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Abstract 1 

Background Atrial fibrillation (AF) and concomitant cardiometabolic disease processes interact 2 

and combine to lead to adverse events such as stroke, heart failure, myocardial infarction, and 3 

cardiovascular death. Circulating biomolecules provide quantifiable proxies for cardiometabolic 4 

disease processes. Their role in defining subphenotypes of AF is not known.  5 

Methods and results This prespecified analysis of the EAST-AFNET4 biomolecule study 6 

assigned patients to clusters using polytomous variable latent class analysis (poLCA) based on 7 

baseline concentrations of thirteen precisely-quantified biomolecules potentially reflecting 8 

ageing, cardiac fibrosis, metabolic dysfunction, oxidative stress, cardiac load, endothelial 9 

dysfunction, and inflammation. In each cluster, rates of cardiovascular death, stroke, or 10 

hospitalization for heart failure or acute coronary syndrome, the primary outcome of EAST-11 

AFNET 4, were calculated and compared between clusters over median 5.1 years follow-up. 12 

Findings were independently validated in a prospective cohort of 748 patients with AF (BBC-AF; 13 

median follow up 2.9 years). 14 

Unsupervised biomolecule analysis assigned 1586 patients (71 years old, 46% women) into four 15 

clusters. The highest-risk cluster was dominated by elevated BMP10, IGFBP7, NT-proBNP, 16 

ANGPT2 and GDF15. Patients in the lowest-risk cluster showed low concentrations of these 17 

biomolecules. Two intermediate-risk clusters differed by high or low concentrations of hsCRP, IL-18 

6, and D-dimer. Patients in the highest-risk cluster had a 5-fold higher cardiovascular event rate 19 

than patients in the low-risk cluster. Early rhythm control was effective across clusters 20 

(pinteraction=0.63). Sensitivity analyses and external validation in BBC-AF replicated clusters and 21 

risk gradients. 22 

Conclusions Biomolecule concentrations identify cardiometabolic subphenotypes in patients 23 

with atrial fibrillation at high and low cardiovascular risk. 24 

 25 

  26 
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Graphical abstract 1 

 2 

Quantification of thirteen biomolecules preselected for their ability to provide quantitative 3 
proxies for cardiovascular disease processes assigns patients with recently diagnosed AF and 4 
comorbidities to four clusters. The main biomolecules contributing to the clustering process are 5 
NT-proBNP, IGFBP7, BMP10, AngPT2, GDF-15, IL-6, and CRP. These biomolecules explain 6 
66%-85% of the assignment to a cluster. The four clusters differ in their cardiovscular risk over a 7 
five-year time horizon. Early rhythm control therapy is effective in all four clusters 8 
(pinteraction=0.63). 9 

  10 
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Introduction 1 

Several chronic and interacting disease processes1, 2 contribute to the development of atrial 2 

fibrillation (AF) and to cardiovascular events in patients with AF 3, 4. More than 80% of patients 3 

with atrial fibrillation (AF) suffer from comorbidities such as hypertension, heart failure, diabetes, 4 

or coronary, cerebral or peripheral artery disease at the time of diagnosing AF 4, 5. These include 5 

cardiometabolic dysfunction 6, systemic and atrial thrombo-inflammation 7, 8, vascular and 6 

endothelial dysfunction 7, 8 and cardiomyocyte dysfunction 9. Quantification of underlying disease 7 

processes and their interactions may identify drivers of cardiovascular complications in patients 8 

with AF.  9 

Circulating biomolecules provide quantitative proxies of cardiovascular disease processes 10 

including at early, subclinical stages 1, 2. For example, slight, chronic elevations of circulating 11 

troponin concentrations are associated with sub-clinical myocyte injury and increased 12 

cardiovascular risk 10, including in patients with atrial fibrillation 11. Quantification of selected 13 

biomolecules in a single blood draw can furthermore refine prediction of stroke and bleeding risk 14 

in patients with AF 11-13. Whether a selection of biomolecules aiming to represent different 15 

cardiovascular and inflammatory disease processes can be used to identify cardiometabolic 16 

subphenotypes of patients with AF has not been tested. 17 

This prespecified secondary analysis of the EAST-AFNET 4 biomolecule study embedded into the 18 

Early treatment of Atrial fibrillation for STroke prevention (EAST-AFNET 4) trial 14, quantified 19 

thirteen biomolecules reflecting different diseases processes in AF that were defined a priori 1. 20 

Unsupervised clustering methods capturing interactions between biomolecules were applied to 21 

identify patients at risk of cardiovascular events based on biomolecule concentrations. 22 

Additionally, independent validation was performed in a prospective registry of patients with AF 23 

(BBC-AF 15). 24 

  25 
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Methods 1 

The main analyses described here report a prespecified analysis of the EAST-AFNET 4 2 

biomolecule study (see protocol appendix) 16. Post-hoc exploratory analyses were added to better 3 

understand the main findings. 4 

Derivation cohort (EAST-AFNET 4). The Early treatment of atrial fibrillation for stroke 5 

prevention trial (EAST-AFNET 4) randomized patients with recently diagnosed AF and stroke 6 

risk factors to systematic early rhythm control or usual care including symptom -based rhythm 7 

control 14. All patients were followed-up for a median of 5.1 years. The primary outcome of the 8 

trial was a composite of stroke, cardiovascular death, and unplanned hospitalization for heart 9 

failure or acute coronary syndrome 14. Details of the EAST-AFNET 4 biosample study collecting a 10 

baseline blood sample in 1586 patients enrolled in the EAST-AFNET 4 trial have been published 11 
17. In brief, all consenting patients provided a blood sample at baseline. Samples were shipped to 12 

the core biostorage facility at UKE Hamburg, spun, shock-frozen and stored at -80C. EAST-13 

AFNET 4 and its biomolecule substudy were approved at all study sites. Written informed consent 14 

was obtained from all patients. This study complied with the  15 

Declaration of Helsinki. 16 

 17 

Validation cohort (BBC-AF atrial fibrillation sub-cohort). Details of the BBC-AF cohort have been 18 

described before 15. In brief, consecutive patients eligible for recruitment had ECG-diagnosed AF 19 

or presented with at least two cardiovascular conditions (congestive heart failure, hypertension, 20 

diabetes, prior stroke, or vascular disease) to a large teaching hospital (Sandwell and West 21 

Birmingham NHS Trust). Patients who did not have a diagnosis of AF underwent 7 -day 22 

ambulatory ECG monitoring to rule out undiagnosed ECG-documented AF. For this analysis, only 23 

patients with ECG-documented AF were included. All patients underwent a detailed interview, 24 

physical examination, 12-lead ECG, and a transthoracic echocardiography at time of recruitment. 25 

Follow-up data for events were collected by assessing local hospital records corroborated against 26 

Hospital Episode Statistics data, general practitioner (GP) records, and mortality data from NHS 27 

Digital, at 2.5 years after the final patient was recruited 18. The follow-up duration was calculated 28 

as the time between the baseline assessment date to an event, or to the date of record review where 29 

no events were documented. This study complied with the Declaration of Helsinki, was approved 30 

by the National Research Ethics Service Committee (IRAS ID 97753) and was sponsored by the 31 

University of Birmingham. All patients provided written informed consent.  32 
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Selection of biomolecules and their quantification. The methodological approach taken for this 1 

work tried to combine the multifaceted information of several circulating biomolecules and the 2 

reliability of high precision assays. A group of scientists within the EU-funded CATCH-ME 3 

consortium searched literature and scouted meetings for disease mechanisms related to atrial 4 

fibrillation and to cardiovascular events in patients with atrial fibrillation. One summary of this 5 

initial effort has been published 1. In a next step, biomolecules that could potentially reflect these 6 

disease processes (called “health modifiers” in 1) were identified based on a literature and patent 7 

search enriched with knowledge available in the EU Horizon 2020 CATCH-ME consortium. A 8 

modified Delphi expert consensus process was conducted to identify biomolecules representing 9 

these disease mechanisms available forhigh precision quantification. Thirteen biomolecules were 10 

identified (Table 1): Angiopoietin 2 (ANGPT2), bone morphogenetic protein 10 (BMP10), cancer 11 

antigen 125 (CA125), C-reactive protein (CRP), D-dimer, endothelial specific molecule 1 (ESM1), 12 

fatty acid binding protein 3 (FABP3), fibroblast growth factor 23 (FGF23), growth differentiation 13 

factor 15 (GDF15), insulin-like growth factor binding protein 7 (IGFBP7), interleukin-6 (IL-6), N-14 

terminal pro–B-type natriuretic peptide (NT-proBNP), and cardiac troponin (TnT). 15 

Biomolecules were centrally quantified using pre-commercial and commercial high-throughput, 16 

high-precision platforms (Roche, Penzberg, Germany). The biomolecule quantification was 17 

provided as an in-kind contribution of Roche to the CATCH ME consortium. Absolute protein 18 

concentrations were centrally quantified in EDTA plasma. Run controls and calibrators were 19 

measured twice each run, and lab staff involved were blinded to clinical status and data. Blood 20 

samples were shipped to and quantifications were conducted at the Roche biomolecule research 21 

facility in Penzberg, Germany. This is the first analysis of the biomolecules in the EAST-AFNET 4 22 

trial substudy. 23 

Data preprocessing and clustering. Biomolecule concentrations were one-percent winsorized and 24 

Blom-transformed19 and each patient was assigned into one quintile for each biomolecule. These 25 

quintiles were used to cluster patients using poLCA. K-means clustering was used as sensitivity 26 

analysis. Unsupervised models were developed using latent-class analysis (LCA), available in the 27 

package poLCA 20 in R (https://www.r-project.org/). Latent class analysis was performed on 13 28 

biomarker variables. Patients with any missing biomolecule concentrations were excluded. The 29 

models were created in a bootstrapping fashion by repeating 100 times with data resampling with 30 

replacement. Each data resampling was performed with a fixed initialization seed to ensure 31 

reproducibility. Models between 2 and 10 clusters were assessed. The Bayesian information 32 

criterion (BIC) was used to assess the best number of clusters by penalizing models with too many 33 

parameters. The number of clusters with the lower BIC score was counted over all bootstraps. 34 
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This most frequent number of clusters was used to create the final model using the original data, 1 

without resampling. We also fitted k-means clustering models against the same Blom-2 

transformed biomolecules without conversion of those into categorical variables. To assess the 3 

optimal number of cluster groups we followed the exact same approach as for poLCA models. As 4 

base model-instance, we made use of SciKit-learns algorithm( https://scikit-5 

learn.org/stable/index.html) with Lloyd algorithm 21, k-means++ 22 as initial cluster centroid 6 

selection strategy and let the algorithm run for 10 iterations with different centroid seeds to fit the 7 

model against our dataset. 8 

Phenotypic description. Clusters were formed agnostic to any clinical data. Patients’ 9 

characteristics were summarized for each cluster. BMI was categorized into obese (BMI ≥30) and 10 

non-obese. The eGFR was calculated using the Chronic Kidney Disease Epidemiology 11 

Collaboration equation23, 24 and categorized into normal kidney function (eGFR≤60 ml/min) and 12 

chronic kidney disease. Left-ventricular ejection fraction was categorized into groups of ≥50% 13 

and <50%.  Differences between categorical variables were calculated using generalized logistic 14 

mixed models with study Center as random effect. For continuous variables, linear mixed models 15 

with study Center as random effect were used for normally distributed and non-normally 16 

distributed variables. P-values resulted from Analysis of Deviance Table (Type II Wald chi2 tests). 17 

The R packages lme4 and car were used for this analysis. In the non-multi-centric BBC AF cohort, 18 

t-test and Chi2 test were applied for quantification of differences between continuous respectively 19 

categorical variables.  20 

Communality analysis. Biomarkers are biologically secreted and reabsorbed reflecting different 21 

disease processes. They are excreted or shed based on common pathways (e.g. secretion via the 22 

kidney), creating collinearity in the data. The presence of multicollinearity, as can be 23 

demonstrated using a correlation matrix or calculating the variance inflation factor (VIF), 24 

complicates the interpretation of regression model outcomes since both unique and shared 25 

variances are contributing to an effect on the outcome. Communality analysis allows an 26 

exploration of relationships between biomarkers by decomposing the R2 of the regression model 27 

or respectively the pseudo R2 of the binomial regression model to quantify unique and shared 28 

variances of each biomarker in explaining the outcome. The analysis returns 2k-1 communality 29 

coefficients (k = number of variables entered). 30 

Dominance analysis. As communality analysis is one way to assess the relative importance of 31 

predictors (p) (the 13 biomolecules) on an outcome (the cluster group), dominance analysis (DA) 32 

is a different approach that makes two distinct contributions. Firstly, it measures the relative 33 
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importance of a predictor in a pairwise fashion and secondly, it does this in the context of all 1 

2(𝑝−2)models that contain any subset of the remaining predictors. In a refined version of DA by 2 

Azen & Budescu 25, the concept of complete, conditional and general dominance was introduced. 3 

We employed the Dominance-Analysis Python package 26 (Python 3: https://www.python.org/) 4 

that refines this concept further by introducing individual dominance, average partial dominance, 5 

interactional dominance and total dominance. Finally, the percentage relative importance can be 6 

calculated from the mean of those four dominance measures for each predictor variable.  7 

Change in clustering after removal of biomolecules. To generate a more global understanding of 8 

the contribution of each biomolecule to the clustering, the patient clustering was repeated with 9 

reduced feature sets by removing one, two, three, four, or five of the biomolecules. For each 10 

possible biomolecule combination of the reduced feature sets we estimated the optimal number 11 

of clusters, predicted the clusters and used those to partition the patients again. We computed the 12 

adjusted rand index (ARI) for those new partitions in comparison with the original ones derived 13 

from the poLCA model fitted against 13 biomolecules and predicting four clusters. The 14 

biomolecule clusters were used as predictors in Cox proportional hazards (PH) model instances 15 

with the first primary composite outcome as event of interest to obtain Hazard ratios and c-index. 16 

Risk of cardiovascular events. Cox proportional hazard (PH) models were fitted using cluster 17 

membership as the predictor to predict a composite outcome of cardiovascular death, heart failure 18 

hospitalization, stroke or systemic embolism, and acute coronary syndrome. To infer hazard 19 

ratios we used models with center as shared frailty term and the R package Survival. For 20 

sensitivity analyses we added age, sex and randomization group as confounding variables into the 21 

models. To compare the unsupervised cluster assignment with existing predictors, separate risk 22 

prediction models were built using a) CHA₂DS₂-VASc score, b) ABC stroke 12 and bleeding 13 23 

scores, c) discretized 18 Troponin T and d) NTpro-BNP quartiles. For the ABC scores, published 24 

criteria 12, 13 were computed. 25 

In the BBC AF validation cohort, there are 68 missing values for the first primary composite 26 

outcome and 59 missing values for the first primary safety outcome for either the event-status 27 

information or the time-to-event information. We dropped those participants from the primary 28 

analysis, but added a best and worst-case scenario analysis. For the best-case scenario all missing 29 

event values have been imputed by one (occurrence of an event) and for the best-case scenario 30 

with zero (no occurrence of an event). We imputed all missing time-to-event data by the median 31 

censoring time. 32 
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To calculate the Area under the ROC curve we fitted unadjusted Cox PH models without center as 1 

frailty as this information is missing in the validation dataset and our aim was to measure 2 

discriminatory power of inter-cohort generalizable models. We used the Python lifelines27 and 3 

Sklearn packages for this analysis. The ABC scores 12, 13 and genomic risk scores were used as 4 

continuous variables and all other predictors discretized as proposed in the literature (details in 5 

legend to Figure 5). 6 

Genomic risk scores. Genomic DNA extraction was performed from buffy coat samples derived 7 

from EDTA blood samples. DNA samples were sent to the Broad Institute of MIT and Harvard in 8 

Cambridge, MA, USA. After quality control of the DNA, array genotyping (Infinium PsychArray-9 

24 v1.2 BeadChip) and imputation with the TOPMed Freeze 5 dataset as reference was performed. 10 

Previously published Polygenic risk scores (PRS) for the risk of AFAF (PRS-AF) and ischemic 11 

stroke risk (PRS-Stroke) were computed using PLINK2 16. The sum scores were obtained, and PRS 12 

calculations were based on TOPMed imputed genotype dosages, ensuring an imputation quality 13 

measure exceeding 0.3 for each variant on every chromosome. Following quality control and 14 

imputation, a total of 6,363,335 single nucleotide variants (out of 6,730,541) were utilized to 15 

calculate PRS-AF, and 516,013 single nucleotide variants (out of 530,933) were employed for PRS-16 

Stroke calculation. 17 

Results 18 

Biomolecule concentrations define four distinct clusters of patients. Clinical features of the EAST-19 

AFNET 4 biomolecule study were similar to the patient population enrolled in the main trial 20 

(Table 2). Unsupervised clustering of patients based on concentrations of the 13 biomolecules 21 

without any clinical information identified four distinct patient clusters (Figure 2A)  with 22 

overlapping clinical characteristics (Table 2).  23 

Almost all patients were clearly assigned to a cluster (Figure 2A). In the validation data set BBC-24 

AF, the classification criteria derived in the EAST-AFNET 4 data set sorted patients in the 25 

validation set into similar clusters with similar sizes (Figure 2B). The definition of four clusters 26 

was robust within poLCA and also when another method, K-means, was applied to the data set 27 

(Figure 2C).  28 

The cluster later shown to be the high-risk cluster was dominated by elevated BMP10, IGFBP7, 29 

NT-proBNP, ANGPT2 and GDF15. Patients in the cluster with the lowest risk of cardiovascular 30 

events showed low concentrations of these biomolecules. Two intermediate-risk clusters differed 31 

by high or low concentrations of thrombo-inflammatory markers (hsCRP, IL-6, D-dimer, Figure 32 

2D).  33 
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Clinical features differed between clusters, illustrated e.g. by ages between 68 years (low-risk 1 

cluster) and 72-74 years (low-intermediate risk cluster, high-intermediate risk cluster, high-risk 2 

cluster, Table 2) or differences in rates of obesity (the intermediate -high risk cluster had the 3 

highest rate of obese patients, Table 2). The estimated CHA2-DS2-VASc score was similar between 4 

three of the four clusters. Only the lowest risk cluster included younger patients with fewer clinical 5 

stroke risk factors (Table 2). Clinical features were slightly different in the validation data set, BBC 6 

AF (supplementary Table 1). The distribution of clinical features across clusters was similar in 7 

BBC-AF (supplemental Table 2). Biomolecule concentrations are shown for each cluster in Table 8 

3. 9 

Risk of outcome events in each cluster. Each cluster had a distinct risk of primary outcome and 10 

safety outcome (Figure 3A, Figure 3C). Patients in the highest risk cluster had a five -fold higher 11 

rate of primary outcomes than patients in the lowest risk cluster in the derivation (Figure 3A) and 12 

validation (Figure 3B) data sets. Each component of the composite outcome moved in the same 13 

direction as the composite for the primary outcomes (Table 4a, Figure 3C) and for the safety 14 

outcome (Table 4b, Figure 3D). The clustering using k-means resulted in a similar risk gradient 15 

across clusters (Supplementary Figure 3). Early rhythm control was effective across all 16 

biomolecule clusters (pinteraction=0.63, Supplementary Table 5). The clustering model 17 

outperformed other risk scores for most of the tested outcomes (supplementary Figure 5 – 8). For 18 

the first primary composite outcome the Po-LCA cluster model yields an AUC 0.76 [95% CI: 0.72 19 

– 0.79], the next best predictive model uses ABC bleeding score and yields an AUC 0.74 [95% CI: 20 

0.70 – 0.78] in the validation dataset. Hazard ratios for the clustering were higher or similar to 21 

hazard ratios obtained by applying established risk predictions models using clinical features, 22 

combinations of clinical features and biomolecules, or a single biomolecule (Table 5). 23 

Biomolecule combinations are required to assign patients to cluster groups. To estimate the 24 

relevance of each biomolecule for the assignment to a patient cluster, we computed the adjusted 25 

rand index and the C statistic for each combination of biomolecules as further post-hoc analyses. 26 

Removal of five or more biomolecules consistently yielded adjusted rand indices of 0.55 or less, 27 

indicating that almost half, or more, of the patients were no longer assigned to their original 28 

cluster (Figure 4A). Figure 4B plots the adjusted rand index and the C statistic for each possible 29 

model with fewer biomolecules. While risk prediction remains reasonable with only 2-3 30 

biomolecules (C statistic estimates 0.67 to 0.69), assignment to cluster requires more 31 

information.  32 
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To estimate the relevance of each biomolecule for the assignment of patients to the risk clusters, 1 

another in-silico exercise was performed: For each number of biomolecules, the five models with 2 

the lowest adjusted rand indices were selected. The missing biomolecules were listed and counted. 3 

Biomolecules whose removal often leads to a low adjusted rand index were considered relevant 4 

for the clustering process. Figure 4C provides a list of all biomolecules sorted by the number of 5 

relevant removals in this exercise. 6 

Sensitivity analyses. Removing or adding biomolecules using forward and backward selection 7 

resulted in similar rankings of biomolecules (Supplementary Figure 4, Supplementary Table 6). 8 

For each cluster, the unique and common contribution to the clustering was calculated 9 

(Supplementary Tables 7-8). The number of biomolecule-based clusters remained constant at 10 

four clusters when one to five biomolecules were randomly removed from the data set 11 

(Supplementary Table 9). These analyses identify several key biomolecules relevant for patient 12 

clustering, including IGFBP7, NT-proBNP, BMP10, ANGPT2, and the thrombo-inflammatory 13 

biomolecules CRP, IL-6, and D-dimer (Figure 4C).  14 

 15 

 16 

Discussion 17 

Main findings. Integrating information contained in thirteen biomolecules that were selected as 18 

potential quantifiable proxies for different disease processes with relevance in atrial fibrillation 19 

defines four distinct clusters of patients with atrial fibrillation. Each cluster has a unique 20 

biomolecule pattern and cardiovascular risk profile. The findings were robust in sensitivity 21 

analyses and in an independent prospective cohort of patients with AF. They identify shared 22 

disease mechanisms in sub-phenotypes of AF. 23 

Clustering patients based on biomolecules potentially reflecting overlapping disease processes, as 24 

done by the unsupervised analyses used here, suggests possible disease mechanisms related to 25 

cardiovascular complications in patients with AF. The clustering may enable development of 26 

stratified therapies that may differ in patients with similar clinical features by highlighting 27 

treatable underlying disease processes linked to cardiometabolic dysfunction and load (BMP10, 28 

NT-proBNP, IGFBP7), endothelial dysfunction and shear stress (ANGPT2, BMP10) and increased 29 

thrombo-inflammation (CRP, IL-6, D-dimer). Six biomolecules related to atrial cardiomyocyte 30 

dysfunction and vascular smooth muscle cell dysregulation (BMP10)  9, 28, endothelial cell 31 

dysfunction (IGFBP7 29, 30, ANGPT2 31), atrial and ventricular volume load (NT-proBNP), 32 

myocardial metabolism (FABP3) and mitochondrial dysfunction (GDF15) contributed most to the 33 
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biomolecule-based clustering. Patients at high risk showed elevated biomolecule concentrations 1 

related to cardiomyocyte dysfunction, disturbed metabolism, and increased endothelial stress. 2 

Intermediate risk patients were further differentiated into intermediate-high and intermediate-3 

low risk by elevated concentrations of thrombo-inflammatory biomolecules (CRP, IL-6, d-dimer). 4 

Patients with low concentrations of these biomolecules have a very low event rate on current 5 

therapy. The results were similar using different unsupervised clustering techniques (Figure 2C), 6 

in sensitivity analyses, and in an independent data set (BBC-AF, 748 patients, Figures 2+3). 7 

Pending further validation, the results highlight that patients with AF can be stratified using 8 

circulating biomolecules without added clinical information. The distinct signature of 9 

biomolecules in each cluster suggests that treatments beyond oral anticoagulation, treatment of 10 

concomitant conditions and early rhythm control may be needed to further reduce their risk.  11 

This work was performed in two data sets of patients with atrial fibrillation and cardiovascular 12 

comorbidities (Table 2). Some have argued that patients with atrial fibrillation are a model 13 

population for elderly patients with multiple cardiovascular diseases. While the present results 14 

show that the biomolecule clusters identified here define groups of patients in AF with distinct 15 

biomolecule patterns and outcome risks, it is conceivable that similar biomolecule patterns and 16 

outcome associations can be found in cardiovascular patients without AF. Our findings call for 17 

future research into the effects of biomolecules on cardiovascular function. IGFBP7 (also called 18 

angiomedullin) is released following activation of TGF-beta in fibroblasts and in cardiomyocytes 19 
29, including in heart failure 30. Its elevation highlights cardiac fibroblasts as a potential target for 20 

risk-reducing therapies in atrial fibrillation. Further research into the reasons for ANGPT2 21 

elevations in patients with atrial fibrillation may identify treatable disease mechanisms 31. Its 22 

relevance for patient clustering, especially in context with IGFBP7 and BMP10, suggests relevant 23 

interactions between endothelial cells and cardiomyocytes. Some of the biomolecules used here 24 

are associated with systemic or general cardiovascular disease mechanisms. Future studies are 25 

needed to understand associations of the biomolecule clusters identified here with cardiac rhythm 26 

and with outcomes in patients without AF. Such work will determine to what extent the clusters 27 

identified here are specific in their application to patients with AF. 28 

A growing array of medical 14, 32, interventional 14, 33, and surgical 34 treatment options in patients 29 

with AF illustrates the need to identify treatable, risk-modifying disease processes in these 30 

patients. The promising effects of SGLT2 inhibitors on AF and first results on PPAR1 inhibitors 31 

on preventing and reversing AF hold promise for metabolic interventions 35. Our analysis suggests 32 

to first test such interventions in patients assigned to the high-risk cluster in this analysis.  33 
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This analysis was not designed to select patients for a specific therapy, but the patient clusters can 1 

potentially form a basis to select therapy responders: BMP10 is almost exclusively secreted from 2 

atrial cardiomyocytes 9, 36 and secreted BMP10 regulates vascular smooth muscle cells 28, 3 

rendering atrial-specific therapies such as rhythm control, but also antihypertensive therapy and 4 

metabolic interventions useful in patients with elevated BMP10 concentrations 9, 37, 38. Reducing 5 

inflammation using specific interleukin-targeting antibodies such as canakinumab 39 or the 6 

general anti-inflammatory agent colchicine 40-42 may be most effective in patients in the 7 

intermediate-high risk cluster defined by inflammatory biomolecules. 8 

Comparison to other risk estimation scores and limitations of the C statistic. As expected, the 9 

biomolecule-based clustering process evaluated here provides better risk estimation than the 10 

CHA2DS2VASc score 12. Its C statistic was better than or comparable to other proposed risk scores, 11 

including the ABC stroke and bleeding scores 12, 13 (Figure 4B). In view of the summative nature 12 

of the C statistic, this may not come as a surprise. The UK Biobank provided first insights into the 13 

added value of multiple biological measurements for risk prediction 43. Previous work on 14 

biomarkers tested their predictive value of a biomolecule when added to clinical characteristics 15 
44, or for single biomolecules on their own 10, 45, prior to combining biomolecules into scores 12, 13. 16 

Classical statistical methods, including forward and backward selection, did not identify these 17 

biomolecules, probably due to a different handling of shared and common information.  18 

Comparison to proteomic methods. Proteomic technologies now enable quantification of 19 

thousands of proteins from a small sample of plasma or blood. Earlier iterations of these 20 

technologies contributed to the discovery of AF-related biomolecules quantified here, e.g. FGF23 21 
15, while RNA sequencing contributed to the discovery of BMP10 9 as a biomolecule of interest in 22 

patients at risk of AF. Others used proteomic analyses in all-encompassing analyses of circulating 23 

proteins related to cardiovascular events in patients with atrial fibrillation 11. Such proteomic 24 

analyses are hypothesis-free but necessarily highlight proteins with large concentration ranges 25 

that can be quantified at high precision using proteomic technologies. These proteomic methods 26 

will be extremely helpful in identifying additional proteins related to AF. Such work is likely to 27 

confirm, refine and extend the present findings. The present analysis preselected thirteen 28 

biomolecules hypothesized to reflect different modifiable disease processes that can be quantified 29 

at high precision. These biomolecules were used to identify groups of patients who share 30 

pathophysiological patterns based on these biomolecules. This method identifies groups of 31 

patients with different predominant disease mechanisms. It may be useful alongside continued 32 

hypothesis-free research aiming to identify additional disease mechanisms leading to age-related 33 

diseases 46 and to chronic cardiovascular diseases 11.  34 
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Strengths and limitations. The biomolecule-based clusters developed here are agnostic to clinical 1 

information. They can be used to identify disease processes and to estimate risk in anonymized 2 

samples without clinical information and in settings where clinical assessment is not available or 3 

feasible. Another feature of the present clustering is its ability to identify patients with AF at risk 4 

of cardiovascular events beyond stroke. This broadens the potential therapeutic benefits for 5 

patients. A novel methodology chosen here is the preselection and simultaneous quantification of 6 

thirteen distinct biomolecules chosen for their potential relevance in atrial fibrillation 1. 7 

Biomolecules were identified in a semi-formalized a priori process and centrally quantified using 8 

high-precision assays. While this can be viewed as a strength in view of the selection process, the 9 

precision of the measurements, and the disease processes reflected by these biomolecules, it is 10 

also a weakness as it limits the analyses to these biomolecules. Another strength of the analysis is 11 

the collection of samples in a broad range of care setting in a cohort of adequately treated patients 12 

with AF in the context of a clinical trial with centrally adjudicated outcomes and externally 13 

monitored data collection, and external validation in a cohort of patients with atrial fibrillation 14 

enrolled in a routine care setting.  15 

The study has important limitations: One, assessment of smaller number of biomolecules is 16 

limited to in-silico calculations. Two, almost all patients received guideline-recommended 17 

anticoagulation, rate and rhythm control, and often effective treatment of concomitant 18 

conditions. The clusters presented here will require independent assessment in patients not 19 

receiving these therapies, which might be difficult given the ethical need to treat patients 20 

according to evidence. Three, a limitation is the lack of follow-up samples that would enable 21 

assessment of treatment effects, the lack of an untreated population of patients with AF, and lack 22 

of validation in data sets of patients without AF. Four, while BMP10, NT-proBNP, FABP3 and 23 

troponin are proteins released by the heart, the other markers are more systemic in nature, and 24 

cannot differentiate between cardiac, vascular, and other origins of the measured biomolecules. 25 

On the other hand, especially the vascular and inflammatory molecules might reflect ongoing 26 

systemic changes associated with cardiovascular outcomes unrelated to cardiac defects. Five, 27 

quantification of plasma biomolecules in a single sample may have missed smaller, but 28 

pathophysiologically relevant changes in the heart or atria diluted by systemic production and 29 

elimination of circulating biomolecules. Six, this study is limited to the 13 biomolecules 30 

quantified. Sequencing of cardiac tissue 47, quantification of circulating RNAs and advanced 31 

proteomics 48, 49 enable hypothesis-free quantification of many molecules at once. These methods 32 

will discover additional molecules and may help to refine the disease processes suggested in this 33 

analysis. Seven, this study cannot evaluate whether the biomolecule combinations identified here 34 
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truly identify patients who are likely to respond to cardiometabolic, anti-inflammatory or other 1 

disease-process-modifying therapies. This will need prospective testing, e.g. by using the 2 

biomolecule clusters identified here as inclusion criteria in interventional trials. Eight, the EAST-3 

AFNET 4 cohort is predominantly of Caucasian ethnicity. Validation in other ethnicities is needed. 4 

Nine, while some of the biomolecules can be measured in clinical routine as in-vitro diagnostic 5 

devices (IVDs) with regulatory approval, some other assays are not approved for use in clinical 6 

routine and available for research use only. Ten, clinical features were not used for clustering. 7 

This enables application to samples without precise information on clinical features but limits 8 

cause-specific interpretation.  9 

 10 

In conclusion, these findings open the possibility that preselected plasma biomolecules as studied 11 

here and unbiased plasma multiomics can define distinct AF subphenotypes and thereby advance 12 

the management of this condition. Future studies are needed to determine whether such sub-13 

phenotypes can be used to select therapies and to identify therapy responders.  14 

15 
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Tables 1 
 2 
Table 1: Disease mechanisms hypothesized to be related to atrial fibrillation and atrial 3 
fibrillation-related complications and corresponding circulating biomolecules selected for 4 
quantification in this study. The list of candidates for disease mechanisms (“health modifiers”) 5 
is copied from Box 2 in 1 with one added mechanism (systemic inflammation, last line). The 6 
biomolecules selected as quantifiable proxies of each disease process this study are shown in 7 
the right column. The selection process is detailed in the methods of this paper and in 1. This 8 
table aligns biomolecules with selected key processes. The assignment of biomolecules to one 9 
mechanism is an oversimplification as the concentrations of biomolecules will be influenced by 10 
several disease mechanisms (see Figure 1 in 1)  11 

 12 

Disease process (“health 
modifier”) 

Biomolecule selected as quantifiable proxy of this 
disease process 

Ageing growth differentiation factor 15 (GDF15) 

cancer antigen 125 (CA125) 

Loss of cardiomyocytes  cardiac troponin (TnT)  

Replacement of cardiomyocytes 
with extracellular matrix 

fibroblast growth factor 23 (FGF23) 

insulin-like growth factor binding protein 7 (IGFBP7) 

Adaptive changes to increased 
work load 

N-terminal pro–B-type natriuretic peptide (NT-proBNP) 

Delayed left atrial activation see two rows above: replacement of cardiomyocytes with 
extracellular matrix 

Spontaneous electrical activity possibly bone morphogenetic protein 10 (BMP10) 

Genetic predisposition to AF tested using genomic analysis (see supplement and 16) 

Infiltration of fat cells in the atria 
and activation of atrial fat tissue 

fatty acid binding protein 3 (FABP3) 

Elevated atrial oxidative stress bone morphogenetic protein 10 (BMP10) 

Renal dysfunction creatinine 

fibroblast growth factor 23 (FGF23) 

Prothrombotic dysregulation 

- Endothelial 

Angiopoietin 2 (ANGPT2) 

endothelial specific molecule 1 (ESM1) 

Prothrombotic dysregulation 

- humoral 

D-dimer 

Additional processes: 

Systemic inflammation 

interleukin-6 (IL-6) 

C-reactive protein (CRP) 

 13 
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Table 2: Distribution of patient characteristics in the four biomolecule-derived patient clusters 1 
in the EAST-AFNET 4 biomolecule data set. Continuous and discrete numeric parameters are 2 
shown as median (interquartile range), nominal features as number of patients (%). Chronic 3 
kidney disease was classified based on estimated creatinine clearance calculated using the 4 
CKD-Epi formula. 5 

Characteristic Cluster in EAST AFNET4 by Po-LCA p-
value 

Blue 
cluster 
N = 502 

(32%) 

Green 
cluster 

N = 512 (32%) 

Orange 
cluster 
N = 302 

(19%) 

Red cluster 
N = 270 

(17%) 

 

Randomised to early 
rhythm control 257 (51.2) 263 (51.4) 142 (47.0) 138 (51.1) 0.8 
CHA2DS2VASc score 3.0  

[2.0, 3.0] 
3.0  

[2.0, 4.0] 
3.0  

[3.0, 4.0] 
4.0  

[3.0, 5.0] 
<0.001 

Female sex 233 (46%) 238 (46%) 119 (39%) 123 (46%) 0.2 

Body mass index 
(BMI) 

28.6 (25.6, 
31.6) 

28.0 (25.2, 
31.4) 

30.0 (26.7, 
33.4) 

29.1 (25.7, 
33.3) 

0.026 

Obese, defined as 
BMI ≥ 30 

190 (38%) 177 (35%) 151 (50%) 114 (42%) 0.026 

Arterial hypertension 435 (87%) 446 (87%) 270 (89%) 249 (92%) <0.001 
Diabetes mellitus 98 (20%) 112 (22%) 100 (33%) 86 (32%) 0.7 
Stable heart failure 
NYHA stage II-IV or 
left ventricular 
ejection fraction  
<50% 

108 (22%) 134 (26%) 86 (28%) 147 (54%) <0.001 

Prior stroke or TIA 53 (11%) 63 (12%) 46 (15%) 33 (12%) 0.8 
History of 
myocardial infarction 
or revascularisation 
by stenting or bypass 
surgery 

58 (12%) 65 (13%) 68 (23%) 61 (23%) 0.8 

Chronic kidney 
disease 38 (7.6) 99 (19.3) 73 (24.2) 118 (43.7) <0.001 
Chronic obstructive 
lung disease 

27 (5.4%) 37 (7.2%) 29 (9.6%) 31 (11%) 0.3 

Peripheral artery 
disease 

12 (2.4%) 19 (3.7%) 18 (6.0%) 21 (7.8%) 0.3 
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 1 
Table 3: Biomolecule concentrations in the clusters. All biomolecule concentrations are given 2 
as median and interquartile range. Note that some of the most relevant biomolecules by 3 
explained variance show a relatively small range of concentrations, e.g. BMP10 and IGFBP7 4 
compared to other biomolecules with known predictive effects in patients with cardiovascular 5 
diseases and a high range of values, e.g. TnT or NT-pro-BNP. 6 

 7 
 

Blue cluster 
N = 502 (32%) 

Green 
cluster 

N = 512 (32%) 

Orange 
cluster 

N = 302 (19%) 

Red cluster 
N = 270 (17%) 

Overall range  
[min. – max.] 

IL-6 
(pg/ml) 

1.8 [1.5 - 2.5] 2.1 [1.5 - 2.9] 4.6 [3.6 - 7.1] 4.7 [3.2 - 7.7] [1.50 – 38.83] 

NT-proBNP 
(pg/ml) 

154.8 
[84.3 - 303.7] 

560.2 
[302.0 - 
1024.5] 

461.3 
[223.2 - 
844.5] 

1527.5 
[919.8 - 541.5] 

[27.49 – 5409] 

TnT 
(ng/l) 

8.0 [6.3 - 
10.4] 

11.0 [8.6 - 
14.5] 

15.1 [11.1 - 
22.6] 

19.1 [13.9 - 
29.5] 

[3.53 – 79.27] 

GDF15 
(pg/ml) 

937.0 
[760.6 - 
226.8] 

1295.5 
[1006.0 - 

699.8] 

1716.5 
[1329.0 - 

333.5] 

2499.0 
[1910.2 - 
409.5] 

[507.7 – 8007] 

CRP 
(mg/l) 

1.4 [0.6 - 3.0] 1.6 [0.7 - 2.7] 4.7 [2.5 - 8.9] 4.5 [2.1 - 11.7] [0.08 – 88.63] 

D-dimer 
(µg/ml) 

0.1 [0.1 - 0.2] 0.1 [0.1 - 0.2] 0.3 [0.1 - 0.5] 0.3 [0.2 - 0.7] [0 – 3.54] 

CA125 
(U/ml) 

9.9 [7.3 - 12.9] 
11.3 [8.0 - 

14.8] 
11.8 [8.2 - 

17.1] 
15.8 [11.0 - 

25.5] 
[3.46 – 97.98] 

ANGPT2 
(ng/ml) 

1.8 [1.5 - 2.3] 2.8 [2.1 - 3.9] 2.6 [2.0 - 3.4] 4.9 [3.3 - 7.5] [0.95 – 12.58] 

BMP10 
(ng/ml) 

1.9 [1.7 - 2.1] 2.3 [2.0 - 2.5] 2.0 [1.7 - 2.2] 2.8 [2.4 - 3.1] [1.30 – 3.89] 

ESM1 
(ng/ml) 

1.8 [1.5 - 2.2] 2.1 [1.8 - 2.5] 2.0 [1.5 - 2.8] 2.6 [2.1 - 4.0] [0.98 – 10.58] 

FABP3 
(ng/ml) 

26.4 
[23.0 - 31.1] 

32.2 
[27.2 - 37.3] 

35.2 
[30.6 - 45.4] 

45.4 
[34.9 - 55.4] 

[15.52 – 92.53] 

FGF23 
(pg/ml) 

116.0 
[97.3 - 150.0] 

153.6 
[126.5 - 192.0] 

176.4 
[129.8 - 236.5] 

254.4 
[189.4 - 
400.6] 

[68.11 – 
1352.70] 

IGFBP7 
(ng/ml) 

87.8 
[81.3 - 95.0] 

106.1 
[98.4 - 114.6] 

103.6 
[92.7 - 114.7] 

135.0 
[121.6 - 157.4] 

[68.52 – 
208.46] 
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Table 4A: Efficacy outcomes in the EAST-AFNET 4 biomolecule data set for each biomolecule 1 
cluster. Given are patients with event per observation-years and the annualized event rate in 2 
percent (in brackets). 3 

 
EAST-AFNET 4 (Derivation) 
 
 Low risk 

(blue) cluster 
N = 502 (32%) 

Low-
intermediate 
risk (green) 
cluster 
N = 512 (32%) 

High-
intermediate 
risk (orange) 
cluster 
N = 302 (19%) 

High risk 
(red) cluster 
N = 270 (17%) 

Stroke 10/2587 (0.4) 16/2634 (0.6) 11/1450 (0.8) 14/1160 (1.2) 
Cardiovascular 
death 10/2624 (0.4) 17/2667 (0.6) 21/1474 (1.4) 42/1190 (3.5) 
Unplanned 
heart failure 
hospitalization 20/2585 (0.8) 37/2598 (1.4) 43/1367 (3.1) 65/1024 (6.3) 
Unplanned 
hospitalization 
for acute 
coronary 
syndrome 17/2581 (0.7) 14/2627 (0.5) 18/1429 (1.3) 14/1151 (1.2) 
 
BBC-AF (Validation) 
 
 Low risk 

(blue) cluster 
N = 268 (36%) 

Low-
intermediate 
risk (green) 
cluster 
N = 185 (25%) 

High-
intermediate 
risk (orange) 
cluster 
N = 123 (16%) 

High risk 
(red) cluster 
N = 172 (23%) 

Stroke 2/843 (0.2) 5/516 (1.0) 5/288 (1.7) 7/360 (1.9) 
Cardiovascular 
death 5/814 (0.6) 19/509 (3.7) 30/292 (10.3) 72/366 (19.7) 
Unplanned 
heart failure 
hospitalization 15/826 (1.8) 32/469 (6.8) 29/248 (11.7) 56/269 (20.8) 
Unplanned 
hospitalization 
for acute 
coronary 
syndrome 0/870 (0.0) 3/546 (0.5) 0/297 (0.0) 0/378 (0.0) 
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Table 4B. Safety outcomes in the EAST-AFNET 4 biomolecule data set and in the BBC-AF data 1 
set. Numbers show patients with events and annualized event rates in percent. The safety 2 
outcome component “major adverse events related to rhythm control therapy” was not exactly 3 
defined in BBC-AF. Therefore, the clinically relevant outcome “major bleeding” was used. 4 

 
EAST-AFNET 4 (Derivation) 
 
 Low risk 

(blue) 
cluster 
N = 502 (32%) 

Low-
intermediate 
risk (green) 
cluster 
N = 512 (32%) 

High-
intermediate 
risk (orange) 
cluster 
N = 302 (19%) 

High risk 
(red) cluster 
N = 270 (17%) 

Death 18/2624 (0.7) 32/2667 (1.2) 44/1474 (3.0) 64/1190 (5.4) 
Stroke 10/2587 (0.4) 16/2634 (0.6) 11/1450 (0.8) 14/1160 (1.2) 
Major adverse 
events related to 
rhythm control 41/2583 (1.6) 61/2597 (2.3) 62/1436 (4.3) 81/1150 (7.0) 
 
BBC-AF (Validation) 
 
 Low risk 

(blue) 
cluster 
N = 268 (36%) 

Low-
intermediate 
risk (green) 
cluster 
N = 185 (25%) 

High-
intermediate 
risk (orange) 
cluster 
N = 123 (16%) 

High risk 
(red) cluster 
N = 172 (23%) 

Death 23/814 (2.8) 39/509 (7.7) 55/292 (18.8) 104/366 (28.4) 
Stroke 2/843 (0.2) 5/516 (1.0) 5/288 (1.7) 7/360 (1.9) 
Major bleeding  6/1098 (0.5) 18/744 (2.4) 17/464 (3.7) 22/680 (3.2) 
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 1 

 Low risk 
(blue) cluster 
/ reference 
group 

Low-
intermediate 
risk (green) 
cluster / other 
risk group 

High-
intermediate 
risk (orange) 
cluster / other 
risk group 

High risk 
(red) cluster / 
other risk 
group 

EAST-AFNET 4 (derivation data set) 
Biomolecule 
clusters  

1 (reference) 1.3 [0.9, 1.9] 2.7 [1.9, 3.6] 5.2 [3.7, 7.2] 

CHA2DS2VASc  1 (reference) 1.5 [1.0 – 2.2] 2.4 [1.6 – 3.34] 3.8 [2.8 – 5.3] 
ABC-Stroke No events 1 (reference) 2.7 [2.2 – 3.4] 4.7 [3.1 – 6.9] 
ABC Bleeding 1 (reference) 1.9 [1.1 – 3.3] 4.8 [2.7 – 8.3] 

NT-proBNP 
(quartiles) 

1 (reference) 1.5 [1.2 - 2.1] 2.1 [1.5 – 2.8] 4.7 [3.2 – 6.9] 

TnT 
(discretized) 

1 (reference) 1.2 [0.9 - 1.7] 2.3 [1.7 - 3.1] 4.4 [3.1 - 6.2] 

PRS AF 1 (reference) 0.9 [0.7 - 1.3] 0.9 [0.7 – 1.3] 
PRS Stroke 1 (reference) 1.1 [0.8 – 1.4] 1.3 [0.9 – 1.9] 

BBC-AF (validation data set) 
Biomolecule 
clusters BBC-
AF (validation) 

1 (reference) 4.0 [2.3 – 7.0] 8.3 [4.80  – 14.4] 14.1 [8.4 – 23.7] 

CHA2DS2VASc  1 (reference) 1.9 [1.2 – 3.0] 1.6 [0.9 – 2.5] 2.3 [1.5 – 3.4] 
ABC-Stroke  No events 1 (reference) 4.3 [2.6 – 6.9] 8.2 [5.0 – 13.4] 
ABC Bleeding  1 (reference) 3.4 [2.4 – 4.7] 4.8 [3.4 – 6.9] 
NT-proBNP 
(quartiles)  

1 (reference) 2.3 [1.2 – 4.4] 6.3 [3.4 – 11.7] 10.2 [5.7 – 18.3] 

TnT 
(discretized)  

1 (reference) 2.7 [1.5 – 4.8] 5.5 [3.1 – 9.6] 7.2 [4.2 – 12.5] 

 2 
 3 
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Figure legends 1 
 2 
Figure 1.  3 

CONSORT flow chart of the derivation data set, the EAST-AFNET 4 biomolecule study. 4 

 5 

Figure 2.  6 

Figure 2A: Unsupervised clustering based on concentrations of 13 biomolecules reflecting 7 
different cardiovascular disease mechanisms assigns patients to four clusters. Projection of 8 
patients into two-dimensional space spanned by first two principal components derived by 9 
applying principal component analysis on the 13 biomolecules in EAST-AFNET 4. Clustering 10 
was performed without any clinical information, relying on biomolecule concentrations only. 11 

Figure 2B: Application of the assignment rules derived in the EAST-AFNET 4 trial assigns 12 
patients in the validation cohort to four clusters with similar frequencies. The validation cohort 13 
consisted of all patients with atrial fibrillation enrolled into the BBC-AF cohort, a prospective 14 
cohort study enrolling patients with cardiovascular conditions presenting to a large NHS 15 
teaching trust. 16 

Figure 2C: Sankey plot comparing the partitioning of the EAST participants to cluster groups 17 
based on thirteen biomolecules resulting from K-means and Po-LCA clustering. Both methods 18 
create comparable clusters.  19 

Figure 2D: List of the top five biomolecules explaining variance in each cluster. The highest-risk 20 
cluster was dominated by high concentrations of NT-pro-BNP, IGFBP7, BMP10, ANGPT2, and 21 
GDF15. The lowest-risk cluster showed low concentrations of these biomolecules. Elevated 22 
concentrations of IL-6, CRP, and low concentrations of D-dimer contribute additional 23 
information to the variance in the two intermediate-risk clusters. 24 

 25 

Figure 3.  26 

Figure 3A: Aalen-Johansen curves for cluster groups from poLCA clustering model for the first 27 
primary outcome in EAST-AFNET 4, a composite of all‐cause mortality, stroke, or unplanned 28 
hospitalization for heart failure or acute coronary syndrome. 29 

Figure 3B: Aalen-Johansen curves for cluster groups from poLCA clustering model for the first 30 
primary outcome in BBC-AF, a composite of all‐cause mortality, stroke, or unplanned 31 
hospitalization for heart failure or acute coronary syndrome. Administrative censoring has been 32 
applied to events occurring after number of at-risk patients dropped below five. 33 

Figure 3C: Aalen-Johansen curves for cluster groups from poLCA clustering model for the safety 34 
outcome in EAST-AFNET 4. 35 

Figure 3D: Aalen-Johansen curves for cluster groups from poLCA clustering model for the safety 36 
outcome in BBC-AF. Administrative censoring has been applied to events occurring after 37 
number of at-risk patients dropped below five. 38 
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Figure 4.  1 

Figure 4A: Plot of adjusted rand indices for each simulated clustering process when using less 2 
biomolecules. Each colour indicates one number of biomolecules (2-12) used for clustering. 3 
Each dot represents one simulated set of clusters. Adjusted rand indices are shown for each 4 
model in ascending order from right to left.  5 

Figure 4B: Plot of the adjusted rand index, a measure of the assignment of a patient to a 6 
biomolecule-derived cluster, and of the corresponding c index, for each virtual model using 7 
POL-CA clustering with a reduced number of biomolecules (2 – 12). Each dot represents one 8 
clustering model. The colour indicates the number of biomolecules used. Models relying on 8 or 9 
less biomolecules (yellow, orange, and red colours) consistently yield adjusted rand indices 10 
below 0.55. Only models using 7-12 biomolecules achieve correct assignment of patients to 11 
biomolecule clusters. The c index, a summarized measure of the accuracy of risk prediction, 12 
changes only marginally (x axis). 13 

Figure 4C: Importance of each biomolecule included in this study based on the effect of its 14 
removal from the clustering process. For each number of biomolecules (2-12), the five clusters 15 
with the lowest rand indices were selected. The missing biomolecules were listed and ranked by 16 
number of clusters lacking that biomolecule. This list provides an estimate of the importance of 17 
each biomolecule in the clustering process. 18 
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