
G protein βγ regulation of
KCNQ-encoded
voltage-dependent K channels

Jennifer B. Stott and Iain A. Greenwood*

Vascular Biology Research Group, Institute of Molecular and Clinical Sciences, St George’s University of
London, London, United Kingdom

The KCNQ family is comprised of five genes and the expression products form
voltage-gated potassium channels (Kv7.1–7.5) that have a major impact upon
cellular physiology in many cell types. Each functional Kv7 channel forms as a
tetramer that often associates with proteins encoded by the KCNE gene family
(KCNE1-5) and is critically reliant upon binding of phosphatidylinositol
bisphosphate (PIP2) and calmodulin. Other modulators like A-kinase anchoring
proteins, ubiquitin ligases and Ca-calmodulin kinase II alter Kv7 channel function
and trafficking in an isoform specific manner. It has now been identified that for
Kv7.4, G protein βγ subunits (Gβγ) can be added to the list of key regulators and is
paramount for channel activity. This article provides an overview of this nascent
field of research, highlighting themes and directions for future study.
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Introduction

There are 5 Gβ and 11 Gγ proteins that associate to form a tightly bound dimer, which
function as a single entity (Schmidt et al., 1992; Khan et al., 2016). Gβγ subunits associate
with Gα subunits (Gαs, Gαi/o, Gαq/11) to form the heterotrimeric G proteins, crucial
intermediates for a myriad of cell surface G-protein coupled receptors (GPCRs). However,
the 7β propeller structure of Gβ proteins enables interaction with multiple effectors
including adenylate cyclases, tyrosine kinases, phospholipases, G-Receptor kinases and
MAP kinases (Lin and Smrcka, 2011). In cardiac cells and neurones stimulation of GPCRs
coupled to Gαi/o evokes a K+ conductance due to the translocation and binding of Gβγ to
Kir3.1/3.4 potassium channels, subsequently termed GIRKs (G protein activated Inwardly
Rectifying K+ channels) (Logothetis et al., 1987; Dascal and Kahanovitch, 2015). Protein
biochemistry studies revealed that Gβγ subunits modulate Kir3.1 and Kir3.4 (GIRK1 and
GIRK4, respectively) through an interaction with residues 253–348 in the C-terminal as well
as residues 41–92 in the N terminus (Huang et al., 1995; He et al., 1999; 2002; Ivanina et al.,
2003; Kahanovtch et al., 2014; Touhara and MacKinnon, 2018; Tabak et al., 2019). The
molecular determinants of Gβγ binding to GIRKs has been identified by X-ray
crystallography (Whorton and MacKinnon, 2013) and is affected by interaction with
phosphatidyl inositol bisphosphate (PIP2), phosphorylation, scaffold proteins and even Gαi/
o proteins (Dascal and Kahanovitch, 2015). Gβγ-dependent activation of GIRKs is a
powerful physiological mechanism yet, except for inhibition of CaV2 channels (Herlitze
et al., 1996; Ikeda, 1996; Proft and Weiss, 2015) and the recently discovered modulation of
TRPM3 channels, examples of Gβγ modulating other ion channels are rare. This article
highlights a nascent research field about Gβγ regulation of Kv7 channel voltage-gated
potassium channels.
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Kv7 channels

The Kv7 channel subfamily is comprised of five members,
Kv7.1–Kv7.5, encoded by the genes KCNQ1 to KCNQ5, which
have been identified as key players in controlling excitability and
physiological function in many cell types (Barrese et al., 2018).
Kv7 proteins have the standard protein topography consistent
within the Kv channel family with 6 main transmembrane
domains, a pore and selectivity filter created by amino acids
between the 5th and 6th domains and a voltage-sensing unit
comprised of transmembrane domains one to four with a
positively charged 4th domain providing voltage sensing (Coetzee
et al., 1999; Ranjan et al., 2019). All Kv7 channels are tetramers with
Kv7.1 conventionally forming homotetramers whilst the other
Kv7 proteins are capable of heterotetramerisation determined by
coiled-coil motifs in the distal C-terminus (Schwake et al.,
2003; 2006).

In terms of expression, in the human body Kv7.1 is found in the
cochlea and epithelia as well as cardiac myocytes, where it mediates
late repolarisation of the action potential. Kv7.2/7.3 channels are
robustly expressed in central, peripheral, and sensory neurons,
where they underlie a K+ conductance known as the M-current
crucial for limiting neuronal excitability (Jentsch, 2000; Soldovieri
et al., 2011). Kv7.4 is found in the cochlea as well as smooth muscle
where it opposes muscle contraction (Greenwood and Ohya, 2009;
Haick and Byron, 2016). Kv7.5 is also located in smooth muscle
usually in association with Kv7.4 (Brueggemann et al., 2014; Chadha
et al., 2014), as well as neurones and skeletal muscle (Barrese et al.,
2018). Effective functioning of Kv7 channels is essential for
homeostatic processes and when Kv7.1-7.5 channels do not work
the consequences can be disastrous. Relatively rare inherited
disorders like Long QT syndrome-associated arrhythmia or
epileptic encephalopathy as well as more common congenital
diseases like atrial fibrillation and non-syndromic deafness are
associated with mutations to KCNQ genes (for more details see
Barrese et al., 2018; Nappi et al., 2020; Vigil et al., 2020; Huang et al.,
2023). Moreover, corruption of Kv7 function has been linked to
development of multiple disorders which pose a significant health
burden. This includes hypertension, neuropathic pain, urinary
incontinence and pre-term labour (see Jepps et al., 2011; 2016;
McCallum et al., 2011; Svalø et al., 2015; Carr et al., 2016).

Kv7 regulation

Kv7 channels are opened by membrane depolarisation due to
coupling of the voltage-sensing domain with the pore loop (see
Wang et al., 2020 for overview). In addition, Kv7 channel activity is
regulated by several modulators (see Haitin and Attali, 2008; Barrese
et al., 2018) with PIP2 and calmodulin having considerable control
over channel activity.

Structure-function studies have identified PIP2 and calmodulin
binding sites in the distal C-terminus (Haitin and Attali, 2008;
Hernandez et al., 2008). Additional PIP2 binding sites have been
identified at amino acids in S2-S3 and S4-S5 linkers depending upon
the Kv7 isoform (Choveau et al., 2018; Brueggemann et al., 2020).
The activity of all Kv7 channels is enhanced by PIP2 (Li et al., 2005;
Hernandez et al., 2008, see Zaydman and Cui, 2014 for a fuller

summary), which alters the open probability of Kv7 channels
through various mechanisms (see Zaydman and Cui, 2014).
Stabilization of the voltage-sensing domain-pore gate coupling is
a proposed model for the action of PIP2 on Kv7.1 (Sun and
MacKinnon, 2020). Calmodulin binds to a site overlapping with
the PIP2 binding domain on the C-terminus (Haitin and Attali,
2008) and leads to inhibition of Kv7.2/7.3, Kv7.4 and Kv7.5 but
stabilises Kv7.1 activity (Gamper et al., 2005; Tobelaim et al., 2017).

The biophysical, pharmacological and trafficking properties of
Kv7 channels are also dictated by association with proteins encoded
by the KCNE gene family (KCNE1-5, Abbott, 2020; 2022). The best
studied of Kv7-KCNE interactions is Kv7.1 and KCNE1, which
constitute channel responsible for the slowly activating late
component of ventricular and atrial action potential
repolarisation (Barhanin et al., 1996). In this case the
KCNE1 protein interacts with the voltage-sensor domain and
slows channel opening (Nakajo and Kubo, 2007; Abbott, 2022).
However, Kv7.1 also associates with KCNE2 and KCNE3 in
epithelial cells and here the channel loses time-dependent
properties as the voltage-sensor becomes locked by the
interleaving of the KCNE proteins (Abbott, 2022). In smooth
muscle cells Kv7.4 and Kv7.4/7.5 heteromers associate with
KCNE4 (Jepps et al., 2015), which increases membrane
abundance and voltage-sensitivity. Different Kv7 channels are
also modulated by protein kinase A and protein kinase C that
associate with the channel through interactions with A-kinase
anchoring proteins (AKAPs) (Haitin and Attali, 2008; Barrese
et al., 2018). Consequently, Kv7 channels exist in a multi-protein
complex with many interacting modulators.

Kv7 channels and Gβγ

In 2015 Stott et al. identified that Gβγ regulates Kv7.4, the
Kv7 isoform that is abundant in arterial smooth muscle (Stott et al.,
2015b). Intracellular perfusion of active Gβγ isolated from bovine
brain augmented the amplitude of potassium currents evoked by
membrane depolarization in Human Embryonic Kidney cells
(HEKs) constitutively expressing Kv7.4 (see Figure 1 for
example). The augmentation took about 5 min to plateau and
was associated with an approximate halving of the slow time
constant of activation and −5 mV shift in the voltage dependence
of activation. Experiments performed with excised patches of cell
membrane with the internal surface facing the bathing solution
(termed inside out patches) revealed that Gβγ produced a
concentration-dependent (0.4–50 ng/mL) increase in open
probability with an approximate concentration for half maximal
stimulation of 8 ng/mL (Povstyan et al., 2017) without altering the
unitary conductance (Stott et al., 2015b; Povstyan et al., 2017), that
was identified as 2.3 pS consistent with other studies (Li et al., 2005).
Heterologously expressed Kv7.4 channel currents were also
augmented with a concomitant reduction in activation kinetics
by stimulation of P2Y receptors endogenous to HEK cells with
ATP (Stott et al., 2015b).

In a more physiological scenario, native Kv7 currents in freshly
dispersed renal artery smooth muscle cells were enhanced by
intracellular perfusion with brain derived Gβγ (Stott et al.,
2015b). There are five isoforms of Gβ that have differential

Frontiers in Physiology frontiersin.org02

Stott and Greenwood 10.3389/fphys.2024.1382904

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1382904


effects on target proteins (Schmidt et al., 1992; Khan et al., 2016).
Co-expression of plasmids containing Gβ1 or Gβ3 in
Kv7.4 expressing Chinese Hamster Ovary cells produced an
increase in current amplitude, leftward shift in voltage-
dependence and reduction in the kinetics of activation that were
analogous to the effects of purified brain Gβγ (Greenwood and Stott,
2020). Similar effects were observed with Gβ5, which is structurally
dissimilar to the other 4 Gβ isoforms (Khan et al., 2013), but not
with overexpressed Gβ2 or Gβ4 (Greenwood and Stott, 2020).
Interestingly, molecular knockdown of Gβ3 but not Gβ1 or
Gβ5 reduced native Kv7 channel currents in renal artery smooth
muscle cells (Greenwood and Stott, 2020). There are 12 genes that
encode for Gγ subunits, and the expression products are structurally
more diverse than Gβ (27%–76% similarity, Dupré et al., 2009).
There is no information about individual Gγ subunits differentially
affecting ion channels.

Constitutive activity-an obligatory role
for Gβγ

GIRK channels are modulated by Gβγ subunits at rest (basal
activity) and augmented by Gβγ liberated upon activation of
receptors coupled to (Kahanovtch et al., 2014). Kv7.4 channels
appear to operate in a similar manner but with the basal
interaction being more important than with GIRKs. Proximity
ligation assays (PLA, Soderberg et al., 2008) with antibodies
against Kv7.4 and pan-Gβ revealed considerable association
between the two proteins in heterologous expression systems and

arterial smoothmuscle cells in the absence of receptor stimulation or
internal enrichment with Gβγ (Stott et al., 2015b). PLA with
antibodies specific for Gβ1 or Gβ3 also exhibited significant basal
interaction with Kv7.4 in renal artery myocytes whereas Gβ2 and
Gβ4 did not interact. Moreover, structurally different prohibitors of
Gβγ-protein interaction not only prevented Kv7.4 current
enhancement by Gβγ enrichment but also abrogated
Kv7.4 currents. Thus, voltage-dependent K+ currents in HEKs
constitutively expressing Kv7.4 were reduced to negligible levels
after 10min application of the small molecule inhibitors gallein,
M199K and M201; a peptide mimetic of the G-protein receptor
kinase (Grk2i) and an antibody against Gβ (Stott et al., 2015b;
Povstyan et al., 2017). Gallein, M201 and Grk2i also reduced the
open probability of Kv7.4 channels recorded in inside-out patches or
cell attached recordings to negligible levels (Stott et al., 2015b;
Povstyan et al., 2017) and reduced the number of protein-protein
interactions derived by proximity ligation assay. These data revealed
that the association of Gβγwith the Kv7.4 channel was obligatory for
the channel to respond to membrane depolarisation.

Kv7.4-Gβγ relationship in receptor mediated
vasorelaxations

The powerful regulation of Kv7.4 by Gβγ has considerable
physiological relevance in arterial smooth muscle both at rest and
in the vascular response to receptor-linked vasodilators. In arterial
smooth muscle cells Kv7.4 exists predominantly as a heteromer with
Kv7.5 (Chadha et al., 2014; Brueggemann et al., 2014). Application

FIGURE 1
Illustration of the effect of Gβγ on Kv7.4 channels. (A,B) show potassium currents generated at different test potentials from −80 mV to + 40 mV in
CHO cells expressing Kv7.4 in the absence (A) or presence (B) of internal perfusion with Gβγ. (C) is a cartoon representation of the importance of Gβγ on
Kv7.4 channels both at rest (left panel) and in response to receptor-agonists (right). Kv7.4 association with Gβγ is crucial for channel function in many
arteries. Gβγ -effector inhibitors suppress heterologously expressed voltage-gated potassium currents in the absence of any receptor stimulation or
artificial enrichment. Gβγ association with Kv7.4 is also critical for PKA to enhance channel activity and produce relaxation in some arteries (e.g., renal).
However, in other arteries cAMP signalling via EPAC is not reliant upon Gβγ.
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of pan-Kv7 blockers like linopirdine or XE991 either produce a
contraction, which is sensitive to calcium channel blockers, or
sensitizes vasoconstrictor responses. Agents that activate
Kv7 channels like ML213, retigabine, maxipost are effective
relaxants of precontracted arteries (e.g., Jepps et al., 2015). PLA
has revealed a high level of association between Kv7.4 and Gβγ in rat
renal arterial smooth muscle cells (Stott et al., 2015b) in the absence
of any stimulant. Application of gallein or M199K reduced the
number of PLA punctae considerably and caused a marked
contraction of the renal artery (Stott et al., 2018), which was
equivalent to the effect of a direct Kv7 channel blocker such as
linopirdine (Stott et al., 2018). These data suggest that in renal
arteries Kv7 channels are important determinants of resting arterial
tone that is reliant upon an interaction with Gβγ. In mesenteric
arteries there are fewer interactions of Kv7.4 with Gβγ and neither
gallein nor Kv7 channel blockers contract the artery. These
observations provide credence that Kv7.4-containing channels
regulate resting arterial smooth muscle contraction that is reliant
upon association with Gβγ but highlight the underlying interaction
is complex (Figure 1).

The Kv7.4-Gβγ relationship is also important in receptor-mediated
vasorelaxations. In arterial smooth muscle various agonists of Gs-
coupled receptors like isoprenaline (mixed β-adrenoceptor)
adenosine and calcitonin-gene related peptide, and cGMP stimulants
such as atrial natriuretic peptide produce vasodilatation that is impaired
if Kv7 channel blockers are present (Chadha et al., 2012; Khanamiri
et al., 2013; Stott et al., 2015a; Morales-Cano et al., 2015; Stott et al.,
2016; Stott et al., 2018; Mondéjar-Parreño et al., 2019; Baldwin et al.,
2022). Similarly, impairment was observed if Kv7.4 or Kv7.5 was
reduced by morpholino or siRNA-mediated molecular interference
(Chadha et al., 2014; Stott et al., 2018). Interestingly, the nature of the
coupling between Gs-linked receptor and Kv7 channels is artery
specific. In renal arteries, the β-adrenoceptor-mediated responses are
driven via protein kinases A and an associated A-kinase anchoring
protein whereas in mesenteric artery isoprenaline-derived relaxations
are mediated by EPAC (Exchange Protein Activated by Cyclic AMP)
signalling via the downstream mediators Rap1A and Rap2 with
Kv7.4 in these vessels. Thus, PKA or AKAP inhibitors attenuated
linopirdine-sensitive isoprenaline relaxations of renal artery, but EPAC
inhibitors reduced isoprenaline-mediated relaxations of mesenteric
artery (Stott et al., 2016).

With respect to Gβγ role in Kv7.4 activity, cell attached
recordings from renal artery smooth muscle cells showed that the
activity of linopirdine-sensitive K channels was enhanced by
isoprenaline in a gallein-sensitive manner (Stott et al., 2015b).
Moreover, isoprenaline increased the number of PLA punctae
derived from Kv7.4-Gβγ antibodies (Stott et al., 2018). In
addition, gallein impaired the isoprenaline-mediated relaxations
in renal artery (Stott et al., 2018). Gallein and M199K also
prevented calcitonin-gene related peptide-induced relaxations in
mesenteric and cerebral arteries (Meens et al., 2012; Stott et al.,
2018). Interestingly, whilst isoprenaline-mediated relaxations of
mesenteric artery are sensitive to Kv7 blockade they are not
sensitive to Gβγ blockers. Thus, while PKA dependent relaxation
of renal arteries was sensitive to Gβγ blockade the EPAC-dependent
relaxations were not. Finally, myristolated-SRKALNILGYPDYD,
which liberates Gβγ without GTP exchange on the Gα
(Goubaeva et al., 2003), relaxed precontracted renal arteries in a

linopirdine-sensitive manner. Overall, there is considerable evidence
that Gβγ association with Kv7.4 is essential for the channel to
respond to membrane voltage changes and is a necessary
requirement for the channel to respond to receptor-mediated
signals. Disabling Kv7.4-Gβγ interactions reduces channel
currents and in arteries leads to marked vasospasm and poor
response to many receptor-mediated vasodilators. These data
presented a new paradigm to regulate arterial relaxation.

Relationship with PIP2

The activity of Kir3.1/3.4 proteins that comprise GIRK channels
are regulated by phosphatidyl inositol bisphosphate (PIP2) and
intracellular sodium levels as well as Gβγ (Petit-Jacques et al.,
1999; Wang et al., 2014; Li et al., 2019). Ultrastructural studies
have identified that full activation of Kir3.1/3.4 by Gβγ is contingent
upon PIP2 stabilising an internal gate distinct from a Gβγ binding
site (Whorton and Mackinnon, 2011; 2013). Kv7 channels activity is
also reliant upon PIP2 interaction (Li et al., 2005; Brown et al., 2007;
Hernandez et al., 2008). Kv7.4 has the lowest sensitivity of all
Kv7 channels to PIP2 with an EC50 value in excised patches of
about 120 uM (Li et al., 2005; Brown et al., 2007; Hernandez et al.,
2008; Povstyan et al., 2017). Povstyan et al. (2017) revealed that the
stimulatory effect of PIP2 on Kv7.4 in excised patches was prevented
by prior application of structurally different Gβγ blockers (gallein,
M199K, M201 and Grk2i). Strikingly, the stimulatory effect of Gβγ
subunits was abrogated by depletion of PIP2 levels through
activation of phospholipase C linked receptors in the presence of
the P-I-3 kinase inhibitor, wortmannin (Povstyan et al., 2017).
Affirmation of a cooperative regulation of Kv7.4 by both signal
entities was provided by the observation that a sub-efficacious
concentration of Gβγ (1 ng/mL), enhanced the action of low PIP2
concentrations to maximal levels (Povstyan et al., 2017). These data
suggest that the sensitivity of Kv7.4 to PIP2 may be dependent on
local Gβγ levels and vice versa. Thus, channel regulation is dictated
by a synergism of Gβγ and PIP2 like the situation for GIRK channels
(Dascal and Kahanovitch, 2015; Li et al., 2019).

Reflections

The observation that Gβγ stimulated Kv7.4 channels was seminal,
and the physiological implications are manifold. However, many
questions now exist. Importantly, structural information about the
site of Gβγ interaction with Kv7.4 is lacking. Moreover, the
molecular mechanisms that link Gβγ with enhanced channel activity
and the precise role of Gβγ in the modulation produced by protein
kinase A and EPACs remain to be defined. In addition, the role of
KCNE subunits in Gβγ-mediated regulation has not been assessed.
Future research should address these short falls.

Research into Gβγ regulation of Kv channels is in its infancy and
mechanistic insight is scarce. The effect of Gβγ on Kv7.4 channels is
extremely powerful and appears to be linked to underlying
modulatory processes especially PIP2-dependent increases in
open probability. Information on the other Kv7 subtypes is
lacking. As Kv7.2/7.3 heteromers constitute the M-channel that
stabilise neuronal membrane potential Gβγ regulation would have a
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considerable physiological impact. Interestingly, there are various
neurodevelopmental disorders that are linked to mutations in the
Gβ genes (GNB1 and 2; e.g., Petrovski et al., 2016). Similarly,
Kv7.1 in association has a key role in regulating action potential
duration in paced cardiomyocytes and a reliance upon Gβγ
association would have much impact on cardiac function. The
effect of Gβγ on other Kv channels is very limited with data only
on Kv1.1 and auxiliary subunit mediated channel inactivation (see
Jing et al., 1999; Michaelevski et al., 2002). In contrast to the Kir3. x
family that underlie GIRK channels, the Kv family is considerably
larger and more complex in terms of modulation by auxiliary
proteins. Defining how Gβγ modulate Kv channel activity will be
a busy area for years to come.
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