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Abstract
Background Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is
contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms
perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of
infection and/or disease severity.
Methods Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced
gene expression changes were extracted. Each study was quality assessed and higher confidence scores
were assigned to genes consistently changed across multiple studies following the same exposure. These
genes were used to explore pathways significantly altered following exposure.
Results 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes,
nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both
SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed
that many of those genes with high confidence scores are involved in common cellular processes relating
to hyperinflammatory immune responses.
Conclusion Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host–
pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could
potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory
distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the
biological mechanisms involved in perturbation of viral-entry genes and host–pathogen interactions and
subsequent responses within the respiratory tract. This will improve our physiological understanding of the
impact of smoking and vaping on COVID-19, informing public health advice and providing improved
guidance for management of SARS-CoV-2 and other respiratory viruses.

Introduction
The global coronavirus disease 2019 (COVID-19) pandemic and its causative pathogen, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for millions of mortalities
worldwide [1]. SARS-CoV-2 continues to transmit through the population and poses a threat to public
health globally. Host cell entry is predominantly through the angiotensin-converting enzyme (ACE)2
receptor, which is a part of the renin angiotensin system (RAS) [2, 3]. Entry is further enhanced with the
priming of the spike proteins of the virus by host cell enzymes transmembrane serine protease (TMPRSS)
2, furin, neuropilin (NRP)1 receptor, CD147 receptor and/or cathepsins [4–10]. Following the initial
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infection, COVID-19 symptoms are flu-like, with severe cases involving a hyperinflammatory response
that can result in a cytokine storm and further complications such as acute respiratory distress syndrome
(ARDS) and cardiac failure [11]. While vaccines are widely available and act to reduce severe disease, it is
important to identify specific at-risk populations to ensure there is targeted public advice.

Within the literature, the epidemiological associations between smoking and COVID-19 appear contradictory.
Some studies report that current smokers have a reduced risk of SARS-CoV-2 infection, while others suggest
that current smokers have a higher risk of COVID-19 hospitalisation than former or never-smokers [12].
Initial epidemiological investigations using hospital records reported that many smokers required aggressive
interventions and ventilation [13], but when adjusting for comorbidities these outcomes became
nonsignificant in other studies [14, 15]. This is likely due to the many comorbidities associated with
smoking, highlighting the difficulty of distinguishing the impact of smoking alone on COVID-19 and the
need for mechanistic studies to underpin the biological plausibility of epidemiological associations. Current
mechanistic evidence is largely centred around ACE2, nicotinic acetylcholine receptors (nAChRs) and RAS,
with potential crosstalk between ACE2 and nAChRs via RAS implicated in both reduction of SARS-CoV-2
infection [12, 16, 17] and more severe COVID-19 through stimulation of inflammatory signalling pathways
[18–20]. This suggests complex mechanisms that are dependent on infection/disease stage.

E-cigarette use in the UK is increasing as many current smokers use vaping as a tool to stop smoking.
Many ex-smokers continue to vape and the number of never-smokers that have begun vaping is increasing
[21]. Despite this, there is little research on the susceptibility of e-cigarette users to COVID-19. Initial
indications suggest they may have an increased risk of SARS-CoV-2 infection, but this may differ with
nicotine content, flavours and propylene glycol (PG):vegetable glycerine (VG) content [22, 23].

The aims of this review were therefore to 1) identify key genes and pathways of interest altered by tobacco
cigarette, e-cigarette or nicotine exposures that may affect viral-entry (and therefore the risk of an
individual to SARS-CoV-2 infection) and associated disease severity; and 2) perform a weight-of-evidence
based meta-analysis of key mechanistic studies to clarify the existing contradictory literature on the
potential impacts of smoking and vaping on COVID-19.

Materials and methods
Search strategy
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a thorough
search of the literature, using Ovid and Web of Science databases, was undertaken (up to November 2022).
Within each database, two individual searches were carried out, one related to smoking exposure (tobacco
cigarette smoke/tobacco cigarette smoke condensate (herein referred to as cigarette smoke (CS)), vaping
(e-liquid/e-liquid condensate/e-cigarette vape (herein referred to as e-cigarette), or nicotine), pathways of
interest and the respiratory tract; and a second focused on the interaction of respiratory viruses (with a
focus on SARS-CoV-2), smoking exposure and pathways of interest (detailed in supplementary material
S1). Additional search terms related to heated tobacco products were considered, but did not provide any
further results eligible for inclusion. Results were collated and duplicates removed.

Eligibility and exclusion criteria
Studies were screened for eligibility by their title, abstract and full text. R. Bowsher screened all studies,
with 10% of the total screened by E.L. Marczylo and A. Bailey. Discrepancies were discussed, and a
consensus decision was made. Inclusion and exclusion criteria (table 1) were developed to identify key
pathways altered following CS, e-cigarette or nicotine exposure in respiratory epithelial cells that may
affect the risk of a normal, healthy individual to SARS-Cov-2 infection and/or COVID-19 severity. Thus,

TABLE 1 Inclusion and exclusion criteria for selected studies

Included studies Primary literature articles published in English
Focused on epithelial cells within the respiratory tract and exposure to cigarette smoke,
e-cigarettes, nicotine and/or a respiratory virus

Excluded studies Focused on either epithelial mesenchymal transition, COPD, cancer, pregnancy, cystic
fibrosis, pulmonary sarcoidosis or other respiratory cell types such as endothelial cells

Used cancer-derived cell lines or samples from patients with comorbidities such as lung
cancer or COPD

Did not include exposure information
Studied bronchial alveolar lavage or immune cells only
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we were interested in the impact of smoking/vaping/nicotine on healthy individuals only and not those
with other respiratory pathologies or nonviral respiratory infections.

Data extraction
Data from eligible studies were extracted manually and collated (R. Bowsher). Extracted data included
details of exposure (type, dose and time, brand), model (species, cell type) and findings (mRNA and
protein) (supplementary material S2). Where supplementary information was available, the data for the top
10 upregulated and/or downregulated genes were extracted.

Quality assessment
A quality-scoring tool was adapted from previous reviews [24, 25]. Included studies were assessed against
six domains designed to measure their ability to address the review aim. These were cell model, route of
exposure, dose, gene expression, cytotoxicity and SARS-CoV-2 challenge (supplementary material S3).
Each study was given a score for each domain; higher scores were assigned for the following:

1) Physiologically relevant models such as primary epithelial air–liquid interface (ALI) cultures in vitro
and nonhuman primates in vivo.

2) Physiologically relevant routes of exposure such as aerosol systems in vitro and intranasal
administration in vivo.

3) Human exposure relevant doses with appropriate controls or dose-dependent responses.
4) Validation of gene expression changes with knockout, silencing, inhibitor or agonist investigations.
5) Use of multiple cytotoxicity assays (oxidative stress, DNA damage, barrier integrity, etc.).
6) SARS-CoV-2 challenge with wild-type infection.

Domain scores were combined and averaged to form an overall quality rating of very low, low, medium or
high for each study.

Meta- and pathway-analysis
A weight-of-evidence approach was developed to generate a confidence score (for the mRNA and/or
protein) that combined study frequency (the number of studies investigating the gene of interest (GOI)),
consistency (the overall level of change of the GOI across all studies) and quality (the overall quality score
of the studies from which each GOI was extracted). The frequency of all upregulated GOI extracted from
high-quality studies were multiplied by 2, medium quality by 1.5, low quality by 1 and very low quality by
0.5, while the frequency of all downregulated GOI extracted from high-quality studies were multiplied by
−2, medium quality by −1.5, low quality by −1 and very low quality by −0.5. Values for each GOI within
each exposure type were combined to generate overall confidence scores for the mRNA and protein per
GOI per exposure. Note that e-cigarette data were subdivided into those with nicotine (EC+N) or without
nicotine (EC−N). The higher the positive confidence score, the more robust the evidence for upregulation
and the greater the negative confidence score, the more robust the evidence for downregulation. Ensembl
was used to convert any nonhuman GOI into their human homologues prior to pathway analysis.

To simplify further for pathway analysis, mRNA and protein confidence scores for GOI were combined for
each exposure. GOI with the 10 greatest upregulated and downregulated confidence scores for each exposure
type (where data were available) were imported into Cytoscape (version 3.10.0) for pathway analysis using
the Kyoto Encyclopedia of Genes and Genomes database (22 May 2022). Overall scores for pathways
identified as significant or as having a large proportion of high-confidence GOI present were generated by
combining the confidence scores of all extracted genes for every exposure (where data were available).

Results
Overview of search results
Of the 7808 records identified by the literature search, 125 were selected for inclusion and categorised by
exposure type (figure 1a). Many excluded studies focused on comorbidities rather than investigating the
response within a healthy respiratory system. Within the included studies, most investigated the epithelial
cell response to CS (n=87, 70%) with fewer on either e-cigarette, nicotine or SARS-CoV-2 exposures (n=9
(7%), n=14 (11%) and n=7 (5%), respectively) or multiple exposure types (n=8, 5%). The majority of
included studies were performed in vitro (n=78, 62%) versus in vivo (n=22, 18%), while 25 (20%) used
both in vitro and in vivo models. Most in vitro studies used human epithelial cell lines or primary cells
(n=71, 57%), with 31 (25%) using other species (including mouse, rat, ferret, guinea pig, sheep and non-
human primates) and 23 (18%) using human plus another species. Throughout the included studies,
models, routes of exposure, doses, end-point assays, GOI, cytotoxicity and/or viral challenge varied,
making direct comparisons across the included studies difficult.
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FIGURE 1 a) Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart displaying the
search and selection process for studies included in the systematic review. b) Summary of the quality scores
assigned to the included studies based on the assessment of domains designed to determine the ability of
each study to address the review aims. NSCLC: nonsmall cell lung cancer; SARS-CoV-2: severe acute respiratory
syndrome coronavirus 2; EMT: epithelial–mesenchymal transition; BAL: bronchoalveolar lavage; e-cigarette:
electronic cigarette.
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Quality assessment
Quality scores per domain per study are detailed in supplementary material S4. The majority of the
included studies were high or medium quality overall (67%, n=84), with only 6% (n=8) of very low
quality (figure 1b). Of the in vitro studies, 28 (27%) used high-quality cell models such as primary cells
cultured at ALI for any length of time, or cell lines cultured at ALI for ⩾14 days allowing the cells to
differentiate into a pseudostratified epithelium. The remaining in vitro studies used submerged monolayer
cell culture or cell-line ALI cultures for <14 days, which may therefore not be fully differentiated. The
route of exposure for in vitro studies was predominantly via direct application of a solution containing
tobacco cigarette condensate, e-liquid or nicotine (n=94, 91%) versus aerosolised delivery (n=9). Likewise,
almost all in vivo studies used a low-quality model (n=46, 98%) combined with a low-quality route of
exposure (n=37, 81%). Only 16 (12%) included studies directly measured the effect of CS, e-cigarettes or
nicotine on infection using wild-type or pseudo-SARS-CoV-2. However, 90% (n=112) of the studies
performed some additional investigation or validation of exposure-induced gene expression changes.

Meta-analysis
Genes of interest
While included studies provided data on exposure-induced expression changes in 480 genes
(supplementary material), the vast majority (n=351, 73%) were only measured in one article and were thus
assigned a single confidence score (figure 2a). Of those that were assigned two confidence scores (n=82,
17%), many were only measured in one exposure type, predominantly CS. Despite obvious data gaps and
variations in confidence across exposures, some exposure-induced trends were identified.

Those genes with five or more confidence scores are shown in figure 2b. These GOI have the most data
available to compare across different types of exposures. Many of these genes (ACE2, AKT1, CHRNA5,
CXCL8, interleukin (IL)6, matrix metalloproteinase (MMP)9, NFκB1, TMPRSS2, tumour necrosis factor
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(TNF)) were upregulated by CS. In contrast, e-cigarettes downregulated CDH1, CHRNA5, IL6 and TNF.
E-cigarette-induced changes in ACE2, TMPRSS2 and MMP9 were less clear, with some contrasting
evidence depending on the presence of nicotine (upregulated with nicotine and downregulated without).
Exposure to nicotine alone followed a similar trend to CS with upregulation of ACE2, AKT1, CHRNA5,
CXCL8, IL6, NFκB1, TMPRSS2 and TNF, and downregulation of CDH1. EC+N also downregulated
CDH1, and exposure to SARS-CoV-2 induced upregulation of ACE2, CXCL8, IL6 and TNF.

Exposure-induced changes in additional nAChRs and SARS-CoV-2 viral-entry genes are shown in figure
2c and d. The data on nAChRs predominantly comes from exposures to nicotine alone, which upregulated
CHRNA1–7 and CHRNB2/4. In addition, there was some evidence for CS-induced upregulation of
CHRNA1/3/5/7 and downregulation of CHRNA6/B4, with contrasting results for CHRNB2/G. The data on
other viral-entry genes comes from exposures to CS, which provided some evidence for upregulation of
BSG, CTSB, FURIN and TMPRSS4, and downregulation of CTSL and NRP1.

Pathway analysis
Significantly altered pathways following CS, e-cigarette or nicotine exposures included advanced glycation
end-products (AGE)-receptors for advanced glycation end-products (RAGE) (in diabetic complications),
IL17 and vascular endothelial growth factor (VEGF) signalling, with links to other diseases/infections such
as Chagas disease, influenza A, human cytomegalovirus and Karposi sarcoma-associated herpesvirus
(figure 3a). Examination of the confidence scores of the gene expression changes behind these pathways
(figure 3b–d) demonstrated that CS upregulated many of the genes in the AGE-RAGE (in diabetic
complications), IL17 and VEGF signalling pathways. While data for these genes following SARS-CoV-2
and e-cigarette exposures (particularly EC−N) were limited, there was some evidence that, in contrast to
CS, EC-N and EC+N downregulated GOI within the same three pathways. Nicotine- or SARS-CoV-2-
included GOI changes more closely resembled those following CS exposure.

In summary, while data were limited for the impact of EC−N, genes and pathways of interest identified in
this review were altered following exposure to CS, EC+N, or nicotine alone, some of which were similarly
altered by SARS-CoV-2 infection.

Discussion
Data were extracted from 125 studies identifying genes and pathways perturbed by CS, e-cigarette, nicotine
alone or SARS-CoV-2 infection to investigate the potential impact of smoking/vaping/nicotine on the
risk of SARS-CoV-2 infection and disease severity. This identified potential biological mechanisms for
further investigation, but also highlighted knowledge gaps and factors to consider when collating and
interpreting evidence.

Study design
Many studies used either cell donors with comorbidities, or models (in vivo and in vitro) that scored as low
quality because they lacked physiological relevance. More physiologically relevant in vitro cell models
include microfluidic systems, three-dimensional co-cultures and primary human epithelial cells cultured at
an ALI for a suitable length of time, which allows differentiation of basal cells into ciliated or mucus-
producing goblet cells with tight junctions that form an epithelial barrier [26, 27]. Cells cultured at ALI
have their apical surface in contact with air, enabling aerosol exposures. ALI combined with aerosol
exposures have greater physiological relevance compared to submerged cultures (test substance added into
the media covering cell monolayer) or suspension exposures (test substance added in solution to ALI
culture). Cellular responses following aerosol exposure, including the release of cytokines, are more likely
indicative of the aerosol constituents, rather than the result of stress from the abnormal environment within
submerged cultures or suspension exposures. Nevertheless, more physiologically relevant models are
time-consuming, expensive and can create large data variability, especially when using primary cells from
multiple donors. Cell lines differentiated at ALI are an alternative, less variable, option. However, full
validation is essential to fully characterise physiological relevance and presence of key mechanisms
[26, 27]. Inconsistencies within study models, exposure methods and doses, made comparing overall
outcomes challenging.

Extracting mRNA and protein data also revealed inconsistencies. Much of the data available following
exposure provided information on either mRNA or protein levels alone, creating gaps in the dataset. There
was little weight of evidence as many GOI were only reported in one study. Only ACE2 expression data
were available following all exposures. Studies on e-cigarettes were particularly lacking, with the impacts
of different PG:VG content, flavours and nicotine composition remaining largely unstudied [21, 28].
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Genes of interest
GOI were selected as 1) having key roles in SARS-CoV-2 viral-entry (ACE2, TMPRSS2, TMPRSS4,
NRP1, BSG, FURIN, CTSL, CTSB); 2) potentially explaining contradictory results/findings (nAChRs and
relevant subunits); and/or 3) within the top 10 genes with the greatest coverage across the different
exposure types (ACE2, AKT1, CDH1, CHRNA5, CXCL8, IL6, MMP9, NFKB1, TMPRSS2, TNF). Key
GOI are discussed here (and summarised in figure 4) with respect to potential impacts on risk of
SARS-CoV-2 infection and COVID-19 severity.

Risk of infection
The roles of ACE2 and TMPRSS2 in SARS-CoV-2 viral-entry are well reported and TMPRSS4, NRP1,
BSG (also known as CD147), FURIN, CTSL and CTSB also assist with viral-entry [29]. ACE2 was
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b) Following expsoure to electronic cigarettes with nicotine
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FIGURE 4 An overview of how genes and signalling pathways of interest may alter the risk of severe acute
respiratory syndrome coronavirus 2 infection and subsequent coronavirus disease 2019 (COVID-19) severity
following exposure to a) cigarette smoke or b) electronic cigarettes with nicotine. Where text remains black for
genes or signalling pathways, there were no data available. NRP: neuropilin; ACE: angiotensin-converting
enzyme; TMPRSS: transmembrane serine protease; VEGF: vascular endothelial growth factor; IL: interleukin;
TNF: tumour necrosis factor; AGE: advanced glycation end-products; RAGE: receptors for advanced glycation
end-products; ARDS: acute respiratory distress syndrome; MMP: matrix metalloproteinase.

respiratory syndrome coronavirus 2 (SARS-CoV-2) alone) that are involved in the pathways of interest: b) advanced glycation end-products
(AGE)-receptors for advanced glycation end-products (RAGE) (in diabetic complications), c) interleukin (IL)17 and d) vascular endothelial growth
factor (VEGF) signalling. MAPK: mitogen-activated protein kinase; TNF: tumour necrosis factor; MMP: matrix metalloproteinase.
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upregulated by SARS-CoV-2 infection [30–33] and ACE2 plus many of these other viral-entry GOI were
consistently upregulated by CS [23, 30, 32, 34–44], with only three contradictory studies reporting ACE2
[35, 45] and NRP1 [46] downregulation. Significantly increased SARS-CoV-2 or pseudoviral infection
rates were also measured in nasal epithelial cells from smokers [30] and primary human bronchial
epithelial cells cultured at ALI [47], compared to controls. Hence, smokers may be at greater risk of
infection with SARS-CoV-2 than nonsmokers.

Exposure to EC+N generally upregulated ACE2 [23, 48–50] and TMPRSS2 [50]. One study reported
downregulation in ACE2 [22], with more evidence of downregulation induced by EC−N [49, 50]. This
suggests that nicotine plays a key role in the impact of e-cigarettes on viral uptake, potentially increasing
the risk of SARS-CoV-2 infection in vapers versus nonvapers.

Nicotine-enhanced viral uptake is suggested to involve nAChRs. The α7 [38, 46, 51, 52] nAChR and α5
[53], α3 [54] and α1 [53] related subunits were upregulated following exposure to CS, with limited data
following e-cigarette exposure. Nicotine-induced upregulation of ACE2 was mediated by α7 nAChR in
mice [49] and human bronchial epithelial cells grown in monolayer exposed to nicotine at a dose
equivalent to smoking one cigarette [55]. Both studies validated findings, using α7 nAChR knockout
experiments or gene silencing. The nicotine-derived nitrosamine ketone within tobacco smoke also
upregulated α7 nAChR, increasing the sensitivity of small bronchial epithelial cells to stresses [46]. Wider
literature suggests that in response to stress, ACE2 levels increase, as part of RAS, to elicit
stress-dampening actions [56] with the promotion of oxidative stress in ACE2 knockout mice [57].
Stimulation of α7 nAChR following exposure to nicotine may increase ACE2 as demonstrated in bronchial
epithelial cells [38]. CS and e-cigarettes containing nicotine may therefore promote α7 nAChR-mediated
upregulation of ACE2, also potentially increasing the risk of SARS-CoV-2 infection in smokers and vapers
versus nonsmokers/nonvapers.

Some studies also reported altered expression of key viral-entry genes within different regions of the
respiratory tract and between different sexes. ACE2 was upregulated in bronchial cells but downregulated
in alveolar cells [36], and, while differences in ACE2 expression were not significantly different in
smokers across nasal, bronchial and alveolar tissue, nonsmokers had significantly higher ACE2 expression
in alveolar compared to their nasal and bronchial regions (p=0.039 and p=0.007, respectively) [45]. In
addition, greater expression of ACE2 was observed in the goblet cells of smokers, and club cells of
nonsmokers [41]. With respect to sex differences, one study reported an e-cigarette-induced upregulation of
ACE2 mRNA expression in males only [48]; and another observed that, despite a greater ACE2 protein
abundance in females, only male ACE2 protein abundance was reduced following PG exposure [49].
Androgen signalling may contribute to these differences since increased androgens in smokers were
implicated in the increased expression of both TMPRSS2 and ACE2 [40]. Hence, cell types, respiratory
tract region, sex and smoking status can all influence ACE2 expression, which may contribute to the
conflicted literature surrounding smoking/vaping and risk of infection with SARS-CoV-2.

COVID-19 severity
AKT1 is associated with viral replication [58] and knockdown of AKT or silencing/inhibition of P13K/
Akt/mTOR pathways inhibits the replication of respiratory infections such as influenza A [59] and Middle
East respiratory syndrome coronavirus (MERS-CoV) [58, 60]. Influenza A and MERS-CoV share
transmission and genetic similarities, respectively, with SARS-CoV-2 [61], so exposure-induced changes to
AKT1 expression could impact SARS-CoV-2 replication. AKT1 was upregulated with high confidence by
CS [51, 62–64] or nicotine alone [51, 55, 65]. This may counteract the viral-induced reduction of AKT
reported in one study [66], increasing SARS-CoV-2 replication following infection and the subsequent risk
of severe disease in smokers.

Many GOI relate to the pro-inflammatory immune response. The pro-inflammatory cytokines IL6 and
TNF, chemokine CXCL8 and/or the NFκB1 inflammatory subunit were upregulated following exposure to
CS [18, 35, 64, 67–87], nicotine alone [51, 88–90] or SARS-CoV-2 [32, 35, 66, 91]. While inflammation
is a key part of the beneficial immune response, hyperinflammation can be detrimental and the drivers of
the switch from beneficial to detrimental remain unknown. An elevated IL6 serum concentration is
observed in patients with COVID-19 and is strongly associated with adverse clinical outcomes, suggesting
it is a predictor of/linked to more severe disease [92, 93]. TNF and NFκB1 are involved in the cytokine
storm and a hyperinflammatory state, and increased levels are indicative of severe COVID-19 [93, 94].
CXCL8 elevation is a prognostic marker for those at a high risk of ARDS and of patients at a high risk of
experiencing severe COVID-19 [95, 96]. The induction of a pro-inflammatory environment in smokers
may therefore contribute to, and exacerbate, a cytokine storm, leading to more severe COVID-19 and
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ARDS [93]. There was some limited evidence of e-cigarette-induced IL6 and TNF downregulation, and
NFκB1 upregulation [22, 49], suggesting that vapers may be at a lower risk of developing severe
COVID-19 versus smokers, but at increased risk versus nonsmokers.

MMP9 is a matrix metallopeptidase elevated in the plasma of patients with severe COVID-19 and
correlated with in-hospital deaths [97]. Upregulation of MMP9 by CS [70, 74, 98–101] and EC+N [49]
suggests an increased risk of developing severe COVID-19. The downregulation of MMP9 following
exposure to EC−N [49] implies no additional risk for those using nicotine-free e-cigarettes and indicates a
role for nicotine in MMP9 expression. The latter is supported by α7 nAChR-mediated upregulation of
MMP9 [102], highlighting another potential role for nicotine and nAChRs in COVID-19 severity in
addition to increased infection risk.

ACE2 is also part of RAS, which despite originally being identified as the pathway regulating blood
pressure, has more recently been shown to play a key role in inflammation [2, 56]. Within RAS, ACE2 and
its homologue ACE balance anti- and pro-inflammatory responses, respectively [103]. It is widely reported
that the process of SARS-CoV-2 uptake ultimately downregulates ACE2 expression [2]. Thus, while the
different roles of ACE2 as the key viral uptake receptor (increasing risk of infection) and mediator of
anti-inflammatory responses (protecting against disease) appear contradictory, they should not be
considered distinct. Following an initial increase in ACE2-mediated viral uptake, the levels of ACE2 fall,
tipping the balance towards ACE and a more pro-inflammatory environment [103]. Thus, the potential
impact of smoking/vaping on severe disease through modification of ACE2 is complex and depends on the
specific part of the disease process being measured. This is probably a major contributor to the
contradictory literature.

Gender differences in SARS-CoV-2 infection risk may also impact COVID-19 severity. In the wider
literature, males are frequently reported as having higher rates of COVID-19 mortality and severe disease
compared to females [104, 105]. The most plausible explanation for this is gender disparity in hormone
levels and immune responses. Oestrogen in females is considered to help modulate the immune system and
provide additional protection from severe inflammation [104–106], whereas androgens in males are
associated with overactive immune cells and exacerbation of inflammation and disease severity [106]. The
latter, in combination with an elevated inflammatory response following exposure to CS or EC+N, may
lead to more severe COVID-19 in male smokers.

Pathways of interest
Pathways of interest were selected as 1) the most significantly enriched (IL17 signalling and AGE-RAGE
signalling pathway in diabetic complications) or 2) significantly enriched with wider literature supporting a
potential role (VEGF signalling). Key pathways are discussed here (and summarised in figure 4) with
respect to potential impacts on risk of SARS-CoV-2 infection and COVID-19 severity.

Risk of infection
VEGF signalling drives angiogenesis by inducing cell survival, proliferation and endothelial migration.
Most genes involved in VEGF signalling were upregulated following exposure to either CS or nicotine
alone [46, 52, 70], including its activator VEGFA [70]. VEGFA is able to activate the VEGF signalling
cascade by binding to VEGF [107, 108]. VEGFA also shares a common binding pocket (b12b domain) on
the viral-entry receptor NRP1 [10, 109] and therefore may alter SARS-CoV-2 uptake. Upregulation of
VEGFA following CS or nicotine exposure [70] could compete with the SARS-CoV-2 spike protein for the
NRP1 binding pocket. This highlights the complexity of viral uptake and the need to understand the affinity
of SARS-CoV-2 for, and expression levels of, different receptors. While smokers may have less risk of
viral-entry via NRP1 compared to nonsmokers, SARS-CoV-2 would still be able to enter cells via other
genes and proteases (such as TMPRSS2 and ACE2), that were upregulated by CS, EC+N or nicotine alone.

COVID-19 severity
VEGF signalling may also impact COVID-19 severity. SARS-CoV-2 binding to NRP1 can block
VEGF-related signalling, which reduces pain perception [109]. Increased VEGFA is associated with
inflammatory-related chronic pain in a variety of conditions [110, 111] and substantially lower levels of
VEGFA are reported in the sera of asymptomatic compared to symptomatic COVID-19 patients [112].
Thus, smoking or nicotine induced upregulation of VEGFA and VEGF signalling may lead to greater
symptomatic disease.

AGE-RAGE signalling can disrupt the extracellular matrix, enhancing oxidative stress and stimulating
NFκB signalling [113]. NFκB1 is a signalling molecule within the AGE-RAGE pathway and, as described
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earlier, increased levels can be used as a prognostic indicator of severe COVID-19 [94]. AGE-RAGE has
been widely studied and implicated in diabetic complications [114] and hyperactive AGE-RAGE signalling
in such comorbidities is already considered a risk factor for severe COVID-19 [115, 116]. Exposure to CS
or nicotine upregulated many genes within AGE-RAGE signalling with high confidence, including
CCND1, CXCL8, HRAS, IL6, KRAS and TNF [18, 22, 32, 64–76, 78–81, 83, 89, 90, 117–121],
suggesting that smokers have a hyperactive AGE-RAGE and are therefore more at risk of severe
COVID-19. In contrast, the limited data available suggest that EC+N and EC−N do not upregulate the
AGE-RAGE pathway and probably do not confer increased disease severity via this pathway.

IL17 signalling, encompassing all isoforms, is a pro-inflammatory response attracting chemokines and
activating cascades to recruit immune cells to sites of inflammation [122]. Exposure to SARS-CoV-2
increased many genes within the IL17 signalling pathway [32, 66, 91]. Increases in IL17 are observed in
COVID-19 patients and associated with the cytokine storm and ARDS, with IL17 blockers being
investigated as potential treatments in patients with severe COVID-19 [123]. Similarly, exposure to CS or
nicotine upregulated most of the IL17 signalling pathway, including CXCL8, mitogen-activated protein
kinase (MAPK)1 and MUC5AC [18, 22, 53, 67, 69–71, 74, 78–83, 85, 90, 100, 124–137]. Elevation of
IL17 signalling with further exacerbation following SARS-CoV-2 infection could suggest that smokers
may experience more severe disease, whereas the limited data available suggest that EC+N and EC−N do
not upregulate IL17 signalling and so are also unlikely to confer increased disease severity via this pathway.

It is worth noting that there was overlap in the GOI within, and thus potential cross-talk between, the
VEGF, AGE-RAGE and IL17 pathways. This highlights both the complexity of cellular responses to CS,
e-cigarettes or nicotine and the need to further investigate and validate specific mechanisms in human-
relevant models with appropriate controls and gene/pathway activators/inhibitors.

Impact of smoking/vaping on the risk/severity of SARS-CoV-2 infection
Overall, the mechanistic evidence to date suggests that cigarette smokers may be at a higher risk of both
infection and more severe disease, supporting recently published literature reviews assessing patient
outcomes and the potential impact of smoking on such outcomes [138, 139]. While the data on e-cigarettes
are limited, there is evidence for a potential increased risk of infection and/or disease severity in vapers of
EC+N, with vapers possibly at a lower risk of developing severe COVID-19 versus smokers, but at
increased risk versus nonsmokers. This highlights a key role for nicotine-mediated mechanisms in the
health impacts of smoking and vaping.

Other infections/diseases
Pathway analysis also identified other disease- and infection-related pathways, including human
cytomegalovirus, influenza A, Kaposi sarcoma-associated herpesvirus infection and Chagas disease. Both
human cytomegalovirus and influenza A are more prevalent in smokers [140–143], providing further
support that the results of this review are applicable to wider respiratory infections. In contrast, CS appears
to have an inverse relationship with Kaposi sarcoma-associated herpesvirus infection and cancer
development [144–146], probably due to virus- and/or disease-specific mechanisms. Chagas disease is a
parasitic vector-borne disease that causes immunoinflammatory-driven fibrosis, particularly in the
myocardium and digestive system [147], where smoking has been speculated as an underlying risk factor
for aspects of severe disease [148]. This highlights the robustness of this review and the methods used;
further demonstrates the complexity and variety of downstream responses to smoking; and highlights the
importance of investigating smoking- and vaping-related impacts on other communicable diseases.

Recommendations for future work
The key challenges and knowledge gaps highlighted by this review include study design, lack of studies on
e-cigarettes, building on existing literature (including additional cigarette constituents, cell types and/or
genes and pathways of interest), risk of infection versus disease severity, and application to other
infections/diseases. Therefore, we recommend that future work should consider the following.

Study design
Study design should address the specific research question within the most physiologically relevant and
exposure-relevant model where possible. Models should be 1) selected according to airway region, cell
types, sex differences, normal versus disease and expression of genes or pathways of interest; and 2) fully
characterised and validated. Resulting publications should clearly state the justification for the specific
model, exposure route, dose(s) administered and end-points profiled to aid comparison across different
studies. It is also important to include studies on normal/healthy models since these are essential to
understanding mechanisms before targeting specific populations.
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E-cigarettes
More research on the cellular responses to e-cigarettes is needed, particularly on genes and pathways of
interest highlighted in this review where data were unavailable (AKT1, CDH1, CHRNA5, CXCL8, IL6,
NFκB1 and TNF). These studies must compare EC+N and EC−N to further elucidate the role of nicotine
in the health impacts of smoking versus vaping.

Building on existing literature
Development of a list of “core genes/pathways” to further investigate with specific hypothesis-driven studies.
This would add to the weight of existing evidence, enable better comparison between studies and could
evolve with the expanding literature. The safety of new products, such as e-cigarettes with different
compositions or flavours, could then be more rapidly compared to existing products with known impacts.
This is particularly pertinent following recent evidence that other constituents of e-cigarette aerosols can
impact susceptibility to SARS-CoV-2 infection [149]. Therefore, the literature should be continually
reviewed to identify additional cigarette ingredients/compositions (e.g. benzoic acid), cell types (e.g.
endothelial and immune cells), genes and/or pathways (e.g. oxidative stress and antioxidant mechanisms) of
interest as the evidence grows.

Risk of infection versus disease severity
Better understanding of how the processes of infection and subsequent disease development inter-relate
and are impacted by smoking/vaping and wider environmental exposures.

Other infections/diseases
Similar reviews, incorporating a weight-of-evidence based approach that considers the frequency,
consistency and quality of existing literature, should be performed to assess the impact of smoking and
vaping on wider infections and diseases with inflammatory mechanisms.

Conclusions
To our knowledge, this is the first review to assess mechanistic associations between smoking or vaping and
SARS-CoV-2 infection and disease severity. Using a novel weight-of-evidence meta-analysis, we have
identified genes and pathways of interest within the respiratory tract altered by smoking, vaping and/or
nicotine that may impact SARS-CoV-2 infection and/or resulting COVID-19 severity. This suggests that
cigarette smokers may be at a higher risk of both infection and more severe disease. Large knowledge gaps
remain on the impact of e-cigarettes, with the limited data suggesting a potential increased risk of infection
and/or disease severity in vapers of e-cigarettes, particularly those containing nicotine. This highlights a key
role for nicotine-mediated mechanisms in the health impacts of smoking and vaping. Further specific
hypothesis-driven experimental investigations within more physiologically relevant models and improved
study design reporting are required to build on our existing knowledge and promote comparisons across
studies. Such work is essential for developing improved public health guidance on the risk of communicable
disease infection and severity for potentially more vulnerable populations such as smokers and vapers.
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