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A B S T R A C T   

People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylo-
coccus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose 
in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of 
glucose on bacterial growth/interactions in ASL is not well understood and here we studied the 
relationship between these lung pathogens in artificial sputum medium (ASM), an environment 
similar to ASL in vivo. 

S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplemen-
tation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and 
P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth 
of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium 
that had been heated to 121 ◦C. Stable co-culture of S. aureus and P. aeruginosa could be estab-
lished in a 50:50 mix of ASM and S. aureus-conditioned supernatant. 

These data indicate that glucose, in a nutrient depleted environment, can promote the growth 
of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned 
ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of 
the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to 
understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our 
model of stable co-culture could be extrapolated to include other common lung pathogens and 
could be used to better understand disease progression in vitro.   

1. Introduction 

Staphylococcus aureus and Pseudomonas aeruginosa are both opportunistic pathogens that are known to cause severe respiratory 
infections in humans. While these pathogens do not commonly cause infections in healthy individuals, they are often found in people 
with chronic lung diseases, such as Cystic Fibrosis (CF), and can persist in the lungs for several years despite antibiotic treatment, by 
utilising their own genomic and metabolic changes [1]. S. aureus is found in the lungs of 70 % of CF patients in the 10-20-year-old age 
group, decreasing steadily to approximately 25 % in 60-year-olds, while P. aeruginosa is found in approximately 70 % of CF patients by 
the time they reach 30 years of age [2]. Data from the CF database [2] indicates that there are periods where S. aureus and P. aeruginosa 
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co-exist in the lungs, however, P. aeruginosa eventually outcompetes S. aureus. It is much harder to estimate the prevalence of S. aureus 
and P. aeruginosa in the lungs of people with other respiratory diseases, such as chronic obstructive pulmonary disease (COPD), due to 
the lack of extensive longitudinal clinical data. Various studies utilising sputum samples, bronchoalveolar lavage (BAL) and protective 
specimen brushings (PSB) from COPD patients demonstrated the occurrence of S. aureus in 1–40 % of all COPD patients [3–6], while 
the prevalence of P. aeruginosa in COPD patients ranged from 4 % to 34 % and presence of both pathogens was associated with the 
severity of the condition, frequency of readmissions and frequency of exacerbations [7–10]. 

In people with CF, variations in the cystic fibrosis transmembrane conductance regulator (CFTR) result in impaired airway bi-
carbonate and fluid secretion, producing a dehydrated airway surface liquid (ASL) and viscous mucous [11–13]. This causes the 
impairment of the mucociliary clearance mechanisms resulting in an inability to remove bacteria from the environment which contains 
amino acids, mucins and other sources of nutrients [14]. Such changes contribute to the increased risk of acquiring lung pathogens. A 
subset of CF patients who develop diabetes (CF-related diabetes; CFRD) are proposed to be at higher risk of their lungs being colonised 
by P. aeruginosa and S. aureus [15–17,18]. Once established, P. aeruginosa becomes difficult to eradicate from the lungs as it has the 
capacity to rapidly develop resistance to antibiotic therapy [19]. 

Previously it was demonstrated that the glucose concentration in ASL is approximately 0.4 mM in healthy individuals, however, it 
was elevated in people with CF to ~2 mM, and was further elevated to ~4 mM in those with CFRD [18]. These findings were replicated 
in vitro using airway epithelial cells grown at air-liquid interface, to form a differentiated epithelial layer, and exposed to normo- and 
hyperglycaemic media and in vivo using wild type and hyperglycaemic mice [20–22]. Thus, glucose could provide a nutrient for growth 
of these respiratory pathogens. However, these are challenging models in which to study the effects of glucose on the growth and 
co-existence of these organisms due to the complexity of the systems involved. Other studies have investigated the relationship be-
tween these bacteria in vitro using typical bacterial growth media such as tryptic soy broth and lysogeny broth [23–27]. These media 
ensure good bacterial growth by providing an extremely nutrient-rich environment which does not represent the conditions in the 
lung. Furthermore, it is difficult to investigate the specific effects of glucose on bacterial growth using such media because of the 
abundance of other available nutrients [28]. Artificial sputum medium (ASM) is a culture medium that was designed to mimic sputum 
from CF patients. It contains similar components to CF sputum, such as amino acids, mucin and DNA [29]. ASM was originally designed 
to test antibiotic efficacy against P. aeruginosa. It was shown that P. aeruginosa growth in ASM is similar to growth in the lungs of CF 
patients [30,31]. Therefore, our aims were first to develop an ASM model to study the effect of glucose on the growth of S. aureus and 
P. aeruginosa in monoculture and in co-culture as an in vitro environment more relevant to the CF lung. Our second aim was to see if we 
could establish a stable co-culture of S. aureus and P. aeruginosa as an in vitro model of co-existence in the CF lung. We hypothesised that 
the presence of glucose in ASM would promote the growth of S. aureus and P. aeruginosa and change the interaction of these bacteria in 
co-culture. 

2. Materials and methods 

2.1. Strains of P. aeruginosa and S. aureus 

Staphylococcus aureus (ATCC29213) and Pseudomonas aeruginosa (H174) were used. The H174 strain of P. aeruginosa is a modified 
PAO1 strain with inserted lux genes. These genes allow bacteria to continuously produce light as a by-product of metabolism [32]. 
Measuring emitted light allows for precise real-time quantification of viable bacteria. 

2.2. Quantification of live bacteria 

To enable quantification of P. aeruginosa and S. aureus in Muller Hinton (MH) medium, ASM and when in singular or co-culture, two 
different approaches were used. P. aeruginosa was quantified by measuring luminescence produced by bacteria using a Tecan 
microplate reader (ThermoFisher Scientific). 200 μl of culture was added to a well of a white flat-bottomed 96-well plate (Thermofisher 
Scientific). Background luminescence in the absence of culture was subtracted. Sample Colony Forming Units (CFU) were resolved 
using plots of luminescence against standards of CFU per millilitre (over the range utilised in these experiments 10^5–10^9) and ob-
tained using the Miles and Misra approach. S. aureus was quantified using the Miles and Misra approach [33]. Bacterial culture was 
serially diluted in sterile PBS (Sigma-Aldrich) and plated onto mannitol salt agar (MSA) plates. Plated bacteria were incubated at 37 ◦C 
for 24 h and the colonies formed were then counted. Final CFU/ml was calculated using equation CFU/ml = (colony count x dilution 
factor)/volume of culture plated. During the initial experimental setup culture purity of P. aeruginosa and S. aureus colonies and se-
lection of S. aureus on MSA were confirmed using MALDI-TOF Mass Spectrometry due to the absence of antibiotics in the media and 
plates. 

2.3. ASM preparation 

ASM was prepared as described in Sriramulu DD, [34]. 1 L ASM contained 5 g of pig mucin (type 2), 4 g of low molecular weight 
salmon sperm DNA, 5.9 mg of DTPA, 5 g of NaCl, 2.2 g of KCl, and 1.81 g of Tris base, 5 g of casamino acids and adjustedto pH 7.0. ASM 
was sterilised at 121 ◦C for 15 min. After sterilisation, 5 ml of egg yolk emulsion was added under sterile conditions. ASM was then 
aliquoted into 50 ml tubes and kept at 4 ◦C for up to 4 weeks. 
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2.4. ASM inoculation with bacteria 

Initial preparation of ASM consisted of 15 ml media in a 50 ml tube warmed up to room temperature. Subsequently, bacteria were 
added to approximately 3 × 105 live CFU/ml and cultures were incubated at 37 ◦C with constant shaking at 600 RPM. To create a ASM 
hyperglycaemic environment, glucose was added to 4 mM final concentration prior to the addition of bacteria. Glucose is always added 
at the initial stage of inoculation unless stated otherwise. 

2.5. Preparation of supernatant and heat-treatment of supernatant 

To collect bacterial supernatant, ASM with bacteria was centrifuged at 7000 g at 4 ◦C for 15 min to pellet the bacterial cells. The 
supernatant was transferred to a new sterile 50 ml tube and the pellet was discarded. The ‘boiled’ supernatant was produced by 
autoclaving at 121 ◦C for 15 min. No additional glucose was added at the supernatant generation step unless otherwise stated. 

2.6. Measurement of glucose concentration 

Glucose utilisation by bacteria in the ASM was quantified by the glucose oxidase method using the Analox Glucose Analyzer 
(Analox Instruments) according to the manufacturer’s guidelines. For the glucose measurement, culture supernatant was used, rather 
than a pure culture, to avoid contamination of the machine. 

2.7. Measurement of lactate concentration 

Lactate production in the ASM was measured using Lactate Assay Kit MAK064 (Sigma-Aldrich) following the manufacturer’s 
guidelines. ASM supernatant was used for the lactate measurement. 

Fig. 1. Growth of S. aureus and P. aeruginosa in MH and ASM with and without 4 mM glucose. (A) Growth of S. aureus and (B) growth of 
P. aeruginosa in MH (n = 3) and ASM (n = 5) in the absence (0 mM) or presence (4 mM) glucose over a 24-h period. Presented as mean ± SD CFU/ 
ml. Effect of glucose was compared using repeated measures two-way ANOVA with Geisser-Greenhouse correction Significantly different from 
growth in absence of glucose **P < 0.01, ***P < 0.001. 
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2.8. Statistical analysis 

Differences in survival, bacterial load, or growth of S. aureus and P. aeruginosa in normoglycaemic and hyperglycaemic conditions 
were compared using repeated measures two-way analysis of variance (ANOVA) with Geisser-Greenhouse correction using GraphPad 
Prism 8. Pearson correlation coefficients were calculated to determine the correlation between glucose concentration in the media and 
bacterial growth. 

3. Results 

3.1. S. aureus and P. aeruginosa growth pattern changes in ASM compared to MH 

S. aureus and P. aeruginosa exhibited different growth patterns in ASM and MH. In MH, S. aureus entered logarithmic growth almost 
immediately reaching 5 × 108 CFU/ml in just 4 h (n = 3). In ASM, S. aureus exhibited a more prolonged (2-h) adaptive lag phase after 
which it entered the logarithmic phase, reaching 7 × 107 CFU/ml after 6 h (n = 5) (Fig. 1A). 

Like S. aureus, P. aeruginosa immediately began logarithmic growth in MH reaching 1 × 109 CFU/ml in 6 h, at which point CFU 
plateaued (n = 5). However, P. aeruginosa growth in ASM underwent an even more prolonged lag phase of 7 h (n = 3). (Fig. 1B). 

Despite delayed onset of growth P. aeruginosa reached similar final CFU/ml concentrations in ASM to that of MH at 20–24 h. These 
data indicate that S. aureus adapts more quickly to the nutrient-poor media and can utilise available nutrients for growth, whereas 
P. aeruginosa requires several hours to begin active growth in ASM. 

3.2. Glucose promotes the growth of S. aureus and P. aeruginosa in ASM, but not in MH 

The addition of 4 mM glucose (maximal glucose concentration reported in ASL) into ASM significantly increased the growth of 
S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3) whilst the addition of glucose to MH had no effect (Fig. 1A and B). The 
maximal effect on S. aureus growth was detected at 4–6 h, during the exponential growth phase, where CFU/ml increased from 4 × 106 

to 2.2 × 108 in glucose (a 55-fold increase, n = 5) compared to no glucose medium where CFU increased from 2.8 × 106 to 7.6 × 107 

(27-fold increase, n = 5). The maximal effect of glucose on P. aeruginosa growth was observed much later, between 15 and 20 h and 
during the plateau phase. The final concentration of bacteria in ASM at 24 h was, S. aureus (4.5 × 108 in 0 mM glucose and 4.8 × 108 

CFU/ml in 4 mM glucose, n = 5, Fig. 1A) and P. aeruginosa (6.5 × 108 in 0 mM glucose and 9.2 × 108 CFU/ml in 4 mM glucose, n = 3, 
Fig. 1B). 

Fig. 2. Correlation between growth of S. aureus and P. aeruginosa and glucose depletion in ASM. Growth of (A) S. aureus or (B) P. aeruginosa 
in ASM and glucose concentration changes in the culture over 24 h. Presented as mean ± SD. Correlation between CFU/ml and glucose concen-
tration (mM) was calculated using Pearson correlation coefficient; S. aureus; p < 0.01 P. aeruginosa; p < 0.0001. 
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3.3. S. aureus and P. aeruginosa deplete glucose in ASM 

In ASM containing 4 mM glucose, the addition of S. aureus did not significantly decrease the glucose concentration in the first 4 h, 
while S. aureus increased from 1.5 × 105 to 4 × 106 CFU/ml. During the accelerated period of growth between 4 and 6 h, all the glucose 
in the media was utilised, CFU/ml increased from 4 × 106 to 2.2 × 108 and bacterial growth then plateaued (Fig. 2A). Pearson cor-
relation coefficient showed that growth was dependent on glucose consumption (R = 0.8343, p < 0.005, n = 5, Df = 6). Similarly, 
during the lag phase of P. aeruginosa growth between 0 and 7 h, glucose concentration did not decrease. During the rapid growth 
between 7 and 13 h, P. aeruginosa increased from 4 × 105 to 8 × 108 CFU/ml and glucose concentration in the ASM decreased from 4 
mM to ~0.65 mM and then became undetectable. After 13 h P. aeruginosa plateaued at approximately 1 × 109 CFU/ml (Fig. 2B). 
Pearson correlation coefficient showed that growth was dependent on glucose concentration (R = 0.8528, p= <0.0001, n = 5, Df =
22). 

3.4. S. aureus initially outcompetes P. aeruginosa when co-cultured in ASM 

In order to investigate the relationship between S. aureus and P. aeruginosa growth in normal and hyperglycaemic ASM environ-
ment, we attempted to create a stable co-culture by simultaneously adding both bacteria to ASM with and without glucose. When 
similar CFU of S. aureus and P. aeruginosa were added into ASM, the numbers of both bacteria decreased in the first 2 h. S. aureus growth 
recovered and at 22 h reached 9 × 107 CFU/ml in ASM after which growth plateaued. On the other hand, P. aeruginosa continued to 
decrease for up to 7 h and although growth then started to rise, numbers did not recover to starting CFU (Fig. 3A). Thus, the rapid 
adaptation of S. aureus to growth in ASM, plus the more rapid utilisation of glucose (Fig. 2) potentially provided a growth advantage 
over P. aeruginosa in co-culture. 

3.5. P. aeruginosa outgrows S. aureus in co-culture in pre-conditioned ASM 

Current evidence suggests that P. aeruginosa infection is often secondary to S. aureus in the lungs [28]. Therefore, we obtained 
supernatant that had previously supported a culture of S. aureus for 24 h (pre-conditioned ASM). We then added both P. aeruginosa and 

Fig. 3. Co-culture of P. aeruginosa and S. aureus in ASM or pre-conditioned ASM supernatant. A. Equal amounts of S. aureus and P. aeruginosa 
were added to ASM in the absence or presence of 4 mM glucose; B. pre-conditioned ASM supernatant (where glucose was added at supernatant 
generation stage) and cultured for 48 h. Presented as mean ± SD. Effect of glucose was compared using repeated measures two-way ANOVA with 
Geisser-Greenhouse correction. Significantly different, **p < 0.01. 
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S. aureus into pre-conditioned ASM with either 0 mM or 4 mM glucose. In pre-conditioned ASM, S. aureus CFU initially decreased in the 
first 2 h. The CFU then increased more in media with 4 mM glucose compared with no glucose (p < 0.01, n = 3), before reaching steady 
levels from 24 to 48 h that were lower than starting CFU (Fig. 3B). Unlike growth in unconditioned ASM, the population of 
P. aeruginosa immediately entered logarithmic growth in pre-conditioned ASM. P. aeruginosa grew from 3 × 105 to 4 × 108 CFU/ml in 
just 6 h. Over 48 h, P. aeruginosa decreased to 5 × 106 CFU but remained higher than that of S. aureus (Fig. 3B). Thus, in the supernatant 
derived from S. aureus culture (pre-conditioned ASM), P. aeruginosa growth was initiated more rapidly and S. aureus numbers remained 
low, a reversal of that seen in ASM. This indicates that S. aureus adapts better to growth in ASM and the presence of glucose than 
P. aeruginosa but may produce factors that then enable better adaptation/growth of P. aeruginosa in ASM. 

3.6. P. aeruginosa outcompetes S. aureus when added to the established S. aureus culture in the supernatant 

In order to extend our first model and accommodate the pre-conditioned ASM findings, we allowed S. aureus to grow in ASM for 24 
h, at which point we added 2 × 105 CFU/ml of P. aeruginosa into the media. Immediately after the addition of P. aeruginosa, both 
pathogens exhibited a rapid decline in CFU (Fig. 4A). In the first 2 h, P. aeruginosa decreased from 2 × 105 to 1 × 104 CFU/ml, while 
S. aureus decreased from 2 × 109 to 3 × 107 CFU/ml (Fig. 4A). It took 9 h for S. aureus to recover back to initial values, while the 
amount of live CFU of P. aeruginosa continued to decrease for 9 h. After this time, however, the growth of P. aeruginosa increased from 
5 × 103 to 1 × 106 CFU/ml. Over the next 24 h P. aeruginosa continued to grow overtaking S. aureus. After 48 h in culture, there were 2 
× 108 CFU/ml of P. aeruginosa and 9 × 104 CFU/ml of S. aureus (Fig. 4A). Thus, in more prolonged culture in ASM, P. aeruginosa can 
outcompete an established population of S. aureus. Glucose in ASM continued to have a beneficial effect on the growth of S. aureus 
(ANOVA, p < 0.001, n = 3), and on the early recovery, but not long-term growth, of P. aeruginosa in this model. 

3.7. Stable co-culture of S. aureus and P. aeruginosa can be established after 24 h when grown in a 50:50 mix of ASM and supernatant 

To establish a S. aureus and P. aeruginosa co-culture model where both respiratory pathogens exist in balance, ASM was mixed 50:50 
with pre-conditioned ASM with and without 4 mM glucose. Similar amounts of S. aureus and P. aeruginosa were added simultaneously 

Fig. 4. Co-culture of P. aeruginosa and S. aureus in an established S. aureus culture and in 50:50 pre-conditioned ASM supernatant:ASM. A. 
2 × 105 CFU/ml P. aeruginosa were added into established cultures of S. aureus grown with or without 4 mM glucose and with concentration of 2 ×
109 CFU/ml. Growth of pathogens was observed over 48 h. B. Equal amounts of S. aureus and P. aeruginosa were added to 50:50 pre-conditioned 
ASM supernatant:ASM. Additional glucose was added at the stage of inoculation. Growth of pathogens was observed over 72 h. Data presented as 
mean ± SD. Effect of glucose was compared using mixed effects two-way ANOVA with Geisser-Greenhouse correction; *p < 0.05, **p < 0.01, ***: p 
< 0.001. 
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to the solution and both exhibited immediate growth, with S. aureus reaching 1 × 109 CFU/ml after 24 h of incubation, while 
P. aeruginosa reached 1 × 108 CFU/ml after 24 h of incubation (Fig. 4B). While P. aeruginosa remained stable in the culture at 5 × 108 

CFU/ml, S. aureus decreased to 2 × 106 CFU/ml but remained at this level from 48 to 72 h (Fig. 4B). The presence of glucose in the co- 
culture did not significantly affect the growth of either S. aureus or P. aeruginosa. Thus, we demonstrated that we could establish a 
stable co-culture of S. aureus and P. aeruginosa over 72 h. 

3.8. The growth of P. Aeruginosa in S. aureus pre-conditioned ASM is dependent on a heat labile factor 

P. aeruginosa has been shown to utilise lactate produced by S. aureus in the lungs [25,28]. Lactate was present in ASM plus 4 mM 
glucose cultured with S. aureus in the first 2 h, but was quickly utilised in the subsequent 2 h and was undetectable by 5 h. At 6-h both 
glucose and lactate in the media could not be detected (Fig. 5A). Thus, we propose that in S. aureus conditioned medium, factors other 
than lactate promoted the growth of P. aeruginosa. 

P. aeruginosa did not grow in pre-conditioned ASM that had been heated to 121 ◦C. Viable CFU decreased from 2 × 105 to 2 × 103 

CFU/ml within the first 3 h of incubation and remained low (Fig. 5B). The effect on P. aeruginosa was independent of whether the pre- 
conditioned ASM contained glucose or not. 

4. Discussion 

In this study, we have demonstrated the potential to use ASM to study the effects of altered glucose concentration in the airway on 
the growth of common respiratory bacteria. While the addition of glucose did not affect the growth of S. aureus or P. aeruginosa in MH it 
promoted growth when added to ASM. It is common practice to use nutrient-rich media to explore the growth and interaction of these 
pathogens [23–27]. However, we propose that ASM better represents the nutrient status of ASL. In this environment, our data support 
previous findings that changes in glucose concentration promote the growth of S. aureus and P. aeruginosa [16,21,22,35,36]. We 
believe that our model for the stable co-culture of S. aureus and P. aeruginosa provides an in vitro model that better resembles in vivo CF 
scenario and allows exploration of changes to nutrients in this environment with high reproducibility. 

Our data indicated that the strain of S. aureus we used better adapted to the low nutrient ASM that P. aeruginosa as it did not have 

Fig. 5. Heat labile factors promote the growth of P. aeruginosa in pre-conditioned ASM supernatant. A. Lactate and glucose concentration 
during S. aureus culture in ASM over 24 h. The graph includes the data shown in Fig. 2A which has been overlaid for comparison. Presented as mean 
± SD mM. Correlation between lactate and glucose concentration was calculated using Pearson correlation coefficient. B. P. aeruginosa was added to 
pre-conditioned ASM supernatant that had been heated to 121 ◦C. Growth was observed over 32 h. Presented as mean ± SD. Effect of glucose was 
compared using repeated measures two-way ANOVA with Geisser-Greenhouse correction. 
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the same lag in growth when inoculated into ASM. Both P. aeruginosa and S. aureus utilised glucose for growth in monoculture in the 
ASM. However, the role of glucose was less clear in co-culture. Studies have shown that in presence of S. aureus, P. aeruginosa 
downregulates genes responsible for sugar and carbohydrate metabolism [25]. This could explain why glucose did not induce changes 
to the growth of P. aeruginosa in co-culture, although it is possible that metabolic down-regulation could affect P. aeruginosa lumi-
nescent output, thus growth in this scenario could be underestimated. It was also reported that P. aeruginosa drives S. aureus from 
aerobic respiration towards fermentation pathways, in order to utilise the lactate produced by fermentation of glucose and 
P. aeruginosa increases the expression of lactate transporters, which allows it to utilise lactate as a preferential source of carbon [25, 
28]. However, whilst our data indicate that in ASM with glucose, S. aureus did produce lactate, this was rapidly depleted by 6 h. It was 
therefore absent in the pre-conditioned ASM supernatant and likely absent in the established cultures of S. aureus, both of which 
rapidly promoted P. aeruginosa growth. Thus, our data indicate that factors other than glucose and lactate promoted the growth of 
P. aeruginosa in S. aureus pre-conditioned ASM. Nevertheless, we recognise that there are limitations to these experiments when 
comparing to the in vivo scenario [28]. ASM contained a finite supply of glucose, limiting lactate production. In vivo, with respiratory 
disease and hyperglycaemia, there is the potential for continuous glucose leak into the ASL for bacterial fermentation and lactate could 
enter the ASL from other cellular sources [37]. This work provides a starting point to further explore these interactions. 

P. aeruginosa thrived in the environment pre-conditioned by S. aureus. Comprehensive evidence exists demonstrating that S. aureus 
and P. aeruginosa can modify each other’s behaviour, pathogenicity and metabolism [38–42]. The majority of the studies, however, 
focus on the effects of P. aeruginosa on competitors including S. aureus [28,38–40,42,43]. P. aeruginosa can sense other microbial 
peptidoglycans and enhance the production of antimicrobial agents to suppress competition and increase its own virulence [44]. Thus, 
it is possible that peptidoglycans in the supernatant could modify P. aeruginosa growth. Relatively little is known about the effects of 
S. aureus on P. aeruginosa. In a human skin model of co-infection, S. aureus acts as a pioneer, priming the environment and promoting 
the attachment of P. aeruginosa to the keratinocytes [45]. Our data indicate that the S. aureus associated factor(s) in ASM that promoted 
P. aeruginosa were heat-labile. Peptidoglycans are likely to survive heat treatment. Therefore, it is currently difficult to speculate on the 
nature of these changes using existing literature, as previous transcriptomic and proteomic analysis demonstrated extreme metabolic 
plasticity of P. aeruginosa, and the ability to shift metabolism to adjust to the varying carbon sources depending on the environment 
[46]. A more thorough transcriptomic/proteomic study is now required to understand the interactions between S. aureus and 
P. aeruginosa in ASM and how S. aureus conditioned ASM promotes more rapid growth of P. aeruginosa. 

Finally, mixing ASM with pre-conditioned ASM 1:1 allowed us to establish a relatively stable co-culture of S. aureus and P. aeru-
ginosa. This now permits further exploration of the interaction between these organisms and others (e.g. Haemophilus influenzae), 
including clinical strains, factors that change in the ASL, and responses to antimicrobial agents [46]. 

In summary, we adapted an artificial sputum medium to create an in vitro model, that mimics the nutrient depleted in vivo lung 
environment to explore the effect of glucose on the growth and co-culture of two common respiratory pathogens. In this environment, 
glucose promoted the growth of S. aureus and P. aeruginosa, but other heat labile factors present in S. aureus conditioned medium also 
promoted the growth of P. aeruginosa. We suggest that our model of stable co-culture in ASM could be extrapolated to include clinical 
strains and other bacteria to better understand the growth and interaction of common lung pathogens in disease scenarios such as 
CFRD. 
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