworks, which have relied solely on one of these two 
data types.14 

While this model provides relatively precise estimates 
of TB prevalence and case notification completeness 
across districts in Uganda, it is important to acknowl-
edge its limitations. First, this model assumes that 
changes in incidence can be explained by covariate 
relationships, and that the random intercept on TB 
prevalence (a stand-in for latent factors causing variation 
across districts) remains constant over time. While this 
assumption may be reasonable over the study time 
period,2,11 it cannot hold if the End TB goals are to be 
met. Additional population-based surveys of TB burden 
are needed to ground future estimates as the relationship 
between burden and underlying risk factors shifts over 
time, particularly following major disruptions in TB 
programming due to COVID-19. Second, to relate data 
sources measuring TB incidence and prevalence, we 
approximate variation in TB duration by district as a 
function of case detection rates. This approximation 
required strong assumptions about the factors influ-
encing duration by district in Uganda. More evidence is 
needed to understand local variation in TB duration. 
Because subnational TB modeling relies on statistical 
assumptions, results should be interpreted in conjunction 
with local epidemiological evidence and expertise. 

While this study focused on Uganda, similar methods 
could be applied in other high-burden countries with 
TB prevalence survey data, which includes at least 
23 of the 30 high TB burden countries.2 By modeling 
TB case notifications with data from a single preva-
lence survey, programs in many TB high-incidence 
countries could utilize information about subna-
tional TB variation to reach and treat more people 
with TB, potentially reducing the burden of TB. 
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R É S U M É  

C O N T E X T E : L'identification des variations spatiales de la 
charge de morbidité de la TB peut aider les programmes 
nationaux de lutte contre la TB à allouer efficacement les 
ressources pour atteindre et traiter toutes les personnes 
atteintes de TB. Cependant, les limites des données 
posent des problèmes pour l'estimation de la charge de 
morbidité infranationale. 
M É T H O D E S : Nous avons développé une approche de 
modélisation à petite échelle en utilisant des données 
d'enquête de prévalence géolocalisées, des notifications de 
cas et des covariables géospatiales pour estimer simulta-
nément la variation spatiale de l'incidence de la TB et 
l'exhaustivité de la notification des cas dans les districts de 
l'Ouganda de 2016 à 2019. L'incidence de la TB a été 
estimée à l'aide 1) des données au niveau des grappes de 
l'enquête nationale sur la prévalence de la TB de 2014– 
2015, transformées en incidence, et 2) des notifications de 
cas ajustées pour tenir compte des covariables géospatiales 
de l'accès au système de santé. La surface de complétude des 

notifications de cas a été ajustée conjointement à l'aide des 
notifications de cas observés et de l'incidence estimée. 
R É S U L T A T S : L'incidence estimée de la TB pulmonaire 
chez les adultes a été multipliée par >10 dans les districts 
ougandais en 2019. La détection des cas a augmenté à 
l'échelle nationale entre 2016 et 2019, et le nombre de 
districts avec des taux de détection des cas >70% a 
quadruplé. Les estimations de l'incidence de la TB au 
niveau des districts étaient cinq fois plus précises qu'un 
modèle utilisant uniquement les données de l'enquête sur 
la prévalence de la TB. 
C O N C L U S I O N : Une approche conjointe de modélisation 
spatiale fournit des informations utiles pour le fonc-
tionnement des programmes de lutte contre la TB, en 
décrivant les domaines où les estimations de l'incidence 
de la TB sont les plus élevées et où les programmes de 
santé devraient concentrer leurs efforts. Cette approche 
peut être appliquée dans de nombreux pays où la charge 
de morbidité de la TB est élevée. 
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