
Articles
eClinicalMedicine
2024;70: 102498

Published Online xxx

https://doi.org/10.
1016/j.eclinm.2024.
102498
Accuracy of prenatal and postnatal biomarkers for estimating
gestational age: a systematic review and meta-analysis
Elizabeth Bradburn,a Agustin Conde-Agudelo,b Nia W. Roberts,c Jose Villar,a,b and Aris T. Papageorghioua,b,∗

aNuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
bOxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK
cBodleian Health Care Libraries, University of Oxford, Oxford, UK

Summary
Background Knowledge of gestational age (GA) is key in clinical management of individual obstetric patients, and
critical to be able to calculate rates of preterm birth and small for GA at a population level. Currently, the gold
standard for pregnancy dating is measurement of the fetal crown rump length at 11–14 weeks of gestation. However,
this is not possible for women first presenting in later pregnancy, or in settings where routine ultrasound is not
available. A reliable, cheap and easy to measure GA-dependent biomarker would provide an important breakthrough
in estimating the age of pregnancy. Therefore, the aim of this study was to determine the accuracy of prenatal and
postnatal biomarkers for estimating gestational age (GA).

Methods Systematic review prospectively registered with PROSPERO (CRD42020167727) and reported in accordance
with the PRISMA-DTA. Medline, Embase, CINAHL, LILACS, and other databases were searched from inception
until September 2023 for cohort or cross-sectional studies that reported on the accuracy of prenatal and postnatal
biomarkers for estimating GA. In addition, we searched Google Scholar and screened proceedings of relevant
conferences and reference lists of identified studies and relevant reviews. There were no language or date
restrictions. Pooled coefficients of correlation and root mean square error (RMSE, average deviation in weeks
between the GA estimated by the biomarker and that estimated by the gold standard method) were calculated.
The risk of bias in each included study was also assessed.

Findings Thirty-nine studies fulfilled the inclusion criteria: 20 studies (2,050 women) assessed prenatal biomarkers
(placental hormones, metabolomic profiles, proteomics, cell-free RNA transcripts, and exon-level gene expression),
and 19 (1,738,652 newborns) assessed postnatal biomarkers (metabolomic profiles, DNA methylation profiles, and
fetal haematological components). Among the prenatal biomarkers assessed, human chorionic gonadotrophin
measured in maternal serum between 4 and 9 weeks of gestation showed the highest correlation with the
reference standard GA, with a pooled coefficient of correlation of 0.88. Among the postnatal biomarkers assessed,
metabolomic profiling from newborn blood spots provided the most accurate estimate of GA, with a pooled
RMSE of 1.03 weeks across all GAs. It performed best for term infants with a slightly reduced accuracy for
preterm or small for GA infants. The pooled RMSEs for metabolomic profiling and DNA methylation profile from
cord blood samples were 1.57 and 1.60 weeks, respectively.

Interpretation We identified no antenatal biomarkers that accurately predict GA over a wide window of pregnancy.
Postnatally, metabolomic profiling from newborn blood spot provides an accurate estimate of GA, however, as this is
known only after birth it is not useful to guide antenatal care. Further prenatal studies are needed to identify bio-
markers that can be used in isolation, as part of a biomarker panel, or in combination with other clinical methods to
narrow prediction intervals of GA estimation.
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Research in context

Evidence before this study
Gestational age (GA) estimation is essential for optimal
maternity care, but is often inaccurate, particularly in low- and
middle-income countries (LMICs). Existing methods, such as
last menstrual period (LMP), symphysis-fundal height (SFH),
and late trimester ultrasound have limitations, including
inaccuracy and the gold standard, first-trimester ultrasound, is
often unavailable in LMICs. As a result, GA is unknown in a
large proportion of women worldwide. This review explores
potential biomarkers to enhance GA estimation.
A comprehensive search of databases, including MEDLINE,
EMBASE, CINAHL, LILACS, medRxiv, Science Citation Index
and other databases was conducted with no language
restrictions from inception to September 15, 2023, employing
terms related to GA, estimation, and biomarkers. The
inclusion criteria encompassed studies reporting biomarker
accuracy during the antenatal or immediate postnatal period,
using ultrasound or LMP as comparators, and involving
healthy mothers/newborns with relevant statistical
assessments.

Added value of this study
This is the first systematic review of biomarkers for GA
estimation, identifying promising candidates that could be
useful in settings without early ultrasound access.
Metabolomic profiling from heel-prick blood spot emerges as
the most accurate, exhibiting a pooled RMSE of 1.03 weeks

across all GAs, with optimal performance in term infants.
Other biomarkers, such as cord blood metabolomic profiling
and DNA methylation, exhibit lesser accuracy compared to
newborn blood spot metabolomic profiling. During the
prenatal period, hCG measured between 4 and 9 weeks had
the highest correlation with the reference standard GA
among the placental biomarkers assessed; however, this
correlation was less accurate when assessed for a wider GA
window. Two small studies suggested that maternal
metabolomic profiling had low accuracy to estimate GA with
a pooled RMSE of 2.90 weeks.

Implications of all the available evidence
There are at present no antenatal biomarkers that accurately
predict GA over a wide window of pregnancy. Postnatal
biomarkers appear more promising but are not available to
guide antenatal care (such as who should receive magnesium
sulphate for neuroprotection or steroids for lung maturation).
Although metabolomic profiling from newborn blood spot
appears more accurate than from cord blood, acceptability
must also be considered. Further studies are needed in
biomarker discovery; and to compare the most promising of
these biomarkers in terms of accuracy and cost as well as
equipment and infrastructure required. These are important
considerations as biomarkers are most likely to be beneficial in
LMIC settings, where these are significant barriers to
implementation.
Introduction
Accurate gestational age (GA) poses a significant global
challenge, especially in Low- and Middle- Income
Countries (LMICs). Recent research indicates that only
64 of 195 countries worldwide have national routine
data to estimate preterm birth, meaning that estimates
are heavily influenced by the lack of GA estimation.1

Relying on the reported last menstrual period (LMP) is
often unreliable, due to inaccurate recall of dates, or
irregular menstrual cycles, which is more common in
breastfeeding women, those with polycystic ovarian
syndrome or malnutrition.2 Although first trimester ul-
trasound scans are considered to be the gold standard
for dating pregnancies,3,4 they are not commonly avail-
able in these settings at present, due to women pre-
senting late for antenatal care.5 Later pregnancy dating
using ultrasound biometry is much less accurate,6 and
although novel tools have reduced this inaccuracy7,8

higher rates of inaccurate GA assessment remain an
issue in the highest burden settings.

Accurate estimation of GA is crucial in obstetrics for
multiple reasons. Firstly, at the level of the individual
woman, it is essential for making obstetric decisions
such as identifying patients who would benefit from
interventions like steroids for fetal lung maturation9 or
magnesium sulphate for neuroprotection10; interpreting
diagnostic information such as malpresentation or a low
lying placenta, which are only relevant near term. Sec-
ondly, at the level of the individual neonate, knowledge
of GA is crucial to distinguish different types of small
vulnerable newborns, i.e. babies that are small due to
preterm birth or small for GA (SGA), ensuring they can
receive appropriate care. Lastly, at the population level,
knowledge of GA is essential to understand the preva-
lence of preterm birth as it is the leading cause of
mortality in children under five years of age globally.11

This knowledge allows for targeted allocation of re-
sources to improve outcomes.

Although estimating GA at birth through neonatal
assessment is possible, this information is not available
for prenatal care; and is often highly imprecise with
estimates deviating by ±3 to 4 weeks from the gold
standard.12 One way in which the assessment of GA may
be improved is the use of biomarkers, such as those in
maternal serum and urine, umbilical cord blood and
neonatal heel prick testing. There would be an obvious
www.thelancet.com Vol 70 April, 2024
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benefit to an accurate, reliable and cost-effective
biomarker that could estimate GA in this way. There-
fore, our research question is what maternal or newborn
biomarkers that assess GA exist. Several candidate bio-
markers have been investigated, but to date no system-
atic evaluation of the accuracy of these biomarkers to
estimate GA has been undertaken. This systematic re-
view and meta-analysis aimed to identify, and determine
the accuracy of, prenatal and postnatal biomarkers that
have been proposed for the estimation of GA.
Methods
This systematic review was prospectively registered
with PROSPERO International Prospective Register
of Systematic Reviews (PROSPERO identifier
CRD42020167727) and reported in accordance with
the Preferred Reporting Items for a Systematic Re-
view and Meta-analysis of Diagnostic Test Accuracy
Studies (PRISMA-DTA) statement.13

Literature search
To identify potentially eligible studies, we searched
MEDLINE(OvidSP)[1946-present], EMBASE (OvidSP)
[1974-present], CINAHL (EBSCOHost)[1982-present],
LILACS https://www.globalindexmedicus.net/, medR-
xiv https://www.medrxiv.org/, and Science Citation In-
dex (Web of Science Core Collection)[1900-present]
from inception to 15th September 2023. The search
included a combination of subject headings and text-
words for “gestational age”, “estimation” and “biomarkers”
(Appendix S1). There were no language or date re-
strictions. In addition, we searched Google Scholar and
screened proceedings of relevant conferences and
reference lists of identified studies and relevant reviews.

Eligibility criteria
Studies were included if they met the following criteria:
(1) cohort or cross-sectional studies that assessed the
accuracy of biomarkers in women with healthy
singleton pregnancies or in any newborns for esti-
mating GA at any point during pregnancy or at birth,
respectively; (2) the gold standard GA age used in the
study was based on the best obstetrical estimate (last
menstrual period, dating ultrasound or a combination of
both); and (3) the study reported at least one statistic
assessing correlation or agreement of GA estimation, or
diagnostic accuracy.

Studies were excluded if: (1) they were case–control
studies, case series or reports, editorials, comments, or
reviews without original data; (2) the gold standard GA
used in the study was based on neonatal physical and
neurologic assessment or was not reported; (3) they did
not report any statistics assessing correlation or agree-
ment of GA estimation or diagnostic accuracy, or suf-
ficient information to calculate them could not be
retrieved; (4) they included pregnancies or newborns
www.thelancet.com Vol 70 April, 2024
with specific pathologies. In cases of duplicate publica-
tion, we selected the most recent and complete versions
and supplemented if additional information appeared in
the other publications.

Assessment of risk of bias
The risk of bias in each included study was assessed
independently by two authors (EB and AC-A) using a
modified version of the QUADAS (Quality Assessment
of Diagnostic Accuracy Studies)-2 tool.14 Disagreements
in risk of bias assessment were resolved through
consensus. We evaluated five domains believed to be
important for the quality of studies evaluating the
diagnostic accuracy of biomarkers for estimating GA.
Each domain was scored as “low risk”, “high risk”, or
“unclear risk” of bias. The domains evaluated and their
interpretation, were as follows:

1. Study design—“low risk of bias”: pregnant women or
newborns consecutively or randomly selected and
prospective cohort design; “high risk of bias”: con-
venience sampling (arbitrary or non-consecutive
recruitment) or retrospective cohort design.

2. Description of the biomarker—“low risk of bias”: the
study report included a detailed description of the
biomarker(s) assessed including sampling site,
assay used, manufacturer of assay, GA at which the
sample was collected (for prenatal biomarkers) and
age at testing in hours after birth (for postnatal
biomarkers), and frequency of testing; “high risk of
bias”: if this information was not reported.

3. Reference standard—“low risk of bias”: GA that was
established by early ultrasound measurement of
fetal crown-rump length (between 8+0 weeks and
13+6 weeks), or by the woman’s LMP corroborated
by early ultrasound, or by the woman’s LMP that
was in agreement (within 7 days) with ultrasound
measurements performed later in the pregnancy, or
by certain ovulation date. This last criterion was not
included in the PROSPERO protocol but the re-
viewers subsequently agreed it was appropriate to
consider a study as a low-risk of bias for this
domain; “high risk of bias”: GA that was not
established according to the previously mentioned
parameters.

4. Blinding—“low risk of bias”: GA based on bio-
marker(s) results was estimated without knowledge
of the results of the “gold standard” GA; “high risk
of bias”: GA based on biomarker(s) results was
estimated with knowledge of the results of the “gold
standard” GA. Our predefined protocol stated that
an explicit statement that researchers were blind to
the actual GA would render the method at low risk
of bias. Nevertheless, upon review of studies we
concluded that for very large studies, it would be
very unlikely that researchers would estimate GA
based on knowledge the “gold standard” estimate of
3
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GA, and we included this criterion retrospectively as
low risk of bias.

5. Inclusion of participants in the primary analysis—“low
risk of bias”: if at least 90% of enrolled women/
newborns in the study were included in the primary
analysis; “high risk of bias”: if less than 90% of
enrolled women/newborns in the study were
included in the primary analysis.

If there was insufficient information available to
make a judgment about the bias of a domain, then it was
scored as “unclear risk of bias”.

Data extraction
Two reviewers (EB and AC-A) independently extracted
data from each eligible study using a standardized data
collection form. We resolved any disagreements by dis-
cussion and consensus. Information was extracted on
study characteristics (first author’s name, date of publi-
cation, geographic location of the study, study design,
recruitment of participants, time period for recruitment of
participants, prospective or retrospective data collection,
blinding, and completeness of follow up and reporting of
withdrawals); participants characteristics (inclusion and
exclusion criteria, sample size, and demographic charac-
teristics); description of the biomarker(s) assessed (GA at
sampling for prenatal biomarkers, age at testing in hours
after birth for postnatal biomarkers, sampling site, fre-
quency of test, analytical method used, cut-off values,
biomarkers included in predictive models, and costs);
reference standard used (definition of “gold standard”
GA); outcomes (definition of outcomes); main findings of
the study; and measures of diagnostic accuracy of bio-
marker(s) for estimating GA for the entire cohort and/or
model development and validation subsets, and sub-
groups of participants (coefficient of correlation, coeffi-
cient of determination, standard error of estimation, root
mean square error [RMSE], mean absolute error, propor-
tion of mothers/infants with predicted GA within 1 and 2
weeks of GA estimated by the gold standard method, and
area under receiver operating characteristic curve (AUC)
with 95% confidence interval (CI) to discriminate GA
across a dichotomous preterm birth threshold).

Data synthesis
Studies that assessed prenatal biomarkers were grouped
according to GA at which the biomarker was measured
(4–10 weeks, 4–16 weeks, and all trimesters of preg-
nancy), whereas postnatal biomarkers were grouped
according to sample site (neonate heel prick blood and
cord blood). Meta-analyses were performed if at least
two studies assessed the same biomarker(s) and re-
ported similar measures of diagnostic accuracy for
estimating GA. Data were synthesized in several ways.

First, we estimated pooled coefficients of correlation
with 95% confidence intervals (CIs) for prenatal bio-
markers (human chorionic gonadotrophin, pregnancy-
specific beta-1-glycoprotein, human placental lactogen,
and metabolomic profile in maternal serum) according
to GA at which the biomarker was measured, and for
postnatal biomarkers (DNA methylation profile in cord
blood) by using the Hedges-Olkin (a conventional
summary meta-analysis with a Fisher Z transformation
of the correlation coefficient)15 and Hunter-Schmidt (a
weighted mean of the raw correlation coefficient)16

methods. In this systematic review, the correlation co-
efficient measures the strength of the linear relationship
between the GA predicted by the biomarker and that
estimated by the gold standard method. It varies be-
tween −1 and 1 with 0 indicating no linear relation-
ship, +1 indicating a perfect positive linear relationship,
and −1 indicating a perfect negative linear relationship.

Second, pooled RMSE (overall average deviation in
weeks between the GA predicted/estimated by the bio-
markers and that estimated by the gold standard
method) with 95% CI was estimated for metabolomic
profile in maternal serum, metabolomic profile derived
from newborn blood spot screening. This was done for
all infants, and for subgroups of infants with a GA ≥37
weeks and <37 weeks, and infants born SGA (birth-
weight below the 10th percentile for GA). DNA
methylation profile in cord blood from RMSEs, SDs and
sample sizes reported in each study.

Third, pooled proportions of infants with predicted
GA within 1 and 2 weeks of GA estimated by the gold
standard method were calculated for metabolomic pro-
file derived from newborn blood spot screening (heel
prick blood and cord blood). Percentages (95% CIs) in
individual studies were logit transformed to obtain
pooled proportions with 95% CIs. Pooled proportions
were obtained for all infants and for subgroups of in-
fants with a GA ≥37 weeks, <37 weeks, 32–36 weeks,
and <32 weeks, and infants born SGA (birthweight
below the 10th percentile for GA). Finally, the method
described by Zhou et al.17 was used to calculate the
pooled AUC with 95% CI for metabolomic profile
derived from newborn blood spot screening to
discriminate infants with a GA <34 weeks from those
with a GA ≥34 weeks, and infants with a GA <37 weeks
from those with a GA ≥37 weeks.

All meta-analyses were performed using a random-
effects model because we anticipated that there would
be substantial heterogeneity between the results of the
studies. The random effects model tends to give a more
conservative estimate with wider 95% CI. Heterogeneity
of the results among studies was evaluated by estimating
the quantity І2,.18 A significant level of heterogeneity was
defined as І2 ≥ 30%.18 We planned to explore potential
sources of heterogeneity by performing subgroup and
sensitivity analyses and to assess publication and related
biases by examining the symmetry of funnel plots using
Deeks’ test19; however, most of these analyses were not
performed given the small number of studies included
in most meta-analyses performed.
www.thelancet.com Vol 70 April, 2024
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Statistical analyses were performed by using Stats-
Direct (Version 3.3.5; StatsDirect Ltd, Merseyside,
United Kingdom).

Ethics
As a systematic review, our study did not involve direct
participation of human subjects and focused solely on
previously published and publicly available data. It did
not require institutional review board approval for this
reason. The ethical principles governing this study
adhere to the established guidelines for systematic re-
views and meta-analyses and was based on registration
of the protocol, search and analysis strategy to enhance
transparency and preclude selective reporting.

Role of the funding source
The funders of this study had no role in study design,
data collection, analysis or interpretation of the data, in
writing the paper or the decision to submit for
publication.
Results
Selection, characteristics, and risk of bias of studies
Our search returned 9,196 studies, of which 94 were
selected for full text review. Of these, 55 were excluded
based on the prespecified exclusion criteria discussed in
Methods section (Fig. 1). References for excluded
Fig. 1: Flow diagram showing screening process of stud

www.thelancet.com Vol 70 April, 2024
studies can be obtained from the authors upon request.
The remaining 39 studies fulfilled the inclusion
criteria.21–56 Twenty studies, including 2050 women,
assessed prenatal biomarkers,21–40 and 19, including
1,738,652 newborns, assessed postnatal biomarkers.41–59

The main characteristics of the studies included in
the systematic review are presented in Tables 1 and 2.
Among studies that assessed prenatal biomarkers, 14
evaluated placental hormones (human chorionic
gonadotrophin [hCG], human placental lactogen [hPL],
pregnancy-specific beta-1-glycoprotein [SP1] and
placental protein-14),21–34 three evaluated metabolomic
profiles,37,38,40 and one each evaluated plasma prote-
omics,36 cell-free RNA [cfRNA] transcripts,35 and exon-
level gene expression39 (Table 1). Most studies (95%)
were conducted in high-income countries (United
States, United Kingdom, and Denmark). Only one study
was conducted in LMICs. Among studies that assessed
postnatal biomarkers, 13 evaluated metabolomic profiles
(Acyl-carnitine, amino acid, fatty acid, ceramide, cer-
amide 1-phosphate, galactosylceramide, phosphatidyl
acid, phosphatidylethanolamine, phosphatidylglycerol,
phosphatidylinositol, phosphatidylcholine, cholesteryl
ester, and sphingomyelin),42–44,47–49,51–53,55–58 five evaluated
genome methylation profiles (DNA methylation
profiles),45,46,50,54,59 and one evaluated fetal haematological
components (isoenzymes of erythrocytic carbonic
anhydrase)41 (Table 2). Twelve (63%) studies were
ies in biomarkers review; adapted from PRISMA.20
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First author,
year

Country (Region) Design Sample size Biomarker(s) Biological
sample

Gestational
age at
testing

Reference
standard

Main findings

Peeters,
197621

USA (Colorado) Prospective
cohort

9 hCG
hPL

Serum 10–25 weeks GA estimated by
LMP

At 12–17 weeks of gestation, hCG combined with hPL provided an
estimate of GA within ±9.4 days of that provided by LMP; at 12–15
weeks of gestation, hPL alone provided an estimate of GA within
±12.3 days of that provided by LMP.

Lagrew,
198322

USA (Kentucky) Unclear 95 hCG Serum 4–18.6 weeks GA estimated by
LMP

(1) The coefficients of determination (R2) between hCG and GA were
0.183, 0.826, and 0.326 from 4 to 18.6 weeks, <8.6 weeks, and
≥8.6 weeks, respectively. The mean difference (SD) between the
GA predicted by β-hCG before 8.6 weeks and that predicted by
LMP was 3.1 (1.8) days.

Whittaker,
198323

UK (Newcastle) Prospective
cohort

35 hCG
hPL

Serum 3–20 weeks GA estimated by
LMP

(1) The coefficient of correlation (r) between GA predicted by hCG and
that estimated by LMP was 0.940 up to 8.6 weeks of gestation,
with a SD of ±4.2 days.

(2) The coefficient of correlation (r) between GA predicted by hPL and
that estimated by LMP was 0.877 between 6 and 14 weeks of
gestation with a SD of ±6.3 days.

Ahmed,
198424

UK (Aberdeen) Prospective
cohort

34 hCG
SP1

Serum 2–16.7 weeks GA estimated by
LMP

(1) The coefficients of correlation (r) between GA predicted by hCG
and that estimated by LMP were 0.471 between 4.7 and 16.7
weeks of gestation, 0.796 between 5 and 10 weeks of gestation,
and 0.833 between 3.4 and 9 weeks of gestation. The mean
difference (SD) between GA predicted by hCG and that estimated
by LMP was 4.4 (2.8) days between 3.5 and 9 weeks, and 12.0
(9.9) days between 3.5 and 16 weeks.

(2) The coefficients of correlation (r) between GA predicted by SP1
and that estimated by LMP were 0.944 between 4.7 and 16.7
weeks of gestation and 0.910 between 5 and 10 weeks of
gestation. The mean difference (SD) between GA predicted by SP1
and that estimated by LMP was 4.8 (4.3) days between 3.5 and 16
weeks.

Lagrew,
198425

USA (Kentucky) Prospective
cohort

15 hCG Serum 4.1–8.6 weeks GA estimated by
LMP

(1) The coefficient of correlation (r) between GA predicted by hCG and
that estimated by LMP was 0.94. The mean difference (SD)
between GA predicted by hCG and that estimated by LMP was 3.2
(2.5) days, with a range of 0.1–7.7 days.

Westergaard,
198526

Denmark (Odense) Prospective
cohort

26 hCG
SP1

Serum 4.3–8.6
weeks

GA estimated by
LMP

(1) The coefficients of correlation (r) between GA predicted by hCG
and SP1, and that estimated by LMP were 0.792 and 0.782,
respectively.

(2) The mean difference between GA predicted by hCG and SP1 and
that estimated by LMP was 15.3 and 14.3 days, respectively.

Ahmed,
198527

UK (Aberdeen) Prospective
cohort

56 hCG
SP1

Serum <5 (N = 13)
and 5–16
(N = 43)
weeks

GA estimated by
LMP and
ultrasound

(1) The coefficients of correlation (r) between GA predicted by hCG
and that estimated by LMP/ultrasound were 0.727 at or before 5
weeks of gestation, 0.834 between 5 and 9 weeks of gestation,
and 0.401 between 5 and 16 weeks of gestation.

(2) The coefficients of correlation (r) between GA predicted by SP1
and that estimated by LMP/ultrasound were 0.672 (at or before 5
weeks of gestation), 0.917 between 5 and 9 weeks of gestation,
and 0.952 between 5 and 16 weeks of gestation.

Ahmed,
198628

UK (Aberdeen) Prospective
cohort

62 SP1 Serum 5–16 weeks GA estimated by
LMP

When GA predicted by SP1 was greater than that estimated by LMP,
the mean difference (SD) was 6.5 (5.8) days. When GA predicted by
SP1 was lower than that estimated by LMP, the mean difference (SD)
was 2.6 (1.4) days.

(Table 1 continues on next page)
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First author,
year

Country (Region) Design Sample size Biomarker(s) Biological
sample

Gestational
age at
testing

Reference
standard

Main findings

(Continued from previous page)

Bersinger,
198629

UK (Aberdeen) Prospective
cohort

139 SP1 Serum and
urine

4–16 weeks GA estimated by
LMP

(1) The coefficients of determination (R2) between SP1 in serum and
GA were 0.60, 0.52, 0.73, 0.78, 0.80, and 0.77 at 6, 8, 10, 12, 14,
and 16 weeks, respectively.

(1) The coefficients of determination (R2) between SP1 in urine and
GA were 0.05, 0.25, 0.57, 0.66, 0.70, and 0.71 at 6, 8, 10, 12, 14,
and 16 weeks, respectively.

Chervenak,
198630

USA (New York) Retrospective
cohort

77 hCG Serum 4.0–8.6
weeks

GA estimated by
ovulation date

The average prediction error (gestational age estimated by ovulation
date minus gestational age predicted by hCG) varied between 2.1 days
(SD, 3.6) and 4.1 days (SD, 6.8)

Whittaker,
198731

UK (Newcastle) Prospective
cohort

585 hPL Serum 6.3–18.9
weeks

GA estimated by
LMP

(1) The coefficient of correlation (r) between GA predicted by hPL and
that estimated by LMP was 0.781.

(2) The mean difference (SD) between GA predicted by hPL and that
estimated by LMP was 0.3 (8.4) days.

(3) Compared with LMP, hPL dated 91% of pregnancies within ±13
days.

Thomson,
198832

UK (Aberdeen) Prospective
cohort

233 • SP1
• hPL

Serum <16 weeks GA estimated by
LMP

(1) The coefficients of correlation (r) between GA predicted by SP1
and hPL and that estimated by LMP were 0.337 and 0.696,
respectively.

(2) The mean difference (SD) between GA predicted by SP1 and hPL,
and that estimated by LMP was 2.2 (22.7) days and 5.2 (11.7) days,
respectively.

Johal, 199133 UK (London) Prospective
cohort

100 • hCG
• hPL
• PP-14

Serum 5.7–11.6
weeks

GA estimated by
LMP and
ultrasound

(1) The coefficients of correlation (r) between serum levels of hCG,
hPL and PP-14, and GA estimated by LMP/ultrasound
were −0.062, 0.599, and 0.02, respectively.

(2) The accuracy of hPL in dating a pregnancy was ±16 days, as
compared with dating by ultrasound.

Larsen,
201334

USA (multicity) Prospective
cohort

178 hCG Urine 0–8 weeks GA estimated by
ovulation date,
LMP and
ultrasound

The agreement between the GA based on the hCG concentration and
that based on the ovulation day was 95.9% for a GA of 1–2 weeks,
93.4% for 2–3 weeks, and 95.2% for 3–8 weeks.

Ngo, 201835 Denmark (Copenhagen) and
USA (Pennsylvania and
Birmingham)

Prospective
cohort

31 full-term pregnancies
(Denmark) and 38
pregnancies at risk for
preterm birth (USA)

Cell-free RNA
transcripts

Serum Second and
third
trimester

GA estimated by
ultrasound

(1) A model of 51 cell-free RNA transcripts predicted GA with a cor-
relation coefficient of 0.91 and 0.89 in discovery and validation
cohorts, respectively.

(2) Among term pregnancies, estimates of GA predicted by a model of
cell-free RNA transcripts measured at both second and third tri-
mesters fell within ±7 days of the observed GA at delivery with an
accuracy of 45%, as compared to 48% for estimates of ultrasound
at first trimester.

(3) The AUC of cell-free RNA in differentiating spontaneous preterm
(<37 weeks) and term (≥37 weeks) deliveries was 0.86 and 0.81 in
discovery and validation cohorts, respectively.

Aghaeepour,
201836

USA (Stanford) Prospective
cohort

27 (17 in training cohort and
10 in validation cohort)

Proteomic
profile

Plasma 7-14, 15–20,
and 24–32
weeks

GA estimated by
LMP and
ultrasound

(1) A model including 74 proteins predicted gestational age with a
correlation coefficient of 0.97 and 0.94 in the training and
validation cohorts, respectively.

(2) A model including 8 proteins predicted gestational age with a
correlation coefficient of 0.97 and 0.91 in the training and
validation cohorts, respectively.

(Table 1 continues on next page)
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Sylvester,
202037

USA (Stanford and
Birmingham)

Retrospective
cohort

58 (36 in model development
cohort and 22 in the
validation cohort)

Metabolomic
profilea

Serum First, second
and third
trimester

GA estimated by
ultrasound

(1) A model including 13 categories of metabolites predicted
gestational age with a coefficient of determination (R2) of 0.98
and 0.81 in the development and validation cohorts, respectively.

(2) The average difference between GA predicted by the model of
metabolomic profile and that estimated by ultrasound was 1.09
weeks in the development cohort and 2.36 weeks in the validation
cohort.

(3) The model predicted GA within 1 week of GA estimated by
ultrasound for 66.7% of women and within 2 weeks for 77.8% of
women.

(4) The AUC of a second model (using a set of 10 metabolic
pathways) to discriminate gestational age <35 versus ≥37 weeks
was 0.96 and 0.92 in the development and validation cohorts,
respectively.

Liang, 202038 Denmark Prospective
cohort

38 (21 in discovery cohort, 9
in a first validation cohort,
and 8 in a second validation
cohort)

Metabolomic
profileb

Plasma Weekly, from
5 weeks to
postpartum
period

GA estimated by
ultrasound

(1) A model of 42 metabolites predicted GA with correlation
coefficients of 0.96 and 0.95 in discovery and validation cohorts,
respectively, and RMSEs of 2.49 and 2.76 weeks in discovery and
validation cohorts, respectively.

(2) A model of 5 metabolites (THDOC, estriol-16-glucuronide, pro-
gesterone, PE (P-16:0e/0:0), and DHEA-S) predicted GA with
correlation coefficients of 0.92, 0.89, and 0.91 in discovery, vali-
dation cohort 1, and validation cohort 2, respectively, and RMSEs
of 3.67, 4.11, and 3.05 weeks in discovery, validation cohort 1, and
validation cohort 2, respectively.

(3) The AUC of a model of 3 metabolites (THDOC, estriol-16-
glucuronide, and androstane-3,17-diol) to discriminate gestational
age <37 versus ≥37 weeks was 0.91 and 0.87 in the discovery and
validation cohort 1, respectively.

Tarca, 202139 United States Prospective
cohort

133 Exon-level
gene
expression

Whole
blood

8 to >37
weeks

GA estimated by
ultrasound

(1) Whole-blood gene expression predicted gestational age in both
normal and complicated pregnancies with a correlation coefficient
of 0.83 and a RMSE of 4.5 weeks.

Contrepois,
202240

Bangladesh, Pakistan,
Tanzania, and Zambia
(discovery cohort); United
States (validation cohort)

Retrospective
cohort

119 (99 in discovery cohort
and 20 in validation cohort)

Metabolomic
profilec

Urine 8–19 weeks GA estimated by
LMP and
ultrasound

(1) A model of 3 metabolites predicted GA with correlation
coefficients of 0.87 and 0.70 in discovery and validation cohorts,
respectively, and RMSEs of 1.58 and 2.40 weeks in discovery and
validation cohorts, respectively.

(2) Gestational age was predicted more accurately among women
with term deliveries (correlation coefficient and RMSE of 0.89 and
1.34 weeks, respectively) than among women with preterm
deliveries (correlation coefficient and RMSE of 0.69 and 2.32
weeks, respectively)

AUC, area under the curve; CRL, crown-rump length; DHEA-S, dehydroepiandrosterone-sulfate; GA, gestational age; hCG, human chorionic gonadotrophin; hPL, human placental lactogen; LMP, last menstrual period; PE(P-16:0e/0:0), 1-(1Z-
hexadecenyl)-sn-glycero-3-phosphoethanolamine; PP, placental protein; RMSE, root mean squared error; SD, standard deviation; SP1, pregnancy-specific beta-1-glycoprotein; THDOC, tetrahydrodeoxycorticosterone. aAcyl-carnitine, amino acid,
fatty acid, ceramide, ceramide 1-phosphate, galactosylceramide, phosphatidyl acid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylcholine, cholesteryl ester, and sphingomyelin. bTHDOC, Estriol-16-Glucoronide,
Progesterone, PE (P-16:Oe/0:0) and DHEA-S. cC19H26O7S, C24H30O9 and estriol glucuronide.

Table 1: Characteristics and main findings of included studies that assessed prenatal biomarkers for predicting gestational age.
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Moynihan,
197741

Ireland
(Dublin)

Prospective
cohort

45 Isoenzymes A, B
and C of
erythrocytic
carbonic anhydrase

Cord blood At birth GA estimated by
LMP

(1) The coefficient of correlation (r) between the ratio of activity
of isoenzyme B to activity of isoenzyme C of erythrocytic
carbonic anhydrase and GA between 35 and 41.5 weeks was
0.94. The coefficient of correlation (r) between total activity
of erythrocytic carbonic anhydrase and GA was 0.69.

Wilson,
201642

Canada
(Ontario,
April 2007–
March 2009)

Retrospective
cohort

249,700 (124,854 in model
development dataset; 62,412 in
validation dataset; and 62,434
in test dataset)

Metabolomic
profile derived
from newborn
blood spot
screeninga

Heel prick blood 24–72 h GA estimated by
LMP and/or
ultrasound

(1) The average difference between GA predicted by the full
model of metabolomic profile (44 markers), birthweight and
sex, and that estimated by LMP/ultrasound was 1.06 weeks.

(2) The prediction of GA by the full model was more accurate for
term infants (RMSE, 0.97 weeks) and non-SGA infants
(RMSE, 1.03 weeks) than for preterm infants (RMSE between
1.70 and 2.30 weeks) and SGA infants (RMSE, 1.34 weeks).

(3) The full model predicted GA within 1 week of GA estimated
by LMP/ultrasound for 66.8% of infants and within 2 weeks
for 94.9% of infants.

(4) The AUC of the full model in differentiating infants born
before 37 weeks from those born at or after 37 weeks was
0.970 (95% CI, 0.966–0.974).

(5) The AUC of the full model in differentiating infants born
before 34 weeks from those born at or after 34 weeks was
0.991 (95% CI, 0.987–0.995).

Ryckman,
201643

USA (Iowa) Retrospective
cohort

230,013 (153,342 in model-
building dataset; 76,671 in
model-testing dataset)

Metabolomic
profile derived
from newborn
blood spot
screeningb

Heel prick blood 0–24 h (14%); 25–72 h
(84%); >72 h (2%)

GA estimated by
LMP and/or
ultrasound

(1) The average difference between GA predicted by the
metabolomic model and that estimated by LMP/ultrasound
was 1.3 weeks. The inclusion of neonatal weight in the
metabolomic model reduced the average difference to 1.1
weeks.

(2) The average difference between GA predicted by the
metabolomic model and that estimated by LMP/ultrasound
among infants born SGA and large-for GA was 1.5 and 1.4
weeks, respectively.

(3) The metabolomic model predicted GA within 1 week of GA
estimated by LMP/ultrasound for 78% of infants and within
2 weeks for 95% of infants.

(4) The AUC of the metabolomic model in differentiating infants
born before 37 weeks from those born at or after 37 weeks
was 0.899 (95% CI, 0.895–0.903). The inclusion of neonatal
weight in the metabolomic model increased the AUC to
0.938 (95% CI, 0.934–0.941).

Jelliffe-
Pawlowski,
201644

USA
(California)

Retrospective
cohort

729,503 (547,127 in training
dataset; 182,376 in testing
dataset)

Metabolomic
profile derived
from newborn
blood spot
screeningc

Heel prick blood 12 h to 8 days (91%
between 12 and 72 h)

GA estimated by
ultrasound

(1) Among infants born before 37 weeks, the model of
metabolomic profile (35 markers), birthweight, and hours of
age at testing predicted GA within 1 week of GA estimated
by ultrasound for 78.3% of infants and within 2 weeks for
91.7% of infants.

(2) The model was more accurate to predict GA among infants
born between 32 and 36 weeks (80.2% of infants within 1
week and 92.5% within 2 weeks of GA estimated by
ultrasound) than among infants born before 32 weeks
(53.1% of infants within 1 week and 73.7% within 2 weeks of
GA estimated by ultrasound).

(3) Overall, the model had a sensitivity of 99.5% and a specificity
of 98.9% to sort preterm and term births accurately.
Sensitivities and specificities were ≥94.9% in the subgroups
of SGA, appropriate-for-GA, and large-for-GA infants.

(Table 2 continues on next page)
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Knight,
201645

Multicountry Retrospective
cohort

1342 (207 in training dataset,
and 1135 in testing dataset)

DNA methylation
profile

Cord blood (872
neonates) and
heel prick blood
(470 neonates)

From birth up to 39
days

GA estimated by
LMP and/or
ultrasound

(1) The coefficients of correlation (r) between GA predicted by
DNA methylation and that estimated by LMP/ultrasound
were 0.99 and 0.91 in training and testing datasets,
respectively. The average difference between GA predicted by
DNA methylation and that estimated by LMP/ultrasound was
1.49 weeks (SD, 1.16 weeks).

(2) The coefficients of correlation (r) between GA predicted by
DNA methylation and that estimated by LMP/ultrasound
were 0.57 and 0.95 in cord blood and heel prick blood
samples, respectively.

(3) GA predicted by DNA methylation correlated more strongly
with GA estimated by ultrasound (r = 0.54) than that
estimated exclusively by LMP (r = 0.41).

Bohlin,
201646

Norway Retrospective
cohort

1753 (1068 in training dataset,
and 685 in replication dataset)

DNA methylation
profile

Cord blood At birth GA estimated by
LMP and
ultrasound

(1) DNA methylation had a coefficient of determination (R2) of
0.66 and provided an estimate of GA within ±1.79 weeks of
that provided by ultrasound.

(2) DNA methylation had a coefficient of determination (R2) of
0.50 and provided an estimate of GA within ±2.13 weeks of
that provided by LMP.

Hawken,
201747

Canada
(Ontario,
April 2009–
September
2011)

Retrospective
cohort

300,132 (validation cohort) Metabolomic
profile derived
from newborn
blood spot
screeninga

Heel prick blood 24 h to 7 days GA estimated by
LMP and/or
ultrasound

(1) The average difference between GA predicted by the full
model of metabolomic profile (44 markers), birthweight and
sex, and that estimated by LMP/ultrasound was 1.04 weeks.
The average difference was 1.05 weeks among infants born
to non-immigrant mothers, and between 0.98 and 1.15
weeks among infants born to immigrant mothers.

(2) The full model predicted GA within 1 week of GA estimated
by LMP/ultrasound for 67.1% of infants and within 2 weeks
for 95.0% of infants.

(3) The AUC of the full model in differentiating infants born
before 37 weeks from those born at or after 37 weeks was
0.957 (95% CI, 0.956–0.959).

(4) The AUC of the full model in differentiating infants born
before 34 weeks from those born at or after 34 weeks was
0.981 (95% CI, 0.979–0.983).

(5) In the non-immigrant subgroup, the AUC of the full model
to discriminate gestational age <37 versus ≥37 weeks and
≤34 versus >34 weeks was 0.958 and 0.986, respectively.

(6) In the immigrant subgroups, the AUC of the model to
discriminate gestational age <37 versus ≥37 weeks and ≤34
versus >34 weeks ranged from 0.927 to 0.964 and from
0.966 to 0.994, respectively.

(Table 2 continues on next page)
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Wilson,
201748

Canada
(Ontario,
January
2012–
December
2014)

Retrospective
cohort

159,215 (79,620 in model
development dataset; 39,785 in
validation dataset; and 39,810
in test dataset)

Metabolomic
profile derived
from newborn
blood spot
screeningd

Heel prick blood <48 h GA estimated by
ultrasound

(1) The average difference between GA predicted by the full
model of metabolomic profile (all markers including
haemoglobin ratio), birthweight, sex, and multiple birth
status, and that estimated by ultrasound was 1.04 weeks.

(2) The prediction of gestational age was more accurate for term
infants (RMSE, 1.01 weeks) and late preterm infants (RMSE,
1.16 weeks) than for preterm infants <34 weeks (RMSE, 2.24
weeks) and SGA infants (RMSE, 1.52 weeks).

(3) The full model predicted GA within 1 week of GA estimated
by ultrasound for 68.7% of infants and within 2 weeks for
95.3% of infants.

(4) The AUC of the full model to discriminate gestational age
<37 versus ≥37 weeks and ≤34 versus >34 weeks was 0.957
and 0.988, respectively.

(5) Among SGA infants, the AUC of the model to discriminate
gestational age <37 versus ≥37 weeks and ≤34 versus >34
weeks was 0.970 and 0.997, respectively.

Murphy,
201949

Bangladesh Prospective
cohort

1069 (external validation
cohort)

Metabolomic
profile derived
from newborn
blood samplese

Cord blood (1036
samples) and heel
prick blood (487
samples)

0 min to 2 h (cord
blood); 25 min to 40 h
(heel prick blood)

GA estimated by
ultrasound

(1) The average difference between GA predicted by the full
model of metabolomic profile (all markers), birthweight, sex,
and multiple birth status, and that estimated by ultrasound
was 1.07 weeks for heel prick blood samples and 1.23 weeks
for cord blood samples.

(2) The full model based on heel prick blood samples predicted
GA within 1 week of GA estimated by ultrasound for 63.9%
of infants and within 2 weeks for 94.3% of infants.

(3) The full model based on cord blood samples predicted GA
within 1 week of GA estimated by ultrasound for 59.4% of
infants and within 2 weeks for 90.4% of infants.

(4) Among SGA infants (below the 10th percentile for
gestational age), the full model based on heel prick blood
samples had an RMSE of 1.12 weeks, and predicted GA
within 1 week of GA estimated by ultrasound for 62.8% of
infants and within 2 weeks for 94.3% of infants. The full
model based on cord blood samples had an RMSE of 1.20
weeks and predicted GA within 1 week of GA estimated by
ultrasound for 63.1% of infants and within 2 weeks for
90.7% of infants.

(5) Among LBW infants (<2500 g), the full model based on heel
prick blood samples had an RMSE of 1.21 weeks and
predicted GA within 1 week of GA estimated by ultrasound
for 59.1% of infants and within 2 weeks for 94.3% of infants.
The full model based on cord blood samples had an RMSE of
1.44 weeks and predicted GA within 1 week of GA estimated
by ultrasound for 53.3% of infants and within 2 weeks for
84.2% of infants.

(6) The AUC to discriminate gestational age <37 versus ≥37
weeks was 0.945 (95% CI, 0.890–0.999) for the full model
based on heel prick blood samples, and 0.894 (95% CI,
0.853–0.935) for the full model based on cord blood
samples.

(Table 2 continues on next page)
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Michaeli,
201950

Israel
(Jerusalem)

Prospective
cohort

41 (10 in training group and 31
in test group)

DNA methylation
profile

Cord blood and
placental samples

At birth GA estimated by
LMP and
ultrasound

(1) The coefficient of correlation (r) between GA predicted by
DNA methylation (combination of demethylation and de
novo methylation) and that estimated by LMP and
ultrasound was 0.77 for cord blood samples.

(2) The coefficient of correlation (r) between GA predicted by
DNA methylation (demethylation alone) and that estimated
by LMP and ultrasound was −0.55 for placental samples.

Hawken,
202051

Zambia
(Lusaka) and
Bangladesh
(Matlab)

Prospective
cohort

1487 (external validation
cohort)

Metabolomic
profile derived
from newborn
blood samplesf

Heel prick blood
(662 infants) and
cord blood (1404
infants)

At birth (cord blood);
24–72 h (heel prick
blood)

GA estimated by
ultrasound

(1) The full model based on heel prick blood samples had a mean
absolute error of 0.79 weeks and predicted GA within 1 week
of GA estimated by ultrasound for 69.4% of infants and
within 2 weeks for 97.6% of infants in Zambia

(2) The full model based on cord blood samples had a mean
absolute error of 1.02 weeks and predicted GA within 1 week
of GA estimated by ultrasound for 60.7% of infants and
within 2 weeks for 90.1% of infants in Zambia.

(3) The full model based on heel prick blood samples had a mean
absolute error of 0.81 weeks and predicted GA within 1 week
of GA estimated by ultrasound for 68.4% of infants and
within 2 weeks for 94.7% of infants in Bangladesh.

(4) The full model based on cord blood samples had a mean
absolute error of 0.95 weeks and predicted GA within 1 week
of GA estimated by ultrasound for 61.0% of infants and
within 2 weeks for 91.2% of infants in Bangladesh.

Hawken,
202152

China
(Shanghai)

Retrospective
cohort

4448 (external validation
cohort)

Metabolomic
profile derived
from newborn
blood spot
screeningg

Heel prick blood <72 h GA estimated by
ultrasound

(1) The average difference between GA predicted by the full
model of metabolomic profile (all markers), birthweight, and
sex and that estimated by ultrasound was 1.20 weeks. The
average deviation of the model estimate compared to the
reference estimate (mean absolute error) was 0.89 weeks.

(2) The full model predicted GA within 1 week of GA estimated
by ultrasound for 64.7% of infants and within 2 weeks for
92.7% of infants.

(3) Among preterm infants (<37 weeks), the full model had a
mean absolute error of 1.74 weeks and an RMSE of 2.69
weeks, and predicted GA within 1 week of GA estimated by
ultrasound for 43.4% of infants and within 2 weeks for
72.1% of infants.

(4) Among SGA infants (below the 10th percentile for
gestational age), the full model had a mean absolute error of
1.48 weeks and an RMSE of 1.70 weeks, and predicted GA
within 1 week of GA estimated by ultrasound for 30.9% of
infants and within 2 weeks for 77.3% of infants.

(Table 2 continues on next page)
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Oltman,
202153

Uganda
(Busia)

Prospective
cohort

666 (external validation
cohort)

Metabolomic
profile derived
from newborn
blood samplesh

Heel prick blood
(666 infants) and
cord blood (640
infants)

At birth (cord blood);
≤3 h (heel prick blood)

GA estimated by
ultrasound

(1) The metabolomic model based on heel prick blood samples
predicted GA within 1 week of GA estimated by ultrasound
for 62.9% of infants and within 2 weeks for 89.2% of infants.

(2) The metabolomic model based on cord blood samples
predicted GA within 1 week of GA estimated by ultrasound
for 60.9% of infants and within 2 weeks for 89.2% of
infants.

(3) Among SGA infants (Intergrowth definition), the
metabolomic model based on heel prick blood samples
predicted GA within 1 week of GA estimated by ultrasound
for 44.3% of infants and within 2 weeks for 75.3% of infants.
The metabolomic model based on cord blood samples
predicted GA within 1 week of GA estimated by ultrasound
for 41.5% of infants and within 2 weeks for 73.6% of infants.

(4) The AUC to discriminate gestational age <37 versus ≥37
weeks was 0.953 (95% CI, 0.921–0.985) for the model of
metabolomic profile based on heel prick blood samples plus
birthweight, and 0.935 (95% CI, 0.894–0.977) for the model
of metabolomic profile based on cord blood samples plus
birthweight.

Haftorn,
202154

Norway and
Finland

Retrospective
cohort

1941 (1429 in training dataset,
and 512 in replication dataset)

DNA methylation
profile

Cord blood At birth GA estimated by
LMP and
ultrasound

(1) DNA methylation had a coefficient of determination (R2) of
0.724 with a median absolute deviation of 3.42 days (and
provided an estimate of GA within ±0.73 weeks of that
provided by ultrasound)

(2) Among ART-conceived newborns with known embryo
transfer date, DNA methylation had a coefficient of deter-
mination (R2) of 0.767 with a median absolute deviation of
3.80 days (and provided an estimate of GA within ±0.76
weeks).

Sazawal,
202155

Tanzania,
Pakistan and
Bangladesh

Retrospective
cohort

1311 Metabolomic
profile derived
from newborn
blood spot
screeningi

Heel prick blood 24–72 h GA estimated by
ultrasound

(1) The metabolomic model had an RMSE of 1.65 weeks and
predicted GA within 1 week of GA estimated by ultrasound
for 68.7% of infants and within 2 weeks for 88.6% of
infants.

(2) The inclusion of birthweight in the metabolomic model had
an RMSE of 1.52 weeks and predicted GA within 1 week of
GA estimated by ultrasound for 70.5% of infants and within
2 weeks for 90.1% of infants.

(3) The AUC of the metabolomic and birthweight model in
differentiating infants born before 37 weeks from those born
at or after 37 weeks was 0.86 (95% CI, 0.83–0.89).

(4) The model with metabolites and birthweight had a
sensitivity of 80.7% and a specificity of 77.6% for
differentiating between term and preterm infants.

Jasper,
202256

Uganda Retrospective
cohort

150 (external validation cohort) Metabolomic
profile derived
from cord blood
samplesj

Cord blood At birth GA estimated by
ultrasound

(1) The model including metabolites and birthweight had an
RMSE of 1.55 weeks and predicted GA within 2 weeks of GA
estimated by ultrasound for 76.7% of infants.

(2) The AUC of the metabolomic model in differentiating infants
born before 37 weeks from those born at or after 37 weeks
was 0.765 (95% CI, 0.596–0.935). The inclusion of
birthweight in the metabolomic model increased the AUC to
0.851 (95% CI, 0.722–0.981).

(3) The model with metabolites and birthweight had a
sensitivity of 72.7% and a specificity of 82.7% for
differentiating between term and preterm infants.

(Table 2 continues on next page)

A
rticles

w
w
w
.thelancet.com

V
ol

70
A
pril,

20
24

13

www.thelancet.com/digital-health


First
author,
year

Country
(Region)

Design Sample size Biomarker(s) Biological sample Newborn age at
testing

Reference
standard

Main findings

(Continued from previous page)

Hawken,
202257

Canada
(Ontario,
January
2015–
December
2017)

Retrospective
cohort

52,659 (50,735 spontaneously
conceived and 1924 conceived
from ART)

Metabolomic
profile derived
from newborn
blood spot
screeningk

Heel prick blood <48 h GA estimated by
ultrasound and
date of embryo
transfer

(1) Overall, the model including metabolites and birthweight
had a mean absolute error (95% CI) and an RMSE (95%) of
0.70 (0.69−0.70) weeks and 0.89 (0.88−0.90) weeks,
respectively, and pre ed GA within 1 week of GA estimated
by ultrasound for 7 (95% CI, 75.4–76.1) of infants.

(2) The prediction of G as less accurate for preterm infants
<37 weeks (mean a ute error, 0.91 [95% CI, 0.88−0.93]
weeks; RMSE, 1.17 CI, 1.13−1.20] weeks; predicted GA
within 1 week of G timated by ultrasound for 62.6%
[95% CI, 61.1−64.0 infants) and SGA infants (mean
absolute error, 1.15 % CI, 1.11−1.19] weeks; RMSE, 1.44
[95% CI, 1.38−1.50] ks; predicted GA within 1 week of GA
estimated by ultras for 49.1% [95% CI, 46.9−51.1] of
infants).

(3) When using GA esti ed by date of embryo transfer as gold
standard, the predic of GA was slightly better for infants
conceived from AR ean absolute error, 0.68 [95% CI,
0.66−0.71] weeks; E, 0.86 [95% CI, 0.83−0.88] weeks;
predicted GA within eek of GA estimated by ultrasound
for 75.4% [95% CI, −77.3] of infants).

Hawken,
202258

Kenia Prospective
cohort

1039 Metabolomic
profile derived
from newborn
blood samplesl

Heel prick blood
(1039 infants) and
cord blood (1012
infants)

Within 30 min of
delivery of the placenta
(cord blood); 24–72 h
(heel prick blood)

GA estimated by
ultrasound

(1) The full model base heel prick blood samples had a mean
absolute error (95% and an RMSE (95%) of 1.35
(1.27−1.43) weeks 1.83 (1.72−1.94) weeks, respectively,
and predicted GA w n 1 week of GA estimated by
ultrasound for 64.1 5% CI, 61.1–67.2) of infants.

(2) The full model base n heel prick blood samples was less
accurate for preterm ants <37 weeks (mean absolute error,
2.62 [95% CI, 2.28 9] weeks; RMSE, 3.09 [95% CI,
2.74−3.48] weeks; icted GA within 1 week of GA
estimated by ultras for 29.4% [95% CI, 20.2−38.9] of
infants) and SGA in s (mean absolute error, 1.81 [95% CI,
1.57−2.07] weeks; R , 2.18 [95% CI, 1.91−2.46] weeks;
predicted GA withi eek of GA estimated by ultrasound
for 46.9% [95% CI, 8−57.3] of infants).

(3) The full model base n cord blood samples had a mean
absolute error (95% and an RMSE (95%) of 1.44
(1.36−1.53) weeks 1.95 (1.85−2.06) weeks, respectively,
and predicted GA w n 1 week of GA estimated by
ultrasound for 61.2 5% CI, 58.3–63.9) of infants.

(4) The full model base cord blood samples was less accurate
for preterm infants weeks (mean absolute error, 2.79
[95% CI, 2.46−3.12 eks; RMSE, 3.19 [95% CI, 2.85−3.57]
weeks; predicted G thin 1 week of GA estimated by
ultrasound for 21.1 5% CI, 11.8−29.3] of infants) and
SGA infants (mean lute error, 2.06 [95% CI, 1.76−2.36]
weeks; RMSE, 2.41 CI, 2.13−2.69] weeks; predicted GA
within 1 week of GA imated by ultrasound for 33.2% [95%
CI, 23.0−44.6] of in s).

(Table 2 continues on next page)
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First
author,
year

Country
(Region)

Design Sample size Biomarker(s) Biological sample Newborn age at
testing

Reference
standard

Main findings

(Continued from previous page)

Haftorn,
202359

Norway Retrospective
cohort

2138 (1709 in training dataset,
and 429 in replication dataset)

DNA methylation
profile

Cord blood At birth GA estimated by
LMP and
ultrasound

(1) DNA methylation, including five CpGs, had a coefficient of
determination (R2) of 0.674 with a median absolute
deviation of 4.4 days

ART, assisted reproductive techniques; AUC, area under the curve; CI, confidence interval; GA, gestational age; LBW, low birth weight; LMP, last menstrual period; RMSE, root mean square error; SD, standard deviation; SGA, small for gestational age.
aAcyl-carnitines (C0, C2, C3, C4, C5, C6, C8, C8:1, C10, C10:1, C12, C12:1, C14, C14:1, C14:2, C16, C18, C18:1, C18:2), amino acids (arginine, phenylalanine, alanine, leucine, ornithine, citrulline, tyrosine, glycine, argininosuccinate, methionine, valine,
biotinidine), fatty acid oxidation (C3DC, C4DC, C5OH, C5DC, C6DC), enzymes (galactose-1-phosphate uridyl transferase, biotinidase), and hormones (thyroid stimulating hormone, 17-hydroxyprogesterone). bAcyl-carnitines (C0, C2, C3, C3-DC, C4,
C4-DC, C5, C5:1, C5-DC, C5-OH, C6, C6-DC, C8, C8:1, C10, C10:1, C12, C12:1, C14, C14:1, C14:2, C14-OH, C16, C16:1, C16:1-OH, C16-OH, C18, C18:1, C18:1-OH, C18:2, C18:OH), amino acids (alanine, arginine, citrulline, glutamate,
isoleucine + leucine, methionine, phenylalanine, tyrosine, valine), enzymes (galactose-1-phosphate uridyl transferase, biotinidase), and hormones (thyroid stimulating hormone, 17-hydroxyprogesterone). cFree carnitine, acyl-carnitines (C-2, C-3, C-
3DC, C-4, C-5, C-5:1, C-5DC, C-6, C-8, C-8:1, C-10, C-10:1, C-12, C-12:1, C-14, C-14:1, C-16, C-16:1, C-18, C-18:1, C-18:2, C-18:1OH), amino acids (alanine, arginine, citrulline, glycine, methionine, ornithine, phenylalanine, proline, 5-oxoproline,
tyrosine, valine), thyroid stimulating hormone, 17-hydroxyprogesterone, and galactose-1-phosphate-uridyl-transferase. dAcyl-carnitines (C0, C2, C3, C4, C5, C5:1, C6, C8, C8:1, C10, C10:1, C12, C12:1, C14, C14:1, C14:2, C16, C18, C18:1, C18:2,
C10:1, C12:1, C14:1, C14:2, C4OH, C5:1, C5DC, C5OH, C6DC, C16:OH, C16:1OH, C18OH, C18:1OH, C3DC, C4DC), amino acids (alanine; arginine; citrulline; phenylalanine; leucine; ornithine; tyrosine; glycine; argininosuccinate; methionine; valine;
succinylacetone), hemoglobins (adult haemoglobin: HbA(A) and variants (S, C, D, E) fetal haemoglobin: HbF (F), acetylated HbF (F1), combined HbF (F + F1)), endocrine markers (17α-hydroxyprogesterone (17-OHP), thyroid stimulating hormone
(TSH)), and enzyme markers (biotinidase; galactose-1-phosphate uridyltransferase (GALT); immunotripsinogen). eAcylcarnitines (N = 31), amino acids (N = 12), haemoglobin profiles, 17α-hydroxyprogesterone, thyroid stimulating hormone;
immunoreactive trypsinogen, t-cell receptor excision circles, biotinidase activity, galactose-1-phosphate uridylyltransferase activity. fAcyl-carnitines (C0; C2; C3; C4; C5; C5:1; C6; C8; C8:1; C10; C10:1; C12; C12:1; C14; C14:1; C14:2; C16; C18; C18:1;
C18:2; C10:1; C12:1; C14:1; C14:2; C4OH; C5:1; C5DC; C5OH; C6DC; C16:OH; C16:1OH; C18OH; C18:1OH; C3DC; C4DC), amino acids (Arginine, phenylalanine, alanine, leucine, ornithine, citrulline, tyrosine, glycine, methionine, valine), hormones
(thyroid stimulating hormone, 17-hydroxyprogesterone), haemoglobins (adult haemoglobin, fetal haemoglobin, and acetylated HbF), and enzyme markers (biotinidase and immunotripsinogen). gAcyl-carnitines (C0, C2, C3, C4, C5, C6, C8, C10,
C12, C14, C16, C18, C10:1, C12:1, C14OH, C14:1, C14:2, C16OH, C18OH, C18:1, C18:2, C3DC, C4DC, C4OH, C5DC, C5OH, C5:1, C6DC, C8:1), TSH, 17OHP, alanine, arginine, citruline, glycine, leucine, methionine, ornithine, phenylalanine, tyrosine, and
valine. hAcyl-carnitines (free carnitine, C2, C3, C4, C4-DC, C4-OH, C5, C5-OH, C6, C8, C10, C12, C12:1, C14, C14:1, C16, C16:1, C16:1-OH, C18, C18:1, C18:2), amino acids (alanine, arginine, citrulline, glutamate, leucine, methionine, ornithine,
phenylalanine, succinylacetone, tyrosine, valine), and hormones (thyroid stimulating hormone, 17-hydroxyprogesterone). iAlanine, arginine, isoleucine + leucine, methionine, phenylalanine, tyrosine, valine, C2, C3, C3-DC, C4, C4-DC, C5, C5:1, C5-
OH, C5-DC, C6, C6-DC, C8, C8:1, C10, C10:1, C12, C12:1, C14, C14-OH, C16, C16:1, C16-OH, C16:1-OH, C18, C18:1, C18:1OH, C18:2, GALT, 17-hydroxyprogesterone, thyroid stimulating hormone. jArginosuccinate, isoleucine + leucine, methionine,
phenylalanine, tyrosine, valine, C3, C4, C4-DC, C4-OH, C5, C8:1, C14, C14:1, C16, C18-OH, and C18:1. kHaemoglobins (adult haemoglobin, fetal haemoglobin, and acetylated HbF), endocrine markers (17-hydroxyprogesterone, thyroid stimulating
hormone), amino acids (arginine, phenylalanine, alanine, leucine, ornithine, citrulline, tyrosine, glycine, methionine, valine), acyl-carnitines (C0, C2, C3, C4, C5, C5:1, C6, C8, C8:1, C10, C10:1, C12, C12:1, C14, C14:1, C14:2, C16, C18, C18:1, C18:2,
C10:1, C12:1, C14:1, C14:2, C4OH, C5:1, C5DC, C5OH, C6DC, C16:OH, C16:1OH, C18OH, C18:1OH, C3DC, C4DC), enzyme markers (biotinidase, immunoreactive trypsinogen), and immune markers (T-cell receptor excision circles). lHaemoglobins
(adult haemoglobin, fetal haemoglobin, and acetylated HbF), endocrine markers (17-hydroxyprogesterone, thyroid stimulating hormone), amino acids (arginine, phenylalanine, alanine, leucine, ornithine, citrulline, tyrosine, glycine, methionine,
valine), acyl-carnitines (C0, C2, C3, C4, C5, C5:1, C6, C8, C8:1, C10, C10:1, C12, C12:1, C14, C14:1, C14:2, C16, C18, C18:1, C18:2, C10:1, C12:1, C14:1, C14:2, C4OH, C5:1, C5DC, C5OH, C6DC, C16:OH, C16:1OH, C18OH, C18:1OH, C3DC, C4DC), enzyme
markers (biotinidase, immunoreactive trypsinogen, galactose-1-phosphate uridylyltransferase), and immune markers (T-cell receptor excision circles).

Table 2: Characteristics and main findings of included studies that assessed postnatal biomarkers for predicting gestational age.
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conducted in high-income countries and seven (37%) in
LMICs.

Biomarkers were obtained from the following bio-
logical samples: maternal serum21–33,35,37 (six biomarkers),
maternal plasma36,38 (two biomarkers), maternal whole
blood39 (one biomarker), maternal urine29,34 (two bio-
markers), cord blood41,45,46,49–51,53,54,56,58,59 (three biomarkers),
newborn blood spot42–45,47–49,51–53,55,57,58 (2 biomarkers) and
placental sample50 (one biomarker). Further breakdown
of this is available in box 1. Biomarkers were evaluated
throughout the three trimesters as well as in the imme-
diate postnatal period: first trimester (18 studies), second
trimester (nine studies), third trimester (five studies) and
postnatally (21 studies). Samples were collected once only
(22 studies), serially (12 studies) and frequency was not
clearly defined in five studies.

The risk of bias in each included study is summarised
in Fig. 2A (prenatal) and 2B (postnatal). Only one study31

was judged to be at low risk of bias for all five criteria
(3%). Eight studies (21%) were deemed to be at low risk
of bias for 4 domains and 14 were judged to be at low risk
of bias for 3 domains (36%). The remaining 16 studies
were judged to be at low risk of bias for ≤2 domains
(41%). The most common shortcomings were related to
the study design and blinding of researchers to the re-
sults of the “gold standard” GA. The majority of studies
included in our review were prospective (56%), with 41%
performed retrospectively and unclear in one study.22

Blinding of the gold standard was performed in 11
studies (28%), documented not to have occurred in one
(3%) and unclear in the remaining 27 studies (69%). In
26 studies (67%) the reference GA was the gold standard
(Ultrasound or LMP corroborated by ultrasound), 12
studies (33%) used LMP or ovulation date without ul-
trasound corroboration and one study (3%) used a
combination of ovulation date with LMP and ultrasound.

Accuracy of prenatal biomarkers to estimate
gestational age
Overall, the correlation of the GA predicted by hCG in
serum and the GA estimated by LMP was higher when
testing was performed before 9 weeks than at or after 9
weeks (Table 1). Meta-analyses showed that the pooled
coefficients of correlation were 0.88 (95% CI, 0.83–0.92,
I2 = 56%; 6 studies) at 4–9 weeks and 0.43 (95% CI,
0.30–0.54, I2 = 0%; 3 studies) at 4–16 weeks (Table 3).
For SP1, the pooled coefficients of correlation were 0.84
(95% CI, 0.80–0.88, I2 = 78%; 4 studies) at 5–10 weeks
and 0.71 (95% CI, 0.66–0.75, I2 = 98%; 4 studies) at 5–16
weeks. For hPL, the pooled coefficient of correlation was
0.78 (95% CI, 0.69–0.84, I2 = 80%; 3 studies) at 6–16
weeks. The average difference between the GA pre-
dicted by hCG before 9 weeks and the GA estimated by
LMP ranged between 0.4 and 2.2 weeks (median, 0.6
weeks; 5 studies).

The pooled coefficient of correlation for the GA pre-
dicted by metabolomic profiling in serum throughout the
prenatal period and the GA estimated by ultrasound was
0.90 (95% CI, 0.81–0.95, I2 = 0%; 2 studies, 96 women).
The pooled RMSE was 2.9 weeks (95% CI, 2.61–3.21).
The AUC of models including several metabolites to
discriminate between preterm birth and term birth was ∼
0.90. One study37 reported that a model including 13
categories of metabolites predicted GA within 1 week of
GA estimated by ultrasound for 67% of women and
within 2 weeks for 78% of women. Two small studies
reported that models of cell-free RNA transcripts35 and
proteins36 in serum predicted GA with correlation co-
efficients of ∼0.90 and ∼0.95, respectively. Another
study, involving 133 women, reported that whole-blood
gene expression predicted GA with a correlation coeffi-
cient of 0.83 and a RMSE of 4.5 weeks.39

Accuracy of postnatal biomarkers to estimate
gestational age: metabolomic profile derived from
newborn blood spot screening
Thirteen studies reported on the use of newborn blood
spot to estimate GA. Overall, the average difference be-
tween GA predicted by the newborn metabolomic models
and the GA estimated by LMP and/or ultrasound was
slightly over 1 week (pooled RMSE of 1.03; 95% CI,
1.00–1.06; nine studies) (Table 3). This biomarker per-
formed better among term infants (pooled RMSE of 1.00
week; 95% CI, 0.97–1.04; two studies) than among pre-
term infants (pooled RMSE of 1.56 weeks; 95% CI,
1.48–1.63; five studies) and SGA infants (pooled RMSE of
1.43 weeks; 95% CI, 1.37–1.50; eight studies).

Eleven studies provided data to calculate the ability of
metabolomic profiling models to estimate GA within
one and/or two week(s) of the gold standard using
newborn blood spots. Overall, GA was correctly esti-
mated by metabolomic profiling models to within one
week of GA estimated by LMP and/or ultrasound for
68.8% of infants (95% CI, 65.8%–720%, I2 = 99.8%) and
within 2 weeks for 94.4% of infants (95% CI, 94.0%–

94.8%, I2 = 91.6%). Metabolomic profiling models per-
formed best among term infants, correctly estimating
GA to within one week in 69.2% of newborns (95% CI,
69.0%–69.3%, I2 = 0%; 3 studies) and within two weeks
in 96.1% of newborns (95% CI, 95.7 to 96.6, I2 = 96%; 3
studies). The metabolomic profiling had a lower per-
formance among infants born before 37 weeks (GA
correctly estimated within one week in 49.6% and
within two weeks in 80.1%), infants born between 32
and 36 weeks (GA correctly estimated within one week
in 50.1% and within two weeks in 81.1%), infants born
before 32 weeks (GA correctly estimated within one
week in 49.7% and within 2 weeks in 76.6%), and SGA
infants (GA correctly estimated within one week in
52.2% and within 2 weeks in 86.9%).

The pooled AUC of metabolomic profile derived
from newborn blood spot screening to discriminate in-
fants with a GA <37 weeks from those with a GA ≥37
weeks was 0.933 (95% CI, 0.905–0.962; I2 = 100%; 8
www.thelancet.com Vol 70 April, 2024
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Box 1.
Potential biomarkers identified and type of biological sample analysed.

Prenatal biomarkers

1. Maternal serum
cfRNA
hCG
hPL
Sp1
Placental protein 14
Metabolomic profile (Acyl-carnitine, amino acid, fatty acid, ceramide, ceramide 1-
phosphate, galactosylceramide, phosphatidyl acid, phosphatidylethanolamine, phosphati-
dylglycerol, phosphatidylinositol, phosphatidylcholine, cholesteryl ester, and
sphingomyelin)

2. Maternal plasma
Proteomic profile
Metabolomic profile (THDOC, Estriol-16-Glucoronide, Progesterone, PE (P-16:Oe/0:0) and
DHEA-S)

3. Maternal whole blood
Exon-level gene expression

4. Maternal urine
Sp1
Metabolomic profile (C19H26O7S, C24H30O9 and estriol glucuronide)

Postnatal biomarkers

1. Cord blood
DNA methylation profile
Isoenzymes of erythrocytic carbonic anhydrase (A, B and C)
Metabolomic profile (Acyl-carnitines, amino acids, enzymes, enzyme markers, fatty acid
oxidation, free carnitine, haemoglobins (adult haemoglobin: HbA(A) and variants (S, C, D,
E) fetal haemoglobin: HbF (F), acetylated HbF (F1), combined HbF (F + F1)), hormones
(Thyroid stimulating hormone, 17-hydroxyprogesterone, galactose-1-phosphate-uridyl-
transferase), immunoreactive trypsinogen, t-cell receptor excision circles)

2. Placental sample
DNA methylation profile

3. Newborn blood spot
DNA methylation
Metabolomic profile (Acyl-carnitines, amino acids, enzyme markers, haemoglobin profiles,
hormones (thyroid stimulating hormone, 17-hydroxyprogesterone), immunoreactive
trypsinogen, t-cell receptor excision circles)

Articles
studies). The pooled AUC of metabolomic profile
derived from newborn blood spot screening to
discriminate infants with a GA <34 weeks from those
with a GA ≥34 weeks was 0.986 (95% CI, 0.980–0.993;
I2 = 91.2%; 3 studies).

Accuracy of postnatal biomarkers to estimate
gestational Age:Metabolomic profile derived from
newborn cord blood
Overall, performance of metabolomic profiling models
from cord blood was lower than that of metabolomic
profiling models from samples of newborn heel pricks
with a pooled RMSE of 1.57 weeks (95% CI, 1.03–2.39;
three studies) and infants GAs correctly predicted
within one week in 60.6% (95% CI, 59.2 to 62.1,
I2 = 0%; 5 studies) and within two weeks in 89.2% (95%
CI, 87.0 to 91.6, I2 = 74.5%; 4 studies). The pooled AUC
of metabolomic profile models from cord blood in
differentiating infants born before 37 weeks from those
born at or after 37 weeks was 0.910 (95% CI,
0.873–0.946; I2 = 28%; 3 studies).49,53,56

Accuracy of postnatal biomarkers to estimate
gestational age: DNA methylation profile
The pooled average difference between GA predicted by
cord blood DNA methylation profile and the GA esti-
mated by LMP and ultrasound was 1.60 weeks (95% CI,
1.51–1.70; two studies) with a pooled coefficient of
correlation of 0.85 (95% CI, 0.78 to 0.89, I2 = 96.6%; five
studies).

Exploration of heterogeneity
There was a significant level of heterogeneity among
studies in the majority of meta-analyses performed.
Most planned subgroup analyses could not be per-
formed given the small number of studies included in
the meta-analyses. However, subgroup analyses for
maternal hCG between 4 and 9 weeks of gestation and
the metabolomic profile derived from newborn blood
spot screening in all infants, those born before <37
weeks of gestation, and those born SGA showed that the
study setting, sample size, and the study quality did not
provide an explanation for heterogeneity.
DHEA-S, dehydroepiandrosterone-sulfate; DNA, Deoxyribonucleic acid; hCG, human
chorionic gonadotrophin; hPL, human placental lactogen; LMP, PE(P-16:0e/0:0), 1-(1Z-
hexadecenyl)-sn-glycero-3-phosphoethanolamine; PP, placental protein; SP1, pregnancy-
specific beta-1-glycoprotein; THDOC, tetrahydrodeoxycorticosterone.
Discussion
Metabolomic profiling from newborn heel prick blood
spots during the immediate postnatal period provided
the most accurate estimate of GA, with a pooled RMSE
of 1.03 weeks across all GAs. It performed best for term
infants, showing slightly reduced accuracy for preterm
or SGA infants. In addition, the metabolomic profile
derived from newborn blood spot screening appeared to
differentiate between preterm (<37 weeks) and term
(≥37 weeks) infants, as well as between infants born
before 34 weeks and those at or after 34 weeks with a
pooled AUC of 0.93 and 0.98, respectively.
www.thelancet.com Vol 70 April, 2024
Metabolomic profiling and DNA methylation profile
from cord blood samples provided less accurate esti-
mates of GA compared to metabolomic profiling from
heel prick blood samples, with pooled RMSEs of 1.57
and 1.60 weeks, respectively.

Among the placental hormones assessed, hCG
measured between 4 and 9 weeks of gestation showed
the highest correlation with the reference standard GA,
17
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Study Study design
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Fig. 2: A Risk of bias assessment in studies assessing prenatal biomarkers. B Risk of bias assessment in studies assessing postnatal biomarkers.
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usually estimated by LMP, with a pooled coefficient of
correlation of 0.88. However, the pooled RMSE could
not be estimated due to lack of data.

Evidence from two small studies indicated that
metabolomic profiling from maternal blood samples
collected throughout pregnancy to estimate GA had low
accuracy, with a pooled RMSE of 2.90 weeks.

Insufficient evidence was available to evaluate other
prenatal biomarkers, such as cell-free RNA transcripts,
proteomic profile, and exon-level gene expression.

Our systematic review has identified promising
methods for postnatal GA estimation using algorithms
that combine metabolomic profile derived from
newborn heel-prick blood spots with clinical and de-
mographic variables (mainly birthweight, sex, and
multiple birth status). These algorithms estimated GA
postnatally to within approximately 1 week of a refer-
ence standard. This approach outperformed neonatal
assessments like the Dubowitz and Ballard scores,
which deviate by ±2.6 to 3.8 weeks from the gold stan-
dard GA.12 Therefore, metabolomics modelling based on
heel-prick blood spot samples are highly likely to be a
more accurate way to estimate GA when early pregnancy
ultrasound is not available. Importantly, the metab-
olomic profile derived from newborn blood spot showed
consistent performance across a variety of settings and
ethnicities, including in high-income countries and
LMICs. However, the requirement of tandem mass
spectrometers or other necessary devices required for
metabolomic profiling from heel prick blood spots poses
a major limitation for implementation, particularly in
resource-poor settings, and the cost of testing, estimated
at approximately USD $50 per child, is also a significant
obstacle.60

The second major limitation is that postnatal GA
estimation using metabolomic profiling from cord blood
samples or heel prick blood spots is not available to
guide clinical prenatal care at the level of the individual
woman. Therefore postnatal markers are not useful for
prenatal care. Nevertheless, postnatal markers could be
a fruitful avenue to guide research if they can be
assessed in maternal blood or urine prenatally.

The challenges and importance of improving pa-
thology and laboratory provision in LMICs was dis-
cussed in the Lancet series.61–63 The authors identified
four key barriers to achieving optimal laboratory services
in LMICs including lack of: trained personnel, educa-
tion and training, infrastructure and agreed quality
standards and accreditation.63 Costs are lower if the
turn-around time is longer and if the laboratory is per-
forming higher numbers of tests61 which could be
overcome by centralising resources, however, this would
prevent the results being available for individualised
care of the pregnant woman or neonate.

There were differences in accuracy of postnatal GA
estimation between metabolomic profiles derived from
cord blood samples and heel-prick blood spots. In the-
ory, most proteins or transcripts can be assessed in
www.thelancet.com Vol 70 April, 2024
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Biomarker Biological
sample

Population Average deviation Correlation coefficient Predicted gestational age

Pooled RMSE
(95% CI),
weeks

No. of women or
infants (No. of
studies)

Pooled r
(95% CI)

I2, % No. of women or
infants (No. of
studies)

Within ±1 week of GA estimated by gold
standard method

Within ±2 weeks of GA estimated
by gold standard method

Pooled %
(95% CI)

I2, % No. of infants (No. of
studies)

Pooled %
(95% CI)

I2, % No. of infants (No.
of studies)

Prenatal biomarkers

hCG between 4 and 9 weeks Serum Women – – 0.88
(0.83–0.92)

56 261 (622–27) – – – – – –

hCG between 4 and 16 weeks Serum Women – – 0.43
(0.30–0.54)

0 185 (322,25,27) – – – – – –

SP1 between 5 and 10 weeks Serum Women – – 0.84
(0.80–0.88)

78 255 (424,26,27,29) – – – – – –

SP1 between 5 and 16 weeks Serum Women – – 0.71
(0.66–0.75)

98 462 (424,27,29,32) – – – – – –

hPL between 6 and 16 weeks Serum Women – – 0.78
(0.69–0.84)

80 303 (323,31,32) – – – – – –

Metabolomic profile Serum Women 2.90
(2.61–3.21)

39 (237,38) 0.90
(0.81–0.95)

0 39 (237,38) – – – – – –

Postnatal biomarkers

Metabolomic profile derived
from newborn blood spot
screening

Heel prick
blood

All infants 1.03
(1.00–1.06)

536,612
(942,43,47–49,51,55,57,58)

– – – 68.8
(65.8–72.0)

99.8 541,726
(1142,43,47–49,51–53,55,57,58)

94.4
(94.0–94.8)

91.6 488,028
(942,43,47–49,51–53,55)

Metabolomic profile derived
from newborn blood spot
screening

Heel prick
blood

Infants
≥37 weeks

1.00
(0.97–1.04)

102,244 (242,48) – – – 69.2
(69.0–69.3)

0 402,376 (342,47,48) 96.1
(95.7–96.6)

96 402,376 (342,47,48)

Metabolomic profile derived
from newborn blood spot
screening

Heel prick
blood

Infants <37
weeks

1.56
(1.48–1.63)

107,627
(542,48,51,57,58)

– – – 49.6
(39.0–63.1)

99.8 594,583
(1042,44,47,48,51,52,57,58)

80.1
(73.8–87.0)

98.9 590,687
(642,44,47,48,51,52)

Metabolomic profile derived
from newborn blood spot
screening

Heel prick
blood

Infants
32–36
weeks

– – – – – 50.1
(28.9–86.6)

100 544,942 (342,44,47) 81.1
(69.7–94.4)

99.9 544,942 (342,44,47)

Metabolomic profile derived
from newborn blood spot
screening

Heel prick
blood

Infants <32
weeks

– – – – – 49.7
(46.4–53.2)

71.9 544,942 (342,44,48) 76.6
(73.6–79.7)

75.4 544,942 (342,44,48)

Metabolomic profile derived
from newborn blood spot
screening

Heel prick
blood

SGA
infants

1.43
(1.37–1.50)

185,018
(842,43,47,49,51,55,57,58)

– – – 52.2
(45.8–59.4)

96.0 51,027
(748,49,51–53,55,57,58)

86.9
(81.5–92.6)

94.8 48,791
(548,49,51–53,55)

Metabolomic profile derived
from cord blood samples

Cord blood All infants 1.57
(1.03–2.39)

2198 (349,56,58) – – – 60.6
(59.2–62.1)

0 7345 (549,52,53,56,58) 89.2
(87.0–91.6)

74.5 6333 (449,52,53,56)

DNA methylation profile Cord blood All infants 1.60
(1.51–1.70)

183,042 (244,53) 0.85
(0.78–0.89)

96.6 4501 (545,46,50,54,59) – – – – –

CI, confidence interval; GA, gestational age; hCG, human chorionic gonadotrophin; hPL, human placental lactogen; LMP, last menstrual period; r, correlation coefficient; RMSE, root mean square error; SP1, pregnancy-specific beta-1-glycoprotein.

Table 3: Meta-analyses of the predictive accuracy of prenatal and postnatal biomarkers for gestational age.
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numerous different samples, and such differences may
simply be due to variations in techniques rather than
whether they are coming from cord or heel-prick.
However, differences could also be attributable to
various other factors, including timing of collection,
fluctuations in neonatal analyte levels during the early
postpartum period, and infant feeding status prior to
collection.49 Samples taken directly from the newborn
may better reflect their physiology compared to cord
specimens. Although metabolomic profiling derived
from cord blood samples for estimating GA was less
accurate than from heel prick blood samples, it still
outperformed Dubowitz and Ballard scores. Collecting
cord blood samples does not cause discomfort to the
newborn, may be more acceptable to parents and avoids
extensive training required for heel prick sample
collection techniques.

The main strengths of our study include the
following: (1) the rigorous methodology used for per-
forming the systematic review; (2) the use of a prospec-
tive protocol designed to answer a specific research
question; (3) the extensive and continually updated
literature searches without language restrictions; (4) the
strict assessment of the risk of bias of the included
studies; (5) the quantitative way of summarizing the
evidence; and (6) the inclusion of >1.7 million newborns
in the studies that examined the accuracy of postnatal
biomarkers. Some potential limitations must also be
considered. First, there was an important degree of
heterogeneity in most of the meta-analyses performed.
We explored the sources of heterogeneity and were un-
able to identify plausible explanations; therefore, pooled
estimates should be interpreted cautiously. We used a
random-effects model to pool results from individual
studies, which provides the most useful and conservative
estimate for informing practice in the presence of un-
explained heterogeneity. Nevertheless, the between-
study heterogeneity, inability to assess publication bias
and small number of studies remain an important lim-
itation of the study. Second, study quality was a limita-
tion of the studies included in the review with only one-
fourth of included studies being judged to be at low risk
of bias for at least four domains. Third, most studies that
assessed placental hormones did not use an appropriate
reference standard for pregnancy dating because ultra-
sound was not widely available when such studies were
conducted. Moreover, there was heterogeneity of refer-
ence ultrasound timing in some studies assessing post-
natal biomarkers, mainly those conducted in LMICs, in
which only a small proportion of women had reference
ultrasound completed between 9 and 13 weeks of
gestation. Fourth, authors of included studies chose a
wide variety of statistics to report accuracy of biomarkers
to estimate GA, which made combining results difficult.
Fifth, the use of the logit transformation approach and
ignorance of population weights in the calculation of
pooled proportions has the potential to produce
misleading pooled estimates. Sixth, we used the DerSi-
monian and Laird approach for random-effects meta-
analyses, and it is possible that the 95% CIs of our meta-
analyses could be slightly different if other statistical
methods proposed for adjusting them are used (such as
the Hartung, Knapp, Sidik and Jonkman or modified
Knapp−Hartung methods for random effects meta-
analysis). However, the approach we use is recom-
mended in Cochrane reviews and these methods differ
only in respect to the calculation of the confidence in-
tervals, not pooled estimates. Finally, the number of
studies that assessed several biomarkers, mainly prena-
tal ones, is still too small for us to draw firm conclusions.

In conclusion, our study has identified several
candidate biomarkers that could estimate GA in settings
where early ultrasound is unavailable. Further studies
are required to compare the most promising of these
biomarkers to each other, as well as to other modalities
such as ultrasound, fundal height or other clinical
markers of GA assessment, in order to identify which
will prove most useful. Several factors would need to be
considered including accuracy, cost, equipment and
infrastructure required. This is particularly important in
LMIC settings in which pregnancy dating is especially
challenging. Cultural acceptability of such a test would
also be an important consideration, as we know parents
may prefer a cord blood sample to be obtained over a
heel prick blood sample.51 Therefore, cord blood tests
may have a place despite their lower accuracy in esti-
mating GA. Finally, simplification of metabolomic
profiling models to reduce the number of analytes while
maintaining a good accuracy to estimate GA will be
required to streamline the approach for scalable, cost-
effective applications. Thus, although -omics technol-
ogy is too expensive and impractical for widespread use,
the techniques can be used to identify proteins of in-
terest. In turn, inexpensive, point of care assays could
then be developed for these proteins. Future studies
should report on cost, as these methods are likely to
have most benefit in LMIC settings where cost is an
important barrier to implementation.
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