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Abstract: Replicative DNA polymerases, such as DNA polymerase α-primase, δ and ε, are multi-
subunit complexes that are responsible for the bulk of nuclear DNA replication during the S phase.
Over the last decade, extensive genome-wide association studies and expression profiling studies
of the replicative DNA polymerase genes in human patients have revealed a link between the
replicative DNA polymerase genes and various human diseases and disorders including cancer,
intellectual disability, microcephalic primordial dwarfism and immunodeficiency. These studies
suggest the importance of dissecting the mechanisms involved in the functioning of replicative DNA
polymerases in understanding and treating a range of human diseases. Previous studies in Drosophila
have established this organism as a useful model to understand a variety of human diseases. Here,
we review the studies on Drosophila that explored the link between DNA polymerases and human
disease. First, we summarize the recent studies linking replicative DNA polymerases to various
human diseases and disorders. We then review studies on replicative DNA polymerases in Drosophila.
Finally, we suggest the possible use of Drosophila models to study human diseases and disorders
associated with replicative DNA polymerases.

Keywords: replicative DNA polymerase genes; DNA polymerase α-primase; DNA polymerase δ;
DNA polymerase ε; Drosophila model; human diseases

1. Introduction

Eukaryotic DNA replication is an essential cellular event that is initiated by forma-
tion of the prereplication complex (preRC) [1–3]. The preRC is composed of the origin
recognition complex (ORC), cell division cycle 6 (cdc6), chromatin licensing and DNA
replication factor 1 (Cdt1) and the minichromosome maintenance (MCM) complex and
is activated by a series of phosphorylation events that allow loading of another set of
proteins to form the preinitiation complex (preIC). Subsequent phosphorylation events
trigger loading of elongation proteins followed by the initiation of replication and syn-
thesis of both the leading and the lagging strands. Replicative DNA polymerases, DNA
polymerase α-primase, DNA polymerase δ and DNA polymerase ε, play major roles in
the initiation and elongation processes of nuclear DNA replication [4–6]. DNA polymerase
α-primase is mostly responsible for the synthesis of short RNA–DNA primers that initiate
DNA synthesis. On the lagging strand, DNA polymerase α-primase repeatedly synthesizes
short RNA–DNA primers and is then replaced by DNA polymerase δ to produce so-called
Okazaki fragments. On the leading strand, after the synthesis of short RNA–DNA primers,
DNA polymerase α-primase is replaced by DNA polymerase ε to carry out the leading
strand DNA synthesis, although DNA polymerase δmay also be used in the leading strand
synthesis under some circumstances. Unlike DNA polymerase α-primase, both DNA
polymerases δ and ε possess a proofreading 3′–5′ exonuclease activity that helps to ensure
a high fidelity of DNA replication [4–6].
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Extensive genome-wide association studies (EGWS) and expression profiling of the
replicative DNA polymerase genes in human patients have revealed a link between the
replicative DNA polymerase genes and various human diseases and disorders. In this
review, we summarize the recent studies linking replicative DNA polymerases to human
diseases and disorders and discuss the possible use of Drosophila models to study them.

2. Association of the Replicative DNA Polymerase Genes with Human Diseases
and Disorders
2.1. Human DNA Polymerase α-Primase Genes

In all eukaryotes, DNA polymerase α-primase is composed of four subunits including
two polymerase subunits and two primase subunits [6,7]. The human POLA1 gene encodes
the largest 166 kDa subunit that carries DNA polymerase activity (Table 1). The human
POLA2 gene encodes a 66 kDa subunit that plays a regulatory role for the DNA polymerase
activity. The human PRIM1 gene encodes a 50 kDa subunit carrying out the DNA primase
activity and the human PRIM2 gene encodes a 59 kDa subunit playing a regulatory role for
the primase activity.

Although severe germline mutations in POLA1 very likely induce embryonic lethality,
a combination of classical linkage analysis, targeted next-generation sequencing and whole-
exome sequencing identified a unique intronic mutation in the POLA1 gene in several
independent families presenting with X-linked reticulate pigmentary disorder (XLPDR,
OMIM #301220), a rare syndrome characterized by skin hyperpigmentation, sterile multior-
gan inflammation, recurrent infections and distinct facial features [8]. This hypomorphic
mutation generates a new splice donor site in intron 13 of the POLA1 gene, which is
localized at 76 nucleotides downstream of a cryptic splice acceptor sequence in the same
intron, inducing mis-splicing of the pre-mRNA to create a new exon 13a [9]. In patients,
the spliced POLA1 transcripts are decreased to 40–60%. On the other hand, probably due
to its instability, the mis-spliced transcript containing the new exon 13a was expressed at
very low levels [9]. In addition, there are no experimental data indicating that a truncated
protein is expressed in XLPDR-derived cells [9]. Thus, XLPDR is probably caused by a
nearly half-reduction of DNA polymerase activity, although it is still unknown whether
this is due to a simple gene dose effect or the effect of some tissue-specific mis-splicing.
More severe hypomorphic mutations in POLA1 that are distinct from the XLPDR-causing
intronic mutation, have also been reported [8,10]. These mutations are known to be associ-
ated with van Esch–O’Driscoll syndrome (VEODS, OMIM#301030), manifesting growth
retardation, microcephaly, hypogonadism, and immunological features similar to those
seen in XLPDR [8,10]. A splice site mutation that was found in at least one of the families
induced reduction of the POLA1 protein expression level much more than that observed
in XLPDR [8,10]. In other VEODS families, the mutant POLA1 protein with decreased
polymerase activity was expressed [8,10]. Therefore, this syndrome may reflect a state of
a more profound or more widespread POLA1 defect that is accompanied by the growth
retardation shared by all the affected VEODS patients. Interestingly, the clinical and im-
munological features observed in VEODS are similar to those observed with mutations
in PRIM1, as well as in genes encoding other factors that function at the replication fork
such as MCM4, MCM10, and GINS1 [8–10]. For further understanding of these disorders,
development and utilization of animal models are expected.
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Table 1. Diseases associated with mutations in human replicative DNA polymerase subunits and their associated Drosophila orthologues [6].

Replication Function Subunits and Encoding
Gene (Gene Symbol)

Subunit Mass in kDa
(Human)

UniProt Protein
Accession

Human
Orthologue Identity (%) Disease Related to Mutation

(Mutation Type) [8–33]

DNA polymerase
α-primase

Synthesis of the initiation
primer and Okazaki

fragment primers

POLA1 (PolA1) 182 (180) P26019 POLA1 40 XLPDR (intronic), VEODS (intronic),
colorectal cancer

POLA2 (PolA2) 73 (70) Q9VB62 POLA2 30 Melanoma
PRIM1 (Prim1) 60 (58) Q24317 PRIM1 42 MPD (intronic)
PRIM2 (Prim2) 50 (49) Q9VPH2 PRIM2 33 BA (intronic), lung cancer

DNA polymerase δ
Bulk lagging strand synthesis
Initiation and termination of
the leading strand synthesis

Proofreading some
regions of the DNA

polymerase ε synthesis

POLD1 (PolD1) 125 (125) P54358 POLD1 58

MDPL syndrome (S605del),
immunodeficiency with replicative stress

(Q684H, S939W), colorectal and
endometrial cancer (D316G/H, G321S,
P327L, R409W, L474P, S478N, R507C)

POLD2 (PolD2) 48(68) Q9W088 POLD2 43
Immunodeficiency with replicative

stress (D293N), colorectal and
endometrial cancer

POLD3 (PolD3) 47 (50) Q9Y118 POLD3 22 Colorectal and endometrial cancer
– – (12) – POLD4

DNA polymerase ε Bulk leading strand synthesis

POLE1 (PolE1) 257 (261) Q9VCN1 POLE 55
FILS syndrome (intronic), IMAGEI

syndrome (intronic),
colorectal cancer (L424V)

POLE2 (PolE2) 59 (59) Q9VRQ7 POLE2 42 Colorectal cancer
POLE3 (PolE3) 14 (14) Q9V444 POLE3 47
POLE4 (PolE4) 17 (12) Q9W256 POLE4 38
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In silico analysis of normal and malignant tissue expression data revealed that POLA1
levels are increased in colorectal cancer cells and tissues compared to non-transformed
cells. ST1926, an atypical retinoid, showed a potent antitumor activity in colorectal cancer
and also inhibited DNA polymerase α activity with decreased POLA1 protein expression
levels [11]. Furthermore, mutations in POLA1 were found in the cells that became resis-
tant to ST1926, suggesting POLA1 as a potential target in colorectal cancer treatment [11].
Other studies revealed that a combined treatment with extracts of plants, berberine and
Andrographis, exhibits an enhanced anticancer activity in colorectal cancer [12]. Transcrip-
tome analyses demonstrated that expression of DNA replication-related genes, including
POLA1, is suppressed with treatment, and this is suggested to be responsible for the
enhanced anticancer activity [12]. Longitudinal analysis of gene expression changes dur-
ing cervical carcinogenesis identified several potential therapeutic target genes including
POLA1 [13]. In addition, The Cancer Genome Atlas data analysis revealed several genes,
including POLA1, that are enriched in high-risk hepatocellular carcinoma. The observed
changes in POLA1 in multiple cancers suggest that a more detailed understanding of
the roles that POLA1 plays in these cancers should aid in the development of effective
therapies [14].

Cancer immunotherapy with adoptive transfer of tumour-infiltrating lymphocytes
(TILs) appears to be effective for patients suffering metastatic melanoma. Whole-exome
sequencing of DNA from the tumour cells identified the mutated POLA2 as one of the
mutated antigens recognized by TILs [15]. It is thus suggested that recognition of the
mutated POLA2 by TILs mediates the regression of cancer in these patients [15].

Microcephalic primordial dwarfism disorders (MPD) are characterized by intrauterine
growth retardation, short stature and microcephaly [16]. Whole-genome and whole-exome
sequencing of DNA from families with MPD identified biallelic mutations in PRIM1 [17].
These mutations extensively reduced the PRIM1 protein level in patient cells resulting
in defects in replication fork formation and increased stalling of the DNA replication
fork, reduced initiation of DNA replication at replication origins, and delayed cell cycle
progression with a longer S phase [17]. These observed changes associated with mutations
in the PRIM1 gene could explain the severe growth failure of MPD.

Biliary atresia (BA) is a rare disease of infants in which the bile ducts outside and
inside the liver are scarred and blocked, inducing damage in the liver. The damage induces
scarring, loss of liver tissue and function and cirrhosis. Three types are defined for BA. Type
I and Type II have atresia at the site of the common bile duct and at the site of the hepatic
duct, respectively. The most commonly observed Type III has atresia at the site of the porta
hepatis [18]. Whole-exome sequencing analysis of DNA from Type III BA patients identified
mutations in the PRIM2 and MAP2K3 genes with high mutation rates [19]. However, the
molecular basis of the effect of PRIM2 mutations on the pathogenesis of BA is not known
yet. Association studies between single-nucleotide polymorphisms (SNPs) in mitotic phase-
related genes and overall survivals of patients with non-small-cell lung cancer identified
three independent SNPs in the PRIM2, CHEK1 and CDK6 genes, suggesting that these
genetic variants are useful prognostic markers of the patients suffering non-small-cell lung
cancer [20].

2.2. Human DNA Polymerase δ Genes

Human DNA polymerase δ is composed of four subunits, POLD1, POLD2, POLD3
and POLD4 (Table 1). The POLD1 gene encodes the largest 125 kDa catalytic subunit
carrying 5′–3′ DNA polymerase and 3′–5′ exonuclease activities. Mandibular hypoplasia,
deafness, progeroid features and lipodystrophy (MDPL) syndrome (OMIM #615381) is a
rare autosomal dominant systemic disorder characterized by progressive lipodystrophy
with a lack of subcutaneous adipose tissue, mandibular hypoplasia, deafness and progeroid
features. Several patients diagnosed with MDPL carried a deletion mutation of a serine
residue at amino acid position 605 of POLD1 (S605del). The mutation was found to be
heterozygous [21–23], indicating autosomal dominance. S605 is located in the polymerase
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active site, and a polymerase lacking this amino acid can bind DNA but is not able to
catalyse polymerization. Biallelic mutations in POLD1 or POLD2 are also found in patients
manifesting an autosomal recessive syndrome that combines replicative stress, neurode-
velopmental abnormalities and immunodeficiency [24]. Homozygous missense variant
D293N was found in the POLD2 gene. This mutation is located in the phosphodiesterase
domain of POLD2. Biallelic variants Q684H (located in the polymerase catalytic domain)
and S939W (in the interdomain region) were found in the POLD1 gene. Cultured cells
from patients exhibited defects in cell cycle progression and replication-associated DNA
lesions (such as fork stalling and fork collapse). Interestingly, these defects were rescued by
overexpression of DNA polymerase δ. From detailed analyses, the mutations appear to
affect the stability and subunit interactions within the DNA polymerase δ complex and/or
its intrinsic DNA polymerase activity [24].

It is also reported that specific heterozygous germline mutations in the proofreading
exonuclease-coding region and splicing sequences of POLE and POLD1 are associated with
oligo-adenomatous polyposis, early-onset colorectal cancer and endometrial cancer [25].
It is estimated that genetic defects in POLD1 account for 0.2% of early-onset familial col-
orectal cancer [26]. Germline POLD1 variants associated with cancer include D316G/H,
G321S, P327L, R409W, L474P, S478N and R507C in the exonuclease domain [23]. The S478N
mutation in POLD1 appears to be responsible for the development of microsatellite-stable,
chromosomal-unstable colorectal adenocarcinoma and/or oligopolyposis with high pen-
etrance and dominant inheritance [27–29]. The L474P mutation in POLD1 is associated
with hereditary nonpolyposis colorectal cancer. Although Lynch syndrome (also known as
hereditary nonpolyposis) has been primarily associated with mutations in several MMR-
related genes, mutations in POLD1, POLD2, POLD3 and POLD4 have more recently been
identified as also being contributory [30]. These mutations in POLD1 may predispose to
endometrial tumours and also breast and brain tumours [27,28,31]. In addition, alterations
in expression or activity of DNA polymerase δ are related to senescence, aging and dia-
betes [23]. DNA polymerase δ plays a critical role at the junction of DNA replication with
the repair and maintenance of genome integrity. Although further studies are necessary to
understand the relationship between POLD1 mutations and the associated diseases, the
genetic variants in POLD1 could be useful prognostic biomarkers of patients with various
associated diseases.

2.3. Human DNA Polymerase ε Genes

Human DNA polymerase ε consists of four subunits, POLE (POLE1), POLE2, POLE3
and POLE4 (Table 1). The POLE gene, homologous to Drosophila PolE1, encodes the catalytic
subunit of DNA polymerase ε carrying 5′–3′ DNA polymerase and 3′–5′ exonuclease activ-
ities. Facial dysmorphism, immunodeficiency, livedo and short stature (FILS) syndrome
(OMIM #615139) is characterized by mild facial dysmorphism including high forehead and
malar hypoplasia, livedo on the skin usually since birth, immunodeficiency that results in
recurrent infections and short stature [32]. A homozygous single base substitution in the
POLE gene induced alternative splicing in the conserved region of intron 34 that resulted in
the reduction of POLE expression likely to cause FILS syndrome. In fact, the G1-to-S phase
progression in the activated T lymphocytes from the patients was impaired as expected.

Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita,
genital anomalies and immunodeficiency (IMAGEI) syndrome (OMIM#618336) is an auto-
somal recessive disorder characterized by intrauterine growth retardation, metaphyseal
dysplasia, adrenal hypoplasia congenita, genital anomalies and immunodeficiency. Pa-
tients manifest distinctive facial features and variable immunodeficiency, including defects
of lymphocytes. Compound heterozygosity for mutations in the POLE gene was found
in IMAGEI syndrome patients, such as the same intronic variant as part of a common
haplotype combined with different loss-of-function mutations [33]. Analysis of fibroblasts
from patients revealed cellular deficiency of POLE and delay in S phase progression.
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In some families with susceptibility to colorectal cancer (OMIM #615083), a heterozy-
gous missense mutation in a highly conserved residue (L424V) in the proofreading exonu-
clease domain of POLE was identified [27]. The mutation showed autosomal dominant
inheritance of a high-penetrance predisposition to the development of colorectal adenomas
and carcinomas, with a variable tendency to develop multiple and large tumours. In
addition, several somatic POLE mutations in the exonuclease domain were also identified
in colorectal cancers from a large database [27]. Notably, all of these tumours carried
additional somatic mutations, most commonly in the APC gene. It is suggested that the
mechanism of tumorigenesis for some POLE-mutated tumours is probably due to a de-
crease in proofreading activity which causes an increased mutation rate. However, in some
cases, the mechanism is not clear, and an additional defect is likely to be involved as the
mutation rate observed for the cancer-related variant is higher than that associated with an
exonuclease null mutant (reviewed in [34] and the references therein).

3. Studies on Replicative DNA Polymerases and Their Genes in Drosophila

As shown in Table 1, Drosophila has close orthologues of each of the human replicative
polymerases.

3.1. Drosophila DNA Polymerase α-Primase

The requirement to replicate the entire genome during the very short early cycles
in Drosophila embryos necessitates the rapid availability of large amounts of replication
factors, including DNA polymerases. This led to the DNA polymerase α from Drosophila
being one of the earliest eukaryotic replicative polymerases to be purified and characterised
biochemically [35–41]. These early preparations of the enzyme suffered considerable
proteolysis, but the adjustment of purification conditions allowed purification of an intact
enzyme [42–46] which was observed to contain four subunits with sizes of 182 kDa (POLA1),
73 kDa (POLA2), 60 kDa (PRIM1) and 50 kDa (PRIM2) (Table 1). This was subsequently seen
to be very similar to the subunit arrangements in DNA polymerase alpha enzymes from
other species. Early characterisation with a purified protein showed that the polymerase
activity was associated with POLA1, and primase activity—with Prim1 and Prim2 [38–41].

The capability to purify large amounts of the protein early on allowed extensive
characterisation to be carried out on the enzyme in terms of its interactions with templates,
processivity and fidelity [47–57]. Characterisation of subcomplexes of the enzyme also
suggested that a subcomplex containing the POLA1 and POLA2 subunits of the enzyme
might contain a cryptic exonuclease activity, although this has yet to be confirmed with
purified proteins [58,59].

Cloning later confirmed the subunit sizes [60–64]. It showed that the subunits pos-
sessed significant homology to the equivalent human proteins: POLA1—40%, POLA2—30%,
PRIM1—42%, PRIM2—33% (reviewed [6]). It also allowed the demonstration that all of
the subunits were needed for embryonic viability [65,66]. In addition, specific depletion
of POLA1, POLA2 and PRIM1 from eye discs resulted in perturbations in eye morphol-
ogy [65–67]. Selection of mutants of POLA1 that were resistant to aphidicolin in cell
culture also allowed characterisation of cellular strategies for evading inhibition by this
reagent [68]. Analysis of the cloned primase subunits demonstrated that the active site of
the primase was on PRIM2, but that PRIM1 seemed to help in maintaining the stability
of the primase activity [63,64]. The precise role of POLA2 still remains unclear. For DNA
polymerase α complexes from other species, it has been suggested to play a scaffolding
role between the polymerase and the primase subunits, and given the homology between
POLA2 orthologues from different species, it is likely that this function would be conserved.

Characterisation of expression patterns of the polymerase subunits allowed analysis
of the cellular factors involved in their expression, identifying the involvement of the
transcription factor DREF (DNA replication-related element binding factor), later seen to
be important for the expression of a variety of replication-related factors [69–73].
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Several interactors have been identified for Drosophila DNA polymerase α using
a variety of techniques. These include an importin α protein involved in the nuclear
transport of proteins [74], Hsp90-associated protein Dpit47 [75], histone methyltransferase
PrSET7 [76], AAF (alpha-associated factor) [77], which is now more commonly known as
the telomere-related CST complex [78], ctf4 (Chromosome Transmission Fidelity 4) [79],
which is associated with the replication fork protection complex, kinase activity [80] and
sumo conjugation cofactor uba2 [81]. Interactions that have been identified for DNA
polymerase alpha from other organisms such as the interaction with histones [82] and
mismatch repair proteins [83] are assumed to be conserved; however, they have not been
confirmed experimentally.

POLA2 has been reported to be phosphorylated in early embryos, but aside from this,
little is known about the post-translational modifications of Drosophila DNA polymerase α
subunits [84].

3.2. Drosophila DNA Polymerase δ

This was purified later than DNA polymerase α due to the smaller amounts of the
protein which are found in embryos. Early preparations of the pure enzyme had one or
two polypeptides [85–87], while more recently, three subunits have been detected [88].
This is similar to the yeast DNA polymerase δ, which also has three subunits but differs
from vertebrate polymerases which have four subunits. The homology of the two largest
subunits to the human equivalents is quite high, but the third subunit has a lower similarity,
perhaps reflecting the possible difference in subunit structure (POLD1—58%, POLD2
(POL31)—43%, POLD3 (POL32)—22%) (Table 1) [6].

As for other polymerases, polymerase and exonuclease activities are found in the
largest subunit (POLD1). This subunit was cloned [89] and shown to be essential in mutants
and by depletion [90–92]. POLD2 has not been characterised in Drosophila, but by analogy
to other species is thought to be essential, maybe serving a scaffold function. POLD3 has
been shown to be essential for replication [88,92], and has been suggested to be needed for
the transport of the complex into the nucleus [88]. Loss of POLD3 also seems to affect DNA
repair [93,94]. However, as for other species, this subunit also seems to form part of the
repair DNA polymerase ζ, which makes it hard to directly assign any effects to its role as
part of the δ complex.

In early studies, the purified enzyme was shown to be PCNA-dependent and more
processive than DNA polymerase α [85–87]. Some substrate interactions have been charac-
terised [95]; however, overall, very little biochemical characterisation has been carried out
directly on the Drosophila enzyme. Because of this, its catalytic properties, interactions and
PTMs are largely inferred from studies on delta enzymes from other species.

3.3. Drosophila DNA Polymerase ε

This was also originally purified from embryos as a one-subunit enzyme or a two-
subunit enzyme [96,97] containing only the two largest subunits. The sequences of
these subunits show high homology with their human orthologues [6,98] (POLE1—55%,
POLE2—42%) (Table 1). The other two subunits which are found in the human enzyme
have not formally been shown to be a part of the enzyme; however, the high homology
between the Drosophila and human orthologues (POLE3—47%, POLE4—38%) makes it
likely they will also be present in this enzyme (Table 1). Although their role in replication
has not been studied, POLE3 and POLE4 have been seen to be involved in the CHRAC
complex in Drosophila [99] and are also known as Chrac-14 (POLE3) and Mes4 (POLE4).

As for the other replicative polymerases, both polymerase and exonuclease activities
are found in the N-terminal region of the large subunit. This subunit is essential for
DNA replication in embryos and for endoreduplication in the salivary gland. Depletion
in eye discs produces small eyes, and this effect, unlike those in embryos and salivary
glands, can be partially recovered by expressing the C-terminus of the protein [100,101].
This region contains no apparent catalytic activity (although does contain inactivated
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polymerase and exonuclease regions), but does contain a number of protein interaction sites.
Similar results have also been obtained for DNA polymerase ε from Schizosaccharomyces
pombe [102]. POLE2 has also been shown to be essential for embryos and has a role in
endoreduplication [103].

As for DNA polymerase δ, only limited characterisation has been carried out on
purified Drosophila DNA polymerase ε, and all this with the one- or two-subunit version of
the enzyme. The purified enzyme was shown to be highly processive and some information
about its substrate affinities was determined [96,97]. Genetic interaction studies, however,
have suggested an interaction between the polymerase and a number of other proteins.
The large subunit has been seen to interact with replication proteins RFC, DNA primase,
DNA polη, Mcm10 and Psf2 and with the chromatin remodelling enzyme Iswi [100]. In
addition, POLE2 has been observed to interact with ORC2 [103].

4. Possible Application of Drosophila Models to Study Human Diseases Associated
with Replicative DNA Polymerase Genes

Although the utility of the Drosophila model to study human disease is well-established,
it is at present underused to develop models for diseases specifically associated with
replicative DNA polymerase genes [3]. Mutations in replicative DNA polymerase genes
are often associated with rare intractable diseases and disorders such as XLPDR, VEODS,
MPD, BA, MDPL syndrome, immunodeficiency with replicative stress, FILS syndrome
and IMAGEI syndrome (Table 1). Some of these disorders are associated with decreased
expression levels or loss of large parts of the protein, but some are associated with point
mutations, and many of the amino acids mutated in disease are conserved in Drosophila.

In comparison to other model systems, however, Drosophila has a number of advan-
tages. Drosophila is easy to maintain and manipulate in the laboratory. Drosophila has a
relatively short generation time, and production of a large number of offspring guarantees
statistical significance of the obtained experimental data (Table 2) [104–106]. Mutants, over-
expression and RNAi lines for many of the Drosophila replicative DNA polymerase genes
are available from various stock centres. In addition, in many countries, experimentation
with Drosophila is often encouraged as an alternative to working with mammals. Thus,
Drosophila could provide useful models to elucidate pathogenesis of these human diseases
and disorders, develop novel diagnostic markers and therapeutic targets and screen for
candidate therapeutic substances.

Table 2. Comparison of Drosophila with other models which allow whole-organism analysis [104–106].

Features Drosophila Mouse Zebra fish Nematode Yeast

Genome size (bp) 0.14 × 109 2.8 × 109 1.4 × 109 0.10 × 109 0.012 × 109

Protein-coding genes shared with humans 58% 88% 70% 60–80% 30%
Human disease genes conserved 85% 99% 84% 65% 20%

Generation time 10 days 9–11 weeks 8–17 weeks 4 days 80 min
Lifespan 70–90 days 1.3–3 years 3–5 years 18–20 days NA

Production of offspring/female 100 eggs/day 10/litter 200–300 eggs/week 300–350 eggs NA
Ethical restriction + +++ +++ + NA

Large-scale genetic screening +++ + ++ +++ ++++
Large-scale drug screening +++ + ++ +++ +++

More + indicates that the parameter considered is more relevant for that organism. NA indicates that the parameter
is not applicable to that organism. N/A.

Human diseases and disorders associated with replicative DNA polymerase gene
mutations often show complex symptoms affecting many body systems. In terms of
detailed phenotypic analysis, the physical structures affected by these disorders are all
found in Drosophila, and in addition, many health and behavioural analysis techniques
such as viability, fertility and lifespan assays, locomotive assays with larvae and adults,
activity monitoring to examine the circadian rhythm and learning assays are already well-
established. Therefore, as shown in Figure 1, these assays with suitable Drosophila models



Int. J. Mol. Sci. 2023, 24, 8078 9 of 14

would be useful for studying the effects of patient-derived mutations on development
and survival.
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monitoring to examine the circadian rhythm and learning assays are already well-estab-
lished. Therefore, as shown in Figure 1, these assays with suitable Drosophila models 
would be useful for studying the effects of patient-derived mutations on development and 
survival. 

 
Figure 1. Schematic outlining the possible use of Drosophila models to study human replica-
tive polymerase disorders. XLPDR—X-linked reticulate pigmentary disorder, VEODS—an
Esch–O’Driscoll syndrome, BA—Biliary atresia, MPD—Microcephalic primordial dwarfism dis-
orders, MDPL—Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syn-
drome, FILS—Facial dysmorphism, immunodeficiency, livedo and short stature syndrome,
IMAGE—Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita,
genital anomalies, and immunodeficiency syndrome.

Genetic screens are useful to search for novel diagnostic markers and therapeutic
targets for diseases and disorders. There is ample precedent in using such screens in
Drosophila, including some examples with polymerase genes: specific depletion of POLA1,
POLA2 and PRIM1 from eye discs resulted in perturbations in eye morphology [64–66].
Wing disc-specific knockdown of PolA1 induces an atrophied wing phenotype [76]. Using
these fly lines, dPrSet7, a gene encoding histone H4 lysine 20-specific methyltransferase
(PrSET7) was successfully identified [76]. These flies with eye or wing phenotypes could
also be useful to identify other genetic interactants with DNA polymerase α genes, which
could in turn be useful to identify diagnostic markers and therapeutic targets for XLPDR,
VEODS, MPD and BA with which DNA polymerase α genes are associated. Eye disc-
specific knockdown of PolE1 induces a small eye phenotype (unpublished data). Therefore,
this fly line may be useful to identify genetic interactants with a DNA polymerase ε gene
and further characterize the pathogenesis of FILS syndrome and IMAGEI syndrome.

Mutations in various replicative DNA polymerase genes are often associated with
colorectal and endometrial cancers (Table 1). In Drosophila, cancer models have been es-
tablished and used to study various aspects of cancer research [107]. Drosophila tumour
suppressor lgl cooperates with scribble and discs sufficiently large to maintain apicobasal
polarity of epithelial cells [106]. Their mutations induce disorganization of epithelial tissue
architecture followed by formation of multi-layered metastatic tumours. Genetic mosaic
analysis in Drosophila allowed recapitulation of various aspects of human cancers, such as
clonal evolution, cancer cachexia, tumour microenvironment and anticancer drug resis-
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tance [107]. In fact, the mosaic analysis contributed to elucidation of hyperplastic tumour
suppressor genes in the Hippo signalling pathway, a tumour suppressor pathway that is
highly conserved between Drosophila and humans [107]. Following a similar methodol-
ogy, these Drosophila cancer models could be used to dissect the possible involvement of
replicative DNA polymerase genes in the generation and maintenance of cancer. Recently
identified mutations in various replicative DNA polymerase genes, which are often associ-
ated with colorectal and endometrial cancers (Table 1), offer good candidates for the use of
such an approach. The ease with which gene editing can be accomplished in Drosophila
allows the introduction of patient-derived point mutations into genomic copies of DNA
polymerase genes. This would allow monitoring of the effects of these mutations on the
whole organism during development and also provide a useful system to test potential
therapeutic substances.

5. Perspectives

The advent of techniques such as Crispr–Cas9 has expanded the number of model
organisms that can be genetically manipulated to allow the study of the effects of disease-
related mutations in a whole-organism setting. However, the rapid life cycle and relatively
modest expense of Drosophila maintenance together with the ability to handle large popula-
tion sizes still gives Drosophila advantages over other multicellular organisms. Drosophila
has already made a significant contribution to the molecular understanding of the way
that cells function; exploitation of its experimental advantages should also lead to signif-
icant contributions to the understanding and treatment of disease-related mutations in
human polymerases.
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