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Abstract

Purpose

To evaluate the test performance of the QUARTZ (QUantitative Analysis of Retinal vessel

Topology and siZe) software in detecting retinal features from retinal images captured by

health care professionals in a Danish high street optician chain, compared with test perfor-

mance from other large population studies (i.e., UK Biobank) where retinal images were

captured by non-experts.

Method

The dataset FOREVERP (Finding Ophthalmic Risk and Evaluating the Value of Eye exams

and their predictive Reliability, Pilot) contains retinal images obtained from a Danish high

street optician chain. The QUARTZ algorithm utilizes both image processing and machine

learning methods to determine retinal image quality, vessel segmentation, vessel width,

vessel classification (arterioles or venules), and optic disc localization. Outcomes were eval-

uated by metrics including sensitivity, specificity, and accuracy and compared to human

expert ground truths.

Results

QUARTZ’s performance was evaluated on a subset of 3,682 images from the FOREVERP

database. 80.55% of the FOREVERP images were labelled as being of adequate quality

compared to 71.53% of UK Biobank images, with a vessel segmentation sensitivity of

74.64% and specificity of 98.41% (FOREVERP) compared with a sensitivity of 69.12% and

specificity of 98.88% (UK Biobank). The mean (± standard deviation) vessel width of the

ground truth was 16.21 (4.73) pixels compared to that predicted by QUARTZ of 17.01 (4.49)

pixels, resulting in a difference of -0.8 (1.96) pixels. The differences were stable across a
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range of vessels. The detection rate for optic disc localisation was similar for the two

datasets.

Conclusion

QUARTZ showed high performance when evaluated on the FOREVERP dataset, and dem-

onstrated robustness across datasets, providing validity to direct comparisons and pooling

of retinal feature measures across data sources.

Introduction

The retina of the eye is considered a part of the central nervous system (CNS) and is said to be

a window to the brain and circulatory system [1,2]. Not only do the retina and brain share ana-

tomical and embryonic development characteristics, but also the microvascular circulation

and regulation in the brain and retina are similar [1]. Viewing the vessels of the retina provides

a unique opportunity to study the blood circulatory system. While systemic blood circulation

can be visualized by using invasive procedures such as angiography x-ray examinations, the

vessels of the retina are captured by non-invasive fundus images. Changes in retinal vessel tor-

tuosity and diameter have previously been linked to cardiovascular disease, diabetes, and glau-

coma [3–5]. Also, CNS and systemic diseases such as ischemic brain incidence, stroke,

multiple sclerosis, and Alzheimer’s disease have recognized ocular manifestations [2]. Thus, it

is evident to believe, that retinal vessels may be a biomarker for identifying early signs of both

ocular and systemic diseases and can be used as a predictor for disease development.

Retinal imaging is part of a routine eye examination when visiting an ophthalmologist. In

recent years it has gained popularity in high street optician chains, as retinal imaging demands

limited training and captures important signs of disease pathology such as changes in the optic

nerve, macula and blood vessels of the retina [6]. The interest in using artificial intelligence

(AI) in healthcare as a supplement to routine eye examinations is growing, as its ability to help

clinicians manage routine tasks and analyse large amounts of data effectively has the potential

to transform healthcare [7–10]. Image recognition/diagnosis classification and the search for

new prognostic risk factors are of particular interest [11]. Automation and AI in ophthalmol-

ogy spans a multitude of approaches, from traditional image processing (unsupervised tech-

niques e.g., edge detection or morphological operators), to machine learning techniques (e.g.,

supervised learning and unsupervised learning), which use hand-crafted features, to deep

learning (a subfield of machine learning) that can automatically learn features. Current

research in AI software for automatic analysis of retinal fundus images includes studies on car-

diovascular disease, diabetic retinopathy, age-related macular degeneration, retinopathy of

prematurity, neonatal fundus haemorrhages, glaucoma, and retinal breaks and detachments

[11–21].

Vessel morphometry (also known as vasculometry) is an approach for studying biomarkers

of disease. This requires retinal images to be converted into quantitative measurements,

including measures of vessel width, area, and tortuosity. However, this is a time-consuming

task for human observers and not feasible for studies examining vasculometric associations

with disease, which demand big sample sizes to generate enough power to study small, yet

meaningful group differences [22]. Hence, different software programmes for automated ves-

sel analysis have been developed [23,24], including QUARTZ (QUantitative Analysis of Reti-

nal vessel Topology and siZe) [25].
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QUARTZ converts retinal images into quantitative measures of vessel morphometry for

use in epidemiological studies [26–28]. QUARTZ analyses the entire retina (not limited to

concentric areas around the optic disc), and evaluates image quality, vessel segmentation, arte-

riole/venule (A/V) classification, width, area, and tortuosity measurements of retinal vessels,

and localisation of the optic disc (Fig 1) [4].

QUARTZ has previously been validated on the UK Biobank dataset [27]. The UK Biobank

contains data from more than 502,656 UK citizens (40–69 years of age) collected from 2006 to

2010 [29]. Of all the participants, 68,549 had retinal images (45-degree field-of-view and 2048

x 1536 pixels image size) taken at baseline [27,29]. Output data from QUARTZ has previously

been combined with epidemiological data from the UK Biobank cohort in the search for

potential new biomarkers of disease. Studies have investigated the associations between vessel

morphometry and glaucoma as well as cardiometabolic risk factors, including its ability to pre-

dict myocardial infarction and stroke [4,30–33]. Although QUARTZ was originally developed

for use in UK Biobank, it is relevant to examine the performance of QUARTZ on multiple

datasets using different image capture systems with images taken by experts and non-experts,

as future versions of QUARTZ may be targeted at the clinic and hence should demonstrate

robustness and high performance with few limitations across datasets [7,34]. Thus, the aim of

this paper was to validate QUARTZ on a further dataset with a different image acquisition pro-

tocol. The performance of QUARTZ was investigated on the FOREVERP (Finding Ophthal-

mic Risk and Evaluating the Value of Eye exams and their predictive Reliability, Pilot) dataset

from a Danish optician chain, and QUARTZ’s generalizability across datasets was examined

by comparing the performance with previously published data from the UK Biobank.

Fig 1. QUARTZ interface.

https://doi.org/10.1371/journal.pone.0290278.g001
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Methods

The methods applied in this paper have been detailed previously by Welikala et al. [27]. The

same methods were used to ensure the comparability of performance parameters across

datasets.

The FOREVER dataset

Project FOREVER has been approved by the National Committee on Health Research Ethics,

Denmark (project id H-21026000). The design and methodology of project FOREVER has

been described thoroughly by Freiberg. et al. [35]. For participants enrolling in project FOR-

EVER, informed written consent will be collected. The FOREVER (Finding Ophthalmic Risk

and Evaluating the Value of Eye exams and their predictive Reliability) dataset contains data

from Danish citizens, aged above 18 years, visiting an optician shop in Denmark. The dataset

includes eye examinations: visual acuity, refraction, corneal thickness, intraocular pressure,

retinal images and perimetries. A subset of the FOREVER dataset contains additional data on

blood pressure, saliva samples for genetic analysis and Optical Coherence Tomography (OCT)

scans. As Danish citizens have a unique social security number, the FOREVER dataset can be

linked to the national registries enabling comprehensive linkage to disease risk and outcome

data.

Enrolment of participants in the FOREVER cohort began in July 2022. The dataset used for

validating QUARTZ to the FOREVER dataset consisted of images from the same Danish opti-

cian shops as in the FOREVER cohort. The dataset consisted of a subset of 3,682 images from

1,139 anonymized customers visiting an optician shop between February 2018 to May 2021.

The dataset is referred to as “FOREVERP” (FOREVER, Pilot). The images were randomly

selected for validation of QUARTZ and were not images from the FOREVER cohort, as valida-

tion was performed prior to the enrolment of participants in the FOREVER cohort. However,

images from the FOREVERP dataset are comparable to images from the FOREVER dataset

given that the image acquisition protocol is the same. Images from the FOREVERP can even-

tually be part of the FOREVER database if FOREVERP participants decide to enrol in the

FOREVER cohort by given written consent.

The macular-centred retinal fundus images in “FOREVERP”were captured without mydri-

asis using digital non-mydriatic retinal cameras (Canon CR-2 AF) which incorporate Canon

EOS 70D and Canon EOS 80D cameras. The retinal image photographers were trained per-

sonnel who either 1) attended a two-day course in fundus imaging, tonometry and perimetry

enabling them to recognize errors and artefacts, or 2) had been trained by an optometrist. The

optometrists are continuously trained with two mandatory and four optional training days per

year, with a focus on specialized training in eye diseases such as glaucoma and diabetic reti-

nopathy. The images were collected from multiple visits over several years, and the number of

images varied per participant. Images were macular-centred and had a 45-degree field of view.

Images were in BMP format and of multiple image sizes ranging from 1824 x 1216 pixels to

3984 x 2656 pixels, resized to 3984 x 2656 pixels.

Performance parameters

The performance of the algorithm was compared with a reference standard or ground truth

(GT). The GT was derived from data annotation performed by human observers (JF and

RAW) [36] using purpose-built software. The performance of the algorithms was compared

with the GT (e.g. comparison with labelled pixels, images, vessel segments, vessel widths etc.)

and most were assessed by calculating the performance parameters of sensitivity, specificity

and accuracy (Table 1) [37]. Sensitivity refers to the percentage of the positives that are
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correctly classified as positive (TP). Specificity refers to the percentage of negatives that are

correctly classified as negative (TN). Accuracy refers to the proportion of the outcomes cor-

rectly predicted as either positive (TP) or negative (TN) [37,38].

Automated image quality

Supervised learning (support vector machine classifier with the radial basis function kernel)

along with global shape features (area, fragmentation, and complexity) measuring the seg-

mented vessel map was used to classify images as either of inadequate or adequate quality. This

approach was designed for use in epidemiological studies; hence an image can still be deemed

adequate even if only a portion of the vasculature is visible [26] (Fig 2). 1,000 images were ran-

domly selected and manually labelled by one human observer (RAW). Of the images, 826 were

manually labelled as of adequate quality and 174 images as inadequate. The supervised classi-

fier was trained with 500 images (using 5-fold cross-validation for model selection) and evalu-

ated using a test data set of 500 images. A TP outcome equalled an image correctly classified as

being of inadequate quality (Fig 2). The probability output from the classifier was normalized

on a scale from 0 to 1 and flipped, to generate an image quality score (1 = highest quality).

Vessel segmentation

An unsupervised approach based on a multi-scale line detector and hysteresis thresholding

based morphological reconstruction was used for vessel segmentation (Fig 3) [26]. The test set

consisted of 10 randomly selected images of adequate quality. Two human observers (JF,

RAW) manually labelled the test set independently, creating two separate sets of 10 images.

The vessel segmentation from the first human observer (RAW) constituted the GT. The seg-

mentations made by the second human observer (JF) were considered the target performance

level that the automated segmentation should aim to achieve. The performance was evaluated

per pixel with and without pre- and post-processing. Pre-processing refers to the removal of

Table 1. Performance parameters used for evaluation performance of algorithms; Sensitivity, specificity, and

accuracy, TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.

Performance

Parameter

Equation

Sensitivity TP
ðTPþFNÞ

Specificity TN
ðTNþFPÞ

Accuracy TPþTN
ðTPþTNþFPþTNÞ

https://doi.org/10.1371/journal.pone.0290278.t001

Fig 2. Automated image quality assessment of FOREVERP images performed by QUARTZ. (A and B) Examples of images of

inadequate quality. (C and D) Examples of images of adequate quality.

https://doi.org/10.1371/journal.pone.0290278.g002
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pixels of bright intensities whereas post-processing refers to the removal of the fovea and small

objects falsely segmented as vessels [26,27].

Vessel width measurements

An unsupervised approach was used for measuring vessel widths. This included creating cen-

trelines (segmentation thinned) and edge points (zero-crossings of the second derivative), fol-

lowed by measuring the distance between edge points orthogonal to the vessel centreline

orientation (Fig 4) [27]. The test set consisted of 2,150 vessel profiles from 10 images of ade-

quate quality. 961 profiles were from normal vessel segments without a strong central reflex,

and with even illumination. 552 profiles showed a central reflex, and 637 profiles had low con-

trast or uneven illumination. Two human observers (JF, RAW) manually labelled the test set

independently (Fig 5), and the mean of the two observers was used as the GT. To evaluate the

agreement of measurements between QUARTZ and GT, a Bland-Altman plot was conducted.

Arteriole and venule classification

Supervised learning was used for classifying vessels into arterioles or venules. This included

the use of deep learning, specifically a 6-layered convolutional neural network [28]. A total of

Fig 3. Automatic vessel segmentation of FOREVERP images performed by QUARTZ. (A) Retinal fundus images.

(B) Segmentation of vessels (green). (C) Segmentation of vessels (white).

https://doi.org/10.1371/journal.pone.0290278.g003

Fig 4. Automatic vessel width measurements performed by QUARTZ on FOREVERP images. (A) Vessel centre

lines (blue). (B) Vessel centre lines (blue), vessel edges (red), and marking of optic disc (black).

https://doi.org/10.1371/journal.pone.0290278.g004
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100 images of adequate quality were randomly selected and divided into a training set, a vali-

dation set, and a test set consisting of 50, 15 and 35 images, respectively. Two human observers

(JF, RAW) manually labelled 50 images each. Classification of vessels was evaluated on both

pixels and vessel segments. A vessel segment refers to the part of a vessel between bifurcations

and crossover points. The human observers used the following criteria for distinguishing

between arterioles and venules [28,39]:

• Colour: Venules appear darker than arterioles.

• Diameter: The arterioles are thinner compared with adjacent venules.

• Central reflex: The central reflex is wider in arterioles compared with venules of comparable

size [28,40].

• Branching: When labelling small vessels without colour differences or visible central reflexes,

vessel branching was followed.

The sensitivity, specificity, and accuracy of the classification of arterioles and venules were

examined for different probability thresholds; >0.5,>0.6, >0.7,>0.8, and>0.9.

Optic disc localization

An unsupervised approach was used to determine the localization of the optic disc in the mac-

ular centre fundus images. This included the use of shade correction followed by the location

of maximum intensity within a search region with constraints set. The test set comprised 300

images of adequate quality. One human observer manually labelled the images by marking the

localisation of the optic disc.

Results

Automated image quality assessment

The ability of QUARTZ to detect low-quality images, evaluated on the 500 test set images, was

calculated to have a sensitivity of 91.95% and a specificity of 95.64%. This equates to 80.40% of

all images in the test set being labelled as of adequate quality (TN and FN) and of these,

98.26% were correctly labelled as of adequate quality (TN). When applying the automated

algorithm to the full subset of 3,682 images, 80.55% (2,966 images) were labelled as adequate

quality; with 95.17% of the participants having at least one image labelled as of adequate quality

(Table 2). As these numbers include images from several years, they may overestimate the

actual number of participants with an image of adequate quality. Evaluating images from one

Fig 5. Vessel widths performed by human observer. (A) FOREVERP retinal image with vessel marked for width measurements (green). (B) Vessel segment

showing a vessel centreline (green line). (C) Vessel segment with vessel widths (yellow crosses) marked by human observer.

https://doi.org/10.1371/journal.pone.0290278.g005
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year (2021) showed consistency in image quality with 93.94% of the participants having at least

one image labelled as adequate. The performances stated above equated to images being

labelled as inadequate if the quality score was� 0.48.

Vessel segmentation

The sensitivity of vessel segmentation performed by QUARTZ without pre/post-processing

was 80.31% and 74.64% with pre/post-processing (Table 3). The specificity was 98.02% and

98.41% without and with pre/post-processing, respectively. Compared with the GT, the 2nd

human observer (JF) achieved a sensitivity of 75.07% and a specificity of 98.29%. Thus, the per-

formance of QUARTZ was comparable to that achieved by the 2nd human observer.

Vessel width measurements

In general, QUARTZ measured vessels as having a width greater than the GT (Table 4). The

mean difference (± standard deviation) calculated as the GT minus QUARTZ varied from

-1.40 (2.23) pixels (vessels with low contrast/uneven illumination) to -0.37 (1.91) pixels (nor-

mal vessel segments). The overall difference for all vessel profiles was -0.80 (1.96) pixels. The

correlation coefficient between the GT and QUARTZ was 0.9111, demonstrated via a scatter

plot in Fig 6. The differences between the GT and QUARTZ were overall stable across vessel

widths showing minor linear patterns that might be vessel segment specific as visualised by the

Bland-Altman plot (Fig 6). However, there appears to be little systematic error. A low variance

in width measurements between the GT and QUARTZ ensures that the obtained width mea-

surements are measured consistently. A low variance is thus more important compared with

the absolute difference between the GT and QUARTZ [27].

Arteriole and venule classification

Since an arteriole is followed by an adjacent venule, the two classes (arteriole and venule) are

approximately balanced, and therefore assessing accuracy is sufficient. The accuracy for the

classification of arterioles and venules was evaluated with respect to per pixel and segment.

Table 2. Assessment of image quality of the FOREVERP dataset. Image quality evaluated as number (N) and percentage of participants with 0, 1, 2, 3,�1,�3 and

images of adequate quality per participant in total and from one year (2021).

Images of adequate quality per participant Total dataset Data from the year 2021

Participants (N) Participants (%) Participants (N) Participants (%)

0 55 4.83 69 6.06

1 81 7.11 118 10.37

2 619 54.35 829 72.85

�1 1,084 95.17 1,069 93.94

�3 384 33.71 122 10.72

https://doi.org/10.1371/journal.pone.0290278.t002

Table 3. Vessel segmentation of the FOREVERP dataset. Performance parameters of vessel segmentation listed for human observer and QUARTZ with and without

pre/post processing compared to ground truth data. Performance evaluated in terms of sensitivity, specificity, and accuracy.

Method Sensitivity Specificity Accuracy

2nd Human observer 75.07% 98.29% 96.21%

QUARTZ

(Without pre/post-processing)

80.31% 98.02% 96.44%

QUARTZ

(With pre/post-processing)

74.64% 98.41% 96.28%

https://doi.org/10.1371/journal.pone.0290278.t003
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The accuracy was 89.25% per pixel and 86.32% per segment for both arterioles and venules.

Other performance measurements are provided in Table 5.

By increasing the probability threshold for arteriole/venule classification, the sensitivity,

specificity, and accuracy were improved. However, increasing the threshold and thereby

improving the performance of the algorithm resulted in a loss of data (Table 6). Increasing the

probability threshold to>0.8 more than halved the dataset. A threshold of>0.9 increased the

sensitivity and accuracy to exceed 99%, but at the cost of approximately 2/3 of the dataset. A

threshold of 0.8 has been chosen in previous epidemiological studies as an appropriate thresh-

old ensuring both high data volume and performance of the algorithm [3].

Table 4. FOREVERP width measurements. Width measurements in pixels listed as mean (μ) + standard deviation (σ) for the following vessel segments: normal vessel

segment, vessels with central reflex, vessels with low contrast/uneven illumination and an average of all vessel profiles measured by human observer 1, human observer 2,

ground truth and QUARTZ. Also, the differences μ (σ) between ground truth and QUARTZ are listed for all vessel profiles addressed.

Vessel segment Human observer 1 Human observer 2 Ground Truth (GT) QUARTZ Difference GT vs.

QUARTZ

μ σ μ σ μ σ μ σ μ σ
Normal vessel segments 16.33 4.24 15.87 5.12 16.10 4.50 16.47 4.34 -0.37 1.91

Vessels with central reflex 16.75 5.70 18.14 6.83 17.45 6.18 18.29 6.06 -0.85 1.44

Vessels with low contrast/uneven illumination 16.01 3.65 14.62 2.79 15.32 3.10 16.72 2.40 -1.40 2.23

All vessel profiles 16.34 4.52 16.08 5.26 16.21 4.73 17.01 4.49 -0.80 1.96

https://doi.org/10.1371/journal.pone.0290278.t004

Fig 6. Vessel widths. (A) Measurements of vessel widths in pixels plotted for ground truth on x-axis against and QUARTZ on y-axis. (B)

Bland-Altman plot of ground truth vs. QUARTZ with mean of width measures (pixels) on x-axis, differences of width measures (pixels) on y-

axis, overall mean differences of width measurements (solid red line) with 95% CI (dashed red line).

https://doi.org/10.1371/journal.pone.0290278.g006

Table 5. Arteriole and venule classification performed by QUARTZ on the FOREVERP dataset. Performance

evaluated in terms of sensitivity, specificity, and accuracy per pixels and per vessel segments.

Level Measure Arteriole Venule

Pixel Accuracy 89.25% 89.25%

Sensitivity 90.23% 88.36%

Specificity 88.36% 90.23%

Segment Accuracy 86.32% 86.32%

Sensitivity 88.64% 84.26%

Specificity 84.26% 88.64%

https://doi.org/10.1371/journal.pone.0290278.t005
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Optic disc localization

Of the 300 randomly selected images, QUARTZ demonstrated a detection rate of 97.33% in

terms of correctly identifying the location of the optic disc.

Discussion

Overall, QUARTZ demonstrated high test performance in measuring retinal vessel width on

the FOREVERP dataset, exhibiting good agreement with ground truth measures when com-

pared with previously published data from UK Biobank [27]. It is of great importance to show

similar test performance of QUARTZ in a different geographic population using a different

image acquisition system, as it is a recognized challenge for automated retinal image analysis

software to perform well on multiple datasets that vary in population and protocols [41]. Poor

agreement between vasculometry measures using different software may limit the homogene-

ity of the associations between retinal vasculometry and disease across studies.

The ability to show high performance across different datasets is highly relevant as it

ensures the validity of the measurements and thus provides high quality input for future epide-

miological studies investigating associations between vessel morphology and risk factors for

disease.

High image quality is crucial for the reliability of the other parameters evaluated by the algo-

rithm. The image quality of the FOREVERP dataset exceeded the image quality of the UK Bio-

bank dataset, with 80.55% (FOREVERP) compared with 71.53% (UK Biobank) of the images

labelled as adequate [27]. There may be various reasons that cause reduced image quality,

including technical parameters such as poor illumination, lens artefacts, defocus, or blur. Other

participant or operator-related factors may affect image quality by causing obstructions or mul-

tiple falsely segmented non-vessel objects, such as the capture of eyelashes, visible choroid layer,

exudates, drusen, haemorrhages, retinitis pigmentosa, retinal scars, asteroid hyalosis or inflam-

mation of the optic disc [26,42]. The high quality of the FOREVERP dataset compared with the

UK Biobank dataset may partly be explained by better trained retinal photographers. In UK

Biobank, the personnel had basic training in fundus imaging [26], whereas the camera operators

in the FOREVERP dataset were trained personnel supervised by optometrists.

The segmentation of retinal vessels is challenging due to their complex structure and het-

erogeneity in terms of shape, size, and intensity. Moreover, illumination and poor contrast

may further complicate distinguishing small vessels from background noise [43]. In the search

for new retinal vascular risk factors, it is more important to ensure that the algorithm correctly

avoids non-vessel objects. A high specificity ensures, that the marked vessels are correctly iden-

tified. The specificity of the overall vessel segmentation was similar for the two datasets,

whereas the sensitivity and accuracy of vessel segmentation were improved in the FOREVERP

dataset compared with the UK Biobank dataset (Table 7). By applying pre/post-processing to

the images, the specificity of the FOREVERP (98.41%) and UK Biobank dataset (98.88%)

Table 6. Arteriole and venule classification. Sensitivity of arteriole and venule classification and the arteriole/venule accuracy of the FOREVERP dataset reported for the

following thresholds: >0.5,>0.6,>0.7,>0.8,>0.9. The fraction of data retained for every threshold is reported alongside the performance parameters.

Thresholds Arteriole sensitivity Venule sensitivity A/V Accuracy Fraction of data retained

A>0.5, V>0.5 88.64% 84.26% 86.32% 1

A>0.6, V>0.6 93.75% 91.38% 92.53% 0.82

A>0.7, V>0.7 96.48% 95.84% 96.16% 0.65

A>0.8, V>0.8 98.36% 98.59% 98.48% 0.49

A>0.9, V>0.9 99.29% 99.70% 99.51% 0.31

https://doi.org/10.1371/journal.pone.0290278.t006
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increased, at the cost of reduced sensitivity. Also, the performance parameters of arteriole and

venule classification were improved in the FOREVERP dataset compared with UK Biobank.

Exceptions were the specificity of arteriole classification/sensitivity of venule classification

evaluated per segment (Table 7). With the consistently high levels of both sensitivity and speci-

ficity, there is potential for future epidemiological and/or clinical studies using the FOREVER

dataset. In that case, pre/post-processing of the images would be preferable to increase the cer-

tainty of correctly segmented retinal vessels.

In the FOREVERP dataset, the mean (± standard deviation) difference between the GT

data and the width predicted by QUARTZ was -0.80 (1.96), showing that QUARTZ detected

vessels as having a width larger than the GT.

In the UK Biobank dataset, the difference between the GT and QUARTZ was 0.70 (1.13)

[27], showing that QUARTZ detected vessels as having a width smaller than the GT (Table 8).

The width measurements are very stable within each dataset and the discrepancy between

datasets is likely explained by the subjective nature of human observers. The larger image size

of the FOREVERP dataset (1.75x of UK Biobank) may alter the perception of the vessel edges

perceived by the human observers causing the differences in how they annotate vessel widths

between the two datasets. The magnitude of the mean difference in both datasets is similar

(4.9% FOREVERP and 6.4% UKBB) when assessed as a comparison to the mean vessel profile

width.

The detection rate of localising the optic disc correctly was similar for the two datasets with a

detection rate of 97.33% for the FOREVERP dataset compared with 97.60% for UK Biobank [27].

As shown in this paper, QUARTZ demonstrated a high performance across two different

datasets. Whilst this demonstrates robustness, calibration and training on each dataset were

Table 8. Mean (μ) width with standard deviations (σ) of vessel segments reported for the two datasets; FOREVERP and UK Biobank. μ (σ) listed for the following

vessel types: normal, central reflex, low contrast/uneven illumination, and an average of all vessel profiles. Additional category of normal and central reflex for UK Biobank

only.

Vessel Type FOREVERP UK Biobank

Ground Truth

(GT)

QUARTZ Diff. GT vs.

QUARTZ

Ground Truth

(GT)

QUARTZ Diff, GT vs.

QUARTZ

μ σ μ S μ σ μ σ μ σ μ σ
Normal 16.10 4.50 16.47 4.34 -0.37 1.91 10.46 1.26 10.00 1.60 0.46 0.94

Central reflex 17.45 6.18 18.29 6.06 -0.85 1.44 10.76 1.31 10.06 1.51 0.70 1.01

Low contrast/uneven illumination 15.32 3.10 16.72 2.40 -1.40 2.23 11.29 0.85 10.56 1.89 0.73 1.78

Normal and central reflex - - - - - - 11.09 0.97 10.18 1.23 0.91 0.85

All vessel profiles 16.21 4.73 17.01 4.49 -0.80 1.96 10.87 1.16 10.17 1.54 0.70 1.13

https://doi.org/10.1371/journal.pone.0290278.t008

Table 7. The performance of QUARTZ on the two datasets FOREVERP and UK Biobank. Performance evaluated on the following parameters: Vessel segmentation,

arteriole, and venule classification. Performance parameters are addressed as sensitivity, specificity, and accuracy. Vessel segmentation reported with and without pre/post-

processing. Arteriole and venule classification reported per pixel and per segment.

Dataset

Parameter

FORVEVERP UK Biobank

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Comment

Vessel segmentation 80.31% 98.02% 96.44% 73.66% 98.14% 95.64% without pre/post-processing

74.64% 98.41% 96.28% 69.12% 98.88% 95.84% with pre/post-processing

Arteriole classification 90.23 (A) 88.36 (A) 89.25 (A) 86.07 (A) 87.67 (A) 86.97(A) level: pixel

88.64 (A) 84.26 (A) 86.32 (A) 85.14 (A) 85.32 (A) 85.24 (A) level: segment

Venule classification 88.36 (V) 90.23 (V) 89.25 (V) 87.67 (V) 86.07 (V) 86.97 (V) level: pixel

84.26 (V) 88.64 (V) 86.32 (V) 85.32 (V) 85.14 (V) 85.24 (V) level: segment

https://doi.org/10.1371/journal.pone.0290278.t007
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required. Therefore, a future generic version of QUARTZ would be the next step, compatible

across multiple retinal datasets with no or minimal calibration. To achieve a more universal

system, further validation of QUARTZ in multi-ethnic populations would be necessary, as

they may present alterations in retinal pigmentation and disease risk profiles compared to a

Danish and British population. All the modules/components of this next version will be more

heavily driven by AI, specifically deep learning. Such a system would make widespread

research or adoption to predict the risk of disease based on fundus image analysis more feasi-

ble. An alternative approach to vessel morphometry is end-to-end AI, in which a single deep

learning model directly maps the input images to the risk of disease [42].

A wider application of AI in ophthalmology is promising, as ophthalmology is highly

dependent on imaging modalities for diagnosis as well as monitoring disease progression [44].

AI has made large strides in recent years due to the rise of deep learning, for example, to pre-

dict the risk of disease or identify pathology [36,45], such as “IDx-DR”, which has been

approved by U.S Food and Drug Administration (FDA) to screen for diabetic retinopathy

[46,47]. However, AI (particularly end-to-end) approaches have mainly been developed for

research purposes as the method is challenging to implement in a clinical setting. This is partly

due to the complexity of the analysis performed by the algorithm, which makes it difficult to

assess how the input data relates to the final output data [44,48–50]. To visualize the parame-

ters on which the algorithm has made its decisions, heatmaps can be developed thus increasing

transparency [49]. Nevertheless, it remains a challenge for the future implementation of AI in

healthcare that the algorithms are not based on medical reasoning [49,51].

AI algorithms can be trained with publicly available datasets such as DRIVE (Digital Retinal

Images for Vessel Extraction) [52], STARE (Structured Analysis of the Retina) [53], HRF

(High-Resolution Fundus Image Database) [54] and CHASE_DB1 (a subset of retinal images

from the Child Heart and Health Study in England) [55] or larger datasets such as UK Biobank

[56] and EPIC (European Prospective Investigation into Cancer and Nutrition) [57], available

to researchers upon approval of access to the databases. High-quality data are important to

ensure the reliability of an algorithm, and the training and test data should match the data

from the clinical population of interest [7]. AI methods rely on access to representative and

comprehensive training datasets [11,49], and approaches that use deep learning often require

large datasets to avoid overfitting models. Although algorithms perform well on a public data-

set, there is no guarantee for a high performance on the clinical data of interest, as the datasets

may vary both in terms of the technical settings and the population being studied. If the pub-

licly available datasets are not suitable for the clinical data of interest, researchers may need to

create larger datasets from appropriate settings, as in the case with the FOREVER dataset.

With linkage to data from the comprehensive national registries, the FOREVER dataset can in

future be used for large-scale epidemiological research.

Conclusion

In conclusion, QUARTZ exhibited high performance on a subset of 3,682 retinal images from

the FOREVERP dataset. Compared with previously published data from the UK Biobank,

QUARTZ’s performance on the FOREVERP dataset was at the same level or higher. QUARTZ

has hereby shown robustness across datasets, enabling future research linking vessel mor-

phometry with epidemiological data aiming to find novel biomarkers of disease.
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