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Summary
Background Giant cell arteritis is an age-related vasculitis that mainly affects the aorta and its branches in individuals 
aged 50 years and older. Current options for diagnosis and treatment are scarce, highlighting the need to better 
understand its underlying pathogenesis. Genome-wide association studies (GWAS) have emerged as a powerful tool 
for unravelling the pathogenic mechanisms involved in complex diseases. We aimed to characterise the genetic basis 
of giant cell arteritis by performing the largest GWAS of this vasculitis to date and to assess the functional 
consequences and clinical implications of identified risk loci.

Methods We collected and meta-analysed genomic data from patients with giant cell arteritis and healthy controls of 
European ancestry from ten cohorts across Europe and North America. Eligible patients required confirmation of 
giant cell arteritis diagnosis by positive temporal artery biopsy, positive temporal artery doppler ultrasonography, or 
imaging techniques confirming large-vessel vasculitis. We assessed the functional consequences of loci associated 
with giant cell arteritis using cell enrichment analysis, fine-mapping, and causal gene prioritisation. We also 
performed a drug repurposing analysis and developed a polygenic risk score to explore the clinical implications of our 
findings.

Findings We included a total of 3498 patients with giant cell arteritis and 15 550 controls. We identified three novel 
loci associated with risk of giant cell arteritis. Two loci, MFGE8 (rs8029053; p=4·96 × 10–⁸; OR 1·19 [95% CI 1·12–1·26]) 
and VTN (rs704; p=2·75 × 10–⁹; OR 0·84 [0·79–0·89]), were related to angiogenesis pathways and the third locus, 
CCDC25 (rs11782624; p=1·28 × 10–⁸; OR 1·18 [1·12–1·25]), was related to neutrophil extracellular traps (NETs). We also 
found an association between this vasculitis and HLA region and PLG. Variants associated with giant cell arteritis 
seemed to fulfil a specific regulatory role in crucial immune cell types. Furthermore, we identified several drugs that 
could represent promising candidates for treatment of this disease. The polygenic risk score model was able to identify 
individuals at increased risk of developing giant cell arteritis (90th percentile OR 2·87 [95% CI 2·15–3·82]; p=1·73 × 10–¹³).

Interpretation We have found several additional loci associated with giant cell arteritis, highlighting the crucial role of 
angiogenesis in disease susceptibility. Our study represents a step forward in the translation of genomic findings to 
clinical practice in giant cell arteritis, proposing new treatments and a method to measure genetic predisposition to 
this vasculitis.

Funding Institute of Health Carlos III, Spanish Ministry of Science and Innovation, UK Medical Research Council, 
and National Institute for Health and Care Research

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction
Giant cell arteritis represents the most common form of 
vasculitis in Europe and North America, and mainly 
affects individuals aged 50 years and older.1 This type of 
large-vessel vasculitis primarily affects the aorta and its 
branches, resulting in ischaemic complications if not 
promptly treated.2 Giant cell arteritis not only reduces the 
quality of life for affected individuals, but also imposes 

a considerable socioeconomic burden on health-care 
systems given the high health-care costs associated with 
disease complications (eg, blindness, cerebrovascular 
accident, and aortic aneurysms) and glucocorticoid toxicity.

The cause of giant cell arteritis is complex, involving 
both genetic and environmental factors.1 Previous 
attempts to uncover the genetic basis of giant cell arteritis 
through large-scale genetic approaches led to the 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2665-9913(24)00064-X&domain=pdf
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identification of two loci associated with the disease, 
P4HA2 and PLG, and substantiated the crucial 
involvement of the HLA region in disease susceptibility.3,4 
The identified signals indicated a genetic contribution of 
the angiogenesis process in disease pathogenesis, further 
supporting the proposed role of this mechanism in giant 
cell arteritis.

Despite the research efforts invested in the past decade 
to elucidate the genetic basis of giant cell arteritis, the 
cause of the condition remains largely unknown, with 
fewer identified loci associated with disease risk compared 
with other immune-mediated inflammatory diseases 
with low prevalence, such as systemic sclerosis, Sjögren’s 
disease, or even other vasculitides.5,6 The low prevalence 
of giant cell arteritis and the high statistical power 
necessary for genomic studies have imposed limitations 
on previous research, hindering substantial discoveries. 
Furthermore, the functional consequences of risk alleles 
associated with giant cell arteritis, as well as the potential 
causal genes and cell types implicated, have not yet been 
investigated. Additionally, previous studies have not 
explored the clinical potential of genetic findings in this 
type of vasculitis.

Herein, we report the largest genome-wide association 
study (GWAS) in giant cell arteritis to date. We aimed to 
characterise the genetic factors contributing to disease 
susceptibility; assess the functional consequences of loci 
associated with giant cell arteritis, prioritising potential 
causal genes and identifying new potential therapeutic 
options; and evaluate the ability of genetic findings to 
predict the risk of giant cell arteritis.

Methods
Study design and participants
Patients with giant cell arteritis and healthy controls of 
European ancestry were included in this GWAS, from ten 

different cohorts across France, Germany, Ireland, Italy, 
Norway, the Netherlands, Spain, Switzerland, the UK, 
and North America (appendix p 11). A proportion of the 
study population were included in a previous GWAS,3 and 

the remaining participants were newly recruited for this 
study. After quality controls of the genomic data, a total of 
3498 patients and 15 550 controls were finally included. 
   Patients were eligible for inclusion if they met the 1990 
American College of Rheumatology classification criteria 
for giant cell arteritis;7 however, a confirmation of giant 
cell arteritis diagnosis was required for the inclusion of 
patients in the study. Confirmation was provided by 
positive temporal artery biopsy, positive temporal artery 
doppler ultrasonography, or imaging techniques 
confirming large-vessel vasculitis.

All patients and controls provided written informed 
consent in accordance with the tenets of the Declaration 
of Helsinki. The protocol adhered to all ethical 
regulations and the study was approved by the Ethics 
Committee of the Spanish National Research Council 
and the Ethic Committee of Research of the Granada 
Province, as well as by all participating institutions. A 
favourable ethical opinion was granted for participants 
of the UK Giant Cell Arteritis Consortium by the 
Yorkshire and the Humber Leeds West Research Ethics 
Committee (05/Q1108/28).

Genotyping and quality control
We performed genome-wide genotyping using the arrays 
specified in the appendix (p 11). All genotype quality 
controls were performed with PLINK (version 1.90). 
Strict quality control parameters were applied to all 
cohorts, including both patients and controls, to filter 
rare single-nucleotide polymorphisms (SNPs; minor 
allele frequency <0·01), SNPs with call rates lower than 
0·98 and samples with call rates lower than 0·95, and 

Research in context

Evidence before this study
Giant cell arteritis is an immune-mediated inflammatory 
disease with a strong genetic component that remains poorly 
understood. Our incomplete understanding of the 
pathogenesis of this chronic large-vessel vasculitis limits our 
ability to identify new therapeutic targets, biomarkers, and 
preventive strategies. Previous research has shown that 
genome-wide association studies (GWAS) have great 
potential to discover the genetic factors that contribute to the 
development of complex diseases, such as giant cell arteritis.
We searched PubMed, with no language restrictions, for 
articles published from database inception to Aug 31, 2023, 
using the search terms “giant cell arteritis”, “temporal 
arteritis” and “genome wide”. We found only one GWAS on 
giant cell arteritis reporting three risk loci associated with 
susceptibility to this vasculitis; these data were included in the 
present study.

Added value of this study
In this GWAS and meta-analysis of the largest cohort of patients 
with giant cell arteritis studied to date, we identified three 
novel loci associated with giant cell arteritis susceptibility. 
Through a comprehensive functional analysis, we identified 
relevant cell types and potential causal variants, and prioritised 
genes involved in angiogenesis and neutrophil extracellular 
traps. Notably, we pinpointed several potentially repositionable 
drugs for giant cell arteritis treatment and developed a genetic 
risk model capable of identifying individuals at high risk of 
developing giant cell arteritis.

Implications of all the available evidence
Enhancing our understanding of giant cell arteritis opens up 
opportunities for uncovering underlying disease mechanisms, 
thereby potentially advancing the clinical management of 
individuals with this type of vasculitis.

https://www.cog-genomics.org/plink/
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SNPs that deviated from Hardy–Weinberg equilibrium 
(p<0·001). To eliminate duplicates and relatives, one 
sample from every pair of duplicated or related samples 
estimated by identity by descent (Pi_Hat >0·99 for 
duplicates and Pi_Hat >0·45 for relatives) was discarded.

Imputation
We performed whole-genome imputation on the filtered 
genotype data using the TOPMed Imputation server), 
including the TOPMed reference data as a reference 
panel. After imputation, a probability threshold of 0·9 
was established to merge genotypes using GTOOL), 
otherwise the genotype was set as missing. Additional 
quality controls of each imputed dataset were performed 
with PLINK (version 1.90), removing SNPs with call rates 
lower than 0·98, SNPs that deviated from the Hardy–
Weinberg equilibrium (p<0·001), or SNPs with a minor 
allele frequency lower than 0·01. In addition, singleton 
SNPs and variants that showed genetic inconsistency 
between patients and controls were removed using an in-
house perl script.

Principal component analysis
To estimate ancestry outliers, we selected around 
100 000 quality-filtered independent SNPs to calculate 
ten principal components for each independent cohort. 
The principal component analysis was performed with 
PLINK, GCTA64 (and R-based software under the GNU 
operating system (public licence version 2). Outliers 
showing more than four standard deviations from the 
cluster centroids when plotted by principal components 
were removed from further analyses. Variance explained 
by principal components is shown in the appendix (p 12).

Association analysis
The statistical power of the study, calculated with the GAS 
Power Calculator, is shown in the appendix (p 13). Each 
cohort was individually analysed with PLINK, whereby a 
logistic regression model of additive effects, including sex 
and ten principal components as covariates, was 
performed. To test if the population stratification was 
correctly addressed, we calculated the genomic inflation 
factor λ for every cohort and λ1000 for cohorts with more 
than 1000 patients and 1000 controls in total (appendix 
p 11). We then conducted a fixed-effect, inverse variance-
weighted meta-analysis to combine the odd ratios (ORs) 
obtained in each independent regression. The hetero
geneity of ORs across cohorts was assessed with I² and 
Cochran’s Q tests. SNPs with p values less than and 
including 5 × 10–⁸ were considered to be statistically 
significant and SNPs with p values less than and including 
5 × 10–⁵ were considered to be suggestive SNPs. After these 
analyses, we used a variant effect prediction analysis to 
annotate associated SNPs.
  Details of fine-mapping and the functional annotation of 
associated variants, as well as drug repositioning and the 
genetic risk analysis are provided in the appendix (pp 4–7).

Stepwise conditional analysis in loci associated with 
giant cell arteritis
To identify independent signals in loci associated with 
giant cell arteritis, we performed a joint conditional 
analysis using GCTA. This method corrects summary-
level statistics considering the linkage disequilibrium 
between SNPs, estimated from a reference sample set. 
Associated regions were analysed, considering the most 
significant SNP (lead SNP) as a covariate and a window 
of 1·5 Mb around it. Any SNP with a p value less than 
1 × 10–⁶ after conditioning, alongside an r² value less than 
0·2 and D’ value less than 0·5 with the lead SNP, was 
considered to be independent and was included as a 
covariate in a new round of conditional analysis.

HLA imputation
We used a reliable imputation method to investigate 
the complex associations within the extended HLA region 
located on chromosome 6. Specifically, we used the 
SNP2HLA method in conjunction with the Beagle soft
ware package and a reference panel collected by the 
Type 1 Diabetes Genetics Consortium, comprising 
5225 individuals of European ancestry and 8961 polymor
phisms (including HLA SNPs, classical alleles, and amino 
acid variants across the extended MHC region)8 Each 
cohort was imputed separately and the results were 
subsequently meta-analysed with the same methods and 
quality controls described above. To identify secondary 
signals, we conducted a conditional analysis. Any variant 
with a p value less than 1 × 10–⁶ was deemed to be 
independent if it continued to show a p value less than 
1 × 10–⁶ after conditioning, along with having an r² value 
less than 0·2 and a D′ value less than 0·5 with all previously 
defined independent variants. The R packages ggplot2, 
ggbreak, and MetBrewer were used for plotting these 
results.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
A total of 3901 patients with giant cell arteritis and 17 475 
healthy controls of European ancestry were included in 
this GWAS, from ten different cohorts across Europe 
and North America (appendix p 11). 2138 (54·8%) 
patients with giant cell arteritis and 4997 (28·6%) 
controls were included in a previous GWAS,3 the 
remaining 1763 (45·2%) patients and 12 478 (71·4%) 
controls were newly recruited for this study. After quality 
controls of the genomic data and outlier removal, a total 
of 3498 patients with giant cell arteritis and 15 550 
controls were finally included. Excluding the HLA 
region, all cohorts showed a λ (or λ1000 if applicable) below 
1·03 (appendix p 11). All SNPs that were not present in at 
least two datasets were removed from the analysis, 

https://imputation.biodatacatalyst.nhlbi.nih.gov
https://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/
https://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/
https://www.ensembl.org/info/docs/tools/vep/index.html
https://yanglab.westlake.edu.cn/software/gcta/
https://software.broadinstitute.org/mpg/snp2hla/
http://faculty.washington.edu/browning/beagle/beagle.html
http://faculty.washington.edu/browning/beagle/beagle.html
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resulting in 6 691 295 SNPs that were meta-analysed. 
Considering all variants, giant cell arteritis heritability 
explained by SNPs was estimated to be 15·1% (SD 0·8). 
Excluding the HLA region, this value was reduced to 
13·4% (0·8), implying a contribution of both HLA and 
non-HLA loci in giant cell arteritis.

 After the meta-analysis, 2955 SNPs were found to 
be significantly associated with giant cell arteritis 
(appendix pp 8, 16–80). These signals belonged to five 
different loci (table 1), two of which are established risk 
loci for giant cell arteritis, 6p21.32 (HLA-DQA1, 
rs41269974; p=1·60 × 10–⁸⁷; OR 2·03 [95% CI 1·90–2·17]) 
and 6q26 (PLG, rs4252114; p=1·38 × 10–¹³; OR 1·25 
[1·18–1·32]). Additionally, three new genomic 
associations with giant cell arteritis were identified at the 
8p21.1 (CCDC25, rs11782624; p=1·28 × 10–⁸; OR 
1·18 [95% CI 1·12–1·25]), 15q26.1 (MFGE8, rs8029053; 
p=4·96 × 10–⁸; OR 1·19 [1·12–1·26]) and 17q11.2 (VTN, 
rs704; p=2·75 × 10–⁹; OR 0·84 [0·79–0·89]) regions. 

Associations between the lead SNPs of these loci and 
giant cell arteritis are reported by cohort in the appendix 
(p 81). The conditional analysis of non-HLA signals 
showed no additional associations within these loci.

To refine the association between HLA region and 
giant cell arteritis, 8643 polymorphisms (including SNPs, 
HLA classical alleles, and amino acidic variants) were 
meta-analysed within the extended MHC. 800 (9·3%) 
polymorphisms showed a genome-wide level of 
significance (appendix pp 82–96). The most significant 
signal corresponded to a SNP (rs17882084) within the 
HLA-DRB1 gene (p=4·34 × 10–⁸⁷; OR 2·02; table 2). This 
polymorphism showed strong linkage disequilibrium 
with the HLA-DRB1*04 classical allele (r² 0·98) and the 
presence of histidine at the amino acid position 13 of the 
DRβ1 molecule (r² 0·94).

The conditional analysis identified four additional 
independent variants that, together with the HLA-DRB1 
SNP, encompassed the association with HLA region 

Base pair 
(hg38)

rs 
identification

Nearest 
gene

Effect 
allele

p value OR (95% CI) Number 
of SNPs 
in LD 
block

Number of 
SNPs in 
credible set 
(ΣPP >0·95) 

Credible set of SNPs Candidate genes

6p21.32 32652425 rs41269974 HLA-DQA1* A 1·60 × 10–⁸⁷ 2·03 
(1·90–2·17)

·· ·· ·· ··

6q26 160722158 rs4252114 PLG C 1·38 × 10–¹³ 1·25 
(1·18–1·32)

347 3 rs4252114, rs1897108, rs1321197 PLG

8p21.1 27755870 rs11782624 CCDC25 T 1·28 × 10–⁸ 1·18 
(1·12–1·25)

81 1 rs9644049 CCDC25, CLU, ELP3, ESCO2, 
LEPROTL1, PBK, SCARA3, 
SCARA5, TMEM66

15q26.1 88906856 rs8029053 MFGE8 T 4·96 × 10–⁸ 1·19 
(1·12–1·26)

20 1 rs11073821 ACAN, HAPLN3, MFGE8

17q11.2 28367840 rs704 VTN A 2·75 × 10–⁹ 0·84 
(0·79–0·89)

55 13 rs704, rs3093680, rs1007398, 
rs4795435, rs1128162, rs1128161, 
rs2227736, rs2227735, rs10853128, 
rs2239908, rs6505077, rs8081240, 
rs8079943

FOXN1, IFT20, LGALS9, NUFIP2, 
POLDIP2, SARM1, SEBOX, 
SLC13A2, SLC46A1, TMEM199, 
TMEM97, TNFAIP1, VTN

Independent genetic variants that reached genome-wide significance in the meta-analysis are shown. OR=odds ratio. SNP=single nucleotide polymorphism. LD=linkage disequilibrium. ΣPP=sum of posterior 
probability. *Fine mapping of the HLA region was extended (see table 2).

Table 1: Lead significant genetic variants by genomic region, credible sets of non-HLA signals, and potential mapped genes proposed by gene prioritisation 

Base pair 
(hg38)

Nearest 
gene

Amino acid variant in 
highest LD (r2)

Classical HLA allele in 
highest LD (r2)

Effect 
allele  

Patient 
minor allele 
frequency 

Control 
minor allele 
frequency 

p value* Conditional 
p value†

OR (95% CI)

rs17882084 32581836 HLA-DRB1 DRB1-180-Leu (0·999); 
DRB1-96-Tyr (0·999)

HLA-DRB1*04 (0·984) A 0·26 0·16 4·34 × 10–⁸⁷ ·· 2·02 (1·89–2·15)

rs1049087 32662112 HLA-DQB1 DQB1-57-Ala (0·726) HLA-DQA1*01 (0·424); 
HLA-DQB1*02 (0·422)

A 0·51 0·41 7·70 × 10–⁴⁴ 1·07 × 10–²¹ 1·49 (1·42–1·58)

rs2856726 32698944 Intergenic DQB1-167-His (0·443); 
DQB1-13-Gly (0·443)

HLA-DQB1*0301 (0·419) A 0·41 0·36 1·35 × 10–⁷ 3·75 × 10–⁸ 1·17 (1·10–1·24)

rs2596501 31353434 HLA-B B-97-Ser/Asn/Val (0·499); 
B-45-Thr/Lys (0·384) 

HLA-C*07 (0·171) G 0·50 0·48 2·79 × 10–¹⁰ 1·16 × 10–⁷ 1·20 (1·14–1·27)

HLA-
DPB1*03

33081591 HLA-DPB1 DPB1-57-Asp (0·593); 
DPB1-65-Leu (0·570)

·· ·· 0·08 0·11 3·60 × 10–⁷ 4·37 × 10–⁷ 0·77 (0·70–0·85)

LD=linkage disequilibrium. OR=odds ratio. *p values of the meta-analysis. †p values of the meta-analysis after stepwise conditional analysis, including previous associated signals.

Table 2: Independent giant cell arteritis-associated HLA variants after conditional analysis  
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(table 2; appendix p 9). Notably, three of these variants 
were located in the HLA class II region: within 
HLA-DQB1 (rs1049087), the HLA-DPB1*03 classical 
allele, and in an intergenic region between HLA-DQB1 
and HLA-DQA2 (rs2856726). The other variant 
(rs2596501) was located in the HLA class I region, 
downstream of HLA-B. The HLA-DQB1 polymorphism 
(rs1049087) showed considerable linkage disequilibrium 
with amino acid changes in both DRβ1 and DQβ1 
molecules (r² 0·6), as well as moderate linkage 

disequilibrium with the HLA-DQA1*01 allele (r² 0·42). 
Additionally, the SNP at HLA-B showed moderate linkage 
disequilibrium with amino acid changes on positions 
97 and 45 of the HLA-B protein. It should be noted that 
the presence of threonine at position 45 of HLA-B was 
previously identified as an independent HLA signal in 
giant cell arteritis;4 however, the linkage disequilibrium 
between threonine at position 45 of HLA-B and the SNP 
identified in the present study was low (r² 0·15).

Subsequently, we searched the Open Targets Genetics 
tool to explore the potential regulatory role of the four 
HLA SNPs independently associated with giant cell 
arteritis. All SNPs, except for rs17882084, showed a role 
in regulating protein concentrations, gene expression, or 
alternative splicing in tissues or cell types related to giant 
cell arteritis (appendix p 97).

Regarding non-HLA signals, 1·7% of the identified 
suggestive and significant variants were detected within 
coding regions, suggesting a predominantly regulatory 
role. Thus, to explore this potential regulatory function of 
the associated loci, we examined all significant and 
suggestive associations for enrichment in nine histone 
marks previously characterised for immune and vascular 
tissues. These findings showed a significant enrichment 
in various immune cell types, including CD4+ and CD8+ T 
cells, B cells, neutrophils, and monocytes, with a notably 
strong representation of natural killer (NK) cell regulation 
(appendix p 10). By contrast, we detected no significant 
enrichment in vascular tissues or for most of the histone 
marks representative of promoter regions (ie, H3K4me2, 
H3K4me3, H3K9ac). These findings imply that variants 
associated with giant cell arteritis primarily affect 
immune cells and that these genetic variations 
predominantly coincide with actively transcribed regions 
and enhancers.

To identify potential causal SNPs outside the HLA 
region, we defined 95% credible sets through Bayesian 
fine-mapping. Using this strategy, we were able to 
effectively identify concise credible sets in three of four 
non-HLA significant  signals (table 1;  appendix pp 98–108). 
For two of these loci, 8p21.1 and 15q26.1, the credible 
set comprised a single variant (rs9644049 at 8p21.1 and 
rs11073821 at 15q26.1). In the case of the 6q26 locus, 
this analysis prioritised three SNPs as probably 
causal of the association identified in this region 
(rs4252114 [posterior probability 0·46], rs1897108 [0·26], 
and rs1321197 [0·25]). By contrast, the fine-mapping of 
the signal on chr17q11.2 yielded few results. The 
location of this signal in a remarkably dense genetic 
region is likely to render the functional annotations not 
informative enough to single out variants with more 
prominent functional consequences. Within this signal, 
the credible set comprised the 13 most significantly 
associated variants, showing inferior prioritisation 
ability for this locus.

Subsequently, considering the SNPs that comprise the 
credible set of each non-HLA signal, we explored the 

Figure 1: Gene prioritisation for loci associated with giant cell arteritis
Colours indicate the SNPs or genes associated with giant cell arteritis that overlap with the considered functional 
annotations. Different colours indicate different categories of annotations. The items evaluated comprise 
information about the genomic location of the genetic variants, their correlation with gene and protein 
expression, evidence of chromatin interaction, and their V2G score from Open Target Genetics (appendix p 15). The 
last column shows if the prioritised causal genes are targets for approved drugs, according to our drug repurposing 
analysis. The drug target item was not considered for gene prioritisation. pQTL=protein quantitative trait loci. 
eQTL=expression quantitative trait loci. SNP=single nucleotide polymorphism. V2G=Variant-to-Gene. *The gene is 
in high-confidence protein–protein interaction with an identified drug target.

W
ith

in
 g

en
e 

bo
dy

M
iss

en
se

 v
ar

ia
nt

Ph
ys

ica
lly

 n
ea

r

Bl
oo

d 
eQ

TL

Im
m

un
e 

ce
ll 

eQ
TL

Va
sc

ul
ar

 ti
ss

ue
 e

Q
TL

pQ
TL

Ch
ro

m
at

in
 in

te
ra

ct
io

n

H
ig

he
st

 V
2G

 sc
or

e

Dr
ug

 ta
rg

et

Lo
cu

s

Cr
ed

ib
le

 se
t S

N
P 

siz
e

Le
ad

 S
N

P 
in

 cr
ed

ib
le

 se
t

Ca
nd

id
at

e 
ge

ne
s

6q26 3 rs4252114 PLG 0·09

8p21.1 1 rs9644049

CCDC25 0·41

CLU 0·19

ELP3 0·14

ESCO2 0·17

LEPROTL1 ¨

PBK 0·22

SCARA3 0·13

SCARA5 0·11

TMEM66 ¨

15q26.1 1 rs11073821

ACAN 0·05

HAPLN3 0·34

MFGE8 0·33

17q11.2 13 rs704

FOXN1 0·09

IFT20 0·10

LGALS9 0·05

NUFIP2 0·01

POLDIP2 0·17

SARM1 0·43

SEBOX 0·07

SLC13A2 0·05

SLC46A1 0·06

TMEM199 0·37

TMEM97 0·23

TNFAIP1 0·14

VTN 0·33

*

*

*

*



Articles

www.thelancet.com/rheumatology   Vol 6   June 2024	 e379

and Clinical Immunology, 
University of Lübeck, Lübeck, 
Germany (Prof P Lamprecht MD, 
S Klapa MD); Azienda USL-IRCCS 
di Reggio Emilia and Università 
di Modena e Reggio Emilia, 
Reggio Emilia, Italy 
(Prof C Salvarani MD); Division 
of Rheumatology, Department 
of Medicine, and Division of 
Epidemiology, Department of 
Biostatistics, Epidemiology, 
and Informatics, University of 
Pennsylvania, Philadelphia, PA, 
USA (P A Merkel MD MPH); 
Division of Rheumatology, 
IIS-Fundación Jiménez Díaz, 
Madrid, Spain 
(M A González-Gay MD PhD); 
Department of Medicine, 
University of Cantabria, 
Santander, Spain 
(M A González-Gay)

Correspondence to: 
Dr Ana Márquez, Institute of 
Parasitology and Biomedicine 
López-Neyra, Consejo Superior 
de Investigaciones Científicas, 
Granada 18016, Spain 
anamaort@ipb.csic.es

See Online for appendix

For PLINK see https://www.cog-
genomics.org/plink/

For the TOPMed Imputation 
server see https://imputation.
biodatacatalyst.nhlbi.nih.gov

For GTOOL see https://www.chg.
ox.ac.uk/~cfreeman/software/
gwas/gtool.html

For GCTA see https://yanglab.
westlake.edu.cn/software/
gcta/#Overview

For the GAS Power Calculator 
see https://csg.sph.umich.edu/
abecasis/cats/gas_power_
calculator/

For the Ensembl Variant Effect 
Predictor see https://www.
ensembl.org/info/docs/tools/
vep/index.html

For GCTA see https://yanglab.
westlake.edu.cn/software/gcta/

For the SNP2HLA method see 
https://software.broadinstitute.
org/mpg/snp2hla/

 or the Beagle software see 
http://faculty.washington.edu/
browning/beagle/beagle.html

genes that could be affected by them, considering FUMA 
gene mapping and additional data from Open Targets 
Genetics. A total of 26 candidate genes were identified 
(figure 1). The most supported candidates for the 
associated loci considering different parameters were 
PLG (chromosome 6), CCDC25 (chromosome 8), 
MFGE8 (chromosome 15), and VTN (chromosome 17). 
SARM1 also emerged as a potential candidate gene at 
chromosome 17. However, the lead SNP rs704 is a 
missense variant of VTN, which strongly supports its 
role as a credible causal factor for this association. This 
observation is further substantiated by the fact that rs704 
acts as a protein quantitative trait locus, influencing the 
concentrations of protein encoded by VTN.

To identify potential new treatment options for giant cell 
arteritis, we considered all significant non-HLA signals 
and defined a set of 136 proteins, comprising both proteins 
encoded by the suggested causal genes and their high 
confidence interacting proteins (appendix pp 109–111). 
Through an extensive search on the DrugBank 
database, we found 181 different drugs targeting these 
proteins (appendix pp 112–136). Focusing on plausible 
and approved drugs, we identified different promising 
candidates on the basis of their mechanism of action for 
further investigation in giant cell arteritis treatment 
(table 3). Notably, the glycoprotein IIb/IIIa inhibitors 
abciximab, tirofiban, and eptifibatide are approved drugs 
for treating ischaemic complications in patients at high 
risk undergoing coronary intervention or prevention 
of myocardial infarction. Additionally, fostamatinib, a 
spleen tyrosine kinase inhibitor that is licensed in 
chronic immune thrombocytopenia and has successfully 
completed phase 3 clinical trials for treating rheumatoid 
arthritis, is among the repurposed candidate drugs.

Furthermore, we assessed the ability of associated 
variants to predict risk of giant cell arteritis. First, we 

developed a polygenic risk score model considering the 
five independent HLA variants identified in our analysis 
and a p value thresholding approach. Including only 
these HLA variants, the best polygenic risk score showed 
a prediction ability of area under the curve (AUC) 0·610. 
A clumping and p value thresholding approach including 
only independent non-HLA SNPs resulted in a model 
comprising 39 SNPs with poorer prediction (AUC 0·560). 
Nevertheless, applying this approach considering both 
HLA and non-HLA SNPs resulted in a model comprising 
11 SNPs with the best predictive score (AUC 0·617). Using 
sex as a covariate for this model showed a minor decrease 
in prediction ability (AUC 0·616); therefore, sex was not 
included in the final model. The different polygenic risk 
score models and their predictive ability, as well as the 
final model with each variant weight are described in the 
appendix (pp 137–138).

After establishing the best polygenic risk score, we 
assessed its effectiveness in identifying individuals at high 
risk of giant cell arteritis. We categorised the test dataset 
into two groups, namely low risk and high risk, on the basis 
of different risk percentile thresholds. The results showed 
significant differences in risk score between groups for all 
studied divisions. Notably, the top 10% individuals at risk 
had an OR of 2·87 (95% CI 2·15–3·82) for the disease 
(figure 2). Giant cell arteritis risk stratification based on 
results is provided in the appendix (p 139).

Discussion
In this study, we explored the genetic basis of giant cell 
arteritis through the largest GWAS conducted for this 
type of vasculitis to date. Our findings substantially 
increase the understanding of the genetic components 
contributing to the pathogenesis of giant cell arteritis. 
We identified three novel genetic risk factors and, 
through an extensive functional analysis, elucidated 

Target Licensed indication

Abciximab ITGB2B, ITGB3, VTN Ischaemic cardiovascular events

Eptifibatide ITGB3 Acute coronary syndrome

Tirofiban ITGA2B, ITGB3 Acute coronary syndrome

Fostamatinib CDK1, MELK, TTK Chronic immune thrombocytopenia

Human C1 esterase 
inhibitor

KLKB1 Acute attacks of hereditary angioedema

Lanadelumab KLKB1 Acute attacks of hereditary angioedema

Alteplase FGA, PLG, PLAUR, SERPINE1 Lysis of acute massive pulmonary embolism, acute ischaemic stroke, and acute myocardial infarction

Anistreplase FGA, PLG, SERPINE1 Lysis of acute pulmonary emboli, intracoronary emboli, and management of myocardial infarction

Tenecteplase FGA, PLG, PLAUR, SERPINE1 Myocardial infarction and lysis of intracoronary emboli

Urokinase FGA, PLG, SERPINE1 Lysis of acute massive pulmonary emboli, acute thrombi obstructing coronary arteries, occlusive 
thromboemboli in peripheral arteries and grafts, and restoration of patency to intravenous catheters

Reteplase FGA, PLG, SERPINE1 Lysis of acute pulmonary emboli, intracoronary emboli, and management of myocardial infarction

Streptokinase PLG Acute evolving transmural myocardial infarction, pulmonary embolism, deep vein thrombosis, arterial 
thrombosis, or embolism and occlusion of arteriovenous cannulae

Only proposed candidate drugs are shown, the complete report of the drug repurposing analysis is provided in the appendix (pp 112–136).

Table 3: Selected repurposed drug candidates for giant cell arteritis treatment 
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their potential biological consequences in giant cell 
arteritis pathogenesis. Furthermore, our results have 
clarified the association between HLA and this form of 
vasculitis, and substantiated the role of another 
established giant cell arteritis-associated locus, the PLG 
gene.

To overcome the challenge of identifying the 
mechanisms underlying loci associated with giant cell 
arteritis, we did a comprehensive functional analysis of 
the results from the GWAS. This approach led to a 
considerable reduction in the number of variants that 
could reliably explain these associations, thus 
improving our ability to interpret their biological 
involvement. In the case of the HLA region, we have 
defined a set of five variants that adequately encompass 
the observed association within this highly complex 
region. For non-HLA loci, we identified the most 
credible causal variants with biological relevance, 
facilitating a focused analysis of the potential causal 
genes of these signals.

The association observed within the HLA region in this 
study supports previous findings that identify giant cell 
arteritis as a disorder predominantly related to HLA class 
II. Nevertheless, in line with the outcomes of a previous 
giant cell arteritis ImmunoChip study,4 we have also 
verified the involvement of HLA class I in the 
manifestation of this disease. This finding is consistent 

with the associations observed in the only other form of 
large-vessel vasculitis, Takayasu’s arteritis, which 
similarly shows a contribution of both HLA classes I and 
II in its pathogenesis.9

Our findings highlight a prominent role of the genetic 
component of giant cell arteritis in the process of arterial 
tissue destruction and neovascularisation, in which three 
of the four loci associated with giant cell arteritis, PLG, 
VTN, and MFGE8, are involved. The suggested role of 
PLG in the development of giant cell arteritis arises from 
its connection with the remodelling of damaged arterial 
tissue. This gene encodes plasminogen, a precursor to 
plasmin and angiostatin, which has a crucial role in 
various processes relevant to giant cell arteritis patho
genesis, including angiogenesis, inflammation, wound 
healing, and lymphocyte recruitment.10 Additionally, it has 
been shown that plasminogen functions as a regulator of 
macrophage reprogramming and neutrophil apoptosis in 
mouse models.11 Furthermore, in the present study, the 
scope of evidence indicating the participation of this 
pathway in giant cell arteritis has been expanded through 
the observed association between VTN and MFGE8 and 
this type of vasculitis. MFGE8 encodes a pre-proprotein 
that mainly gives rise to lactadherin, a glycoprotein found 
in the cell membrane that enhances the phagocytosis of 
apoptotic cells12 and promotes neovascularisation 
dependent on VEGF.13 In mouse models, MFGE8 failure 

Figure 2: Genetic risk distribution
Predictive ability of the polygenic risk score model, including 11 SNPs (HLA and non-HLA). (A) Density plot of the distribution of genetic risk between patients with 
giant cell arteritis and controls. Dashed lines represent the percentile thresholds used to calculate the OR of each division. (B) ORs associated with the group at high 
risk of giant cell arteritis when segregating the test sample by the same percentile thresholds. Error bars depict 95% CIs. OR=odds ratio.
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has been linked to the incidence of autoimmune diseases.14 
Notably, the only genetic variant prioritised within this 
region was found to act as an expression quantitative trait 
locus according to our functional annotation analysis, with 
its risk allele correlating with decreased concentrations of 
MFGE8 in the blood and with increased amounts of this 
gene in T cells. Vitronectin, encoded by VTN, is a 
glycoprotein that binds to plasminogen and various other 
molecules, and serves to stabilise the inhibitory 
conformation of PAI-1. Interestingly, PAI-1 has been 
shown to regulate VEGF signalling in a vitronectin-
dependent manner, thus inhibiting angiogenesis.15 Taken 
together, our results depict an important contribution of 
an altered artery remodelling mechanism in giant cell 
arteritis susceptibility, which could be one of the key agents 
of the long-term damage occurring in the pathological 
process of this vasculitis.

It should be noted that the associated locus 17q11.2 
constitutes a highly complex genetic region, representing 
a challenge in identifying the most likely causal gene. 
There is notable evidence that this association is caused by 
VTN, given that the lead SNP, rs704, is a missense variant 
and a protein quantitative trait locus for this gene. 
Specifically, it has been shown that the minor allele of 
rs704 results in higher vitronectin protein concentrations, 
stronger binding of vitronectin to PAI-1, and less cell-
surface binding than the major allele.16,17 However, 
evidence also supports the involvement of SARM1. 
SARM1, a member of the TIR adaptor family, has been 
linked to the regulation of essential inflammatory 
pathways and implicated as a regulatory element in 
the interleukin-1 pathway in rheumatoid arthritis 
monocytes.18 Therefore, considering their reasonable 
potential role in giant cell arteritis pathogenesis, either 
gene (VTN or SARM1) or a more intricate mechanism 
influencing both could underlie the observed association 
within this genomic locus.

In the past decade, understanding around the diverse 
roles that neutrophil extracellular traps (NETs) have in 
inflammation has increased.19 Interestingly, NETs have 
been associated with giant cell arteritis20 and their 
presence in the affected temporal artery of patients with 
giant cell arteritis has been reported.21 Although the 
specific involvement of NETs in giant cell arteritis 
requires further investigation, our findings contribute to 
reinforcing the important role of this mechanism in the 
pathogenesis of the disease. In this study, we identified 
an intronic variant of CCDC25 that constitutes a risk 
factor for giant cell arteritis. Specifically, the risk allele of 
this SNP correlates with an increased expression of 
CCDC25 in immune cells. This gene encodes a 
transmembrane receptor for NETs, which triggers the 
activation of the ILK-β–parvin pathway and enhances cell 
motility.22 Although this pathway has been associated 
with metastasis in cancer, in the context of giant cell 
arteritis, it could potentially serve as a signalling 
mechanism that enhances the recruitment of immune 

cells to pathological artery tissue. Of note, in 
granulomatosis with polyangiitis, another vasculitis 
mainly affecting small vessels, NETs have been observed 
to induce the expression of MMP-9 in monocytes, 
obtaining the capability of tissue invasion.23 In the context 
of giant cell arteritis, MMP-9 is the main effector for the 
loss of immune privilege in the arterial wall, a crucial 
event in disease initiation.1

Our results on cell enrichment showed that the genetic 
component of giant cell arteritis affects gene regulation in 
both adaptive and innate immune cells, including B cells, 
different subtypes of T cells, and monocytes. Additionally, 
we identified an enrichment in neutrophil gene 
regulation, coherent with the involvement of NETs in the 
pathogenic process of this type of vasculitis. Furthermore, 
this finding supports the previously suggested role of 
neutrophils in the pathogenesis of giant cell arteritis. 
Previous research has proposed the involvement of 
immature neutrophils in giant cell arteritis as promoters 
of vascular lesions24 and the participation of peripheral 
neutrophils in effector T-cell proliferation.25

Unexpectedly, the strongest enrichment was observed 
in NK cells. Although the number of NK cells is known 
to be decreased in patients with giant cell arteritis,26 the 
role of this cell type in the context of this vasculitis 
remains underexplored. Nevertheless, this same NK cell 
enrichment was reported in a previous cross-disease 
association study that investigated the shared genetic 
component across systemic vasculitides, including giant 
cell arteritis.27 These findings strongly suggest the 
potential role of NK cells as contributors to the 
development of giant cell arteritis.

Unlike previous findings, our study did not observe the 
reported association between P4HA2 and giant cell 
arteritis, a gene that was suggested to be related to the 
artery remodelling process through the plasmin pathway.3 
The potential involvement of this gene in the pathogenesis 
of giant cell arteritis has also been highlighted in a 2022 
transcriptomic and methylomic profiling study of giant 
cell arteritis monocytes.28 We believe that this observed 
disparity could be attributed to the inherent high clinical 
heterogeneity among patients with giant cell arteritis. It is 
plausible that the influence of the P4HA2 gene is specific 
to a particular subtype of patients with giant cell arteritis, 
who are potentially under-represented in our study.

Through an intense effort to translate these novel 
genomic results into tangible clinical applications, we 
have been able to prioritise several drugs that could be 
repurposed for patients with giant cell arteritis. 
Importantly, abciximab directly targets vitronectin, 
whereas fostamatinib has drawn attention for its reported 
safety and efficacy in phase 3 clinical trials for the 
treatment of patients with rheumatoid arthritis.29 
Interestingly, fostamatinib was also suggested to be 
potentially repositionable in patients with vasculitides in 
a previous study.27 We have also introduced the first 
polygenic risk score aimed at detecting the genetic 
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