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KEY PO INT S

•Germ line ERG LOF
variants predispose to
cytopenias and HMs.

• Somatic genetic rescue
of ERG pathogenic
variants in
hematopoietic tissues
impacts diagnosis,
disease severity, and
potential for correction.
The genomics era has facilitated the discovery of new genes that predispose individuals to
bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery
of ETS-related gene (ERG), a novel, autosomal dominant BMF/HM predisposition gene.
ERG is a highly constrained transcription factor that is critical for definitive hematopoiesis,
stem cell function, and platelet maintenance. ERG colocalizes with other transcription
factors, including RUNX family transcription factor 1 (RUNX1) and GATA binding protein
2 (GATA2), on promoters or enhancers of genes that orchestrate hematopoiesis. We
identified a rare heterozygous ERG missense variant in 3 individuals with thrombocyto-
penia from 1 family and 14 additional ERG variants in unrelated individuals with BMF/HM,
including 2 de novo cases and 3 truncating variants. Phenotypes associated with patho-
genic germ line ERG variants included cytopenias (thrombocytopenia, neutropenia, and
pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, and acute
lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense and 1 truncating), including 3
missense population variants, were functionally characterized. Thirteen potentially pathogenic erythroblast trans-
formation specific (ETS) domain missense variants displayed loss-of-function (LOF) characteristics, thereby disrupting
transcriptional transactivation, DNA binding, and/or nuclear localization. Selected variants overexpressed in mouse
fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture and to promote
acute erythroleukemia when transplanted into mice, concordant with these being LOF variants. Four individuals
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displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germ line ERG
variants has clinical implications for patient and family diagnoses, counseling, surveillance, and treatment strategies,
including selection of bone marrow donors and cell or gene therapy.
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Introduction
Tightly controlled regulation of hematopoiesis is essential to
ensure adequate supply of healthy blood cells and the ability to
respond to increased demand. Transcription factors (TFs),
including ETS-related gene (ERG), TAL bHLH transcription factor
1, erythroid differentiation factor (TAL1), LYL1 basic helix-loop-
helix family member (LYL1), LIM domain only 2 (LMO2), GATA
binding protein 2 (GATA2), RUNX family transcription factor 1
(RUNX1), Meis homeobox 1 (MEIS1), Spi-1 proto-oncogene (SPI1/
PU.1), Fli-1 proto-oncogene, ETS transcription factor (FLI1), and
growth factor independent 1B transcriptional repressor (GFI1B),
form part of a network that, in varying combinations, control the
regulation of hematopoietic stem or progenitor cells.1,2 This TF
network is important for regulating cellular self-renewal, lineage
specification, differentiation, and migration. Dysregulation can
lead to cellular malfunction, impaired differentiation programs,
and aberrant stem cell self-renewal, all of which have implications
for human disease. Highlighting this, recurrent somatic variants
within several of these TFs, including chromosomal rearrange-
ments, point mutations, and insertions and deletions, are detected
in hematological malignancies (HM). Furthermore, germ line
pathogenic variants in RUNX1 (familial platelet disorder with pre-
disposition to myeloid malignancies, RUNX1-FPD; Monarch Dis-
ease Ontology [MonDO]: 0011071), GATA2 (GATA2 deficiency
with susceptibility to myelodysplastic syndrome [MDS]/acute
myeloid leukemia [AML]; MonDO: 0042982), and FLI1 (bleeding
disorder, platelet-type, 21; Online Mendelian Inheritance in Man:
617443) are associated with the development of hematological
disorders typified by an increased risk for cytopenias and/or HMs.
The roles of other members of this key hematopoietic TF network
in predisposing to HMs remain to be identified.3

ERG, a member of the ETS TF family, was first reported to be
critical for normal hematopoiesis in 2008.4 Like most ETS TFs,
ERG demonstrates various homeostatic functions by binding to
specific GGA(A/T) motifs to regulate genes in hematopoietic
and nonhematopoietic contexts. This includes binding at gene
regulatory sites with other key hematopoietic transcriptional
regulators, including with products of the HM predisposition
genes GATA2 and RUNX1.5 In normal hematopoiesis, ERG is
essential for maintaining quiescence and preventing differenti-
ation of hematopoietic stem cells (HSCs),6 thereby promoting
HSC self-renewal after hematopoietic stress (eg, bone marrow
[BM] transplantation)7 and supporting definitive hematopoiesis,
adult HSC function, and the maintenance of peripheral blood
(PB) platelet numbers.4

The perturbation of hematopoiesis by aberrant ERG expression
and the contribution of ERG overexpression to HMs have been
well documented,8-18 particularly in AML.19-22 The consequences
of dysregulated ERG are also evident in other diseases, including
cardiovascular disease,23-26 prostate cancers,27,28 Ewing’s sar-
coma,29 and B-cell acute lymphoid leukemia (B-ALL),30 the latter
3 via chromosomal translocations and genomic rearrangements.
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The first report of disease owing to a germ line ERG variant was
heterozygous Erg (S322P) that causes thrombocytopenia in a
mouse model.4 More recently, germ line loss-of-function (LOF)
ERG variants have been associated with a predisposition to pri-
mary lymphedema.31

To our knowledge, we report for the first time germ line ERG
variants in patients with a range of malignant and nonmalignant
hematological phenotypes. This discovery marks the identifi-
cation of the third ETS TF with autosomal dominant pathogenic
germ line variants and HM and/or bone marrow failure (BMF) (in
addition to ETS variant transcription factor 6 [ETV6]32 and
FLI133,34) and adds to the growing list of master hematopoietic
TFs already included in germ line–targeted sequencing panels
for HM predisposition (RUNX1, CEBPA, GATA2, ETV6,
MECOM, PAX5, and IKZF1).35 Our findings suggest a patho-
genic role for ERG haploinsufficiency or hypomorphic actions in
contrast with the prototypical oncogenic nature of ERG, thereby
defining ERG deficiency syndrome as a new disease entity.9

This paradox implies that the consequence of dysregulated
ERG may not be consistent across all spatial and temporal
cellular contexts, a phenomenon that is not uncommon in
hereditary HM predisposition (eg, GATA2).36 It also implies a
strict expression threshold at which point dysregulation of ERG
may upset the stoichiometry within a TF complex, leading to
predisposition for and/or initiation of HM-related disease. We
systematically examined the functional implications of ERG
variants on DNA binding, subcellular localization, and trans-
activation of gene expression and focused on specific variants
to demonstrate their effect on ERG-mediated myeloid differ-
entiation and cytokine independence ex vivo and their impact
on ERG-driven leukemia in an in vivo murine model.
Methods
Human and animal ethics
Samples were obtained from the Australian Familial Haemato-
logical Conditions Study, which was approved by the Women’s
and Children’s Health Network Human Research Ethics
Committee, Adelaide, Australia (approval 2020/HRE00981). All
other patient samples and data were covered by local institutional
human research ethics committees. Mouse experiments were
done with approval from the Hudson Animal Ethics Committee in
conjunction with the Monash University Animal Research Platform
and the Monash Health Translation Precinct Animal Facility.

Gene discovery

Genomic DNA was extracted (QIAamp DNA Mini Kit, Qiagen),
exonic sequences captured using xGen (Integrated DNA Tech-
nologies), and libraries sequenced using NextSeq 550 (Illumina)
to an average depth of 50× (hair) and 100× (blood). In addition,
polymerase chain reaction–free, short-read whole genome
sequencing was performed at the Australian Genome Research
ZERELLA et al



Facility (Melbourne, Australia). Variant calling was performed
using GATK (v3) (details in the supplemental Methods).
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Identification of additional ERG variants in
hematological cohorts
To identify additional kindreds with blood phenotypes and rare
ERG variants, we contacted collaborators with existing genomic
data obtained through routine clinical testing and research
studies. GeneMatcher37 was used to further expand our patient
cohort. All patient samples and data were covered by the local
institutional human research ethics committees in accordance
with the Declaration of Helsinki.

Luciferase assay
An integrin, alpha-2b (ITGA2B), in a pGL4.10-Luc vector was
kindly donated by Marie-Christine Kopp (University of Syd-
ney).33 K562 cells were seeded, transfected (Lipofectamine
2000), and then lyzed after 20 hours (Dual-Luciferase Reporter
kit, Promega). pUC18 was used to normalize the amount of
transfected DNA. Luciferase levels were measured using the
Explorer Multimode Microplate Reader (Promega).

Immunofluorescence staining
COS-7 cells were transiently transfected with pcDNA3.1-ERG
(Myc-tag) wild-type (WT) or variant expression vector, fixed
after 20 hours (4% paraformaldehyde), and probed with anti-
Myc antibody (9B11; New England Biolabs) and Alexa Fluor
488 Rabbit anti-mouse (A27023) secondary antibody. Fluores-
cent cells (100) were classified as nuclear (protein only in
nucleus) or cytoplasmic (protein in nucleus and cytoplasm).

EMSA
Human embryonic kidney 293 (HEK293) cells were seeded,
transiently transfected (Lipofectamine 3000), and lysates were
prepared (RIPA 9806S, Cell Signaling Technology). Both biotin-
labeled and unlabeled double-stranded DNA oligonucleotides
containing an ERG binding site were synthesized (5’ biotin-
GGCACTCACTTCCGGCTTGGCCGTCGA-3’). Electrophoretic
mobility shift assays (EMSAs) were performed using the LightShift
Chemiluminescent EMSA kit (ThermoFisher) with 20 pmol probe.

ERG overexpression in FLCs
Fetal liver cells (FLCs) harvested from embryonic day 14.5 WT
C57BL/6 mouse embryos were transduced (supplemental
Methods, available on the Blood website) with MSCV-IRES-
mCherry–based retrovirus containing either the ERGWT or ERG
variants (P116R, M219I, D345N R370P, Y372*, and Y373C).8

Transduced cells were cultured in StemSpan (STEMCELL
Technologies) supplemented with interleukin-3 (IL-3) (10 ng/
mL), IL-6 (10 ng/mL), Flt3L (50 ng/mL), SCF (50 ng/mL), and TPO
(50 ng/mL). Fluorescence-activated cell sorter analysis was
performed weekly for 4 to 6 weeks. For cytokine independence
assays, all cytokines were removed when cell populations
reached 80% to 90% mCherry+. Cell viability and survival were
measured every 3 days for 12 days.

In vivo leukemia model driven by ERG
overexpression
MSCV-ERG-IRES-mCherry retrovirus–transduced FLCs (method
as per “ERG overexpression in FLCs”) were cultured for 3 days
ERG PREDISPOSES TO CYTOPENIAS AND BLOOD CANCERS
before IV injection into sublethally irradiated 8-week-old
C57BL/6 mice. The mice received neomycin water for 3 weeks
after irradiation, and their blood was monitored every 2 weeks
for mCherry expression.
Results
Identification of BMF and/or HM families and
individuals with rare ERG variants
Family 1 presented with a range of hematological abnormalities
that included thrombocytopenia, neutropenia, and AML
(Figure 1A-B; supplemental Figure 1). Patient I-2 developed AML
at 27 years of age. The patient entered morphologic remission,
subsequently developed therapy-related MDS, and died at the
age of 36 years (supplemental Figure 1). A gene panel analysis
(supplemental Table 1) was conducted for all 3 affected family
members and showed no germ line pathogenic variants in known
BMF/HM predisposition genes. Whole exome sequencing anal-
ysis on the unaffected father confirmed the absence of any germ
line variants that may explain the phenotypes seen in both chil-
dren. Cytogenetic analysis identified a constitutional mosaic tri-
somy 8 in patient I-2 (supplemental Table 2), which was not
present in either of her children and may have contributed to the
myeloid malignancy progression. A pathogenic somatic RUNX1
(G165V) variant was identified in individual II-1 at a low variant
allele frequency (VAF) (2%) that may be an early indicator or
marker of clonal progression to malignancy. Platelet morphology
studies for individual II-1 identified minor platelet abnormalities,
including a slight increase in alpha granule numbers, a slight
dilation of the open canalicular system, and mildly enlarged
platelets, despite no noticeable mean platelet volume abnor-
malities (supplemental Figure 2A-B).

Whole exome sequencing analysis of all 4 individuals revealed
heterozygosity of a novel ERG variant (chr21g.38383725T>C
(hg38); c.1118A>G; p.Y373C) in the 3 affected individuals in that
a highly conserved amino acid was altered, and it segregated
with thrombocytopenia (Table 1; supplemental Figure 3A-B). This
variant was absent in the general population (Genome Aggre-
gation Database [gnomAD])38 and was predicted to disrupt DNA
binding (supplemental Figure 3C). Interestingly, single-
nucleotide polymorphism arrays identified copy neutral loss of
heterozygosity (cnLOH) events on chromosome 21q that
favored the ERG WT copy in all 3 carriers, strongly suggesting
somatic genetic rescue (SGR) of the germ line deleterious ERG
variant (c.1118A>G; VAF 30% [I-2], 17% [II-1], and 44% [II-2];
Figure 1C; supplemental Figure 3D). Intriguingly, cnLOH
encompassed the entire RUNX1 gene in 2 patients (I-2 and II-2),
and the recombination breakpoint in the most telomeric event in
individual II-1 was within the RUNX1 gene (Figure 1C). With the
addition of whole genome sequencing, we confirmed the pres-
ence of the cnLOH events, and the absence of deleterious var-
iants in RUNX1, including noncoding and structural variations,
that might explain the phenotype (supplemental Figure 4). Note,
cnLOH favoring the WT is not a commonly described mechanism
of somatic reversion in RUNX1-FPD.39

Through international collaborations and GeneMatcher37

(genotype matching resource), we identified an additional 13
rare ERG heterozygous variants associated with BMF- or HM-
related disease and 2 associated with lymphedema that were
24 OCTOBER 2024 | VOLUME 144, NUMBER 17 1767
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Figure 1. Germ line ERG variant identified in a family with hematological conditions. (A) Pedigree of family 1 containing the ERG (Y373C) variant that segregates with
thrombocytopenia and AML. Age of onset (years). (B) History of platelet and neutrophil counts of affected family members (patient 15, 16, and 17) (I-1, II-1, and II-2). Absolute
neutrophil or platelet counts per microliter of blood from complete blood examinations plotted with age (years). Normal lower limit for neutrophils and platelets is marked with a
dotted red line. (C) Log R ratio and B-allele plots of single-nucleotide polymorphism–array analysis. All individuals show a cnLOH event that encompasses the entire ERG gene
(yellow highlight). Individual II-1 (patient 16) had a second cnLOH event (blue highlight). Log R ratios (top panels) show no loss of copy number, and B-allele frequencies (bottom
panels) show regions of LOH, together demonstrating cnLOH. Samples used: patient I-2, BM cytogenetic pellet; II-1 and II-2, PB mononuclear cells. d, died; dx, diagnosed.
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identified in a primary lymphoedema cohort in the 100 000
Genomes Project.40 This included 15 probands; 12 were
confirmed germ line variants, including 2 de novo (Table 1;
supplemental Table 2; supplemental Figure 5), and germ line
samples were not available for the remaining 3 variants. Three
variants were predicted to cause premature protein termination
and 10 were missense variants that clustered within the ETS
domain (310-395 aa). For 4 missense variants, the Rare Exome
1768 24 OCTOBER 2024 | VOLUME 144, NUMBER 17
Variant Ensemble Learner (REVEL) scores indicated pathoge-
nicity (score >0.85; Table 1; supplemental Figure 6). To deter-
mine the prevalence of rare ERG variants in different study
cohorts, we tabulated the number of patients screened, phe-
notypes encompassed, and number of ERG variants found,
including multiple cohorts without rare ERG variants
(supplemental Table 3). Because of the wide range of pheno-
types covered by different research cohorts, the associated
ZERELLA et al



Table 1. Rare heterozygous ERG variants and population variants

Patient
no. Sex

ERG
variant
(479 aa)

VAF
(%)

gnomAD
v4.0.0 REVEL

Hematological-related
phenotype

Nonhematological
phenotype

Age onset of
first

phenotype
(y)

Germ line ERG
(inherited/de

novo)
(Sample) Somatic variants

Chr
21q

cnLOH

1 M E20Vfs*13 60 0 NA MDS 38 Yes (MSC) No

2 F P116R 56 69
0.004%

0.36 Thrombocytopenia,
thrombocytopathy, and platelet
aggregation disorder

Hypertension, diabetes,
cataract

73 No

3 V127Efs*82 50 0 NA ALL <18 Yes

4 I126T 59 1
0.00016%

0.512 Chronic thrombocytopenia Not reported in clinical
records

<14 Yes (SF) FLT3-ITD and IDH1

AML 40

5 M R302C 40 10
0.00068% (1× R302L)

(17× R302H)

0.365 CLL Not reported in clinical
records

Unknown Yes (hair)

6 F P306L 44 0 (6× P306W) 0.394 None Lymphedema <1 Yes (inherited)
(PB)

No

7 M P306L 57 0 (6× P306W) 0.394 None Lymphedema Yes

8 F M341V 45 0 0.45 Severe congenital aplasia and
abnormal B cells

Prematurity for acute fetal
distress (33 wk)

0 Yes (inherited)
(SF)

None

9 F M341V 45 0 0.45 MDS 56 No

10 D345N 24 1
0.00012%

0.3149 MDS No

11 D363A 34 0 0.6209 MDS No

12 M R370H 45 0 0.881 Neutropenia 0 Yes (SF) None (blood at 18 y)

Pancytopenia 18

13 M R370P 44 0 0.888 MDS (asymptomatic
thrombocytopenia and
leukopenia)

Deformation (avascular
necrosis) of femoral head,
severe aortic valve
insufficiency with
secondary heart failure

29 Yes (hair) None No

14 M Y372* 48 0 NA Congenital pancytopenia, and BMF 0 Yes (de novo)
(PB)

15 F Y373C 30 0 0.852 AML, thrombocytopenia, and t-
MDS (RAEB2)

Not reported in clinical
records

27 Yes (hair) IDH1 (R132C) (40%)
TP53 (C238Y) (22%)

GATA2 (H442Qfs*95) (20%)

Yes

Rare ERG variants (NP_891548.1) from similar phenotypic groups, including BMF and/or HM and lymphedema, among population variants (gnomAD >200),38 a germ line thrombocytopenic mouse mutation,1 a paralogous ETV6 pathogenic variant (throm-
bocytopenia),49 and COSMIC mutation (somatic).41 Information unavailable (blank); gnomAD v4.0.0, alternative variants at the same amino acid position (brackets).

Chr, chromosome; CLL, chronic lymphocytic leukemia; COSMIC, Catalogue Of Somatic Mutations In Cancer; DLBCL, diffuse large B-cell lymphoma; F, female; hom, homozygous; M, male; NA, not applicable; MSC, mesenchymal stromal cells; PB, peripheral
blood; REVEL, Rare Exome Variant Ensemble Learner; SF, skin fibroblasts; t-MDS, therapy-related myelodysplastic syndrome.
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Table 1 (continued)

Patient
no. Sex

ERG
variant
(479 aa)

VAF
(%)

gnomAD
v4.0.0 REVEL

Hematological-related
phenotype

Nonhematological
phenotype

Age onset of
first

phenotype
(y)

Germ line ERG
(inherited/de

novo)
(Sample) Somatic variants

Chr
21q

cnLOH

16 M Y373C 17 0 0.852 Thrombocytopenia and
neutropenia

Not reported in clinical
records

21 Yes (inherited)
(hair)

RUNX1 (G165V) (2%) Yes
(2 events)

17 M Y373C 44 0 0.852 Thrombocytopenia and
neutropenia

Not reported in clinical
records

19 Yes (inherited)
(hair)

None Yes

18 K380N 46 0 0.642 Anemia, thrombocytopenia,
pancytopenia, macrocytic
anemia, abnormality of the
spleen, and eosinophilic
infiltration of the esophagus

Hemangioma,
hepatosplenomegaly,
gastrointestinal
inflammation, erythema,
and capillary malformation

>18 Yes (de novo)
(PB)

No

19 F Y388C 50 0 0.90 None Lymphedema 8 Yes (inherited)
(PB)

No

20 F Y388C 33 0 0.90 None Lymphedema (bilateral
intermittent lower limb
swelling)

50 Yes (PB) Yes

21 G394W 15 0 (3× G394R) 0.661 t-AML after treatment for DLBCL
and prostate cancer

DLBCL and prostate cancer Yes (PB) No

Population M219I 372
0.023% (1 hom)

0.058 NA Yes

Population P275S 254
0.016% (3 hom)

0.223 NA Yes

Mouse S322P 0 0.574 ALL and thrombocytopenia Yes

ETV6 R370S 0 0.803 ALL No

COSMIC R385H 0 (2× R385C) 0.674 NA 2× BrCa, 1× biliary, 1× upper
aerodigestive tract

No

Population P404A 236
0.015%

0.086 NA Yes

Rare ERG variants (NP_891548.1) from similar phenotypic groups, including BMF and/or HM and lymphedema, among population variants (gnomAD >200),38 a germ line thrombocytopenic mouse mutation,1 a paralogous ETV6 pathogenic variant (throm-
bocytopenia),49 and COSMIC mutation (somatic).41 Information unavailable (blank); gnomAD v4.0.0, alternative variants at the same amino acid position (brackets).

Chr, chromosome; CLL, chronic lymphocytic leukemia; COSMIC, Catalogue Of Somatic Mutations In Cancer; DLBCL, diffuse large B-cell lymphoma; F, female; hom, homozygous; M, male; NA, not applicable; MSC, mesenchymal stromal cells; PB, peripheral
blood; REVEL, Rare Exome Variant Ensemble Learner; SF, skin fibroblasts; t-MDS, therapy-related myelodysplastic syndrome.
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Figure 2. Functional characterization of ERG variants. (A)
ERG variants residing in the ETS domain reduce transactivation.
K562 cells were transfected with pcDNA3 empty vector (EV) or
pcDNA3-ERG (WT or variants). All constructs were cotrans-
fected with a luciferase reporter plasmid driven by an ITGA2B
promoter (quadruplicate replicates, repeated 3 times). Fold
change (mean ± standard error of the mean [SEM]) in com-
parison with the WT is plotted. Pairwise comparisons are shown
(*P < .05 in comparison with WT). (B) ETS domain variants
reduce ERG DNA binding affinity. EMSA of WT ERG and vari-
ants. Transfected HEK293 whole cell lysates were prepared and
bound to an oligonucleotide containing an ETS DNA consensus
sequence. Probes were visualized using chemiluminescence.
Pairwise comparisons are shown (*P < .05 compared with WT).
(C) ERG ETS domain variants alter subcellular localization. A
Myc-tag was added to WT ERG and variants. COS-7 cells were
transfected with pcDNA3 EV, pcDNA3-ERG-Myc (WT), and
pcDNA3-ERG-Myc variants. Cells were stained for a Myc-tag
and DAPI (4′ ,6-diamidino-2-phenylindole). The nuclear to cyto-
plasmic ratio of each variant was quantified and the fold change
(mean ± SEM) in comparison with the WT was plotted. Pairwise
comparisons are shown (*P < .05 compared to WT). Nuclear to
cytoplasmic ratio was obtained from 3 independent experi-
ments. In all comparisons, a Student t test was used (*P < .05;
**P < .01; ****P < .001 in comparison with WT).
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ascertainment biases, and the inconsistent variant filtering
strategies, determining the prevalence or penetrance of germ
line pathogenic ERG variants to different phenotypes remains
to be determined and requires the incorporation of additional
well-defined cohort studies and systematic analyzes.

In vitro functional characterization of ERG variants
The impact of ERG variants on transactivation, DNA binding, and
nuclear localization was examined (Figure 2). Western blot anal-
ysis showed all ERG variants produced protein, except for Y372*,
ERG PREDISPOSES TO CYTOPENIAS AND BLOOD CANCERS
which was unstable (supplemental Figure 7). To assess trans-
activation ability, assays were performed using a platelet-specific
ITGA2B promoter-luciferase reporter in K562 myeloid cells. Most
ETS domain variants showed either complete LOF (S322P,
R370H/P/S, Y372*, Y373C, and Y388C) or were hypomorphic
(M341V, D345N, and D363A) when compared with the WT
(Figure 2A). In contrast, a somatic variant (R385H), reported in
multiple cancers in the COSMIC (Catalogue Of Somatic Muta-
tions In Cancer),41 and R302C increased transactivation. ERG
variants observed more than once in the population (ie,
24 OCTOBER 2024 | VOLUME 144, NUMBER 17 1771
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>0.00012% gnomAD27; supplemental Figure 8) showed no
impact on the transactivation ability in this assay (Figure 2A;
Table 1).

EMSA were performed to measure the effect of ERG variants on
DNA binding (Figure 2B; supplemental Figure 9). Several ETS
domain variants (S322P, R370H/P/S, Y372*, and Y373C) entirely
ablated DNA binding, consistent with R370 and Y373 being crit-
ical contacts for DNA binding (supplemental Figures 3C and 10).42

Immunofluorescence was used to quantify the effect of ERG
variants on subcellular localization (Figure 2C). R302C and
P306L displayed an increased nuclear to cytoplasmic localiza-
tion ratio, but this effect was not statistically significant.
Conversely, ETS domain variants R370H/P/S, Y372*, Y373C,
K380, and R385H reduced nuclear protein localization (*P < .05;
Figure 2C; supplemental Figure 11A). Equivalent amino acid
residues to ERG (R370, Y373) in this highly conserved ETS
domain in ETV6 (R399)43 and FLI (Y343),44 respectively, are
similarly critical for proper nuclear localization of these TFs
(supplemental Figure 11B).

ERG LOF variants failed to drive myeloid
differentiation and expansion of cytokine-
independent stem or progenitor cells in FLC
cultures
Retroviral-driven expression of WT ERG in FLCs drives the
expansion of an immature stem or progenitor cell population with
megakaryocytic features as demonstrated by intermediate cKIT+

and high CD41+ cell surface expression8 (Figure 3A-B). Several
representative variants, including 3 complete LOF variants, 1
hypomorphic variant, and 2 WT-like variants from in vitro assays,
were chosen to study their effect on ex vivo ERG-driven mega-
karyocytic expansion and cytokine-independent cell growth. Like
the WT, P116R, a population (ie, benign) variant (M219I), and a
hypomorphic variant (D345N) also drove this expansion. Strik-
ingly, the ETS domain complete LOF variants (R370P, Y372*, and
Y373C) did not show expansion of this immature stem or pro-
genitor cell population after 4 to 5 weeks in culture, thereby
replicating nontransduced FLCs or FLCs transduced with an
empty MSCV-IRES-mCherry control retrovirus empty vector.

Furthermore, we observed that ERG WT and the P116R, M219I,
and D345N variants were each able to induce cytokine inde-
pendence in FLCs after 6 weeks in culture, thereby driving cell
survival in the absence of essential cytokines. Conversely, ETS
domain complete LOF variants (R370P, Y372*, and Y373C) were
not able to drive cytokine-independent growth with all cells
dying within 9 days of cytokine removal (Figure 3C), thereby
replicating nontransduced FLCs.
Complete LOF ERG variants failed to drive
leukemia in an ERG overexpression mouse model
Overexpression of ERG in murine FLCs, followed by trans-
plantation into sublethally irradiated C57BL/6 mice, led to the
development of a well-described erythro-megakaryocytic leuke-
mia that is characterized by an accumulation of immature
erythroblasts that infiltrate the BM, spleen, liver, and lung.8,10,45

Enforced expression of ERG WT, a WT-like variant (P116R), and
a population variant (M219I) in murine FLCs similarly drove the
1772 24 OCTOBER 2024 | VOLUME 144, NUMBER 17
development of erythro-megakaryocytic leukemia (Figure 4A) by
mCherry engraftment (Figure 4B) within 220 days after trans-
plantation in 10 of 15 animals. Moribund mice displayed a large
liver and spleen (supplemental Figure 12A), and flow cytometric
analysis of the BM and spleen revealed a cKit+CD71+mCherry+

leukemic cell population consistent with ERG-driven erythro-
megakaryocytic leukemia (Figure 4C-D), as previously
described.8 Histology further confirmed leukemic cell infiltration
in the BM, spleen, and liver (supplemental Figure 12B). In
contrast, all mice (20/20) that received the ERG ETS domain
complete (R370P, Y372*, and Y373C) or hypomorphic (D345N)
variants showed no signs of disease or mCherry+ PB cells in the
first 220 days, thereby demonstrating LOF in this in vivo assay.
Notably, 1 variant (D345N) is hypomorphic in transactivation
assays (Figure 2A), acts WT-like in cytokine independence assays
(Figure 3A,C), and has complete LOF in this murine eryth-
roleukemia assay (Figure 4A). Hence, the choice of assay(s) is
critical in ERG functional studies, especially when applying to
variant classification for diagnostic and clinical applications.
Classification of germ line ERG variants and their
phenotypes
Based on clinical, in silico predictive and functional data, all ERG
variants were classified using the American College of Medical
Genetics and Genomics (ACMG) and the Association for
Molecular Pathology criteria and using heterozygous LOF vari-
ants (including missense) and the consequent haploinsufficiency
as the disease mechanism46 (supplemental Table 2). The ERG
ETS domain is highly conserved (average constraint score, 0.26;
supplemental Figure 13; supplemental Table 4),47 and LOF var-
iants across the protein are rare in the normal population
(LOEUF = 0.23 and pLI = 1, gnomADv4.0.0; supplemental
Figure 8),38 suggesting intolerance to haploinsufficiency.

Five variants associated with BMF/HM (R370H, R370P, Y372*,
Y373C, and K380N) demonstrated complete LOF in one or more
functional assays and were classified as pathogenic, whereas
Y388C (lymphedema) was classified as likely pathogenic
(Figure 5; supplemental Table 5). Consistent with other BMF/HM
predisposition genes, we observed variability in the clinical pre-
sentation associated with these variants. Thrombocytopenia,
neutropenia, or pancytopenia was diagnosed in all patients with
a likely pathogenic or pathogenic ERG variant (Table 1;
supplemental Figure 14A; supplemental Table 2). Among this
cohort, 28% developed an HM (AML and/or MDS) with a median
age of onset of 29 years (supplemental Figure 14B). Longitudinal
monitoring of individuals 10, 11, 15 (II-1), and 16 (II-2) consis-
tently showed thrombocytopenia (platelets <150 × 109/L) and
neutropenia (<2.0 × 109/L; supplemental Figure 14C-D).

Ten variants were classified as variants of uncertain significance
(VUS), including 4 variants (M341V, D345N, D363A, and
G394W) that demonstrated complete LOF or were hypomor-
phic in transactivation, DNA binding, and/or erythroleukemia
assays and 1 variant (V127Efs*82) that is likely to be pathogenic
based on complete LOF of other premature termination vari-
ants (ie, Y372* and lymphedema variants31; Figure 5). Seven
VUSs were associated with HM (MDS, AML, ALL, chronic lym-
phocytic leukemia, diffuse large B-cell lymphoma), 3 with BMF,
and 1 with lymphedema. Note, 1 patient with thrombocyto-
penia who carried a germ line I126T variant also harbored a
ZERELLA et al
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germ line pathogenic RUNX1 whole gene deletion
(supplemental Table 2), likely explaining the phenotype;
whether the ERG variant also contributed to the phenotype is
unclear. Two variants (D345N and D363A) could not be verified
as germ line because of unavailability of samples and have been
reported multiple times as somatic with D363 being a hot spot
for somatic variants in multiple cancers (supplemental
Figure 15; supplemental Table 6). Somatic analysis of BM or
blood identified variants in patients 2, 3, 7, 14, 15, and 16, 2 of
ERG PREDISPOSES TO CYTOPENIAS AND BLOOD CANCERS
whom (3 and 16) acquired IDH1 variants; no variants were found
in patients 11 and 12 (Table 1).

Somatic ERG variants in HM and other cancers
The COSMIC was filtered for ERG variants that occurred ≤3 times
(ie, very rare) in gnomADv4.0.0. Therewere 64 unique ETS domain
missense variants. Screening for somatic missense variants at the
same amino acids affected by germ line ETS domain variants in this
study revealed that all except 1 (Y373C) were considered to be
24 OCTOBER 2024 | VOLUME 144, NUMBER 17 1773
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somatic (supplemental Figure 15), adding weight to these amino
acid substitutions being drivers of malignancy.

In a separate pediatric familial cancer cohort (St Jude Children’s
Research Hospital), a single germ line ERG (V127Efs*82) variant
was identified (Table 1), in addition to several predicted path-
ogenic somatic ERG variants, predominantly in children with B-
ALL, but also AML, non-Hodgkin lymphoma, and some solid
cancers (supplemental Table 6). Interestingly, ERG (V127Efs*82)
was identified both as a germ line and a somatic variant in
different patients with B-ALL.
Discussion
We reported the discovery of ERG as a new autosomal dominant
BMF and HM predisposition gene, expanding its disease
1774 24 OCTOBER 2024 | VOLUME 144, NUMBER 17
phenotypes beyond recently reported primary lymphedema.31

ERG-based clinical disease resembles that of RUNX1,48 ETV649

and ANKRD2650 (thrombocytopenia, myeloid, and lymphoid
HM), GATA236,51 (BMF, myeloid HM, lymphedema), and ERG’s
most closely related ETS family member FLI1 (thrombocyto-
penia, but to date without reports of HM).33,34,52,53 These over-
lapping, but nonidentical, phenotypes are consistent with many
of these TFs being part of a complex homeostatic network that is
crucial for normal hematopoiesis.5 Furthermore, consistent with a
role for ERG and GATA2 in the lymphatics and predisposing to
lymphedema, in single cell studies, there is high expression of
ERG and GATA2 in BM endothelial cells in contrast with RUNX1
for which no primary lymphatic phenotype has been described.54

Intriguingly, cnLOH favoring the WT allele was identified in all 3
ERG (Y373C) carriers in index family 1. SGR events such as these
ZERELLA et al
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can complicate the detection of germ line variants from
hematopoietic tissues by mimicking the lower VAFs of somatic
variants. Consistent with this, individuals with either Y388C or
S182Afs*22 (recently published familial germ line ERG variant in
a patient with lymphedema31) had cnLOH but no hematological
disease (supplemental Figure 16). Notably, the patient with
S182Afs*22 presented with 4% VAF in the PB,31 which, upon
further investigation, was caused by a cnLOH event that cor-
rected 92% of cells. SGR may lead to asymptomatic carriers,
milder symptoms, a later age of onset, or a missed diagnosis
(hidden predisposition) and reveals the potential for disease
prevention via cell and/or gene therapy.55,56 Hence, identified
ERG variants should be tested in germ line, nonhematopoietic
tissues, such as fibroblasts, mesenchymal stromal cells or hair,
to confirm germ line or somatic status.

Functional studies demonstrated that all rare ERG variants
within the ETS domain led to complete or hypomorphic LOF in
transactivation, DNA binding, and/or subcellular localization,
and selected variants similarly exhibited LOF in fetal liver
hematopoietic cell growth assays ex vivo and leukemogenic
assays in vivo. This is in contrast with the gain-of-function nature
of common ERG fusions19-21,27,28 and hence shows that ERG
can act as both a tumor suppressor gene and an oncogene.
Notably, disease manifestations stemming from germ line LOF
mechanisms extend to other members of the ETS family (ETV6
and FLI1).33,34,52,53 ETV6 and FLI1 variants often cluster in the
ETS domain,32 and several are analogous to pathogenic ERG
variants in our study (supplemental Figure 11B). For example, a
single consanguineous family with 2 siblings affected with
moderate thrombocytopenia and a lifelong bleeding history
was described to have a rare FLI1 ETS domain missense variant
in homozygosity (R324W, NM_002017.4).33 This variant (anal-
ogous to ERG R354) was hypomorphic in in vitro analyzes,33

similar to 3 variants in our study in the same region (M341V,
D345N, and D363A) (Figure 2A). To date, we have not seen
patients with homozygous ERG germ line variants or evidence
of autosomal recessive disease, although this might be possible
for hypomorphic variants.
ERG PREDISPOSES TO CYTOPENIAS AND BLOOD CANCERS
Structural modeling shows that several complete LOF variants
(in DNA binding and transactivation assays) affect residues that
contact DNA (supplemental Figure 9).42 In addition, the nuclear
localization 2 region of the FLI1 protein is identical to this ETS
domain region in ERG.44,57 Unsurprisingly, 6 variants within this
paralogous region were unable to appropriately localize to the
nucleus (Figure 2C; supplemental Figure 10). Therefore,
because of the high conservation of the ETS domain in paral-
ogous TFs, reported function-disrupting variants in 1 ETS TF are
likely to affect protein function at the corresponding amino acid
position in others. Indeed, paralogous amino acids cause similar
loss of DNA binding and nuclear localization and several have
been classified in ClinVar as pathogenic for their relevant dis-
ease phenotypes. Pathogenic variants and their functional
analyzes in highly conserved paralogous genes and domains,
such as ETS TFs and ETS domains, is topical for variant curation
expert panel discussion in generating gene-specific guidelines.

In addition to germ line variants, ERG somatic variants are found
in a proportion of sporadic cancers, including HM (B-ALL, MDS,
diffuse large B-cell lymphoma, AML, and T-cell acute lympho-
blastic leukemia) and solid cancers (predominantly skin,
gastrointestinal, breast, lung). Interestingly, the majority of the
missense variants in HMs are located within the ETS domain
with several variant hotspots, including ones we tested (ie,
D345N, D363A), that were hypomorphic in our system; this
raises the likelihood of a strict threshold for ERG activity in
certain cellular contexts, including concurrent with other
somatic variants. For germ line ERG HM cases, as for GATA2,
we have not identified somatic variants on the other allele (ie,
biallelic) as occurs for RUNX1,58 CEBPA,58,59 and ETV643).

Our data establishes a gene-disease association for ERG in the
pathogenicity of BMF and HM, in addition to lymphedema. Six
ETS domain variants in this study were classified as pathogenic
or likely pathogenic, whereas 10 variants were classified as
VUS (Figure 5). Addition of functional data criteria changed the
ACMG classification of 5 ERG variants (3 VUS to likely patho-
genic, 2 VUS to benign; supplemental Table 5), highlighting
24 OCTOBER 2024 | VOLUME 144, NUMBER 17 1775



Table 2. Summary of functional assays for phenotypic ERG variants in this study

Variant Phenotypes Transactivation
DNA

binding
Subcellular
localization

FLC myeloid
differentiation

FLC cytokine
independence

Leukemogenesis
assay

ACMG
classification

WT NA ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ NA

I126T AML ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ND ND ND VUS

P116R Cytopenia ✓✓✓✓ ✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ VUS

R302C CLL ✓✓✓✓ ND ✓✓✓✓ ND ND ND VUS

K380N Cytopenia ✓✓✓✓ ✓✓✓ ✓ ND ND ND P

P306L Lymphedema ✓✓✓ ND ✓✓✓✓ ND ND ND VUS

G394W AML ✓✓✓ ✓✓✓✓ ✓✓✓✓ ND ND ND VUS

M341V Cytopenia ✓✓ ✓✓✓✓ ✓✓✓✓ ND ND ND VUS

D345N MDS ✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✖ VUS

D363A MDS ✓✓ ✖ ✓✓✓✓ ND ND ND VUS

Y388C Lymphedema ✖ ND ✓✓✓✓ ND ND ND LP

R370H Cytopenia ✖ ✖ ✓✓ ND ND ND P

R370P Cytopenia + MDS ✖ ✖ ✓✓ ✖ ✖ ✖ P

Y373C Cytopenia + AML ✖ ✖ ✓ ✖ ✖ ✖ LP

Y372* Cytopenia ✖ ✖ ✓ ✖ ✖ ✖ P

E20Vfs*13 MDS ND ND ND ND ND ND VUS

V127Efs*82 ALL ND ND ND ND ND ND VUS

ERG variants are ordered in descending order of transactivation ability. Ticks (✓) indicate degree of WT-like activity in transactivation, DNA binding, subcellular localization, FLC myeloid differentiation, FLC cytokine independence, and leukemogenesis assays.
✖ indicates complete LOF in these assays.

CLL, chronic lymphocytic leukemia; LP, likely pathogenic; NA, not applicable; ND, not determined; P, pathogenic.
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Figure 6. Functional consequences of rare ERG variants. Rare ERG variants from similar phenotypic groups, including BMF and/or HM and lymphedema, among pop-
ulation variants (gnomAD >200),38 a germ line thrombocytopenic mouse variant,1 a paralogous ETV6 pathogenic variant (thrombocytopenia),49 and Catalogue Of Somatic
Mutations In Cancer mutation (somatic)41 are mapped onto the ERG protein (isoform, NP_891548.1; transcript, NM_182918.4). Functional characterization of each variant via
transactivation, DNA binding, subcellular localization, FLC myeloid differentiation, FLC cytokine independence, and leukemogenesis assays are displayed.
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the importance of generating faithful functional assays. For the
VUSs, despite their seemingly WT-like behavior in functional
assays, it remains plausible that some may have critical func-
tional consequences that were not detected in our over-
expression systems. The functional consequences of these
variants may impact via temporal and spatial mechanisms, and
therefore caution is required when interpreting WT-like VUS
because protein-protein interactions or target binding may
vary in different cellular contexts. It is probable, however, that
some variants classified as VUS (ie, I126T and P116R) are not
monogenic, fully penetrant variants given their lack of func-
tional consequence in the overexpression assays used in this
study.

Our data (Table 2; Figure 6) defines ERG as a new predisposi-
tion gene to be added to germ line screening panels for BMF
and HM syndromes. Demonstration of de novo germ line vari-
ants emphasizes testing for inheritance for family planning and
counseling. We stress the importance of screening true germ
line samples of patients and family members because we posit
that SGR and the use of hematopoietic samples may mask
asymptomatic or mildly symptomatic carriers, potentially
missing more severe clinical presentation in other family
members, including perinatal and neonatal lethality as has been
observed in MECOM.60,61 Enticingly, SGR highlights the
potential for preemptive cell therapy and/or gene editing
strategies to prevent or alleviate ERG-related disease in the
blood stem cell compartment. We only observed several
inherited cases (4 small families), which may indicate low
penetrance, mild phenotypes, and/or incomplete family data.
However, of the 3 families in the Genomics England Rareservoir
study with primary lymphedema carrying ERG premature
termination variants31 and 2 missense ERG variants reported
here, 4 showed familial inheritance and 1 was de novo. Whether
lymphedema is a highly penetrant phenotype and hence seen
in family units remains unanswered. Although ERG variants in
lymphedema and HM phenotypes have not yet coincided, we
anticipate that with a larger, more defined cohort study they will
overlap, mirroring the history of GATA2 variants and Emberger
syndrome (lymphedema and MDS).51

Our current disease model (Figure 7) proposes that, in ERG
carriers, the interplay between physiological and environmental
stressors impacts critical threshold-sensitive gene expression or
biologic pathways that are required for normal hematopoiesis,
which leads to BMF and adaptive (SGR) and/or maladaptive
(hematological malignancy) selective processes. It is possible
for both adaptive and maladaptive clones to be present in the
same individual for whom context-dependent competitive
fitness of the clone determines the physiological outcome, a
game of clones. Notably, ERG expression is high in primary
human HSCs and it drops during transition to hematopoietic
progenitor cells (HPCs)62 and during differentiation. Analysis of
the ERG downstream effectors and pathways impacted in pri-
mary BM and blood cells in ERG carriers and patients with BMF/
HM is warranted to better understand disease initiation and
progression. Clearly, describing these disease mechanisms, the
phenotypic and mutational spectrum, and the natural history of
diseases caused by ERG germ line variants has only just
commenced for what may well be another pleiotropic and
protean transcriptopathy. As population-scale genomic studies,
1778 24 OCTOBER 2024 | VOLUME 144, NUMBER 17
such as the UK Biobank and All of Us, become popular, our
study demonstrates that they should not become de rigueur.
Careful clinical and laboratory observations with professional
networking will remain important in describing new ERG-asso-
ciated disease and other disease entities.
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