Supplemental Online Content

Patel H, Sintou A, Chowdhury RA, et al; DIAMONDS consortium. Evaluation of autoantibody binding to cardiac tissue in multisystem inflammatory syndrome in children and COVID-19 vaccination–induced myocarditis. *JAMA Netw Open*. 2023;6(5):e2314291. doi:10.1001/jamanetworkopen.2023.14291

eTable 1. Cardiac Donors and Details of Cardiac Tissue Collection and Storage

eTable 2. Clinical and Demographic Details of Adult Myocarditis/Inflammatory Cardiomyopathy Cases

eFigure 1. IgG Immunohistochemistry Images of Adult Myocarditis (Positive Control) Repeated on 3 Separate Experiments

eFigure 2. IgM Immunohistochemistry Images—Donor A

eFigure 3. IgM Immunohistochemistry Images—Donor B

eFigure 4. IgA Immunohistochemistry Images—Donor A

eFigure 5. IgA Immunohistochemistry Images—Donor B

eFigure 6. IgG Immunohistochemistry Images for Adult Myocarditis/Inflammatory Cardiomyopathy Patients—Donor A

This supplemental material has been provided by the authors to give readers additional information about their work.

eTable 1. Cardiac donors and details of cardiac tissue collection and storage

	Donor A	Donor B			
Age (years)	48	17			
Sex	Male	Female			
Past medical history	Nil recorded	No history of: HTN/cardiothoracic disease/liver disease/diabetes/smoking/alcohol drinking.			
Cause of death	Hemorrhage	Status Epilepticus			
Reason for unsuitability as transplant organ	Poor function	Deterioration on organ care system			
Sample collection and storage	The hearts were flash-frozen in liquid nitrogen, then stored at -80 °C for cryosectioning. Heart tissue was cut into 7µm thick sections using a cryostat (CM1850, Leica, Germany) and air-dried for 15 minutes before storing long-term at -80 °C freezer.				

eTable 2. Clinical and demographic details of seven adult myocarditis/inflammatory cardiomyopathy cases

	Patient - 1	Patient - 2	Patient - 3	Patient - 4	Patient - 5	Patient - 6	Patient - 7
Age (years)	61	48	68	76	48	61	27
Sex	Female	Male	Female	Male	Male	Male	Male
Self-reported ethnicity	Caucasian	Caucasian	Caucasian	Caucasian	Caucasian	Caucasian	Caucasian
Maximum CRP (mg/L) [normal range < 3 mg/L]	136	4	14.3	270.5	3	31.4	56.6
Maximum cardiac Troponin (ng/L) [normal range:<14ng/L]	353	48	610	34	20	318	2179
Maximum NT-proBNP (ng/L) [normal range < 50 ng/L]	38744	256	824	9004	8131	208886	266
Ejection fraction on echocardiogram [normal range 50-70%]	19%	40%	59%	20%	15%	33%	56%
Significant Cardiac Magnetic Resonance Imaging findings	Not done	late gadolinium enhancement	No significant abnormality	late gadolinium enhancement, perimyocarditis	late gadolinium enhancement	No significant abnormality	late gadolinium enhancement, edema, myocarditis
Cardiac biopsy diagnosis	inflammatory cardiomyopathy	inflammatory cardiomyopathy	acute myocarditis	inflammatory cardiomyopathy	inflammatory cardiomyopathy	inflammatory cardiomyopathy	inflammatory cardiomyopathy
Final diagnosis	terminal inflammatory cardiomyopathy	inflammatory cardiomyopathy	Immune Checkpoint Inhibitors- induced myocarditis	inflammatory cardiomyopathy	inflammatory cardiomyopathy	inflammatory cardiomyopathy	recurrent myocarditis

eFigure 1. IgG Immunohistochemistry images of adult myocarditis (positive control) repeated on 3 separate experiments

DONOR A

Supplementary eFigure 1: Immunohistochemistry images of cardiac tissue (Donor A and Donor B) treated with serum (1:50) from an adult with non-SARS-CoV-2 myocarditis and stained with Fluorescein isothiocyanate (FIT-C) conjugated anti-human IgG, repeated on three separate experiments. Images were taken on widefield microscope at using a 20x 0.8na objective.

eFigure 2. IgM immunohistochemistry images - Donor A

Supplementary eFigure 2: Immunohistochemistry images of cardiac tissue (Donor A) treated with serum (1:50) from patients and controls and stained with Fluorescein isothiocyanate (FIT-C) conjugated anti-human IgM. Images were taken on widefield microscope at using a 20x 0.8na objective. An example image from each of the following groups has been shown: Phosphate buffered saline (PBS) – negative control, healthy pre-pandemic paediatric control, healthy adults ≥ 14 days following COVID-19 vaccination, COVID-19 vaccine associated myocarditis and Multisystem Inflammatory Syndrome in Children (MIS-C).

eFigure 3. IgM immunohistochemistry images – Donor B

Supplementary eFigure 3: Immunohistochemistry images of cardiac tissue (Donor B) treated with serum (1:50) from patients and controls and stained with Fluorescein isothiocyanate (FIT-C) conjugated anti-human IgM. Images were taken on widefield microscope at using a 20x 0.8na objective. An example image from each of the following groups has been shown: Phosphate buffered saline (PBS) – negative control, healthy pre-pandemic paediatric control, healthy adults ≥ 14 days following COVID-19 vaccination, COVID-19 vaccine associated myocarditis and Multisystem Inflammatory Syndrome in Children (MIS-C).

eFigure 4. IgA immunohistochemistry images – Donor A

Supplementary eFigure 4: Immunohistochemistry images of cardiac tissue (Donor A) treated with serum (1:50) from patients and controls and stained with Fluorescein isothiocyanate (FIT-C) conjugated anti-human IgA. Images were taken on widefield microscope at using a 20x 0.8na objective. An example image from each of the following groups has been shown: Phosphate buffered saline (PBS) – negative control, healthy pre-pandemic paediatric control, healthy adults ≥ 14 days following COVID-19 vaccination, COVID-19 vaccine associated myocarditis and Multisystem Inflammatory Syndrome in Children (MIS-C).

eFigure 5. IgA immunohistochemistry images – Donor B

Supplementary eFigure 5: Immunohistochemistry images of cardiac tissue (Donor B) treated with serum (1:50) from patients and controls and stained with Fluorescein isothiocyanate (FIT-C) conjugated anti-human IgA. Images were taken on widefield microscope at using a 20x 0.8na objective. An example image from each of the following groups has been shown: Phosphate buffered saline (PBS) – negative control, healthy pre-pandemic paediatric control, healthy adults ≥ 14 days following COVID-19 vaccination, COVID-19 vaccine associated myocarditis and Multisystem Inflammatory Syndrome in Children (MIS-C).

Patient - 2 Patient - 4 Patient Patient -100 µ 100 Patient - 5 Patient - 6 Patient Adult myocarditis (+ve control)

eFigure 6. IgG immunohistochemistry images for adult myocarditis/inflammatory cardiomyopathy patients - Donor A

Supplementary eFigure 6: Immunohistochemistry images of cardiac tissue (Donor B) treated with serum (1:50) from adults with myocarditis/inflammatory cardiomyopathy stained with Fluorescein isothiocyanate (FIT-C) conjugated anti-human IgA. Images were taken on widefield microscope at using a 20x 0.8na objective. An example image from each patient has been shown.